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Light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions
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We perform a gauge transformation on the time-dependent Dirac equation describing the evolution of an
electron in a heavy-ion collision to remove the explicit dependence on the long-range part of the interaction.
We solve, in an ultrarelativistic limit, the gauge-transformed Dirac equation using light-front variables and a
light-fronts representation, obtaining nonperturbative results for the free pair-creation amplitudes in the collider
frame. Our result reproduces the result of second-order perturbation theory in the small charge limit while
nonperturbative effects arise for realistic charges of the i#35050-29478)02403-2

PACS numbdss): 34.50-s, 25.75--q, 11.80-m, 12.20-m

[. INTRODUCTION tive effects considered unitarity violation in lowest-order
perturbation theory, multiple-pair production, and correc-
Electron-positron pair production from the vacuum intions to production cross sectiof22—33. An open ques-
strong electromagnetic fields is a fundamental prediction ofion, crucial for the beam stability, is whether the nonpertur-
guantum electrodynamid®ED) [1-3]. In heavy-ion colli- bative effects will enhance or reduce the cross section for
sions at energies near the Coulomb barrier, quasibound maound-free production, i.e., production with capt({i88,32.
lecular states are formed with binding energies that dive into In a nonperturbative treatment, starting from the QED
the negative-energy continuum, resulting in a resonance thatagrange density operator, the Euler-Lagrange equations of
decays into an electron-positron pfr4—8. In contrast, for motion for the quantum fields are equivalent, under physical
ultrarelativistic heavy-ion collisions at peripheral impact pa- assumptions, to the one-particle Dirac equation interacting
rameters, the ions execute straight-line trajectories and resideith classical, electromagnetic field83]. Calculations of
near each other for only a very short time. The high chargerobabilities and correlations can then be reduced to solving
of the individual ions and the strong Lorentz contractionthe two-center time-dependent Dirac equation, which de-
combine to produce fields sufficient for electromagnetic pairscribes the dynamics of an electron in the classical field of
production through a qualitatively different process. Largetwo relativistically moving charges.
cross sections for electromagnetic pair production in these In the ultrarelativistic limit, the ions are practically mov-
collisions were theoretically predictg®] and experimen- ing at the speed of light. The classical electromagnetic field
tally observed 10-17. of a massless charged particle was studied in [3di. It can
In lowest-order perturbation theory, the amplitudes forbe described by pure gauge potentials, with different gauges
pair production in heavy-ion collisions are calculated fromin different regions of spacetime. The eikonal approximation
two-photon exchange diagrarfis8]. The quantum field the- was then reproduced from an exact solution of a quantum-
oretical treatment of this process was reduced to a classicalechanical equation in this field. A similar approach was
field approach19]. Experimental observations of free pair recently used in target-frame calculations of bound-free pair
production in the energy range around 10 GeV per nucleoproduction, where a gauge transformation was used to re-
(in the collider reference frameare in agreement with move the long-range Coulomb effe¢9,32.
second-order perturbation theof$0,12,14—1§ For lower The use of gauge transformations is fundamental to these
energies of a few GeV per nucledeollider framg, experi-  calculations. The term gauge transformation, as used here, is
mental results for free and bound-free pair production showot to be confused with a gauge-symmetry transformation in
deviations from the predictions obtained from two-photonwhich both the wave function and the fields are transformed
exchange diagramd.1,13. This is likely due to two-center so as to keep the equation of motion invariant. Here, as well
Coulomb effect420,21]. In the near future, larger ultrarela- as in Refs[24,35,38, for example, a space-time dependent
tivistic energies above one hundred GeV per nuclémi- phase is used to transforeither the wave functioror the
lider frame will be available. New nonperturbative effects fields in order to obtain a different equation of motion. The
may become important at colliding-beam accelerators sucbonnection between the solution of the original problem and
as the Relativistic Heavy-ion Collid¢RHIC) at Brookhaven the gauge-transformed problem depends on the asymptotic
and possibly the Large Hadron CollidérHC) at CERN. (infinite time) behavior of the gauge function employed; i.e.,
These nonperturbative effects are the subject of our preseoh the induced changes to the initial and final states
work. [24,35,38. Gauge transformations should also be applied
Previous theoretical works on high-energy nonperturbawith care when used in calculations employing truncated ba-
sis setd35-37].
In this work, a gauge transformation is used to solve the
*Present address: Oak Ridge National Laboratory, P.O. Box 2008wo-center Dirac equation describing an electron during a
Oak Ridge, TN 37831-6203. relativistic heavy-ion collision. A closed form expression for
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FIG. 1. Schematic diagram depicting a relativistic heavy-ion FIG. 2. Shown is the scalar component of the Lorentz-gauge
collision of two chargesZ, andZg , in the center-of-velocity frame  interactionV° for two different energies(a) y=10 (CERN-SPS
with impact parameter I2 and velocity 8. Lorentz contraction is energieg and(b) y=100(RHIC energie} plotted as a function of
extreme, so the ions are depicted as oblate spheroids. a narrow range of the coordinate fort=0, 5:(1,0), and ﬂ

=(2,0). Notice that away from the vicinity &= 0 this interaction

the pair-production amplitudes in the ultrarelativistic limit is IS insensitive to the change in the energy of the ion.
found. First, in Sec. Il, the ultrarelativistic limit for the two-

center Dirac equation is obtained and discussed. In Sec. I, . 5 —Zga
exact and asymptotic relations between the original and Hg(t)=(l4+ Bay) . 4
gauge-transformed transition amplitudes are established. In \/(FL+5)2/72+(2+ Bt)?

Sec. IV, thelight-fronts representatioiis introduced and the
foundations are laid for the construction of the exact solutionye gre working in the collider frame, using natural units
in Sec. V, where the perturbative limit is considered as well.(c
The physical contents of our results and an outlook for futurt—:;1
applications are finally considered in Sec. VI. Details of
some derivations are given in appendices.

=1, m=1, and2=1), and applying the conventional
otation;B=v/c, y=1/\/1— B%. « is the fine-structure con-
stant,a and y* are Dirac matrices in the Dirac representa-

tion, as in Ref[1]; ¢ are the Pauli matrices; and, 10,, I,
and Q, are the two-dimensional and four-dimensional unit

Il. AN ULTRARELATIVISTIC LIMIT TO THE and zero matrices.
TWO-CENTER TIME-DEPENDENT DIRAC EQUATION We would like to consider the ultrarelativistic limit in
Consider a collision between two ions with point chargesWhICh

Z, andZg and velocities3z and — 8z, respectively, moving
parallel to each other at an impact parameter lofQee Fig.

1). An external-field approach to the influence of these ions . o .
on the vacuum is appropriate for peripheral impact param_Equatlon(l) does not S|mpllfy in thls limit in a straightfor-
eters(i.e., no nuclear interactionsheavy ions, and ultrarela- Ward way because, for any given time, the long-range behav-
tivistic energies, when to a very good approximation, theior of the interaction termsi , andHg is independent of as
ions continue intact on their parallel, straight-line trajecto-z— *%« (see Fig. 2 A simple ultrarelativistic limit can be
ries. The two-center Dirac equation for an electron in theobtained by first applying a gauge transformation in order to
time-dependent external field of these ions is given by remove this long-range tail of the interaction. The gauge-

transformed wave functiohlf(F,t)} is defined by

B—1, y>b,r,. (5)

J - N N N 5
iﬁ|q)(rut)>:[H0+HA(t)+HB(t)]|q)(r1t)>a (1) |\I’(F,t)>EU(Z,t)|(D(I?,t)>, (6)

where|®(r t)) is the Dirac spinor wave function of the elec- U(z)=expliZaa In[— y(t—2)+ Vb*+ ¥*(1—2)°]

tron, H, is the free Dirac Hamiltonian anid A(t) andHg(t) +iZga IN[+ y(t+2)+ B2 Y2+ 220). (7)
are each the interaction with one ion,

The Dirac equation foN(F,t)) is obtained from Eq(1),

Ho=—ia-V+9°, 2)

d - N ~ A -
=2 WD) =[Ho+ Wa(t) + We(O]|W(r,1)),  (8)
—ZAa

©)

Ha()=(14— Bay)———= ,
\/(rL—b)zlszr(z—,Bt)2 where the new interaction terms are
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FIG. 3. Same as Fi2 ,_except_g‘?t_here the scalar component g 4. schematic diagram of the time history of a heavy-ion
of the gauge-transformed interactitht” is plotted. Notice that the ¢ jision in the ultrarelativistic limit. Motion in the-z plane is

gauge-transformed interaction is short ranged, and that the range glt\own Withﬂ . and thusb, assumed orthogonal to this plane. lons

the interaction decreases as the ion’s energy increases. A and B move toward each other in tredirection with velocity

B=1. The dotted lines are the projections of the ion trajectories on
—Zpa thet-z plane, which for8=1 coincide with the intersection of this
plane with the light fronts az= *t.

Wa(t)= (14— Bay)

V(F L= B)2 97+ (2 B2
perpendicular to the ions trajectories, and vanishes else-

. —Zpa where. In the following, we calculate pair production ampli-
_(|4_az)\/ﬁ' © tudes using Eq(8) with the interactions in Eqs(11) and
by +(z—1) (12). The region of large, is not properly accounted for in

this treatment, but contributions from this region to pair pro-

- . —Zpa duction are assumed to be small.
Wg(t)=(l4+ Ba,) — The interactions in Eqg11) and(12) have zero range in
\/(ri+b)2/72+(2+ Bt)? the longitudinal direction and a logarithmic behavior in the
transverse direction, similar to the potential of a line of
- —Zpa charge. In the limitB—1, the two ions are moving at the
— (It ay) (10)

= ’ speed of light and thus the interaction planes described above
Vb2 y?+(z+1)? o 7 . ; X
Y coincide with the light fronts, given by=*t (see Fig. 4.

Figure 3 demonstrates the short-range character of thiginally, we note that I(,= a,)/2 are orthonormal projection
gauge-transformed interaction. Similar gauges have beepP€rators. The four-Dirac spinor wave function of the elec-
used in Refs[38,24 that reduce in the limiB— 1 to Eq.(7). tron can be decomposed into two orthogonal components,

Unlike Eq. (1), the gauge-transformed equation, E8), has

a simple ultrarelativistic limif32,34. In the limits of Eq.(5) W (1,0)=3 (I4+ a) [ W(r 1), (13
(largey, smallr, , and small impact parametiy, W, (W;g) R 5 )
has a sharp, &function dependence ort—z (t+2) [W_(r,t))=3(l4—a,)|V(r,1)). (14)

[32,34,39, (see Appendix A i.e.,
Each ion interacts directly only with one of these compo-

. . [(r, —b)2] nents;Z, with | ¥ _(r,t)) andZg with | ¥, (r,t)).
Wa— (14— @) Zaa8(t—2)In % . 1  with [(r,1) o With [ (r,1)
i Il. ASYMPTOTIC SOLUTIONS AND TRANSITION
(F +6)2- AMPLITUDES
~ - L
We— (l4+ a;)Zgad(t+2)In 2 | (12) In scattering theory, characterized by free initial and final

states, a complete solution is generally given by the set of

Consider the physical nature of this limit. A function  asymptotic transition amplitudes between plane wathesS
over time alone would indicate a sudden interaction of theMatrix). In this section, we define the transition amplitudes
ions with the vacuum. In the gauge-transformed equationS¢’ for the electronic spinor wave functide), i.e., for Eq.
Eq. (8), with the interactions of Eqg11) and(12), as they (1), and the transition amplitude&) for the gauge-
move, the ions are continuously interacting with the vacuumtransformed wave functiofi?’), i.e., for Eq.(8), using, as
Naturally, this interaction is singular on the trajectories ofusual, initial and final plane-wave states. Use of an initial
the ions, as it was before the ultrarelativistic limit has beercondition of a single plane wave for E@l) is somewhat
taken; but an additional singularity is induced in the ul-subtle since the theory is never free due to long-range Cou-
trarelativistic limit by the extreme Lorentz contraction of the lomb effects3]. This is an important point when integrating
field. In this limit, the interaction is infinite on the two planes the amplitudes to obtain predictions for physical observables.
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One should properly account for actual initial and final statesn general S{’ andA{ are completely different amplitudes.

for a given experiment.

They are related to each other by the gauge transformation of

A complete set of solutions of the free Dirac equation isgq. (7) in the following way:

given by the Dirac plane Waves{jxp(F,t)>}. Each plane

wave is characterized by three continuous and two discrete
guantum numbers; namely, the three components of the mo-

mentumf), the sign of the energfwe use\ ,=0 for positive
energy electrons),=1 for negative energy electronsand
the spin (s,)=|+) for spin up and|s,)=|—) for spin
down), pz{ﬁ,)\p ,Sps- The plane waves satisfy

HolXp(1))=EplXp(N), (15
| xp(F ) =exp(—iE 0| xp(N), (16)
Ep=(—1)re,, &p=yp°+1, (17

where Eq(17) is the condition for being on the energy shell.
An explicit form is given, for example, by3], and in our
notation by

(27T)—3/2

V2ep(1l+ep) exlir- p)(

- - 0
|Xp(r)>= |22

( (1+ sp)|Sp>)

Y (18
0"p|Sp>

=exp(ir - p)|up). (19)

We define the solutiong(r,t)) of Eq. (1) by the initial
condition,

lim [#D(r,t))=x;(r,t). (20)

ti——o
The asymptotic transition amplitudg)’ is then given by

SI=lim (u(r,to)| 01 te),

tf*)OO

(21

S&”E% ; Oad Lt |U Tz, [xp( t)

XA (o110 [U (2t x (7.10), (24)

whereX, stands for integration and summation over all the

quantum numbem:{ﬁ,)\p,sp}. This relation is based on

the completeness of the plane-wave basis set and should be
guestioned if applied with a truncated basis calculaf&@B+

37].

A relation like Eq.(24) holds between any two amplitudes
that are related by a gauge transformation. If the gauge trans-
formation U had been otherwise defined so that it would
become unity for asymptotic time§,e., U—1 for t;— —o
and t;—x), the orthonormality of the plane waves would
eliminate the double sum in Eq24), and theasymptotic
transition amplitudes{” andA{ would be identical. Gauge
transformations that share this property have been described
as exhibitingasymptotic gauge invariand@6]. Likewise, if
the gauge transformatiod would be independent af for
asymptotic timesJi.e., U—exp(C;) for tj——«, and
U—exp(C;) for t;— +o, whereC; and C; are real num-
berd, then the double sum in ER4) would again be elimi-
nated and the matrix elements dfin Eq. (24) would con-
tribute only a single constant phase at asymptotic times. In
this case, the asymptotic transition probabilities derived from
s andA{) would be identica[24].

The specific gauge transformation used here, (&Y. is
not independent of space at asymptotic times, as is shown in
Appendix B, and, as a result, does not exhibit asymptotic
gauge invariance for the amplitudes or the probabilities de-
rived from them. However, this gauge does have an addi-
tional property that relateSy’ andA{ in a way more useful
than Eq.(24). It is shown in Appendix B that in the special
case of symmetric collisions, with,=Zg, SY can be ex-
pressed as a series expansion in powers gf did 1/t;|
whose zero-order term &Y .

where the bra-ket stands, as usual in nonrelativistic and non-

covariant notation, for integration over all spzfcet a given
time. Likewise,|¢0)(r t)) is defined as the solution of Eq.

(8) with the initial condition,

lim [(r,6))=]x;(r,t)), (22)

tji——o

and the asymptotic transition amplituﬂéj) is given by

A(ki)E lim <Xk('?'tf)|¢(j)(;!tf)>' (23

ty—o0

The initial condition for Eq(1), Eq. (20), and the initial
condition for Eq.(8), Eq.(22), correspond to different initial

physical states, as they are not related by the gauge transfor-

mation in Eq.(7). A similar comment is true for the final
states used in defining the amplitudes in E@4) and (23).

IV. THE SHARP DIRAC EQUATION
IN THE LIGHT-FRONTS REPRESENTATION

In this section, thesharpDirac equation, Eq(8), with the
limiting form of the interaction in Eq911) and(12), will be
further simplified by changing into light-front variables and
by introducing a new representation for the Dirac spinors,
the light-fronts representationThis is an appropriate choice
of variables and representation, since, in the ultrarelativistic
limit of Eq. (5), the interactions are confined to the light
fronts.

A. Definitions and notations
In terms of light-front variables, space time and energy
momentum are described by the four-vectof§ Ty, 7)
and @, ,p.,p_), where



The sign and absolute value gb(+p_)/2 are\, ande,,,
respectively. Equatio27) like Eq. (17) defines the energy
shell. These variables were often used previously for quanti
zation on one of the two light fronts,. =0 or 7_=0 [40].
For the problem considered here, it is useful to keep th
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r.=(t+2)/2, (25) - (r.+b)?
B(I’l ,b)EZBa’ In T . (39)
p-=Ep*p,, (26)
5 The upper and lower bispinors are coupled by the free
p+p-=1+p7. (27 Hamiltonian. Each interacts directly with the external field of

symmetry betweerr, andr_ .

The projection operators {+ «,)/2 acquire a simple form
and the interaction is diagonalized by introducing ligét-
fronts representatiorfior the Dirac matrices,

n — M t
Yiight fronts— A 7DiracA '

1 v . I2 2
A[z<|4+az>]A*—(o )

2 I2

0, —(13)
o 0,/

O=(—0y,0).

. 0, O
A[%(|4—az>]A*=(02 2),

Aa, AT=i

one ion and feels the field of the other ion through its cou-
pling to the other bispinor.

Equation(35) has no discontinuities in the transverse di-
rection. It is therefore useful to Fourier transform its solution

é(vith respect toﬂ. Two mixed bispinor wave functions,
l9-(q, ;7. ,7_)), are then defined by

|Gi(FL T 17'7)>EJ dale"i"‘ilgi(al T+ ,7'7)>-

(40)
(28 lg.) and|g_), like |G, ) and|G_), are coupled by the free
Hamiltonian.
(29 B. Free Dirac equation off the light fronts
Off the light fronts, i.e. forr.#0 andr_+#0, the wave
function satisfies the free Dirac equation and E3p) re-
(30 duces to two coupled equations for the mixed bispinors
l9-(q, ;74 ,72)):
31 o d v -
ey 7 lg)=(o-16-40lg-), @
4
(32 . d _ vy -
'T|97>—(|2+|w'(h)|g+>- (42
As usual, the second-order equations decouple
(33 ,
_ 2
(9T+(?T,|gi>_ (1+ql)|gi>' (43)
(34)

where use was made of

With this notation, the gauge-transformed two-center

Dirac equation in the sharp ultrarelativistic limit in the light-

fronts representation is

(I,—i@-q) (I +i6-q,)=(1+0?)l,. (44)

A solution to Egs.(41,42 is given, for example, by the

id, |Gy) 8(7.)B(r, ,b) ho |G+>> plane waves of Eq(18), which in the light-fronts represen-
. = . - o ,  tation are given b
id, |G-) hy S(r)Ar, b)) IG-) g Y
(35) IFE) R
where|G ) and|G_) are the upper and lower bispinor com- |F?)
ponents of the Dirac wave function in the light-fronts repre-
senation F)=[ aqe i@, irr ), @9
) (36
|G—> a , If'i(CL:T+,T-)>=5(ﬁl—5L)e‘i(”p++”p*)|1“§>-
(47)
and
The bispinors|T'%) (the upper and lower parts d|u,)),
F]OEIZ_i(}))'ﬁLv (37) |1_,p> (277)73/2 [I (1 ( 1))\ ) v - ]
Y= — +(—1)*rp.)Fia-
L (r, —b)2 T 2\ep(ltey) 2 P= P
A(r, ,b)=Zpa In , (38 .
b2 X (o ,)esp), (48)
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satisfy the simple relation T T
- +
I +ic-p
ro) =22 ey, (@9
P+

v

These plane waves solve E@5) off the light fronts in the I I

limits t— *c. They do not solve it for finit¢, whenp, is I

no longer a good quantum number, as the singular interac-
tion with the ions makes the wave function discontinuous at
the light fronts.

C. The discontinuity across the light fronts
y g FIG. 5. The light fronts, i.e., the hypersurfaces definedrby

It is standard procedure in wave mechanics to form piece=0, divide space time into four distinct regiond) 7, <0, 7_
wise solutions by satisfying continuity relations at the <o; () r,>0, r_<0; () r,<0, r_>0; (IV) 7,>0, r_>0.
boundaries between free regions. It was shown in Refs.

[32,34] that a5-function singular interaction at a light front V. A PIECEWISE SOLUTION

results in a discontinuity in the electron wave function, TO THE SHARP DIRAC EQUATION

which is given by a space-dependent phase shift. The proof
is reviewed in Appendix C, where it is shown that for our
case of Eq(35), the discontinuity is

In this section, the formalism that was introduced in Sec.
IV is used to obtain the transition amplitudes between

asymptotic plane wavea{’ defined in Sec. III.

G, (7, :0+)>:e—is(r1 ’6)|G+(7'+ —07)), (50) _The s_ingular intgraction on the p!anes perpendic_:ular to the
trajectories of the ions cut space time along the light fronts
into four regions, as is shown in Fig. 5. A piecewise solution

is defined off the light fronts by|gt((i;7'+,7'_)>

—1a(q. - D= i
These phase shifts are derived from E8F) in general for =l9¥(a. ;74 7)), where()= I for 7, <0 andr_<O0, (i)
= Il for 7,.>0 andr_<0, (i)= Illl for 7, <0 and7_>0,

any A(r, ,b) andB(r, ,b), i.e., any functional dependence and(i)= IV for 7,>0 andr_>0. In each region, the wave

on_ thf’ perpendicular coordinate. Heré\(r, ,b) and  fynction is continuous and solves the local free Dirac equa-
B(r, ,b) are given by Egs(38,39. tion. At any time, except fot— * oo, the wave function ex-

Due to this space-dependent phase shift, the transversends in space through thréer two, att=0) of these re-
momentum is not conserved and the Fourier components @fions. The solution presented here is not complete in the
Eq. (40) are mixed when the singularities at the light fronts sense that it does not include the solution on the light fronts;
are crossed, 7,=0 and 7_=0 are excluded. The physics on the light
fronts may contribute to bound-free pair production. Thus,
our present work is limited to free pair production.

G_(r-=0%))=e AL P|G_(r_=07)). (5D

l9+(a, §T+:0+)>:f dBJ_QZB(ﬁJ__C_iJ_ ,—b)

- B A. Initial condition and intermediate states
X|g+(py;7+=07)), (52 . o . .
Consider the initial condition, Eq22), of a single plane

. . R wave with the quantum numbedy{f,xj,sj}, or, using
lg_(q,;7-=0"))= f dp, Qz,(p.—d. .b) light-front variables,j={j ,j ,j-,sj}, with the constraint
. j+j_=1+jf. The continuity off the light fronts gives the

X|g_(p,;7-=07)), (53)  solution in region I,

where |9|¢(aﬁ>:5(]1_GL)e_i(T’j++T+j’)|Fj:>’ (55
_5)2 “laz where the bispinorfl', ) are defined as in Ed48).
Q(k,b)= gir -« o . (59 The solution in regions Il and Il is obtained by first ap-

plying Eq. (52) for the discontinuity across, =0 and Eq.

. . (53) for the discontinuity across_=0 and then solving the
Note that herex andb are two-dimensional vectors in the coupled Egs(41,42 inside each of the intermediate space-
(x,y) plane The continuity is recovered in the liniit-0,  time regions. We obtain, in region Il,

asQZ(K b)—>5(f<) The dlstr|but|onQZ(K b) in general di- 1+q

verges. This divergence is an artifact of applying the sharp|d'(d.))= eXF{—IT—h

limit for the gauge-transformed interaction, Ed41) and
(12), for larger, , i.e., outside its range of validity. The
properties of the distributio@Z(E,B) for finite charge are lg" (q,) )= (lz 6 q¢)| (m)) (56)
considered in Appendix D.

QZB(JL q.. b)),
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and in region 1l

R 1+p°
|g”—|(pL)>:eXF{_iT+j—_iT— i

J—

QzA(Jz - 51_ '5)|1—~j_>,

N l,—iw-p -
|g'ﬂ(pl>>=(#)lg'l'<pg>. (57

J

LIGHT-FRONTS APPROACH TO ELECTRON-POSITRO. . .

1855

1+pf

-
XQz (P, —k, ,—b)Qz,(j.—p. .b)

|g|l/(|2 ;T+:0+)>:fdﬁiexf{_i7

x('z_;&)my (61)

It is now apparent why the Fourier transform with respect

tor, and the definition ofg..(q, ;7. ,7_)) in Eq.(40) were
needed. The simple discontinuity conditi¢h0) at 7, =0
applies only to G, ). The other bispinofG_) is influenced
indirectly by the field atr, =0 through its coupling t¢G . ).

Instead of solving now fofg") at anyr..>0, the transition
amplitudes are obtained in the next subsection by defining
the transition current and by applying Gauss’ theorem for
this current.

Likewise, at7_=0 the simple discontinuity conditiofb1)
for |G_) induces a nontrivial change |G ). The coupling
between|/G,) and|G_) in free space on either side of the
singular interaction is best described by E@4.,42 for their

Fourier components with respect EQ. Thus, while the dis-
continuity conditions(52,53 for |g.) seem more compli-
cated than the discontinuity conditiori§0,5) for |G+),
using |g-.) allows for a simple derivation of the complete
spinor wave function in regions Il and III.

It is a well-known fact that two ions are needed in order to
create an electron-positron pair. This can also be seen heréhe integrand is a component of a four-vector current den-
In the presence of ioB alone, for example, Eq$56) give  Sity, which is a conserved quantitgee Appendix E This
the solution forr, >0, including the asymptotic solution at transition current[35], (J%1,J{), is defined by
t;—o. Projection on a plane wave then gives a conservation
law for the positive light-front momentum. Likewise, in the _
presence of iorA alone the negative light-front momentum Jgkv”zka(“
is conserved:

B. Transition amplitudes

The transition amplitudea!)) were defined in Eq(23),

AV= lim

ty—o

f drxi(r,t) g (r,t). (62)

A (Zp=0) 5k, —] ), (58)

JeD= TGy, (63

AD(Zg=0)=8(k_—j_). (59)
An equivalent form for the transition current in terms of

A direct result fromk, =j, ork_=j_ is that the sign of the . . ;
=l J g light-fronts representation wave functions includes

energy of the electron is the same before and after the colli
sion. Thus, our formalism satisfies the known result that the
passage of a uniformly moving charge does not induce a
transition changing the sign of the energy. The presence of
both ions defines a new region of space time, region IV
(7->0), which is the space between the ionst&z<t)
after the collision {=0), i.e., when the ions are already fa
moving apart. It is shown below that the sign of the energy
can change and pairs may be created in transitions from t
initial state in region | {;— — ) to the final state in region
The solution of the free Dirac equation in region IV is
complicated by the nontrivial boundary conditions on the
light fronts. Applying Eq.(52) again for the discontinuity
acrosst, and Eq.(53) for the discontinuity across_, we
cross from regions Il and Il into region IV to obtain on the
hypersurfaces adjacent to the light fronts,

JeD=gfel + gk =2FKIGY) . (64)

It is now possible to use Gauss’ theorem on the hypersur-
ce of the inner border of region IV to show thate Ap-
eendix F and Fig. 6

l+qf

|g|l/(lzi;7-_:O+)>=fdai ex%_iﬂ— i
" FIG. 6. Depicted is the intersection of the surf&&&nclosing
region IV (shown as the broken linevith the 7. — 7_ plane. Light-

XQu (6. ~K, B)Qz(J. ~d, B
Qz,(d ke )QZB(JL L ) front components of the transition curreht are shown flowing

.52 into region IV at the light fronts, and the timelike component of the
| 2 +lw- qL . " . .
—) [T1), (60) transition current], is shown flowing out of IV at the constant,
J+ large timet; .



1856 B. SEGEV AND J. C. WELLS 57

D L [ iy tial, nonperturbative dependence on the coupling constant
A= lim f dr, fﬁwdzi) D(r.ty) aZ appears here as nontrivial phases in the integral repre-
e sentation of the distribution®; («, ,b) andQ;_(x, ,~b)

which were defined in Eq54). The two terms in Eq(69)
correspond to two different time orderings of the interaction
. with the ions. In the next subsection, they are shown to re-
_ZJ dr j dr, J®D(F 7. 7_=0%). (65 duce in the small-coupling pgrturbaﬂve limit .to thg wgll-

S [ SR )- (69 known two-photon exchange diagrams as depicted in Fig. 7.
For vanishing charges, as could be expected,

:Zf dFij +dT_\](_*I_('j)(FL ,T+:O+,T_)
0

The transition currentd® are calculated from the results

of the last subsection by using Eq40,45-47,64 AD(Zy=0Z5=0)=8(k— ,)5Ak N (70)
J
J(ik’j)(r*L Ty ,7_)=2f df)lJ dIlex;{iﬂ(ﬁ-ﬁﬁ] C. The perturbative limit
The small-charge perturbative limit of the pair-production
X(F(psre )|QY (T s 7e 7). amplitude was calculated in Refl8]. To leading order in

(66) aZ (second order the amplitude is given by a sum over two
diagrams, where each diagram describes a two-photon ex-

the plane waves, S20) " for the transition amplitude between an iniial
negative-energy state={j,\j=1s;} and a final positive-
A = 1672 j dr_e'7-*+(r¥|g" (K, ;7p= 0",7_)) energy stat&k={k,\,=0s,}, is given by Eqs(24—32 of

Ref.[18]. In the ultrarelativistic limit,3— 1 and largey, the
w ' . perturbative result reduces to
—1677'2f +dTJre'T“(*(Fli|§]|Y(|(L iy ,7-=07)).
0

6y 0= [ dbiexi-ib.(25. . K]
The amplitudes are finally obtained by substituting Egs. i8(aZy)(aZg) (rﬁ||2_i(}3.5i|rL>
(60,61 and integrating over—. The integration overr. S, = o . >
would have given as-function conservation law for the (P =k)™(pr—J0)"  J-ky=(1+4p1)
light-front momenta, had it been on the complete line R R,
<r1.<o. Instead, the integrals on the half linest@.. <« —f dg,exdib-(2q, —j, —k,)]
are regulated in the usual way with an infinitesimally small
constant [41] L iB(aZu)(aZg) (I[1ptid-q, L)
9, k)29 —j1)? jik_—(1+g?
j dT qu'TK)— (68) (ql L) (qL JL) J+ ( qL)
k+ing’ (72)

The transition amplitudes corresponding to thectso-
lution of the sharp Dirac equation off the light fronts are

) 2 .
A= ”) {fdp&ﬂpl K. .—b)

R L | PR PR
X j.—p..b
Qe P D i —

- [ 46,0,,6, K, )@y (T, . -B)

(P J1p+ia-g,rk) ] ©9
ko —(1+ad)+in(—1N

FIG. 7. On the left are two terms of our result E§9) for the
amplitudes, indicated by their respective space-time mapstl -
IV, and I— Ill— IV. On the right are shown the two Feynman

diagrams of second-order perturbation thedr§] with their respec-

where the infinitesimally small, positive constaptcan be
omitted for pair-production amplitudes corresponding=to
<0 andE, >0, i.e.,j+kz<0. This is an interesting result. In
the_ ultrarelativistic limit of Eq(5), the asymptotic time EVO-  tive time ordering. Our result assumes largeReferencd 18] as-
lution of the gauge-transformed electron wave function,g mes smalkz. Exact agreement between the two results is ob-
|\If(r t)), is exactly given by these amplitudes. An exponen-tained in the combined limit.
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A transformation to the light-fronts representation was usednteraction wall. A single plane wave between the ions gives
here to obtain bispinor bra-kets from the four-spinor bra-kets distribution of local plane waves in the space behind each

of Ref.[18]. For example, using"TA=1,, ion. Had there been only one ion, no transition would be
allowed between the negative-energy continuum and the
(U(1a= ap)(a-p, +7°)(14+ (}Z)|uj> positive-energy continuum, i.e., no pairs could be produced.
S Pairs are produced because, as the ions move past each other,
=T¥%|l,—ie-p,|TL). (72 the two phase-shift planes collide. After the peripheral colli-

sion, as the ions move apart, the solution in the space be-
It is interesting to compare theerturbativeresult of Eq.  tween them is determined by the nontrivial boundary condi-
(71) to our nonperturbativeresult of Eq.(69). In the small-  tions at the light fronts. The main result of this work, the
charge limit of «aZ—0, after proper regularization, the exact integral representation for the free pair creation ampli-
leading-order perturbative limit fd@, from Appendix D can tudes of Eq.(69), is finally obtained in this framework by
be used, calculating the transition currents flowing from the light
fronts into the space between the separating ions. The two
- . ez 1 .- terms correspond to the two time orderings of the interaction
Qz(x,0)— (k) = —— —exfib- «]. (73 of the two phase-shift walls with the electronic wave func-
K tion. In the perturbative limit of a small coupling constant,
Direct substitution shows that in this limit the nonperturba-;he eﬁ?Ct of .thel smr?utlar fleldhperpenléjla:c!a.rt to EaCh |onfr(tar;
tive result of Eq.(69) exactly reproduces the perturbative . uces 1o a singie photon exchange. For finite charges ot the
result of Eq.(71). ions, the pert_urbanve linear dependence_of the amp_lltudes on
each charge is replaced by nonperturbative, nontrivial phases
in our integral representation. Numerical evaluation of the
VI. CONCLUSIONS AND OUTLOOK nonperturbative effects, differential cross sections, and appli-

We have used a gauge transformation to obtain a useflﬁations to multiple pair production will be considered in fu-

ultrarelativistic limit for the two-center Dirac equation, turé Work.
which allows for an exact solution off the planes perpendicu-
lar to the ions’ trajectories, i.e., off the light fronts. In gen- ACKNOWLEDGMENTS

eral, the amplitudes of the gauge-transformed Dirac equation
are related to the amplitudes of the original equation in a_ 1€ authors are happy to acknowledge helpful conversa-

nontrivial way due to long-range Coulomb effects. For Sym_tions with Professor J. Macek and P(ofessor _M. R. Strayer.
metric collisions, and calculations in the collider frame, 1 NiS work was supported by the National Science Founda-
some of these long-range effects cancel. The two differeniion through a grant for the Institute for Theoretical Atomic

amplitudes are then related by a series expansion, and, ﬁpd Molecular _Physics at Harvard University and Smithso-
leading order, they are equal. nian Astrophysical Observatory.

The amplitudes were calculated here in the ultrarelativis-
tic limit, assumingy to be large. No assumption was made APPENDIX A:
on the value of the charge times the fine-structure constant THE SHARP, ULTRARELATIVISTIC LIMIT
Za. When taking the limit of smalZ«, we are able to show _ _ _ _ L
a complete agreement with the ultrarelativistic limit of the !N this appendix, we will outline the derivation of the
expression obtained from standard second-order perturbatighifunction limit of the electromagnetic interactions, and
theory [18]. In second-order perturbation theory, pair pro-We. given in Egs.(11) and(12) beginning with their defi-
duction is described as a two-photon exchange process ftions given in Egs(9) and (10), respectively(The same
which each ion exchanges one photon with a negativellMit has been previously obtained; see R¢82,34,39,)
energy electron. The negative-energy electron is kicked off In the limit c_)f extreme ultr_arelatwlstlc_: collls_lgns,_one may
its energy shell by the first interaction and then kicked back'@glect terms in the interaction proportionahto®. It is then
to the energy shell by the second ion, but with a positiveP0ssible to first seB—1 and then use
energy. The two diagrams that contribute to the amplitude

differ in the time order of these photon exchanges, or b2 2 g2 12

“kicks.” Our result, which provides a very similar physical n(7a,b)= — T s -\t 7

picture of pair production as a “two-kicks” process, is ob- Y Y

tained in the ultrarelativistic limit within a rather different, a2

and completelynonperturbativeapproach. y>a,b— &(7)In —). (A1)
In our work, the electromagnetic fields of the ions are b?

confined to the light fronts by the extreme Lorentz contrac-
tion and by a choice of a particular gauge designed to rek is easy to verify that in the limity>a,b,
move the long-range Coulomb effects. In this gauge, as the

velocity of the ions approaches the velocity of light, each ion o a2
carries with it, perpendicular to its trajectory, a wall of sin- f dry(ra,b)—In il (A2)
gular electromagnetic interaction. An initial plane wave in e b

the space between the approaching ions acquires a space-
dependent phase shift as it is swept by this singularand that in the same limit
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2 2

n(7#0;a,b)x

_ . . . z .
-——0. (A3) SY~A)+i2zZa lim <Xk(rvtf)|u(tf1ti)m|Xj(rvti)>
»y tiéfoo |

tg—o

APPENDIX B: GAUGE-TRANSFORMED AMPLITUDES . . > Z. -
—i2Za lim <Xk(ratf)|au(tfrti)|Xj(r1ti)>+'“ .

In Sec. Ill, the transition amplitudeSy’ and A{’ were tj— o
defined and an exact relation, E@4), was established be- e
tween them. However, this relation is not always useful as it (B11)

involves infinite integrals and sums over the complete plane-

wave basis set. In this appendix, a series expansion in inver$ésing completeness, E¢B11) can equivalently be written

powers of the asymptotic time will be shown to rela@ as

andA(kj) in a simpler way for symmetric collisions and cal-

culations in th_e collider frame. _ Sﬂj)wA(k“JriZZaE
Two evolution operators can be defined fdr) and|V), |

from Eqgs.(1) and(8), respectively,

M | S (F
Ay’ lim <Xl(ryti)|m|)(j(r:ti)>

tj——o

NG NI
|¢)(F,tf)>:f}(tf,ti)|¢(F,ti)>, (Bl) AI tlflinw<Xk(rrtf)|tf|XI(r!tf)> + . (BlZ)
[ (r,t) =U(ts 1) [P (1 1)), (B2) It is clear thatS{) andA{’ are in general different. For
) nonsymmetric collisions, the relation between them involves,
They are related by the gauge transformation of &g. for example, a highly oscillatoryz-dependent phase which
. . explicitly depends ory. However, this phase cancels for the
Ute ) =U(z,t) Wt 1)U (2 t). (B3)  interesting case of symmetric collisions. The first-order cor-

rections toS{’~A{) decrease linearly with time and have a
functional nature of polarization effects. Higher-order cor-
rections are higher moments bft.

The amplitudes are given by

SI=lim (u(r )Wt 1) (1)), (B4)

tj——o

t—oo APPENDIX C: DISCONTINUITY AT THE LIGHT FRONTS

i . - i - In this appendix, the discontinuities of the spinor wave
(J) = My .
A _tll_'fr_‘m()(k(r’tf)w(tf 't')lxl(r't'»' (BS) function at the light frontgat r. =0 and atr_=0, exclud-
' ing only 7, =7_=0) are deduced from Ed35). Previous
derivations of the discontinuity of a wave function due to an

tfHOO

A direct substitution gives ultrarelativistic charge are reviewed.
_ A X i At one light front (-, =0, 7_#0), Eq. (35) for |G,)
SP=lim (udr Uzl U ) (). reads
tji——
tf_mo (B6) I(?T+|G+>:h0|G*>+B(rL)5(T+)|G+> (Cl)
The asymptotic expressions, The S-function singularity render$G, ) discontinuous at
7, =0, as can be seen by integrating both sides of(Eq)
ti— = [2y(|tj] +2)]'%A with respect tor, from — e to € and taking the limite—0,
U(z,t) — -, (B7)
[2y(]t]| —2)/b%]'%e G, (1,=0"))#|G.(7,=07)). (C2)
+ U 2y(t— 2)/0?] %A An auxiliary bispinor can be defined by a piecewise gauge
Uizt — i ' (B8 transformation
[2y(ti+2)]%e° !
reduce, for symmetric collisionsZ&Z,=Zg), to power se- |G.)=exdiB(r,)8(1,)1|G.). (C3
ries inz/t,

Direct substitution gives
A . z - - “
U<z,ti)~b'22“( L+i2Zap + - ) : (BY) i0, |G.)=exfiB(r,)6(r)]hg|G).  (C4
The auxiliary bispinor is continuous at =0, as can be seen

: (B10) by operating on both sides of E(C4) with lim, o€ .d7, ,
obtaining

) z
u*(z,tf)~b'22a( 1-i2Za—+--
f

Substituting these power series in E§6) and integrating _ _
term by term one gets |G, (7,=0"))=|G,(7,=07)). (C5)
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The continuity of|G,) at 7. =0 (r_+#0), implies the N I 1oz
discontinuity of Eq.(50) for |G. ). Likewise, a continuity of l'inoﬂ o dse < Jo[ shk]s
|G )y=exiA(r,)6(7-)]|G) (c8) I(1-iaz) — (bk)?
= Iim—.lFl( 1-i aZ,l;—)
atr =0, (7, #0,) implies the discontinuity of Eq(5) for em0 4mret ™o e
|G—> 1 —i2az
This Heavyside step-function, space-dependent, phase = Iim—exq—(bx)2/4e](—)
discontinuity was previously obtained in RE82]. In earlier e0dTE 2e
work [34], a gauge transformation was used to establish the i . ) i2az
fact that the electromagnetic field of a charge, that is moving _ E(bx)*ze’mzr(_ aZ) (lb_K)
at the speed of light can be equivalently given by gauge I'+iaz)\ 2 '
potentials with ad-function singularity at the light front, or (D5)

by gauge potentials with only a step-function discontinuity

there. The wave function of a particle interacting with this\yhere ;F, is the confluent hypergeometric function. Equa-
field is discontinuous or continuous, depending on the gauggon (73) is now obtained by takingzZ—0 and using

choice. We choose to work with such a gauge that WOUId&(b;?)EIimHO(lmrre) ex] — (br)%/4e]. Note that the limit

ive a sharp interaction and a discontinuous spinor wave . . A
?unction yetp we have used here other gaugespto find thg_>o can only be takemfter taking the perturbative fimit

discontinuities in an explicit form. 4Z—=0.

APPENDIX D: MOMENTUM-TRANSFER DISTRIBUTION APPENDIX E: TRANSITION CURRENT

When the singularities at the light fronts are crossed, th?n As we are unaware of an appropriate reference, we prove

transverse momentum changes. The distribution for this mo: this appendix that the transition four-current density de-
o anges. fined in EqQ.(63) is conserved. In fact, any two solutions of
mentum change is given in Sec. IV by H&4),

the free Dirac equation can be used to define a conserved

1 " 2] ez current in a similar way. This proof is very similar to the one
Qz(f; b)= J drle”l"z (r,—b) (D1) found in textbooks proving the probability current to be con-
T (2m)? b? served[2].

Both x, and 4\ solve in region IV the free Dirac equa-
As mentioned in Sec. IV, divergence &;(«,b) is an arti-  tion in the Dirac representation
fact of the ultrarelativistic approximation used in E@$1) 5
and(12). The integral over this distribution converges and is i— s DrH=l—ia-V+~T09(r
normalized to 1: "t PR =l=Ta- V4 ylyi(ny, ED

f dxQz(x,b)=1. (D2) i%xk(rﬂt):[—i&.m;O]XK(F,t). (E2)

For a vanishing chargeQ,_o(x,b)=5(«), but for finite Multiplying Eq. (E1) from the left by the adjoint oj, gives
chargeZ+#0, this distribution diverges both for vanishing
and finite momentum transfex. In this appendix, we show
that for k#0 in the perturbative limitaZ<1, and after
proper regularization, the leading order correction to éhe
function is given by Eq(73), i.e.,

oy L o
Xk = —ixka Vel x %0 (€3

Multiplying the Hermitian conjugate of EE2) from the
right by ¢’ gives

- - laZ 1 - o +
R ib. J ) . = . . .
Qz(k,b)— 8(k) — — Kzexmb K). (D3) _i%,ﬁ(]):i(a,VXl)w(J)_f_XE,yOw(J). (E4)
Integrating first over the angular variable, Subtracting Eq(E4) from Eq. (E3) gives
.. b?expib-x) (= : a . L
Qz(k#0b)=———— fo dspshr]s' ™22, ) ==V (xeay?), (ES)
(D4)

where the Hermiticity of the Dirac matrices has been used.
whereb=|b|, k=|«|, and J, is the Bessel function. The Using the definition of the trgngition current in E63), Eq.
integral overs diverges, but can be regulated for finitkein ~ (E5) is revealed as the continuity equation
the limit of aZ<1. 5
Using, for example, Eq(6.631.2 in Ref. [42] and Eq. AR TURSIR VA T S E6
(13.5.1 in Ref.[43] one has ot o0 ’ (E6)
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proving the transition-current density to be conserved. open hyper-surfacedi) t=t;— +, (i) 7,=0%, 7_>0,
(i) 7_=0", 7.>0, (iv) x— =, and(v) y— + «; (see Fig.
APPENDIX F: APPLICATION OF GAUSS' THEOREM 6). Writing Eq. (F2) for this surface gives
As Appendix E shows, the transition four-current, defined ) -
in Eq. (63), is a conserved quantity, 0=tI|m dr, » Jo(r,t)
f*>oc
a9+ ot -
wZO. (FD —2[ drlf+de_J+(rl’T+:O+'T_)

Integrating Eq(F1) over any empty space-time hypervolume o - .
V and applying Guass’ theorem to convert the volume inte- -2/ dr, o+ dryJ (rp,7,7-=07), (F3
gral into a surface integral over the hypersurf8aenclosing

V in general gives where use was made of the fact that in any physical situation,

i.e. for a square-integrable wave packet, the currents vanish
f doJ*n,=0, (F2  asr—. The hypersurface§v) and(v) do not contribute to
s the integral of Eq.(F2). The factors of 2 arise from the
where the unit four-vecton . is defined as the outward dJacobian relating the original differentials to the differentials
pointing normal toS. # for the light-front variables, and the negative sign in the sec-
For our purposes, it is useful to apply EG2) to the ond and third terms arise because the unit normal veators

space-time region 1V, defined in Fig. 5 by >0. The closed are directed outside the volumé i.e.,J-n.=—J. . This
hypersurfaces enclosing region IV is made of the following completes our proof of Eq65).
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