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Lifshitz theory of Casimir forces at finite temperature
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We reexamine the Casimir and Lifshitz theories of intermolecular forces at nonzero temperature. For dilute
media and atomic interactions, the limits of validity of the London–van der Waals potential between atoms at
finite temperature are established by a detailed asymptotic analysis. In the retarded limit, the Casimir-Polder
interaction potential is shown to be rigorously correct only in the limit of zero temperature. At any nonzero
temperature a different analytic form obtains and is derived. We then consider Casimir forces between per-
fectly conducting plates. Existing results for the case of intervening vacuum are recovered by a different
method. Moreover, we show that the Mellin transform technique and theory of generalizedz functions allows
a detailed asymptotic treatment of a system of perfectly conducting plates with an intervening electron plasma,
useful in the modeling of forces between metal plates, where the finite metallic skin depth is an important
consideration.@S1050-2947~98!04203-6#

PACS number~s!: 34.20.Cf, 03.70.1k, 82.65.Dp, 11.10.Wx
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I. INTRODUCTION

The remarkable conjecture of Casimir@1# in 1948 and its
experimental confirmation in the period since, most recen
by Lamoreaux@2#, that two uncharged, conducting plates
vacuum attract each other have wide-ranging ramificati
for systems where quantum fields mediate interactions
generally for constrained quantum fields@3#. A closely re-
lated phenomenon, the attraction between atoms and sur
due to polarization-induced dipole creation and its modifi
tion by the effects of retardation~i.e., the finite velocity of
light!, was also illuminated by Casimir and Polder@4# and
reconciled with the earlier molecular theories of these v
der Waals–type forces, such as that of London@5# for the
~nonretarded! interaction between neutral atoms.

Lifshitz @6# recast these problems in terms of interactio
between continuous media of well-defined~or at least inde-
pendently measurable! dielectric susceptibilities, mediate
by the quantum electromagnetic field. The Casimir a
Casimir-Polder results were recovered as limiting cases
this more general theory@7#.

Experimental confirmation of the Casimir-Polder intera
tion has been demonstrated recently by Sukeniket al. @8#,
who measured the deflection of ground-state sodium at
passing through a parallel-plate cavity, and has now b
followed by the work of Lamoreaux, who accurately me
sured the leading term in an expansion for the Casimir fo
between conducting gold surfaces at separations of 0.
mm. The latter follows a history of attempts to measure C
simir forces, which began with Abrikosova and Derjagu
@9# and include the important work of Sparnaay@10# and the
observation of the crossover from the nonretarded to reta
regimes by Tabor and Winterton@11# and Israelachvili and

*Present address: Institute for Surface Chemistry, Box 56
SE-11486 Stockholm, Sweden.
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Tabor @12# using crossed cylinders of muscovite mica.
Brown and Maclay@13#, through their formulation of the

problem in terms of the energy density of the vacuum, l
the groundwork for the modern theoretical interpretation
these forces in terms of a shift in the zero-point energy of
vacuum due to the presence of constraints or boundaries
such, the Casimir interaction has found wide application
theoretical physics, from quantum-chromodynamical b
models of nucleons@14# to its role in theories of a univers
that is topologically closed or has undergone a dimensio
compactification@15#. However, it is the domain of the dis
covery of Casimir phenomena, colloid and interface scien
that continues to be the most readily accessible to exp
ment. Even here, questions regarding the true nature o~in
particular, long-range! intermolecular and surface forces r
main, at least in part, unanswered. Experiments are diffi
and require extraordinary efforts in system idealization a
noise control. In addition, as we shall show herein, the
velopment of theory is not, as it stands, complete. Rathe
return to the Lifshitz theory, with the application of the a
propriate mathematical tools, reveals insights into the na
of these intermolecular forces, with significant consequen
for real experimental systems, where issues such as non
temperature and nonideal surfaces need to be considere

We are by no means the first to tread this path, but we
hope to shed some light on some pressing issues for t
important efforts to experimentally demonstrate these q
fundamental phenomena. These include the effects of n
zero temperature and finite skin depth in the case of me
It is impossible to describe in full detail the whole gamut
works, in particular theoretical studies, that have dealt w
the Casimir effect and its manifestation in colloidal system
Since we focus on the effect of temperature and later in
vening media, it is however possible to draw attention to t
part of the literature relevant to these issues. The more g
eral surveys are provided in three recent reviews by Plun
et al. @3#, Mostepanenko and Trunov@16#, and Elizalde and
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57 1871LIFSHITZ THEORY OF CASIMIR FORCES AT FINITE . . .
Romeo@17#. More specifically regarding the Lifshitz theory
the reader is referred to the seminal review by Dzyalosh
skii, Lifshitz, and Pitaevskii@7# and also to the book by
Mahanty and Ninham@18#.

Temperature corrections to the result of Casimir@1# for
two conducting plates in vacuum were calculated by Lifsh
and co-workers@6,7# and later notably by Sauer@19#, Mehra
@20#, Brown and Maclay@13#, and Schwingeret al. @21#.
Importantly, Schwingeret al. were able to reconcile wha
appeared to be discrepancies between the predictions o
Lifshitz theory and the results of others, notably those
Mehra, whose expressions were later confirmed by Bro
and Maclay @13#. Some controversy continues@22#, but
Schwingeret al. @21# clearly showed that when the conduc
ing limit was correctly taken in the Lifshitz theory, it yielde
results consistent with those of Mehra, Sauer, and Brown
Maclay. We recover these results by a route somewhat
ferent from that of Schwingeret al., as a precursor for a
calculation for a classical plasma bounded by two condu
ing plates using the Lifshitz theory. The related issue of h
to treat imperfect conductors in vacuum has been tackled
Lifshitz and co-workers @6,7#, Hargreaves @24#, and
Schwingeret al. @21#. A somewhat more sophisticated trea
ment, allowing for spatial dispersion effects, has been gi
by Heinrichs@23#. There is also a considerable body of wo
that deals with the temperature behavior of constrai
bosonic and fermionic fields@3#, which is complementary to
the developments outlined herein.

In his experiment, Lamoreaux@2# was only able to mea
sure the leading, temperature-independent term for the
simir force between a spherical and flat surface with go
accuracy. Corrections for temperature and the imperfect c
ductivity of the metal could not be deduced from the resid
als. It is hoped that future measurements will improve on t
and also be able to access separations less than 0.6mm. On
the other hand, Sukeniket al. @8# concluded that temperatur
effects~due, for example, to the blackbody field in the ca
ity! were not significant in their experiment. We shall sho
that the van der Waals force between atoms shows a rem
able temperature dependence, whereby the standard Cas
Polder result for the retarded interaction free energy is o
valid strictly atzero temperature, and we obtain a result f
finite temperatures. We then proceed to consider Cas
forces between conducting plates, in vacuum, and with
intervening electron plasma.

II. LIFSHITZ THEORY

We begin by writing down the essential formulae of t
general theory of Lifshitz and co-workers@6,7#. For two di-
electric media~denoted 1! separated by a distancel and in-
teracting across a medium~2!, the free energy~per unit area!
of the interaction is

F~ l ,T!5
kT

8p l 2( 8
n50

`

I ~jn ,l !, jn5
2pnkT

\
, ~1!
-

z

the
f
n

nd
if-

t-

y

n

d

a-
d
n-
-
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rk-
ir-

ly

ir
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I ~jn ,l ![S 2jnlA«2

c D 2E
1

`

dppS H lnF12D2

3expS 22pjnlA«2

c D G J 1@D→D̄# D , ~2!

D5S q«22p«1

q«21p«1
D , D̄5S q2p

q1pD , q5Ap2211~«1 /«2!.

~3!

The prime on the summation symbol of Eq.~1! gives weight
1/2 to the term inn50. The susceptibilities«5«( i jn) are
evaluated on the imaginary frequency axis. For ideal c
ducting media of conductivitiess j , magnetic susceptibilities
@25# m j , Eqs.~3! are modified as

D̄→
m2q2m1p

m2q1m1p
, «2~v!→k→S «2~v!1

is2

v D ,

2lA«2

c
→

2lAkm

c
. ~4!

Formulas~1!–~4! contain a wealth of information, but ar
hardly transparent. They can be derived simply@26,18# by
solving Maxwell’s equations with appropriate boundary co
ditions to determine allowed surface modes and assignin
harmonic-oscillator free energy to each mode.

III. TEMPERATURE EFFECTS
ON THE VAN DER WAALS INTERACTION

A. Interaction free energy in the nonretarded regime

As noted above, our first investigation will be that of th
effects of temperature on the interaction between two ato
This can be derived from Lifshitz’s general theory by t
methods of Ref.@18#, p. 59. That is, we consider two non
conducting dilute media of dielectric susceptibility«(v)
separated by a distancel .

Take the Lifshitz formula and expand to leading order
density, i.e.,«21. Then from Eqs.~3!

D2;
~«21!2

4 S 12
1

p2 1
1

4p4D , D2;~«21!2
1

16p4 .

~5!

The termn50 in the sum over frequencies of Eq.~1! re-
quires a separate treatment to avoid an indeterminacy@18#
and yields

Fn50~ l ,T!52
kT

64p l 2@«~0!21#2, ~6!

This is curious since for nonpolar media, sources of fluct
tions that would give rise to an explicitly classical statistic
mechanical term ought not to exist. We will show how it
fact disappears from a complete analysis. Substituting E
~5! into Eq. ~1! we require
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FnÞ0~ l ,T!52
kT

8p l 2~2px!2(
n51

`

n2E
1

`

dpp

3exp~22pxpn!
~«21!2

4 S 12
1

p2 1
1

2p4D ,

~7!

wherex[2kTl/\c. For a nonpolar medium at low densit
we can take

«~v!215
4pra~0!

12v2/v0
2 ,

«~ i jn!215
4pra~0!

11jn
2/v0

2 [
B

11An2 . ~8!

Herev0 is the principal absorption frequency of the atomsr
is the density,a(0) is the static polarizability, and

A5S 2pkT

\v0
D 2

. ~9!

For, typically, hydrogen atoms, we can takea(0)
5e2/mv0

2, e andm are the electronic charge and mass,
spectively,\v0 is the ground-state energy, and the value
A is around 1021 at room temperature. Then we have

FnÞ0~ l ,T!52
kT

32p l 2~2pxB!2(
n51

`
n2

~11An2!2

3E
1

`

dppS 12
1

p2 1
1

2p4Dexp~22pxnp!.

~10!

Using the representation

e2y5
1

2p i Ec2 i`

c1 i`

dsy2sG~s!, Res5c.0, ~11!

we can carry out the integral overp to obtain

FnÞ0~ l ,T!5
kT

32p l 2~2pxB!2
1

2p i Ec
ds

G~s!

~2px!sF 1

22s
1

1

s

2
1

2~21s!G (n51

`
1

ns22~11An2!2

[
kT

32p l 2~2pxB!2I~A,x!. ~12!

The sum overn converges for Res.21 and the contour
satisfies Res.2. The integralI is quite complicated be
cause it involves two parametersx52kTl/\c and A
5(2pkT/\v0)2. We seek an asymptotic expansion f
small distancel , which can be done by closing the contourc
to the left and evaluating the residues of the enclosed po
-
f

s.

The first pole is ats52 due to the denominator 22s. The
second is a double pole ats50. @The third pole ats521 is
also double, due toG(s) and the pole of the sum ats5
21]. Evaluating the residues at these poles, we have

I52
1

~2px!2(
n51

`
1

~11An2!2 1F (
n51

`
n2

~11An2!2GF ln~2px!

1g2
1

4G1 (
n51

`
n2ln n

~11An2!21
1

2p i Ec
ds

G~s!

~2px!sF 1

22s

1
1

s
2

1

2~21s!GF z~s12!

A2 2
1

A2(
n51

`
112An2

ns12~11An2!2G ,

~13!

wherez(z) is the z function of Riemann,g is Euler’s con-
stant, and the contour now satisfies21,c,0. We have
exhibited the double pole ats521 explicitly by rearranging
the last sum.

To make this expansion a little more explicit, we choo
A5(2pkT/\v0)2!1 and definez5p/AA→`. Thus we
seek the expansion for the free-energy density in the no
tarded limit, i.e., the temperature corrections to the ene
that would be obtained by summing pairwise London forc
Then, after some algebra, we obtain

(
n51

`
1

~11An2!2 5S z

4
coth z1

z2

4
csch2z2

1

2D;S z

4
2

1

2D
1S z21

z

2De22z1O~e24z!, ~14!

(
n51

`
n2

~11An2!2 5
z3

4p2 coth z2
z4

4p2 csch2z

;
z3

4p2 ~112e22z!2
z4

p2 e22z1O~e24z!,

~15!

(
n51

`
n2ln n

~11An2!2 52
p

8A3/2 ln A1
p

4A3/21
z~3!

4p2 1O~A!,

~16!

(
n51

`
112An2

n~11An2!2 52
ln A

2
1~g11!2

A

6
1O~A2!.

~17!

When these substitutions are made, the net result is
the ~classical! n50 term@Eq. ~6!# cancels identically with a
contribution from the~quantum! nÞ0 terms and
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F~ l ,T!52
pr2

l 2 a2~0!
\v0

16 H 11~2lv0 /c!2F ln~2lv0 /c!1g

2
3

4
2

z~3!

p3 A3/21••• G1S 14

3p D
3~2lv0 /c!3F ln~2lv0 /c!1

5

3
1g2

1

6
A1••• G

1O~exp@2\v0 /pkT# !J . ~18!

The leading term is that which would be obtained by pa
wise summation of London forces. Expansions~18! and~13!
set the limits of validity of the London expression. Not on
is the restriction to the nonretarded regime 2lv0 /c!1, i.e.,
l !O(100 Å) required, but so is the conditionA
5(2pkT/\v0)2!1. The fact that temperature and sepa
tion are linked in this fundamental way should have be
evident already from the intermediate form for the fre
energy density given in Eq.~7!, where the natural scale
quantity x52kTl/\c first appears. It follows then that ex
pansions for smalll will be inextricably linked to those for
small T and thus that the low~but finite! temperature and
nonretarded regimes coincide. Additionally, it is important
note that the temperature-dependent classical term ar
from then50 mode is canceled by a contribution from th
higher-frequency, essentially quantum-mechanical, mode
a proper analysis.

B. Interaction potential at finite temperature
in the nonretarded regime

The atom-atom pairwise interaction potential can read
be obtained by noting that

V~ l ,T!52
1

2pr2l

d3

dl3
F~ l ,T!. ~19!

However, evaluation of this directly from an expression su
as that given in Eq.~18! would be laborious if more than th
first few terms in the retardation parameter 2lv0 /c, and in-
deed the leading temperature correction, are desired. We
do better by returning to Eq.~12! and applying Eq.~19!, so
that

VnÞ0~ l ,T!5
kT

64p2r2l 6 ~2pxB!2
1

2p i Ec
ds

G~s13!

~2px!s F 1

22s

1
1

s
2

1

2~21s!G (n51

`
1

ns22~11An2!2
. ~20!

This can then be dealt with in a fashion similar to that d
scribed forF( l ,T) above, i.e., evaluation of residues of th
poles enclosed by the contour and appropriate expansio
the sums that arise. Then50 term contributes

Vn50~ l ,T!52
3kT

l 6 a2~0! ~21!
-

-
n
-

ng

in

y

h

an

-

of

and will again be canceled by annÞ0 contribution. Without
giving the details, the result obtained is

V~ l ,T!52
3

4l 6 a2~0!\v0H 12
p

12
~2lv0 /c!2

1
7

36
~2lv0 /c!32

p2

16
~2lv0 /c!42S 11p

90 D
3~2lv0 /c!5F607

660
2 ln~2lv0 /c!2g1

A3

3024
1••• G

1O~exp@22p/AA# !J . ~22!

The leading term is of course the London potential. Note
high ~fifth! order in the retardation parameter at which te
perature corrections~carried byA) first manifest themselves
and only at orderA3. This indicates that these temperatu
corrections are negligible at very short separations, but
asymptotic nature of the expansion suggests that as the
tarded limit is approached by increasingl , even atfixedtem-
perature, temperature effects become increasingly signifi
and ultimately the London description must break dow
Again, the interplay between temperature and retardatio
evident.

C. The Casimir-Polder „retarded… interaction
at finite temperature

So, what happens in the retarded limit? We have emp
sized the interplay of retardation and temperature effe
The intrinsic scaling of temperature and separation in
free energy manifested by the parameterx suggests that a
useful low-temperature, large-separation expansion may
elusive. At zero temperature, the retarded-limit result for
potential was obtained by Casimir and Polder@4#. In fact, it
is important to note that their result can only be recove
from the full Lifshitz free energy, given by the addition o
Eqs. ~6! and ~12!, on the assumption thatA[0 from the
outset. The usual rationalization of this procedure is that
exponential factors appearing in the Lifshitz free energy,
~1! with Eq. ~2!, should, in the large-distance casex@1,
significantly contribute to the integrals only when 2pxn/c
.1/A«&1, and withp>1 that would imply that the static
dielectric constants can be used from the outset@18#, i.e., A
50. We can now show this to be an incorrect limiting pr
cedure.

On settingA[0 in Eq. ~12!, the sum therein reduces t
z(s22). Then evaluating the residues at the poles of
integrand, we have

F~ l ,T!52r2a2~0!H 23\c

120l 31z~3!
\cp

4l 3 S 2kTl

\c D 3

2
7\cp4

360l 3 S 2kTl

\c4 D1•••J , ~23!

where once again the nonretarded temperature-depen
term of Eq.~6! cancels out. The leading term is what wou
have been obtained by summation of individual retard
Casimir-Polder interaction potentials of the formV( l )5
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1874 57B. W. NINHAM AND J. DAICIC
223\ca2(0)/4p l 7. The higher-order terms of the expansio
~23! involve the photons and blackbody radiation of the s
rounding field. It should be clear that this asymptotic exp
sion is valid only whenkTl/\c!1. Hence the original as
sumption of a large-distance limiting law approximatio
about a zero-temperature result is manifestly violated by
resulting expansion, rendering it invalid. This is best e
plained by stating that such an expansion should, wer
valid, be useful at low temperatures for anyl such that
2lv0 /c@1. This is clearly not so here. The only conditio
under which Eq.~23! could possibly be valid is actually upo
setting T50. This then recovers the Casimir-Polder ze
temperature result for the retarded free energy of interact
which is indeed the true zero-temperature result. Mathem
cally, we can see this as follows: The pole ats53 of the
integrand of Eq.~12! is an artifact due to the impermissib
setting ofA50. At any finite temperature the sum that o
curs in the integrand has its first pole ats521. TheT→0
limit is therefore nonanalytic.

The important conclusion here is that the Casimir-Pol
result isvalid strictly only at zero temperatureanddoes not
provide a leading-order approximation for the free-ene
density for large separations at finite temperatures. C
versely, the results presented as expansions about the
don result,~18! and ~22! are only useful at low but finite
temperatures and small separations. In general, it is clear
for large distances the correct form of the interaction in E
~10! is exponential in form, and rather complicated@27,28#.
Furthermore, it should be pointed out that the full Lifsh
theory already has been reconciled with experiments of
bor and Winterton@11# and Israelachvili and Tabor@12#,
who observed the shift from the nonretarded to retarded
der Waals forces between mica cylinders@29#.

IV. CASIMIR EFFECT BETWEEN CONDUCTING PLATES

A. Plates in vacuum

We now consider Casimir’s@1# system of two perfectly
conducting plates in vacuum. Since this has received con
erable attention in the past, we shall be brief.

Referring again to the general Lifshitz theory of Sec.
medium 2 is now a vacuum,«251, and media 1 perfectly
reflecting metallic walls (s5`). Then D5D̄[1 and the
formulas simplify. The term inn50 is indeterminate as writ
ten because the prefactorjn

2 vanishes while the integral inp
diverges. To deal with this replacep by a new variabley
52pjnlA«2(0)/c. Then the indeterminacy is removed an

Fn50~ l ,T!5
kT

8p l 2E
0

`

dyy ln~12e2y!52
kT

8p l 2z~3!.

~24!

The remaining terms contribute

FnÞ0~ l ,T!52
kT

4p l 2 ~2px!2(
n51

`

n2E
1

`

dpp(
m51

`
1

m

3exp~22p xpmn!, ~25!

for which we require an expansion for small values ofx.
Using again Eq.~11!, we find for the~scaled! free energyF
-
-

e
-
it

-
n,
ti-

r

y
n-
on-

at
.

a-

n

id-

,

F[
\cl

~kT!2
F~ l ,T!

52
z~3!

4px
2

1

2p i Ec
ds

G~s!z~s22!z~s11!

~2px!s21~s22!
~26a!

52
z~3!

4px
1

1

2p i Ec
ds

G~22s!z~32s!z~2s!

~x/2p!s21s
, ~26b!

where for convergencec5Re s.3. The second form fol-
lows from the Riemann relation and the reflection formu
for the G function, viz.

212sG~s!z~s!cos~ps/2!5psz~12s!,

G~s!G~12s!5
p

sin ps
. ~27!

Considering now the form of Eq.~26b!, we can translate
the contour to the left, evaluate residues at the poles ats5
21,0,3, and make the change of variable 22s5s8. This
then leaves us with the two expression forF

F52
z~3!

4px
2

1

2p i Ec
ds

G~s!z~s11!z~s22!

~s22!~2px!s21
, c.3,

~28a!

F52
z~3!

4px
2

p2

180S 1

x2 2x2D1
z~3!

4p S 1

x
2xD

2
1

2p i Ec
ds

G~s!z~s11!z~s22!

~s22!~2p/x!s21
, c.3. ~28b!

Consequently, on addition and translation of the contou
the left past the pole ats52, we have

F52
p2

180x2
2

1

2~2p i !Ec
ds

G~s!z~s11!z~s22!

~s22!~2p!s21

3S 1

xs21 1xs21D , 0,c,2. ~29!

The first term in Eq.~29! is the Casimir result~due to
zero-point energy! and the remaining, temperature
dependent, terms represented by the integral are symm
under the inversionx→1/x. This inversion symmetry has
been identified previously@13,30,31#. However, it is clear
from our treatment that the symmetry of the expressions w
respect to inversion inx is to be expected, as the partitio
function is closely related to Euler’s product and its transf
mation properties@32#, or equivalently those of products ofz
functions or the Jacobiu function transformation.

To obtain an expansion corresponding to large distanc
high temperature,x52kTl/\c@1, write Eq.~29! as

F52
p2

180x2
1J ~30!
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and choose the contour Res5c51. Then withs511 i t , we
have

J52
2

~2p!2E0

`

dttcos~ t ln x!
e2pt/2

12e2pt
z~21 i t !z~22 i t !.

~31!

After writing the z function as sums, it then follows afte
some algebra that

F52
z~3!

4px
2

1

2px (
n51

`
1

n3

e22pnx

12e22pnx

2
1

4 (
n51

`
1

n2 csch2~npx!, x@1. ~32!

Writing out the first few terms gives

F~ l ,T!52
kT

8p l 2Fz~3!1S 8pkTl

\c
12De24pkTl/\c

1O~e28pkTl/\c!G . ~33!

The leading term here arises from current-current corr
tions @33#.

An alternative form forx!1 is

F52
p3

90S 1

x2 2x2D2
x

2pF z~3!12(
n51

`
1

n3

e22pn/x

12e22pn/xG
2

1

2(
n51

`
1

n2 csch2S np

x D , ~34!

so that, explicitly,

F~ l ,T!52
p2\c

720l 3
2

z~3!~kT!3

2p~\c!2
1

~kT!4

~\c!3

p2l

45
2

~kT!2

\cl

3S 11
kTl

p\cDe2p\c/kTl1O~e22p\c/kTl!. ~35!

The leading term of this asymptotic expansion is the Casi
result. The second term can be written as\c/4pr, wherer is
the density of photons@34# in blackbody radiation per uni
volume. It plays the role of a chemical potential term. T
third term is the free energy per unit areaL2 of blackbody
radiation in a volumelL 2. The validity of this expansion is
restricted to

x5
2kTl

\c
!1 or l !

1021

T
cm. ~36!

In practice this means that, even accepting the artificial
ture of the boundary conditions with ideal reflecting plat
the Casimir form of the interaction energy breaks down
room temperature at distances beyond several micromet

It should be noted that the results quoted above in E
~33! and ~35! agree with those of Mehra@20# and thereby
confirm the demonstration of Schwingeret al. @21# that re-
sults obtained from the Lifshitz theory at finite temperatu
-

ir

a-
,
t
s.
s.

can be reconciled with those of other methods if the condu
ing boundary condition is properly dealt with.

B. Intervening plasma

Dzyaloshinskii, Lifshitz, and Pitaevskii@7# first consid-
ered the effect of the plates being imperfect conductors
assuming that the metals have an effective susceptib
«(v)512(vp /v)2, wherevp is the plasma frequency fo
the metal. Their resulting calculations for the free ener
based on this approximation were later corrected by H
greaves@24#. As Hargreaves also noted in his paper, an
ternative route is to consider the plates as perfect conduc
but with a skin depth of ‘‘free’’ electrons. He then present
approximate formulas for the correction to ideal conductiv
based on the assumption that to a first approximation i
sufficient to simply account for the skin depth through
thickness alone, i.e., by assuming that it produced an ef
tive separation between ideal conductors. Schwingeret al.
@21# tackled the imperfect conductivity problem more
keeping with the approach of Dzyaloshinskiiet al. @7#. In
light of all this and the recent experiments outlined in t
Introduction, it seems useful to consider the scenario of t
conducting plates separated by a plasma of free electron
the framework of the Lifshitz theory.

Consider then two perfect conductors separated by a f
electron plasma of dielectric susceptibility

«2~v!512
4pre2

mv2
, ~37!

where we can identify the plasma frequency of electrons
vp

254pre2/m, wherer is the number density of the plasm
m is the mass of the electron, ande is the unit charge. Re-
ferring to the Lifshitz free-energy density of Sec. II, an
following closely the developments of the interceding se
tions, we can write down a contour integral representat
for F( l ,T):

F~ l ,T!52
kT

4p l 2

1

2p i Ec
ds

G~s!z~s11!

~s22!~2px!s22

3 (
n50

`

8~n21 r̄ !12s/2, ~38!

where the prime on the sum indicates that then50 term
carries a weight of 1/2, we restrict Res5c.3 for conver-
gence of the integral, and

r̄ [
r

pm S e\

kTD 2

5
1

4p2 S \vp

kT D 2

is a scaled density.

1. Classical term

Before proceeding any further, it is interesting to consid
on its own then50 term, as it sheds some light on th
connection to the related theory of electrolytes@18,35#. Con-
sider
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Fn50~ l ,T!52
kT

8p l 2

1

2p i Ec
ds

G~s!z~s11!

~s22!~2k l !s22

5
kT

2pEk

`

dtt ln ~12e22l t !, ~39!

where we have newly definedk2[vp
2/c2. This has precisely

the form of then50 term for the classical theory of electro
lytes @18,35#, with the only difference being that the invers
Debye length of electrolyteskD[(8pre2/kT«w)1/2, where
«w is the static susceptibility of water, is replaced byk for
the plasma.

Therefore, we can with this connection use results p
sented in Ref.@18# to obtain directly the large-distance e
pansion for the classical term

Fn50~ l ,T!52
kTk2

2p
e22lkF 1

2lk
1

1

~2lk!2G1O~e24lk!.

~40!

A small-distance expansion may be found by closing
contour and evaluating residues. This yields

Fn50~ l ,T!52
kT

8p l 2z~3!1
kTk2

4p F2 ln~2lk!1
1

2
1

1

3
2lk

2
1

48
~2lk!21••• G . ~41!

The leading term is precisely that obtained in the vacu
case ~and will cancel with a contribution from thenÞ0
terms in the full free energy!. The second term represen
exactly twice the change in surface free-energy density
to the presence of electrolyte in the analogous case an
this one due to the plasma.

2. Full free energy

We now return to the full free-energy density represen
by Eq. ~38!, with all modes present. We can rewrite the su
in terms of Epstein-Hurwitzz functions, which have becom
widely used in quantum field theory and indeed calculatio
of the Casimir effect for massive quantum fields@15#. Re-
cently, Elizalde@36# presented their complete analytic stru
ture. Noting that our notation differs from that of Elizald
the Epstein-Hurwitzz function is defined for Rez.1/2 and
a.0 by

zEH~z,a![ (
n51

`
1

~n21a!z
~42!

and the related generalized Epstein function is

zG~z,a![ (
n52`

`
1

~n21a!z
52zEH~z,a!1a2z. ~43!

It is possible to analytically continue these functions into
region Rez,1/2 using an integral representation for theG
function and the Jacobi inversion formula@15# and thereby
develop asymptotic expansions valid for small and large v
ues of the parametera. These details are relegated to t
-

e

e
in

d

s

e

l-

Appendix. The important point to note here is that the ge
eralized Epstein-Hurwitzz functionzG(z,a) is meromorphic
and has simple poles in the complex plane atz51/22k,
where k50,1,2,... . The Laurent series expansion at th
poles is given in the Appendix as Eq.~A4!.

We can now rewrite Eq.~38! as

F~ l ,T!52
kT

8p l 2

1

2p i Ec
ds

G~s!z~s11!

~s22!~2px!s22

3zG~s/221,r̄ !, c.3. ~44!

We again seek an expansion for low temperature or dista
x!1. This is relatively straightforward, given that we kno
the analytic structure of the integrand. Closing the contou
the left and evaluating residues yields the result

F~ l ,T!52
p2\c

720l 3H 1215r̄ x22
45

p

zG8 ~21,r̄ !

r̄ 3/2
~ r̄ x2!3/2

2
45

2
@122g1S~ r̄ ,2!2 ln~ r̄ x2/4!#~ r̄ x2!2

290(
n50

`
~21!n11G~n17/2!z~2n13!

p1/2~2n13!G~n14!
~ r̄ x2!n13J ,

~45!

whereS(a,k) is defined in Eq.~A6!.
This expression warrants discussion. Again, the lead

term is the vacuum Casimir result. Clearly, there also h
been cancellations between then50 term and the higher
mode contributions. Interestingly,r̄ x2 emerges naturally as
the expansion parameter and the asymptotic expansion
course valid forr̄ x2!1. We can rewrite this variable as

r̄ x25S vpl

pc D 2

. ~46!

Note thus that the separation and density are intrinsic
coupled in this expansion. The restrictionr̄ x2!1 means that
l !c/vp @noting that the factor of 1/p2 in Eq. ~46! somewhat
softens this restriction#. This is the opposite limit to that o
Dzyaloshinskii et al. @7# and Hargreaves@24#. As an ex-
ample, the number density of free electrons for Au or Ag
a Drude-type model is approximately 5.9310211 cm23

@37#; in that case this means that our asymptotic expansio
valid for l &0.01 mm. Thus the low-temperature expansio
developed above effectively restricts us to the sm
separation limit for a given density. While the expressions
Refs. @6,24,21# are naturally limited by the converse cond
tion l @0.01 mm, it should also be noted that in that ca
there is the added restriction ofl &1 mm, for Eq.~37! to be
a useful approximation to the dielectric susceptibility@21#.

Given the restriction onr̄ x2 and that the force per uni
area of surfacef is related toF via f 52]F/] l , we can
calculate the leading correction due to the presence of
electron plasma to the ideal, zero-temperature, Casimir re
f 052\cp2/240l 4 as a function of separation and density
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f

f 0
'12

5

p2S vpl

c D 2

~47!

for l !c/vp . Note that the result is qualitatively differen
from that of Dzyaloshinskiiet al. @7#, Schwingeret al. @21#,
and Hargreaves@24# for the l @c/vp regime. Hargreave’s
result is the one most readily comparable to ours, as he
siders the electrons in the skin layer to be effectively free
that his model consists of two perfectly conducting slabs
separation l 5d12d, where d5c/vp is a ~frequency-
independent! skin depth andd the width of vacuum between
these plasma layers. His result is

f

f 0
'128S c

vpl D . ~48!

Thus it seems that in crossing from the small- to larg
separation limits, the correction for the plasma sees a re
sal in the roles of temperature and density: At small sep
tions, increasing separation and plasma density increase
size of the correction; at large separations, this decrease
This suggests a maximum correction at some intermed
distance, but unfortunately this appears inaccessible to
analytic treatment. Of course, as a caveat we should
consider the imaginary component of the dielectric funct
at such short distances in a more realistic model@2#. How-
ever, we suggest that our model provides insight into
remarkable crossover behavior of the free energy~and force!.
We should note that the correction in the near-field limit
the presence of the plasma is small~about 0.1% at 10 Å, bu
increases rapidly to about 10% at 100 Å; however, o
asymptotic expansions are becoming poor approximation
the upper extreme!.

We can flesh out the more complete result presente
Eq. ~45! containingzG8 (21,r̄ ) andS( r̄ ,2) by inserting the

expansions for these functions at small and larger̄ . The
former serves to confirm that the correct zero-density limi
recovered; the latter is useful for real metals~for Au or Ag,
r̄ '33103). These expansions are given in the Append
Thus, for small densitiesr̄ !1, we use Eqs.~A13! and~A14!
to obtain

F~ l ,T!52
p2\c

720l 3 1
p2~kT!2

12\cl
r̄ 2

z~3!~kT!3

2p~\c!2 F12
p2

z~3!
~1

22 ln 2p! r̄ 1
p2

z~3!
r̄ ln r̄ 1O~ r̄ 2!G

1
p2l ~kT!4

45~\c!3 @1215r̄ 245r̄ 2~ ln x11/4!1O~ r̄ 3!#

1O~ r̄ x2!3. ~49!

Note that, aside from exponentially decaying terms inx,
which are difficult to obtain from this treatment@as a full
analysis of the contribution to the integral from the great
of the contour in Eq.~44! would be needed#, this result ex-
actly recovers the vacuum expression in the limitr̄→0.
n-
o
a

-
r-

a-
the
it.

te
an
so
n

e

r

r
at

as

s

.

c

In the limit of high densityr̄ @1 ~but such thatr̄ x2!1),
useful for metals, we use Eqs.~A17! and ~A18! and obtain,
up to exponentially decaying terms inx and r̄ ,

F~ l ,T!52
p2\c

720l 3 1
p2~kT!2

12\cl
r̄ 2

2p2~kT!3

3~\c!2 r̄ 3/2

1
p2l ~kT!4

45~\c!3 r̄ 2@122g2 ln~ r̄ x2/4!#1O~ r̄ x2!3.

~50!

V. CONCLUDING REMARKS

Our investigation has shed light on several features of
Lifshitz theory of Casimir forces at finite temperature. T
Casimir-Polder result for the atom-atom interaction energ
valid strictly only at zero temperature. This indicates, imp
tantly, that measurement of the Casimir-Polder interact
energy at room temperature needs careful reconsidera
For the two-plate Casimir problem the corrections for de
sity appear to display a remarkable crossover behavio
going from the small- to large-separation limits.

We have not yet fully addressed a quite fundamental
sue. We noted in our treatment of the two-plate problem w
intervening plasma that the classical term in the free ene
is directly analogous to that for an electrolyte in a colloid
system~i.e., with interfaces present!, a system investigated a
some length in Ref.@35#. There it was shown that the fre
energy of interaction between the surfaces, explicitly
change in surface energy due to electrolyte, has a t
~namely that at zero frequency! where the electrostatic an
van der Waals contributions cancel exactly~essentially be-
cause of a gauge condition on the electromagnetic fie!.
This indicates that electrostatic and dispersion forces are
extricably entwined in colloidal systems. Moreover, w
know because of this that a linear theory of dispersion forc
such as the Lifshitz theory, is inadequate and that a full n
linear theory incorporating both electrostatic and fluctuat
~dispersion! forces is required@35#. The same must be tru
for an electron plasma between metal plates, where a
scription of the change in surface energy due to the plas
would, in a more complete theory, need to take into acco
the intrinsic coupling of electrostatic and dispersion forc
Thus the decomposition of electrostatic and Casimir for
@2# in the interpretation of experiments seems problema
These issues provide a significant challenge and war
close attention, both theoretically and experimentally.
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APPENDIX: EPSTEIN-HURWITZ z FUNCTION

1. Analytic continuation and Laurent series

An analytic continuation for the Epstein-Hurwitzz func-
tion zEH(z,a)5(n51

` (n21a)2z valid for z,1/2 is readily
obtainable by use of an integral representation for theG func-
tion and then the Jacobiu-function inversion formula. As
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this has been done repeatedly in the literature@15,38#, we
simply give the result, which is

zEH~z,a!52
a2z

2
1

p1/2G~z21/2!

2G~z!
a2z11/2

1
p1/2

G~z! (n51

` E
0

`

dttz23/2expS 2at2
p2n2

t D .

~A1!

The integral is~up to a proportionality constant! a represen-
tation for the modified Bessel functionsKn(z) @39#, so that

zEH~z,a!52
a2z

2
1

p1/2G~z21/2!

2G~z!
a2z11/2

1
2pz

G~z!
a2z/211/4(

n51

`

nz21/2Kz21/2~2pna1/2!.

~A2!

The sum inn in the above two equations is manifestly co
vergent since the Bessel functions behave asymptoticall
z→` as @39#

Kn~z!;S p

2zD
1/2

e2z. ~A3!

This also provides an analytic continuation for the gene
ized Epstein-Hurwitz function throughzG(z,a)52zE(z,a)
1a2z and allows us to evaluate the first two terms in t
Laurent series near the simple poles atz51/22k, k
50,1,2, ... , which we require in our evaluation of the fr
energy. After some manipulation of Eq.~A2!, we have, for
z→1/22k,

zG~z,a!;
G~k11/2!

p1/2G~k11!

ak

~z21/21k!
$11~z21/21k!

3@S~a,k!22b~2k!2 ln a#1O„~z21/21k!2
…%,

~A4!

where

b~x!5
1

2FcS x11

2 D2cS x

2D G ~A5!

andc(z) is the digamma function@39#, and also we define

S~a,k![4~21!kp2ka2k/2G~k11! (
n51

`

n2kKk~2pna1/2!.

~A6!

2. Small-parameter expansion

The small-a expansion forzEH(z,a) is best obtained by
using a Mellin-Barnes integral representation, as given
Elizaldeet al. @40#,
as

l-

y

zEH~z,a!5
1

2p i Ec
dtB~ t,z2t !z~2z22t !a2t,

0,c,z21/2, ~A7!

whereB(x,y)[G(x)G(y)/G(x1y) is the beta function. The
above also provides an integral representation, through
relation zG(z,a)52zEH(z,a)1a2z, for the generalized Ep-
stein function. Closing the contour to the left and evaluat
residues, one obtains

zEH~z,a!5 (
n50

`
z~2z12n!G~z1n!

G~z!G~n11!
~2a!n ~A8!

and for the derivative

zEH8 ~z,a!5 (
n50

`

$2z8~2z12n!1@c~z1n!2c~z!#

3z~2z12n!%
G~z1n!

G~z!G~n11!
~2a!n. ~A9!

We need to analytically continue these results toz,1/2,
in particular toz52q, whereq50,1,2,3, ... . We then have

zEH~2q,a!52
1

2
aq, ~A10!

so that

zG~2q,a!50. ~A11!

We also obtain for the derivative, evaluated at nonposit
integers,

zEH8 ~2q,a!52G~q11! (
n50

q
z8~2n22q!

G~q2n11!G~n11!
an

1
1

2
@g1c~q11!#aq1~21!q11G~q11!

3 (
n5q11

`
z~2n22q!G~n2q!

G~n11!
~2a!n. ~A12!

For the free energy given by Eq.~45!, we require
zG8 (21,r̄ ) andS( r̄ ,2). The former can be obtained direct
from Eq. ~A12! and is

zG8 ~21,r̄ !52
1

p2 z~3!1@12 ln~4p2 r̄ !# r̄

12(
n52

`
z~2n22!

n~n21!
~2 r̄ !n. ~A13!

A similar Mellin transform treatment to the one above f
zEH(z,a) can be made forS(a,k) and we simply give the
result forS( r̄ ,2), which is
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S~ r̄ ,2!5
2

45r̄ 2
2

2

3 r̄
1 ln~ r̄ /4!2

3

2
1g1

4

p1/2

3 (
n51

`

~21!n
G~n11/2!

G~n11!
z~2n11! r̄ n.

~A14!

3. Large-parameter expansion

For the large parameter expansion, we need to retur
the analytic continuation forzG(z,a), given by Eq.~A2! and
zG(z,a)52zEH(z,a)1a2z. Use of the leading large
parameter scaling of the Bessel functions as given in
~A3! readily allows us to deduce thea@1 behavior of
zG(z,a), which is

zG~z,a!5p1/2
G~z21/2!

G~z!
a2z11/21

2pza2z/2

G~z!

3exp~22pa1/2!@11O~a21!#. ~A15!

We can also deduce the large-parameter expansion fo
z derivative from Eq.~A1!:
.

E

R
.

t

c-
to

q.

he

zG8 ~z,a!5p1/2
G~z21/2!

G~z!
@c~z21/2!2c~z!2 ln a#a2z11/2

2p1/2
c~z!

G~z! (n51

` E
0

`

dttz23/2expS 2at2
p2n2

t D
1

p1/2

G~z! (n51

` E
0

`

dttz23/2ln t expS 2at2
p2n2

t D .

~A16!

For the specific case of the free-energy density of Eq.~45!,
we require ther̄ @1 expansion forzG8 (21,r̄ ), which is

zG8 ~21,r̄ !52
4p

3
r̄ 3/22

4

p
r̄ 3/4(

n51

`
1

n3/2K3/2~2pn r̄ 1/2!

52
4p

3
r̄ 3/22

2

p
r̄ 1/2exp~22p r̄ 1/2!F11OS 1

r̄
D G .

~A17!

The large-r̄ expansion ofS( r̄ ,2) is similarly obtained and is

S~ r̄ ,2!5
4

p2 r̄ 5/4
exp~22p r̄ 1/2!F11OS 1

r̄
D G .

~A18!
s.
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