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Lifshitz theory of Casimir forces at finite temperature
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We reexamine the Casimir and Lifshitz theories of intermolecular forces at nonzero temperature. For dilute
media and atomic interactions, the limits of validity of the London—van der Waals potential between atoms at
finite temperature are established by a detailed asymptotic analysis. In the retarded limit, the Casimir-Polder
interaction potential is shown to be rigorously correct only in the limit of zero temperature. At any nonzero
temperature a different analytic form obtains and is derived. We then consider Casimir forces between per-
fectly conducting plates. Existing results for the case of intervening vacuum are recovered by a different
method. Moreover, we show that the Mellin transform technique and theory of generafizections allows
a detailed asymptotic treatment of a system of perfectly conducting plates with an intervening electron plasma,
useful in the modeling of forces between metal plates, where the finite metallic skin depth is an important
consideration[ S1050-294{08)04203-9

PACS numbes): 34.20.Cf, 03.70tk, 82.65.Dp, 11.10.Wx

[. INTRODUCTION Tabor[12] using crossed cylinders of muscovite mica.
Brown and Maclay{13], through their formulation of the
The remarkable conjecture of Casirfl in 1948 and its  problem in terms of the energy density of the vacuum, laid
experimental confirmation in the period since, most recentijthe groundwork for the modern theoretical interpretation of
by Lamoreaux 2], that two uncharged, conducting plates in these forces in terms of a shift in the zero-point energy of the
vacuum attract each other have wide-ranging ramificationgacuum due to the presence of constraints or boundaries. As
for systems where guantum fields mediate interactions angluch, the Casimir interaction has found wide application in
generally for constrained quantum fielf3]. A closely re- theoretical physics, from quantum-chromodynamical bag
lated phenomenon, the attraction between atoms and surfacemdels of nucleon§l4] to its role in theories of a universe
due to polarization-induced dipole creation and its modificathat is topologically closed or has undergone a dimensional
tion by the effects of retardatiofi.e., the finite velocity of compactificatio15]. However, it is the domain of the dis-
light), was also illuminated by Casimir and Pold@] and  covery of Casimir phenomena, colloid and interface science,
reconciled with the earlier molecular theories of these varthat continues to be the most readily accessible to experi-
der Waals—type forces, such as that of Londibhfor the  ment. Even here, questions regarding the true natur@nof
(nonretardeglinteraction between neutral atoms. particular, long-rangeintermolecular and surface forces re-
Lifshitz [6] recast these problems in terms of interactionsmain, at least in part, unanswered. Experiments are difficult
between continuous media of well-defin@at at least inde- and require extraordinary efforts in system idealization and
pendently measurabledielectric susceptibilities, mediated noise control. In addition, as we shall show herein, the de-
by the quantum electromagnetic field. The Casimir andvelopment of theory is not, as it stands, complete. Rather, a
Casimir-Polder results were recovered as limiting cases afeturn to the Lifshitz theory, with the application of the ap-
this more general theoiy’]. propriate mathematical tools, reveals insights into the nature
Experimental confirmation of the Casimir-Polder interac-of these intermolecular forces, with significant consequences
tion has been demonstrated recently by Sukestikl. [8], for real experimental systems, where issues such as nonzero
who measured the deflection of ground-state sodium atomgmperature and nonideal surfaces need to be considered.
passing through a parallel-plate cavity, and has now been We are by no means the first to tread this path, but we do
followed by the work of Lamoreaux, who accurately mea-hope to shed some light on some pressing issues for these
sured the leading term in an expansion for the Casimir forcémportant efforts to experimentally demonstrate these quite
between conducting gold surfaces at separations of 0.6—fasindamental phenomena. These include the effects of non-
pum. The latter follows a history of attempts to measure Cazero temperature and finite skin depth in the case of metals.
simir forces, which began with Abrikosova and Derjaguinlt is impossible to describe in full detail the whole gamut of
[9] and include the important work of Sparnddy)] and the  works, in particular theoretical studies, that have dealt with
observation of the crossover from the nonretarded to retardethe Casimir effect and its manifestation in colloidal systems.
regimes by Tabor and Wintertdi1] and Israelachvili and Since we focus on the effect of temperature and later inter-
vening media, it is however possible to draw attention to that
part of the literature relevant to these issues. The more gen-
*Present address: Institute for Surface Chemistry, Box 5607eral surveys are provided in three recent reviews by Plunien
SE-11486 Stockholm, Sweden. et al. [3], Mostepanenko and Trundi6], and Elizalde and
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Romeo[17]. More specifically regarding the Lifshitz theory, 28, \/8—2 2 rp

the reader is referred to the seminal review by Dzyaloshin- I(fnal)E<T) f dpp([ln 1-A®

skii, Lifshitz, and Pitaevskii{7] and also to the book by !

Mahanty and Ninhan18]. —2p¢ Iz, L
Temperature corrections to the result of Casifi} for Xex;{—nz +[AHA]), 2

two conducting plates in vacuum were calculated by Lifshitz ¢

and co-worker$6,7] and later notably by Sau¢t9], Mehra

[20], Brown and Maclay[13], and Schwingeret al. [21]. ge,—pe; — [g-p .

Importantly, Schwingert al. were able to reconcile what A=|{————|, A=|——|, a=Vp°—1+(e1/ey).
; ; - Qe+ pey gtp

appeared to be discrepancies between the predictions of the 3

Lifshitz theory and the results of others, notably those of
Mehra, whose expressions were later confirmed by Browimhe prime on the summation symbol of E@) gives weight
and Maclay[13]. Some controversy continug®2], but  1/2 to the term inn=0. The susceptibilitiez =¢(i &) are
Schwingeret al.[21] clearly showed that when the conduct- evaluated on the imaginary frequency axis. For ideal con-
ing limit was correctly taken in the Lifshitz theory, it yielded ducting media of conductivities;, magnetic susceptibilities
results consistent with those of Mehra, Sauer, and Brown ank®5] u;, Egs.(3) are modified as

Maclay. We recover these results by a route somewhat dif-
ferent from that of Schwingeet al, as a precursor for a

calculation for a classical plasma bounded by two conduct- — M 82(w)—>K—><82(a))+ 172 ,

ing plates using the Lifshitz theory. The related issue of how M0 paP @

to treat imperfect conductors in vacuum has been tackled by ey 20xk

Lifshitz and co-workers [6,7], Hargreaves[24], and f2  AINKH (4)
Schwingeret al. [21]. A somewhat more sophisticated treat- ¢ c

ment, allowing for spatial dispersion effects, has been given ) , i
by Heinrichs[23]. There is also a considerable body of work Formulas(1)—(4) contain a wealth of information, but are

that deals with the temperature behavior of constrainedf@rdly transparent. They can be derived simi#g,1§ by
bosonic and fermionic fieldi8], which is complementary to solving Maxwell’s equations with appropriate boundary con-
the developments outlined hérein ditions to determine allowed surface modes and assigning a

In his experiment, Lamoreatf2] was only able to mea- harmonic-oscillator free energy to each mode.
sure the leading, temperature-independent term for the Ca-
simir force between a spherical and flat surface with good Ill. TEMPERATURE EFFECTS
accuracy. Corrections for temperature and the imperfect con- ON THE VAN DER WAALS INTERACTION
ductivity of the metal could not be deduced from the residu-
als. It is hoped that future measurements will improve on this
and also be able to access Separations less thapm_BOn As noted above, our first investigation will be that of the
the other hand, Sukeniit al.[8] concluded that temperature effects of temperature on the interaction between two atoms.
effects(due, for example, to the blackbody field in the cav- This can be derived from Lifshitz's general theory by the
ity) were not significant in their experiment. We shall showMethods of Ref[18], p. 59. That is, we consider two non-
that the van der Waals force between atoms shows a remarkonducting dilute media of dielectric susceptibilig(w)
able temperature dependence, whereby the standard CasimigParated by a distance _ _
Polder result for the retarded interaction free energy is only Ta_ke '_[he Litshitz formula and expand to leading order in
valid strictly atzerotemperature, and we obtain a result for density, i.e.£—1. Then from Eqs(3)
finite temperatures. We then proceed to consider Casimir

A. Interaction free energy in the nonretarded regime

forces between conducting plates, in vacuum, and with an 2 (e—1)? i+i A2~ (g—1)2
intervening electron plasma. 4 p2  4p*)’ 16p*"
)
Il LIESHITZ THEORY The termn=0 in the sum over frequencies of E(l) re-
' quires a separate treatment to avoid an indetermina8y

We begin by writing down the essential formulae of theand yields

general theory of Lifshitz and co-workel8,7]. For two di- KT
electric medialdenoted 1 separated by a distanteand in- Fooo(l,T)=— W[s(O)—l]Z, (6)
teracting across a mediu(8), the free energyper unit area ™

of the interaction is o . . .
This is curious since for nonpolar media, sources of fluctua-

tions that would give rise to an explicitly classical statistical
_ KT mechanical term ought not to exist. We will show how it in
, n ; X o
F(,T)= 220 (&), &= , (1) fact_ disappears from a complete analysis. Substituting Eqs.
87l o= f (5) into Eq. (1) we require
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The first pole is as=2 due to the denominator-2s. The
second is a double pole at 0. [The third pole as=—1 is
also double, due td’(s) and the pole of the sum &=
—1]. Evaluating the residues at these poles, we have

Fn#O(l ,T): -

kT - oc
2 2
gop2(27X) ngl n L dpp

(»3—1)2‘1 1 1
2 02 2p7)

Xexp(—2mwXpn)

" » {2 " {I (2m0)
I= ———— || In(27x
wherex=2kTl/%c. For a nonpolar medium at low density (27’)‘)2 (1+A”2)2 1+An%)
we can take
. 1+2 nln n 1jd I'(s) | 1
4mpa(0) L 1+ A2 241 ) 525 2=
s(w)= T 1- 0wl o
0 1 1 es+2) 1 2 1+ 2An?
T ST 22| AT AZE nT 1T AM2|
. B 4mpa(0) B g
S = 2 = T A ® (13

Herewy is the principal absorption frequency of the atoms,

where{(z) is the ¢ function of Riemann,y is Euler’s con-
is the densitya(0) is the static polarizability, and {(2) ¢ 4

stant, and the contour now satisfiesl<c<0. We have

exhibited the double pole at= — 1 explicitly by rearranging

2wkT)\? the last sum.

:< f g ) : ©) To make this expansion a little more explicit, we choose

A=(27kT/fhwy)?<1 and definez=m/\A—%=. Thus we

For, typically, hydrogen atoms, we can take(0) seek the expansion for the free-energy density in the nonre-

=e?/mw}, e andm are the electronic charge and mass, retarded limit, i.e., the temperature corrections to the energy

spectively, i w, is the ground-state energy, and the value ofthat would be obtained by summing pairwise London forces.

A is around 10! at room temperature. Then we have

* 2

Frzo(l,T)= —z-kT 2 BZZ—Z—zn
nvo(l T) == g5 (27X )n:1(1+An)

= 1 1
X[ d 1- exp(—2mwxn
fl pp( 02 2 A(—27xnp).
(10)
Using the representation
y 1 Ctioe s
e o C7ioodsy I'(s), Res=c>0, (11

we can carry out the integral overto obtain

e 1 kTZB rs)[ 1 1
ool )= 3o 2mXB) 5 | B8 2= s
1 = 1

2(2+5s) nZ:l ns 2(1+An%)?
KT ,
Ew(ZWXB) I(A,X). (12)

The sum ovem converges for Re>—1 and the contour

satisfies Res>2. The integralZ is quite complicated be-

cause it involves two parameters=2kTIl/Ac and A

=(27kT/hwy)?. We seek an asymptotic expansion for

small distance, which can be done by closing the contaur

Then, after some algebra, we obtain

i 1 [z " +z2 . 1 z 1
“ 1+ And)2 | g comer geseizm o= 275

z
+ 22+§ e 2+ 0(e %), (14)

* 2 23 Z4
Z  ATATE mcothz—mcscﬁz
23 4
NW(1+ 2e %) — —e 22+ 0(e ),
(15
“. nénn £(3)

>

T a
+
= (1+An2)2 8A3/2 In A+ 4A372 A N2 O(A)

(16)

)

S 14+ 2An? _InA
“in(l+An?)?2 2

A
+(y+1)— E+O(A2)'
(17)

When these substitutions are made, the net result is that
the (classical n=0 term[Eq. (6)] cancels identically with a

to the left and evaluating the residues of the enclosed polesontribution from the(quantum n+#0 terms and
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2

mp° hwg ) and will again be canceled by a0 contribution. Without
F(LT) == —777a%(0) 75| 1+ (2lwe/c)7 In(2lwg/c)+y  giving the details, the result obtained is
3 3 14 3 T
- %Asm_ . } N (E) V(I,T)=— WaZ(O)hwo[ 1- 5(2lwglc)?
5 1 7 , T , (117
X(2lwg/c)?| In(2lwg/c) + 3TY At +3g(2lwo/0)*— 75 (2lwg/c)"—| 55
/607 A2
+0(exq—ﬁw0/wkﬂ)]. (19 X(2lg/0)%| geo = IN(2lwole) = y+ o5t -
The leading term is that which would be obtained by pair- +O(exp[—277/\/ﬂ])]. (22)

wise summation of London forces. Expansi@¢h8) and(13)

set the limits of validity of the London expression. Not only The |eading term is of course the London potential. Note the
is the restriction to the nonretarded regimieog/c<1, i.e.,  high (fifth) order in the retardation parameter at which tem-
1<O(100 A) 2reqU|red, but so is the conditiom™  perature correctiongarried byA) first manifest themselves
=(27kT/hwo)“<1. The fact that temperature and separa-ang only at ordeid®. This indicates that these temperature
tion are linked in this fundamental way should have beeryorrections are negligible at very short separations, but the
evident already from the intermediate form for the free-asymptotic nature of the expansion suggests that as the re-
energy density given in Eq7), where the natural scaled tarded limit is approached by increasihgeven afixedtem-
quantity x=2kTl/#c first appears. It follows then that ex- perature, temperature effects become increasingly significant
pansions for small will be inextricably linked to those for gnqg ultimately the London description must break down.

small T and thus that the lowbut finite) temperature and  Again, the interplay between temperature and retardation is
nonretarded regimes coincide. Additionally, it is important togyident.

note that the temperature-dependent classical term arising
from then=0 mode is canceled by a contribution from the
higher-frequency, essentially quantum-mechanical, modes in
a proper analysis.

C. The Casimir-Polder (retarded) interaction
at finite temperature

So, what happens in the retarded limit? We have empha-
sized the interplay of retardation and temperature effects.
The intrinsic scaling of temperature and separation in the
free energy manifested by the parametesuggests that a
The atom-atom pairwise interaction potential can readilyuseful low-temperature, large-separation expansion may be

B. Interaction potential at finite temperature
in the nonretarded regime

be obtained by noting that elusive. At zero temperature, the retarded-limit result for the
5 potential was obtained by Casimir and Pol¢i4}. In fact, it
V(I,T)=— —F(LT) (19 is important to note that their result can only be recovered
' 2mpll dI® from the full Lifshitz free energy, given by the addition of

Egs. (6) and (12), on the assumption tha&=0 from the
However, evaluation of this directly from an expression suctPutset. The usual rationalization of this procedure is that the
as that given in Eg(18) would be laborious if more than the expor_1ent|al factors appearing in the Ln‘s_h|tz free energy, Eq.
first few terms in the retardation parametéwg/c, and in- (1) with Eq. (2), should, in the large-distance case-1,
deed the leading temperature correction, are desired. We c&#gnificantly contribute to the integrals only whempxvc
do better by returning to Eq12) and applying Eq(19), so  =1//e=1, and withp=1 that would imply that the static

that dielectric constants can be used from the oujt8}, i.e., A
=0. We can now show this to be an incorrect limiting pro-
KT 1 I(s+3)] 1 cedure. _ .
Viazo(l, T)= W(ZWXB)ZTJ dsﬁ 75 On settingA=0 in Eq. (12), the sum therein reduces to
TP mJe  (27X) S {(s—2). Then evaluating the residues at the poles of the
X 1 1 w 1 s integrand, we have
s 229 & e 21 Ay 2 FT)— — yraoy] 2, i o[ 2KTI)?
This can then be dealt with in a fashion similar to that de- 7hem? [ 2kTI
scribed forF (I, T) above, i.e., evaluation of residues of the - (—4) ] (23
poles enclosed by the contour and appropriate expansion of 360 hc

the sums that arise. The=0 term contributes where once again the nonretarded temperature-dependent

term of Eq.(6) cancels out. The leading term is what would
Vool T):_E 2(0) 21) have been obtained by summation of individual retarded
n=0%" E Casimir-Polder interaction potentials of the fork(l)=
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—23%ca?(0)/4w!7. The higher-order terms of the expansion

(23) involve the photons and blackbody radiation of the sur-F= 5 F(,T)
rounding field. It should be clear that this asymptotic expan- KT

sion is valid only wherkTIl/Ac<1. Hence the original as-

sumption of a large-distance limiting law approximation _ 5(3)_i_ SF(SM(S_ZM(SJF 1) (269
about a zero-temperature result is manifestly violated by the 4mwx 2wl )c (27x)5"Y(s—2)

resulting expansion, rendering it invalid. This is best ex-

plained by stating that such an expansion should, were it 3 1 T(2=9)¢(3—s)¢(—S5

valid, be useful at low temperatures for ahysuch that :—MJr—. ds ( ) Sfl)g( ), (26b
2lwg/c>1. This is clearly not so here. The only condition 4mx - 2mi Je (XI2m)°>" s

under which Eq(23) could possibly be valid is actually upon
setting T=0. This then recovers the Casimir-Polder zero-Where for convergence=Res>3. The second form fol-
temperature result for the retarded free energy of interactiodoWs from the Riemann relation and the reflection formula
which is indeed the true zero-temperature result. Mathematfor the I" function, viz.
cally, we can see this as follows: The polesat3 of the
integrand of Eq(12) is an artifact due to the impermissible
setting of A=0. At any finite temperature the sum that oc-
curs _in the integrand has its first polesst —1. TheT—0 I(s)T(1—s)=
limit is therefore nonanalytic.

The important conclusion here is that the Casimir-Polder
result isvalid strictly only at zero temperaturand does not Considering now the form of Eq26b), we can translate
provide a leading-order approximation for the free-energythe contour to the left, evaluate residues at the poles=at
density for large separations at finite temperatures. Con=1,0,3, and make the change of variable 2=s’. This
versely, the results presented as expansions about the Lotiien leaves us with the two expression Br
don result,(18) and (22) are only useful at low but finite
temperatures and small separations. In general, it is clear that (3 1 I(s)¢(s+1)¢(s—2)
for large distances the correct form of the interaction in Eq. F=— ax  2m )98 1 + ©>3
(10) is exponential in form, and rather complicated¥, 2. ¢ (s=2)(2mx)

217ST(s)¢(s)cog ws/2) = 73¢(1—5),

(27)

sin s’

Furthermore, it should be pointed out that the full Lifshitz (289
theory already has been reconciled with experiments of Ta- (3) w1 (3)(1
bor and Winterton[11] and Israelachvili and Tabdrl2], F=—2"_ —z—XZ) + —(——x
who observed the shift from the nonretarded to retarded van 4mx 180X 4\ X
der Waals forces between mica cylindg2s]. 1 I'(s)2(s+1)Z(s—2)
— -] ds , €>3. (28b

IV. CASIMIR EFFECT BETWEEN CONDUCTING PLATES 2miJe " (s—2)(2m/x)5 L

A. Plates in vacuum Consequently, on addition and translation of the contour to

We now consider Casimir'fl] system of two perfectly the left past the pole a&=2, we have
conducting plates in vacuum. Since this has received consid-

erable attention in the past, we shall be brief. - i 1 J d I'(s)¢(s+1){(s—2)
Referring again to the general Lifshitz theory of Sec. Il, == - : S -

medium 2 ?s r?ow a vacujlmgzzl, and media 1yperfectly 180¢  2(2m) Jo (s=2)(2m)>*

reflecting metallic walls §=»). ThenA=A=1 and the 1

formulas simplify. The term im=0 is indeterminate as writ- X| & T +XS_1) ,  0<c<2. (29

ten because the prefactgf vanishes while the integral ip

diverges. To deal with this replage by a new variabley The first term in Eq.(29) is the Casimir resul{due to

=2péylVe,(0)/c. Then the indeterminacy is removed and zero-point energy and the remaining, temperature-
KT (= KT dependent, terms represented by the integral are symmetric
0 A Yy — under the inversiorx— 1/x. This inversion symmetry has
Faoll.T) 87T|2fo dyylin(1-e™) 877I2§(3)' been identified previously13,30,31. However, it is clear
(24)  from our treatment that the symmetry of the expressions with
. ) respect to inversion ix is to be expected, as the partition
The remaining terms contribute function is closely related to Euler’s product and its transfor-
mation propertie$32], or equivalently those of products 6f
functions or the Jacold function transformation.
To obtain an expansion corresponding to large distance or
high temperaturex=2kTI/Ac>1, write Eq.(29) as

kT - = Gl
- — 2 2 =
FrsollT)= = -2(2m0? 2, n?| dppX —

Xexp(—2m Xxpmn), (25)
2
for which we require an expansion for small valuesxof P a—— +7 (30)

Using again Eq(11), we find for the(scaled free energyF - 18«2
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and choose the contour Be=c=1. Then withs=1+it, we
have

—mt/2

—l2+ing2-in.
(3D

(27) f dttcogt In x)1

After writing the ¢ function as sums, it then follows after
some algebra that
g(3) 1 * 1 e—2’7Tr|X
27X n=1 N _g 1-e X

1
n2

cscH(nmx), x>1. (32

Writing out the first few terms gives

87kT 4nkTIhC

+2|e”

FOI,T)=- {(3)+ (

| Q12

+O(e—87rkTI/ﬁC) ) (33)
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can be reconciled with those of other methods if the conduct-
ing boundary condition is properly dealt with.

B. Intervening plasma

Dzyaloshinskii, Lifshitz, and Pitaevsk|i7] first consid-
ered the effect of the plates being imperfect conductors by
assuming that the metals have an effective susceptibility
s(w)=1—(wp/w)2, wherew,, is the plasma frequency for
the metal. Their resulting calculations for the free energy
based on this approximation were later corrected by Har-
greaveq 24]. As Hargreaves also noted in his paper, an al-
ternative route is to consider the plates as perfect conductors,
but with a skin depth of “free” electrons. He then presented
approximate formulas for the correction to ideal conductivity
based on the assumption that to a first approximation it is
sufficient to simply account for the skin depth through its
thickness alone, i.e., by assuming that it produced an effec-
tive separation between ideal conductors. Schwirejeal.

[21] tackled the imperfect conductivity problem more in
keeping with the approach of Dzyaloshinskii al. [7]. In

light of all this and the recent experiments outlined in the
Introduction, it seems useful to consider the scenario of two
conducting plates separated by a plasma of free electrons in

The leading term here arises from current-current correlalh® framework of the Lifshitz theory.

tions[33]. Consider then two perfect conductors separated by a free-
An alternative form forx<1 is electron plasma of dielectric susceptibility
7T3 1 X * 1 e—27-rn/x 477[)62
— —_ _ _ er(w)=1— , 3
F=- 90( ) P g(:;)+2n§=‘,l T 2(w) o (37)
14 1 nw where we can identify the plasma frequency of electrons as
2;1 n? cschf| —- (34 w’=4mpe?/m, wherep is the number density of the plasma,
m is the mass of the electron, aeds the unit charge. Re-
so that, explicitly, ferring to the Lifshitz free-energy density of Sec. II, and
following closely the developments of the interceding sec-
F(.T)= mhe  ((3)(kT)® (kT* 72 (kT)? tions, we can write down a contour integral representation
T 720° 2m(fic)? (ko) 45 il for F(1.T):
“| 1+ e~ ThekTl L e 2mhiekTly (35 F(LT)=— i s I'(s){(s+1)
mhc ' Aqlc 27 ). (s—2)(27x)5 2

The leading term of this asymptotic expansion is the Casimir
result. The second term can be writteria@$4p, wherep is

the density of photong34] in blackbody radiation per unit
volume. It plays the role of a chemical potential term. The
third term is the free energy per unit arka of blackbody Where the prime on the sum indicates that tireO term
radiation in a volumdL 2. The validity of this expansion is carries a weight of 1/2, we restrict Re=c>3 for conver-
restricted to gence of the integral, and

X X, (NP4 p)t=s? (38)
n=0

2kT1_ ! eh\2 1 [haw,)\?
X= | < cm. 36 e B -7p
fic T 38 m kT) 4772( kT)

In practice this means that, even accepting the artificial na.
ture of the boundary conditions with ideal reflecting plates,
the Casimir form of the interaction energy breaks down at
room temperature at distances beyond several micrometers.

It should be noted that the results quoted above in Eqgs. Before proceeding any further, it is interesting to consider
(33) and (35 agree with those of Mehrg20] and thereby on its own then=0 term, as it sheds some light on the
confirm the demonstration of Schwinger al. [21] that re-  connection to the related theory of electrolyf&8,35. Con-
sults obtained from the Lifshitz theory at finite temperaturesider

is a scaled density.

1. Classical term
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KT 1 I'(s)¢(s+1) App.endix. The_ importgnt poin.t to note hgre is that the-gen-
Froo(l,T)=— 322 S———————— eralized Epstein-HurwitZ function {(z,a) is meromorphic
mremJe (s=2)(2«l1) and has simple poles in the complex planezat1/2—k,
KT (= wherek=0,1,2,... . The Laurent series expansion at these
= EJ dtt In (L—e~2"), (39 poles is given in the Appendix as EGA4).

We can now rewrite Eq(38) as

where we have Eewly defmeoezwf,/c"’.. This has precisely KT 1 I(s)¢(s+1)

the form of then=0 term for the classical theory of electro- F(I,T)=— _f_j ds——2>7 7

lytes [18,35, with the only difference being that the inverse 8ml“2mi e (s—2)(2mx)52

Debye length of electrolytesp,=(8mwpe?/kTe,,)"? where _

e, IS the static susceptibility of water, is replaced kyor xX{(sl2=1,p), €>3. (44)
the plasma.

Therefore, we can with this connection use results preWWe again seek an expansion for low temperature or distance
sented in Ref[18] to obtain directly the large-distance ex- X<<1. This is relatively straightforward, given that we know
pansion for the classical term the analytic structure of the integrand. Closing the contour to

the left and evaluating residues yields the result

F 1. T)= kTK2 —2lk 1 +0 — A4l k _
n=o(l,T)= 5 © CTP (21%)2 (e 4Ky, F1T)= - 2he 1_15_)(2_4_5§’G(—1,p)(_)(2)3/2
(40) T 7203 R
A small-distance expansion may be found by closing the 5 _ _ _
contour and evaluating residues. This yields — o 1-2y+ S(p,2)=In(px214)](px?)?
KT KTk? 1 1 -
- — 4z - (n+7/2)¢(2n+3) —
Fooo(l, )= = g—20(3)+ 5 —| —In(2lx) + 5 + 32l« _90> (=1 ( ) {( )(pxz)”+3 ,
=0  7¥4(2n+3)'(n+4)
1
_ = 24 ... 45
252k, (41) (45

rT%NhereS(a,k) is defined in Eq(A6).
This expression warrants discussion. Again, the leading

terms in the full free energy The second term represents term is the vacuum Casimir result. Clearly, there also have

exactly twice the change in surface free-energy density dugeen cancellations between the=0 term and the higher

to the presence of electrolyte in the analogous case and fode contributions. Interestinglysx® emerges naturally as
this one due to the plasma. the expansion parameter and the asymptotic expansion is of

course valid forpx2<1. We can rewrite this variable as

The leading term is precisely that obtained in the vacuu
case (and will cancel with a contribution from tha+#0

2. Full free energy
wpl

mC

We now return to the full free-energy density represented
by Eg.(38), with all modes present. We can rewrite the sum
in terms of Epstein-HurwitZ functions, which have become
widely used in quantum field theory and indeed calculationdNote thus that the separation and density are intrinsically
of the Casimir effect for massive quantum fieldb]. Re-  coypled in this expansion. The restrictipm?<1 means that
cently, Elizalde[36] presented their complete analytic struc- | <c/w,, [noting that the factor of 2 in Eq. (46) somewhat
ture. Noting that our notation differs from that of Elizalde, softens this restrictioh This is the opposite limit to that of
the Epstein-Hurwitz function is defined for Re>1/2 and  pzyaloshinskiiet al. [7] and Hargreave§24]. As an ex-

px=

(46)

a>0 by ample, the number density of free electrons for Au or Ag in
" a Drude-type model is approximately %90 ' cm™3
len(z,2)= E 1 (42) [37]; in that case this means that our asymptotic expansion is
ST (n2+a)? valid for <0.01 um. Thus the low-temperature expansion
developed above effectively restricts us to the small-
and the related generalized Epstein function is separation limit for a given density. While the expressions in

Refs.[6,24,2] are naturally limited by the converse condi-
B _, tion 1>0.01 um, it should also be noted that in that case
§G(z,a)=n;x (n2+—a)2=2§EH(z,a)+a - 43 there is the added restriction b1 wm, for Eq.(37) to be
a useful approximation to the dielectric susceptibi[iL].
It is possible to analytically continue these functions into the ~Given the restriction orpx? and that the force per unit
region Rez<1/2 using an integral representation for the area of surfacd is related toF via f=—gF/dl, we can
function and the Jacobi inversion formula5] and thereby calculate the leading correction due to the presence of the
develop asymptotic expansions valid for small and large valelectron plasma to the ideal, zero-temperature, Casimir result
ues of the parametea. These details are relegated to the fo=—#%c#%/240* as a function of separation and density:

©
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f 5 <wp| ) 2 In the limit of high densityp>1 (but such thapx2<1),
C

E”l_ Pl (47) useful for metals, we use EgeA17) and (A18) and obtain,
up to exponentially decaying terms xand p,

for I<c/w,. Note that the result is qualitatively different

2 2 2 2 3
from that of Dzyaloshinskiet al.[7], Schwingeret al. [21], F(ILT)=— mhe  wi(kT)"— 2m°(kT)

312

+ —
and Hargreave$§24] for the I>c/w, regime. Hargreave's 720% " “12hcl P " 3(hc)? P
result is the one most readily comparable to ours, as he con- 20 (kT
siders_ the electrons_ in the skin layer to be effec?ively free, so + 77_3?[1_ 2y— In(;<2/4)]+0(;<2)3.
that his model consists of two perfectly conducting slabs at a 45(fic)

separation|=d+24, where é=c/w, is a (frequency- (50)
independentskin depth andl the width of vacuum between

these plasma layers. His result is
V. CONCLUDING REMARKS

f C Our investigation has shed light on several features of the
—~1—8( ) (48)  Lifshitz theory of Casimir forces at finite temperature. The
Casimir-Polder result for the atom-atom interaction energy is
_ ) . valid strictly only at zero temperature. This indicates, impor-
Thus it seems that in crossing from the small- to large+antly, that measurement of the Casimir-Polder interaction
separation limits, the correction for the plasma sees a réVenergy at room temperature needs careful reconsideration.
sal in the roles of temperature and density: At small separagq the two-plate Casimir problem the corrections for den-
tions, increasing separation and plasma density increase tgﬁy appear to display a remarkable crossover behavior in
size of the correction; at large separations, this decreases 50"19 from the small- to large-separation limits.
This suggests a maximum correction at some intermediaté \y/e have not yet fully addressed a quite fundamental is-
distanpe, but unfortunately this appears inaccessible to ag,e We noted in our treatment of the two-plate problem with
analytic treatment. Of course, as a caveat we should als@eryening plasma that the classical term in the free energy
consider the imaginary component of the dielectric functiong girectly analogous to that for an electrolyte in a colloidal
at such short distances in a more realistic mg@é! How- system(i.e., with interfaces present system investigated at
ever, we suggest that our model provides insight into thgome |ength in Ref[35]. There it was shown that the free
remarkable crossover behavior of the free endegyd force.  onergy of interaction between the surfaces, explicitly the
We should note that the correction in the near-field limit forchange in surface energy due to electrolyte, has a term
the presence of the plasma is salbout 0.1% at 10 A, but (namely that at zero frequencwhere the electrostatic and
increases rapidly to about 10% at 100 A however, oufan der Waals contributions cancel exadtissentially be-
asymptotic expansions are becoming poor approximations ah;se of a gauge condition on the electromagnetic )field
the upper extreme This indicates that electrostatic and dispersion forces are in-
We can flesh out the more complete result presented &syiricably entwined in colloidal systems. Moreover, we
Eq. (45) containing{s(—1,p) andS(p,2) by inserting the  know because of this that a linear theory of dispersion forces,
expansions for these functions at small and |aEeThe such as the Lifshitz theory, is inadequate and that a full non-
former serves to confirm that the correct zero-density limit isinear theory incorporating both electrostatic and fluctuation
recovered; the latter is useful for real metésr Au or Ag,  (dispersion forces is required35]. The same must be true
p_%3><103)_ These expansions are given in the Appendix.for an electron plasma between metal plates, where a de-

L scription of the change in surface energy due to the plasma
Thus, for small densitiep <1, we use Eq9A13) and(A14) would, in a more complete theory, need to take into account

wpl

to obtain the intrinsic coupling of electrostatic and dispersion forces.
Thus the decomposition of electrostatic and Casimir forces

F1LT)=— mw?he N 7Tz(kT)z—_ §(3)(kT)3[ 3 m? (1 [2] in the interpretation of experiments seems problematic.
’ 7203 " “12%cl 2m(he)? [T £(3) These issues provide a significant challenge and warrant

5 close attention, both theoretically and experimentally.

—2In2m)p+ — 5 In p+0(p?)
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+O(px)". (49 APPENDIX: EPSTEIN-HURWITZ ¢ FUNCTION

Note that, aside from exponentially decaying termsxin 1. Analytic continuation and Laurent series

which are difficult to obtain from this treatmehas a full An analytic continuation for the Epstein-Hurwitzfunc-
analysis of the contribution to the integral from the great argion {¢(z,a)==}_,(n?+a) 2 valid for z<1/2 is readily
of the contour in Eq(44) would be needeld this result ex-  obtainable by use of an integral representation fortfienc-
actly recovers the vacuum expression in the ligiit:0. tion and then the Jacold-function inversion formula. As
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this has been done repeatedly in the literaflirg 38, we 1
simply give the result, which is fen(z@)= 5= J’ dtB(t,z—t){(2z—2t)a"',
C
a? 7 (z-1/2)
_ —z+1/2
len(za)=— 5+ ——r—a” 0O<c<z-1/2, (A7)

1/2 *

F(Z)E “dte 3’2ex;<—at—

w2n? whereB(x,y)=TI'(x)T'(y)/T (x+Yy) is the beta function. The
) above also provides an integral representation, through the
relation {g(z,a) =2{gn(z,2) +a~ %, for the generalized Ep-
(A1) stein function. Closing the contour to the left and evaluating
residues, one obtains
The integral is(up to a proportionality constana represen-
tation for the modified Bessel functiofs,(z) [39], so that = {(2z+2n)T(z+n
len(z@)= 2, d F(Z)F()nil) ‘car ae)

a? 7' (z- 1/2)

== —+ —z+1/2
ten(z.8) 2 2I'(2) and for the derivative
" 2’ a—z/2+1/4§: N V2K (2mnal?) , *
I'(2) = i ' éEH<z,a>=n§o {20 (2z+2n) +[(z+ 1) — 4(2)]

A2
() xgzr ol o _(_ap (a9)
z+2N) e (—a)".
The sum inn in the above two equations is manifestly con- I'(z2)I'(n+1)
vergent since the Bessel functions behave asymptotically as _ _
z— as[39] We need to analytically continue these resultz+ol/2,

in particular toz=—q, whereq=0,1,2,3, ... . We then have

KV(Z)N

T 1/2
Z) e % (A3)

1
len(—0,@)= ——aq (A10)

This also provides an analytic continuation for the general-
ized Epstein-Hurwitz function througlig(z,a) =2{g(z,a)

+a % and allows us to evaluate the first two terms in the
Laurent series near the simple poles at1/2—k, k Za(

=0,1,2, ... , which we require in our evaluation of the freeW | btain for the derivative. evaluated at NoOnpoSitiv
energy. After some manipulation of EGA2), we have, for € aiso obtain for the derivative, evaluated at honpositive

7 1/2— K integers,

so that

—qg,a)=0. (Al11)

2 {'(2n—2q)

I'(k+1/2 k
gG(Z’a)Mwl/gr(mi) (z—f/2+k) {1t (z=1/2+k) Gen( =0 =21+ D) 2 )

n

X[S(a,k)—2B(2k)—In a]+ O((z— 1/2+k)?)}, 1
+ 5Ly @+ D%+ (~1)% T (q+1)

(A4)
where o {@n-29T(n-q)
Xn:q+1 Fn+1) (—a)". (A12)
1 [x+1 X
BX)=5 | ——|—¥| 5 (A5) For the free energy given by Eqd5), we require

{e(—1 p) andS(p 2). The former can be obtained directly
and ¢(2) is the digamma functiofi39], and also we define from Eq.(A12) and is

0 N 1 _
S(a,k)54(_1)k7T_ka_k/2F(k+ 1) 21 n_kKk(anallz). gle(_lip): - ?§(3)+[1_|n(4ﬂ-2p)]p
(AB) l(2n— 2) =
222 an=m (P (A1

2. Small-parameter expansion
The smalla expansion forlz,(z,a) is best obtained by A similar Mellin transform treatment to the one above for

using a Mellin-Barnes integral representation, as given by¥en(z:a) can be made fo5(a,k) and we simply give the
Elizaldeet al. [40], result forS(p,2), which is
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_ 2 2 3 4 I'(z—1/2)
S(p)=— (z,a)=mP—— [ y(z—1/2)— y(z)—In a]la Z"1?2
" 2 2
I'(n+1/2) — 12 ¥(2) 2 7-312 ;{ mn )
_qyn_ ¥ n - dtt exp —at—
Xn;( D" Fnrny {2t Le" (2) r
(A14) T2 2n2
f dtt?=%4n t ex;{ at— |,
I'(z)si=1 t
3. Large-parameter expansion (A16)

For the large parameter expansion, we need to return tgor the specific case of the free-energy density of @§),
the analytic continuation fofs(z,a), given by Eq.(A2) and  we require thep>1 expansion fol5(—1,p), which is
{c(z,)=2¢gn(z,@)+a % Use of the leading large-

parameter scaling of the Bessel functions as given in Eq,, , —:_4_77—3/2 4—3/4 1 P
(A3) readily allows us to deduce tha>1 behavior of Ge(—1Lp) 3P T EP E parKa2mp ™)
{c(z,a), which is
477_3/2 2— I
T'(z—1/2) 2m%a 42 === pexp —2mp'?)| 1+ 0| =
{o(z,a)= 2 a-z+t12y 3
I'(2) I'(2) (A17)
1/2 -1 —_ _
xexp —2mat?)[1+0(a™ )] (A15)  The largep expansion ofS(p,2) is similarly obtained and is
— 4 12 1
) S(p,2)= ——= exp(—2mp~)| 1+ 0| =] |.
We can also deduce the large-parameter expansion for the w2 po4 p
z derivative from Eq.(Al): (A18)
[1] H. B. G. Casimir, Proc. K. Ned. Akad. Wed1, 793(1948; J. 385(1988 [Sov. Phys. Usp31, 965(1988].
Chem. Physd46, 407 (1949. [17] E. Elizalde and A. Romeo, Am. J. Phys9, 711 (199)).
[2] S. K. Lamoreaux, Phys. Rev. Left8, 5 (1997. [18] J. Mahanty and B. W. NinhanDispersion ForcegAcademic,
[3] G. Plunien, B. Miler, and W. Greiner, Phys. Refi34, 87 London, 1976.
(1986. [19] F. Sauer, dissertation, @mgen, 1962unpublishegl
[4] H. B. G. Casimir and D. Polder, Natugondon 158 787  [20] J. Mehra, PhysicéAmsterdam 37, 145(1967.
(1946; Phys. Rev73, 360 (1948. [21] J. Schwinger, L. L. DeRaad, and K. A. Milton, Ann. Phys.
[5] F. London, Z. Phys3, 245(1930; Z. Phys. Chem. Abt. A1, (N.Y.) 115 1 (1978.
222(1930. [22] N. F. Svaiter, Nuovo Cimento A05 959(1992.

[23] H. Heinrichs, Phys. Rev. B1, 3625(1975.

[24] C. M. Hargreaves, Proc. K. Ned. Akad. Wet6B, 231(1965.

[25] P. Richmond and B. W. Ninham, J. Phys4C1988(1971).

[26] B. W. Ninham, V. A. Parsegian, and G. H. Weiss, J. Stat.
Phys.2, 323(1970.

[27] B. W. Ninham and V. A. Parsegian, Biophys. 10, 646

[6] E. M. Lifshitz, Zh. Eksp. Teor. Fiz29, 94 (1955 [Sov. Phys.
JETP2, 72 (1956)].

[7] I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv.
Phys.10, 165(1961).

[8] C. I. Sukenik, M. G. Boshier, C. Cho, V. Sandoghdar, and E.

A. Hinds, Phys. Rev. Let{70, 560(1993. (1970.

[9]' I. Abriskova and B. V. Derjaguin, Dokl. Akad. Nauk SSSR [28] V. A. Parsegian and B. W. Ninham, Biophys. 10, 664
90, 1055(1953; B. V. Derjaguin and I. I. Abriskova, Discuss. (1970.
Faraday Socl8, 33 (1954. [29] L. R. White, J. N. Israelachvili, and B. W. Ninham, J. Chem.

[10] M. J. Sparnaay, Physid&msterdam 24, 751 (1958. Soc. Faraday Trans. 12, 2526(1976.

[11] D. Tabor and R. H. S. Winterton, Natufeondon) 219, 1120  [30] G. Plunien, B. Miler, and W. Greiner, Physica A45 202
(1968; Proc. R. Soc. London, Ser. 212, 435(1969. (1987).

[12] J. N. Israelachvili and D. Tabor, Natuteondon 236, 106 [31] F. Ravndal and D. Tollefsen, Phys. Rev.4D, 4191(1989.
(1972; Proc. R. Soc. London, Ser. 331, 19 (1972. [32] B. W. Ninham, B. D. Hughes, N. E. Frankel, and M. L.

[13] L. S. Brown and G. J. Maclay, Phys. Re\84, 1272(1969. Glasser, Physica A86, 441(1992.

[14] E. Elizalde, M. Bordag, and K. Kirsten, e-print [33] D. J. Mitchell, B. W. Ninham, and P. Richmond, Am. J. Phys.
hep-th/9707083, and references therein. 40, 647 (1972.

[15] E. Elizalde,Ten Physical Applications of Spectral Zeta Func- [34] L. D. Landau and E. M. LifshitzStatistical Physic{Perga-
tions (Springer, Berlin, 1996 mon, London, 198)) Pt. 2.

[16] V. P. Mostepanenko and N. N. Trunov, Usp. Fiz. N&Li6, [35] B. W. Ninham and V. Yaminsky, Langmuik3, 2097 (1997).



1880 B. W. NINHAM AND J. DAICIC 57

[36] E. Elizalde, J. Phys. B0, 2735(1997. [39] I. S. Gradshteyn and I. M. Ryzhik;able of Integrals, Series
[37] N. W. Ashcroft and N. D. MerminSolid State Physic&Saun- and ProductgAcademic, San Diego, 1994

ders College, Philadelphia, 1987 [40] E. Elizalde, K. Kirsten, and S. Zerbini, J. Phys. 28, 617
[38] V. V. Nesterenko and I. G. Pirozhenko, J. Math. Ph$8, (1995.

6265(1997).



