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Light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions

B. Segev and J. C. Wells*
Institute for Theoretical Atomic and Molecular Physics, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street,

Cambridge, Massachusetts 02138
~Received 29 September 1997!

We perform a gauge transformation on the time-dependent Dirac equation describing the evolution of an
electron in a heavy-ion collision to remove the explicit dependence on the long-range part of the interaction.
We solve, in an ultrarelativistic limit, the gauge-transformed Dirac equation using light-front variables and a
light-fronts representation, obtaining nonperturbative results for the free pair-creation amplitudes in the collider
frame. Our result reproduces the result of second-order perturbation theory in the small charge limit while
nonperturbative effects arise for realistic charges of the ions.@S1050-2947~98!02403-2#

PACS number~s!: 34.50.2s, 25.75.2q, 11.80.2m, 12.20.2m
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I. INTRODUCTION

Electron-positron pair production from the vacuum
strong electromagnetic fields is a fundamental prediction
quantum electrodynamics~QED! @1–3#. In heavy-ion colli-
sions at energies near the Coulomb barrier, quasibound
lecular states are formed with binding energies that dive
the negative-energy continuum, resulting in a resonance
decays into an electron-positron pair@2,4–8#. In contrast, for
ultrarelativistic heavy-ion collisions at peripheral impact p
rameters, the ions execute straight-line trajectories and re
near each other for only a very short time. The high cha
of the individual ions and the strong Lorentz contracti
combine to produce fields sufficient for electromagnetic p
production through a qualitatively different process. Lar
cross sections for electromagnetic pair production in th
collisions were theoretically predicted@9# and experimen-
tally observed@10–17#.

In lowest-order perturbation theory, the amplitudes
pair production in heavy-ion collisions are calculated fro
two-photon exchange diagrams@18#. The quantum field the-
oretical treatment of this process was reduced to a class
field approach@19#. Experimental observations of free pa
production in the energy range around 10 GeV per nucl
~in the collider reference frame! are in agreement with
second-order perturbation theory@10,12,14–16#. For lower
energies of a few GeV per nucleon~collider frame!, experi-
mental results for free and bound-free pair production sh
deviations from the predictions obtained from two-phot
exchange diagrams@11,13#. This is likely due to two-center
Coulomb effects@20,21#. In the near future, larger ultrarela
tivistic energies above one hundred GeV per nucleon~col-
lider frame! will be available. New nonperturbative effec
may become important at colliding-beam accelerators s
as the Relativistic Heavy-ion Collider~RHIC! at Brookhaven
and possibly the Large Hadron Collider~LHC! at CERN.
These nonperturbative effects are the subject of our pre
work.

Previous theoretical works on high-energy nonpertur
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tive effects considered unitarity violation in lowest-ord
perturbation theory, multiple-pair production, and corre
tions to production cross sections@22–32#. An open ques-
tion, crucial for the beam stability, is whether the nonpert
bative effects will enhance or reduce the cross section
bound-free production, i.e., production with capture@30,32#.

In a nonperturbative treatment, starting from the QE
Lagrange density operator, the Euler-Lagrange equation
motion for the quantum fields are equivalent, under phys
assumptions, to the one-particle Dirac equation interac
with classical, electromagnetic fields@33#. Calculations of
probabilities and correlations can then be reduced to solv
the two-center time-dependent Dirac equation, which
scribes the dynamics of an electron in the classical field
two relativistically moving charges.

In the ultrarelativistic limit, the ions are practically mov
ing at the speed of light. The classical electromagnetic fi
of a massless charged particle was studied in Ref.@34#. It can
be described by pure gauge potentials, with different gau
in different regions of spacetime. The eikonal approximat
was then reproduced from an exact solution of a quantu
mechanical equation in this field. A similar approach w
recently used in target-frame calculations of bound-free p
production, where a gauge transformation was used to
move the long-range Coulomb effects@29,32#.

The use of gauge transformations is fundamental to th
calculations. The term gauge transformation, as used her
not to be confused with a gauge-symmetry transformation
which both the wave function and the fields are transform
so as to keep the equation of motion invariant. Here, as w
as in Refs.@24,35,36#, for example, a space-time depende
phase is used to transformeither the wave functionor the
fields in order to obtain a different equation of motion. T
connection between the solution of the original problem a
the gauge-transformed problem depends on the asymp
~infinite time! behavior of the gauge function employed; i.e
on the induced changes to the initial and final sta
@24,35,36#. Gauge transformations should also be appl
with care when used in calculations employing truncated
sis sets@35–37#.

In this work, a gauge transformation is used to solve
two-center Dirac equation describing an electron during
relativistic heavy-ion collision. A closed form expression f
8,
1849 © 1998 The American Physical Society
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1850 57B. SEGEV AND J. C. WELLS
the pair-production amplitudes in the ultrarelativistic limit
found. First, in Sec. II, the ultrarelativistic limit for the two
center Dirac equation is obtained and discussed. In Sec
exact and asymptotic relations between the original
gauge-transformed transition amplitudes are established
Sec. IV, thelight-fronts representationis introduced and the
foundations are laid for the construction of the exact solut
in Sec. V, where the perturbative limit is considered as w
The physical contents of our results and an outlook for fut
applications are finally considered in Sec. VI. Details
some derivations are given in appendices.

II. AN ULTRARELATIVISTIC LIMIT TO THE
TWO-CENTER TIME-DEPENDENT DIRAC EQUATION

Consider a collision between two ions with point charg
ZA andZB and velocitiesb ẑ and2b ẑ, respectively, moving
parallel to each other at an impact parameter of 2bW ~see Fig.
1!. An external-field approach to the influence of these io
on the vacuum is appropriate for peripheral impact para
eters~i.e., no nuclear interactions!, heavy ions, and ultrarela
tivistic energies, when to a very good approximation,
ions continue intact on their parallel, straight-line trajec
ries. The two-center Dirac equation for an electron in
time-dependent external field of these ions is given by

i
]

]t
uF~rW,t !&5@Ĥ01ĤA~ t !1ĤB~ t !#uF~rW,t !&, ~1!

whereuF(rW,t)& is the Dirac spinor wave function of the ele
tron, Ĥ0 is the free Dirac Hamiltonian andĤA(t) andĤB(t)
are each the interaction with one ion,

Ĥ0[2 i ǎ•¹W 1ǧ0, ~2!

ĤA~ t ![~ I 42bǎz!
2ZAa

A~rW'2bW !2/g21~z2bt !2
, ~3!

FIG. 1. Schematic diagram depicting a relativistic heavy-
collision of two charges,ZA andZB , in the center-of-velocity frame
with impact parameter 2b and velocityb. Lorentz contraction is
extreme, so the ions are depicted as oblate spheroids.
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ĤB~ t ![~ I 41bǎz!
2ZBa

A~rW'1bW !2/g21~z1bt !2
. ~4!

We are working in the collider frame, using natural un
(c51, me51, and \51), and applying the conventiona
notation;b[v/c, g[1/A12b2. a is the fine-structure con
stant,ǎ and ǧm are Dirac matrices in the Dirac represent
tion, as in Ref.@1#; š are the Pauli matrices; and I2, 02, I4,
and 04 are the two-dimensional and four-dimensional u
and zero matrices.

We would like to consider the ultrarelativistic limit in
which

b→1, g@b,r' . ~5!

Equation~1! does not simplify in this limit in a straightfor-
ward way because, for any given time, the long-range beh
ior of the interaction termsĤA andĤB is independent ofg as
z→6` ~see Fig. 2!. A simple ultrarelativistic limit can be
obtained by first applying a gauge transformation in order
remove this long-range tail of the interaction. The gaug
transformed wave functionuC(rW,t)& is defined by

uC~rW,t !&[U~z,t !uF~rW,t !&, ~6!

U~z,t ![exp$ iZAa ln@2g~ t2z!1Ab21g2~ t2z!2#

1 iZBa ln@1g~ t1z!1Ab21g2~ t1z!2#%. ~7!

The Dirac equation foruC(rW,t)& is obtained from Eq.~1!,

i
]

]t
uC~rW,t !&5@Ĥ01ŴA~ t !1ŴB~ t !#uC~rW,t !&, ~8!

where the new interaction terms are

FIG. 2. Shown is the scalar component of the Lorentz-ga
interactionV0 for two different energies,~a! g510 ~CERN-SPS
energies!, and~b! g5100 ~RHIC energies!, plotted as a function of

a narrow range of thez coordinate fort50, bW 5(1,0), and rW'

5(2,0). Notice that away from the vicinity ofz50 this interaction
is insensitive to the change in the energy of the ion.
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57 1851LIGHT-FRONTS APPROACH TO ELECTRON-POSITRON . . .
ŴA~ t !5~ I 42bǎz!
2ZAa

A~rW'2bW !2/g21~z2bt !2

2~ I 42ǎz!
2ZAa

AbW 2/g21~z2t !2
, ~9!

ŴB~ t !5~ I 41bǎz!
2ZBa

A~rW'1bW !2/g21~z1bt !2

2~ I 41ǎz!
2ZBa

AbW 2/g21~z1t !2
. ~10!

Figure 3 demonstrates the short-range character of
gauge-transformed interaction. Similar gauges have b
used in Refs.@38,24# that reduce in the limitb→1 to Eq.~7!.
Unlike Eq. ~1!, the gauge-transformed equation, Eq.~8!, has
a simple ultrarelativistic limit@32,34#. In the limits of Eq.~5!

~largeg, smallr' , and small impact parameterb!, ŴA (ŴB)
has a sharp,d-function dependence ont2z (t1z)
@32,34,39#, ~see Appendix A!, i.e.,

ŴA→~ I 42ǎz!ZAad~ t2z!lnF ~rW'2bW !2

b2 G , ~11!

ŴB→~ I 41ǎz!ZBad~ t1z!lnF ~rW'1bW !2

b2 G . ~12!

Consider the physical nature of this limit. Ad function
over time alone would indicate a sudden interaction of
ions with the vacuum. In the gauge-transformed equat
Eq. ~8!, with the interactions of Eqs.~11! and ~12!, as they
move, the ions are continuously interacting with the vacuu
Naturally, this interaction is singular on the trajectories
the ions, as it was before the ultrarelativistic limit has be
taken; but an additional singularity is induced in the
trarelativistic limit by the extreme Lorentz contraction of th
field. In this limit, the interaction is infinite on the two plane

FIG. 3. Same as Fig. 2 , except that here the scalar compone
of the gauge-transformed interactionW0 is plotted. Notice that the
gauge-transformed interaction is short ranged, and that the ran
the interaction decreases as the ion’s energy increases.
is
en

e
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perpendicular to the ions trajectories, and vanishes e
where. In the following, we calculate pair production amp
tudes using Eq.~8! with the interactions in Eqs.~11! and
~12!. The region of larger' is not properly accounted for in
this treatment, but contributions from this region to pair pr
duction are assumed to be small.

The interactions in Eqs.~11! and ~12! have zero range in
the longitudinal direction and a logarithmic behavior in t
transverse direction, similar to the potential of a line
charge. In the limitb→1, the two ions are moving at th
speed of light and thus the interaction planes described ab
coincide with the light fronts, given byz56t ~see Fig. 4!.
Finally, we note that (I 46ǎz)/2 are orthonormal projection
operators. The four-Dirac spinor wave function of the ele
tron can be decomposed into two orthogonal component

uC1~rW,t !&[ 1
2 ~ I 41ǎz!uC~rW,t !&, ~13!

uC2~rW,t !&[ 1
2 ~ I 42ǎz!uC~rW,t !&. ~14!

Each ion interacts directly only with one of these comp
nents;ZA with uC2(rW,t)& andZB with uC1(rW,t)&.

III. ASYMPTOTIC SOLUTIONS AND TRANSITION
AMPLITUDES

In scattering theory, characterized by free initial and fin
states, a complete solution is generally given by the se
asymptotic transition amplitudes between plane waves~theS
matrix!. In this section, we define the transition amplitud
Sk

( j ) for the electronic spinor wave functionuF&, i.e., for Eq.
~1!, and the transition amplitudesAk

( j ) for the gauge-
transformed wave functionuC&, i.e., for Eq. ~8!, using, as
usual, initial and final plane-wave states. Use of an ini
condition of a single plane wave for Eq.~1! is somewhat
subtle since the theory is never free due to long-range C
lomb effects@3#. This is an important point when integratin
the amplitudes to obtain predictions for physical observab

t

of

FIG. 4. Schematic diagram of the time history of a heavy-i
collision in the ultrarelativistic limit. Motion in thet-z plane is

shown withrW' , and thusbW , assumed orthogonal to this plane. Io
A and B move toward each other in thez direction with velocity
b51. The dotted lines are the projections of the ion trajectories
the t-z plane, which forb51 coincide with the intersection of this
plane with the light fronts atz56t.
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1852 57B. SEGEV AND J. C. WELLS
One should properly account for actual initial and final sta
for a given experiment.

A complete set of solutions of the free Dirac equation
given by the Dirac plane waves;$uxp(rW,t)&%. Each plane
wave is characterized by three continuous and two disc
quantum numbers; namely, the three components of the
mentumpW , the sign of the energy~we uselp50 for positive
energy electrons,lp51 for negative energy electrons!, and
the spin (usp&5u1& for spin up andusp&5u2& for spin
down!, p[$pW ,lp ,sp%. The plane waves satisfy

Ĥ0u x̃ p~rW !&5Epu x̃ p~rW !&, ~15!

uxp~rW,t !&[exp~2 iEpt !u x̃ p~rW !&, ~16!

Ep5~21!lp«p , «p[Ap211, ~17!

where Eq.~17! is the condition for being on the energy she
An explicit form is given, for example, by@3#, and in our
notation by

u x̃ p~rW !&5
~2p!23/2

A2«p~11«p!
exp~ irW•pW !S 02 2I2

I2 02
D lp

3S (11«p)usp&

šW•pW usp&
D ~18!

[exp~ irW•pW !uup&. ~19!

We define the solutionuf ( j )(rW,t)& of Eq. ~1! by the initial
condition,

lim
t i→2`

uf~ j !~rW,t i !&5ux j~rW,t i !&. ~20!

The asymptotic transition amplitudeSk
( j ) is then given by

Sk
~ j ![ lim

t f→`
^xk~rW,t f !uf~ j !~rW,t f !&, ~21!

where the bra-ket stands, as usual in nonrelativistic and n
covariant notation, for integration over all spacerW at a given
time. Likewise,uc ( j )(rW,t)& is defined as the solution of Eq
~8! with the initial condition,

lim
t i→2`

uc~ j !~rW,t i !&5ux j~rW,t i !&, ~22!

and the asymptotic transition amplitudeAk
( j ) is given by

Ak
~ j ![ lim

t f→`
^xk~rW,t f !uc~ j !~rW,t f !&. ~23!

The initial condition for Eq.~1!, Eq. ~20!, and the initial
condition for Eq.~8!, Eq. ~22!, correspond to different initia
physical states, as they are not related by the gauge tran
mation in Eq.~7!. A similar comment is true for the fina
states used in defining the amplitudes in Eqs.~21! and ~23!.
s

te
o-

n-

or-

In general,Sk
( j ) andAk

( j ) are completely different amplitudes
They are related to each other by the gauge transformatio
Eq. ~7! in the following way:

Sk
~ j ![(

p
(

q
^xk~rW,t f !uU†~z,t f !uxp~rW,t f !&

3Ap
~q!^xq~rW,t i !uU~z,t i !ux j~rW,t i !&, ~24!

where(p stands for integration and summation over all t
quantum numbers,p5$pW ,lp ,sp%. This relation is based on
the completeness of the plane-wave basis set and shou
questioned if applied with a truncated basis calculation@35–
37#.

A relation like Eq.~24! holds between any two amplitude
that are related by a gauge transformation. If the gauge tr
formation U had been otherwise defined so that it wou
become unity for asymptotic times,~i.e., U→1 for t i→2`
and t f→`), the orthonormality of the plane waves wou
eliminate the double sum in Eq.~24!, and theasymptotic
transition amplitudesSk

( j ) andAk
( j ) would be identical. Gauge

transformations that share this property have been descr
as exhibitingasymptotic gauge invariance@36#. Likewise, if
the gauge transformationU would be independent ofrW for
asymptotic times @i.e., U→exp(iCi) for t i→2`, and
U→exp(iCf) for t f→1`, whereCi and Cf are real num-
bers#, then the double sum in Eq.~24! would again be elimi-
nated and the matrix elements ofU in Eq. ~24! would con-
tribute only a single constant phase at asymptotic times
this case, the asymptotic transition probabilities derived fr
Sk

( j ) andAk
( j ) would be identical@24#.

The specific gauge transformation used here, Eq.~7!, is
not independent of space at asymptotic times, as is show
Appendix B, and, as a result, does not exhibit asympto
gauge invariance for the amplitudes or the probabilities
rived from them. However, this gauge does have an ad
tional property that relatesSk

( j ) andAk
( j ) in a way more useful

than Eq.~24!. It is shown in Appendix B that in the specia
case of symmetric collisions, withZA5ZB , Sk

( j ) can be ex-
pressed as a series expansion in powers of 1/t f and 1/ut i u
whose zero-order term isAk

( j ) .

IV. THE SHARP DIRAC EQUATION
IN THE LIGHT-FRONTS REPRESENTATION

In this section, thesharpDirac equation, Eq.~8!, with the
limiting form of the interaction in Eqs.~11! and~12!, will be
further simplified by changing into light-front variables an
by introducing a new representation for the Dirac spino
the light-fronts representation. This is an appropriate choic
of variables and representation, since, in the ultrarelativi
limit of Eq. ~5!, the interactions are confined to the lig
fronts.

A. Definitions and notations

In terms of light-front variables, space time and ener
momentum are described by the four-vectors (rW' ,t1 ,t2)
and (pW' ,p1 ,p2), where
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57 1853LIGHT-FRONTS APPROACH TO ELECTRON-POSITRON . . .
t6[~ t6z!/2, ~25!

p6[Ep6pz , ~26!

p1p2511p'
2 . ~27!

The sign and absolute value of (p11p2)/2 arelp and«p ,
respectively. Equation~27! like Eq. ~17! defines the energy
shell. These variables were often used previously for qua
zation on one of the two light fronts,t150 or t250 @40#.
For the problem considered here, it is useful to keep
symmetry betweent1 andt2 .

The projection operators (I46ǎz)/2 acquire a simple form
and the interaction is diagonalized by introducing thelight-
fronts representationfor the Dirac matrices,

g light fronts
m 5LgDirac

m L†, ~28!

L[
1

A2
S I2 ŝz

I2 2ŝz
D , ~29!

LǎzL
†5S I2 02

02 2I2
D , ~30!

L@ 1
2 ~ I41ǎz!#L

†5S I2 02

02 02
D , ~31!

L@ 1
2 ~ I42ǎz!#L

†5S 02 02

02 I2
D , ~32!

LaW̌'L†5 i S 02 2vW̌

vW̌ 02
D , ~33!

vW̌ [~2šy ,šx!. ~34!

With this notation, the gauge-transformed two-cen
Dirac equation in the sharp ultrarelativistic limit in the ligh
fronts representation is

S i ]t1
uG1&

i ]t2
uG2& D 5S d~t1!B~rW' ,bW ! ĥ0

ĥ0
† d~t2!A~rW' ,bW !

D S uG1&

uG2&
D ,

~35!

whereuG1& anduG2& are the upper and lower bispinor com
ponents of the Dirac wave function in the light-fronts rep
sentation

S uG1&

uG2&
D[LuC&, ~36!

and

ĥ0[I 22 ivW̌ •pŴ' , ~37!

A~rW' ,bW ![ZAa lnF ~rW'2bW !2

b2 G , ~38!
ti-

e

r

-

B~rW' ,bW ![ZBa lnF ~rW'1bW !2

b2 G . ~39!

The upper and lower bispinors are coupled by the f
Hamiltonian. Each interacts directly with the external field
one ion and feels the field of the other ion through its co
pling to the other bispinor.

Equation~35! has no discontinuities in the transverse d
rection. It is therefore useful to Fourier transform its soluti
with respect torW' . Two mixed bispinor wave functions
ug6(qW' ;t1 ,t2)&, are then defined by

uG6~rW' ,t1 ,t2!&[E dqW'eirW'•qW'ug6~qW' ;t1 ,t2!&.

~40!

ug1& andug2&, like uG1& anduG2&, are coupled by the free
Hamiltonian.

B. Free Dirac equation off the light fronts

Off the light fronts, i.e. fort1Þ0 andt2Þ0, the wave
function satisfies the free Dirac equation and Eq.~35! re-
duces to two coupled equations for the mixed bispin
ug6(qW' ;t1 ,t2)&:

i
]

]t1
ug1&5~ I 22 ivW̌ •qW'!ug2&, ~41!

i
]

]t2
ug2&5~ I 21 ivW̌ •qW'!ug1&. ~42!

As usual, the second-order equations decouple

]2

]t1]t2
ug6&52~11q'

2 !ug6&, ~43!

where use was made of

~ I 22 ivW̌ •qW'!~ I 21 ivW̌ •qW'!5~11q'
2 !I 2 . ~44!

A solution to Eqs.~41,42! is given, for example, by the
plane waves of Eq.~18!, which in the light-fronts represen
tation are given by

S uF1
p &

uF2
p &

D[Luxp~rW,t !&, ~45!

uF6
p &[E dqW'eirW'•qW'u f 6

p ~qW' ;t1 ,t2!&, ~46!

u f 6
p ~qW' ;t1 ,t2!&5d~qW'2pW'!e2 i ~t2p11t1p2!uG6

p &.
~47!

The bispinors,uG6
p & ~the upper and lower parts ofLuup&),

uG6
p &5

~2p!23/2

2A«p~11«p!
@ I 2~11~21!lpp6!7 ivW̌ •pW'#

3~6šz!
lpusp&, ~48!
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1854 57B. SEGEV AND J. C. WELLS
satisfy the simple relation

uG2
p &5

I 21 ivW̌ •pW'

p1
uG1

p &. ~49!

These plane waves solve Eq.~35! off the light fronts in the
limits t→6`. They do not solve it for finitet, whenpW' is
no longer a good quantum number, as the singular inte
tion with the ions makes the wave function discontinuous
the light fronts.

C. The discontinuity across the light fronts

It is standard procedure in wave mechanics to form pie
wise solutions by satisfying continuity relations at t
boundaries between free regions. It was shown in R
@32,34# that ad-function singular interaction at a light fron
results in a discontinuity in the electron wave functio
which is given by a space-dependent phase shift. The p
is reviewed in Appendix C, where it is shown that for o
case of Eq.~35!, the discontinuity is

uG1~t1501!&5e2 iB~rW' ,bW !uG1~t1502!&, ~50!

uG2~t2501!&5e2 iA~rW' ,bW !uG2~t2502!&. ~51!

These phase shifts are derived from Eq.~35! in general for
any A(rW' ,bW ) and B(rW' ,bW ), i.e., any functional dependenc
on the perpendicular coordinate. Here,A(rW' ,bW ) and
B(rW' ,bW ) are given by Eqs.~38,39!.

Due to this space-dependent phase shift, the transv
momentum is not conserved and the Fourier component
Eq. ~40! are mixed when the singularities at the light fron
are crossed,

ug1~qW' ;t1501!&5E dpW'QZB
~pW'2qW' ,2bW !

3ug1~pW' ;t1502!&, ~52!

ug2~qW' ;t2501!&5E dpW'QZA
~pW'2qW' ,bW !

3ug2~pW' ;t2502!&, ~53!

where

QZ~kW ,bW ![
1

~2p!2E drW'eirW'•kWF ~rW'2bW !2

b2 G2 iaZ

. ~54!

Note that herekW and bW are two-dimensional vectors in th
(x,y) plane. The continuity is recovered in the limitZ→0,
asQZ(kW ,bW )→d(kW ). The distributionQZ(kW ,bW ) in general di-
verges. This divergence is an artifact of applying the sh
limit for the gauge-transformed interaction, Eqs.~11! and
~12!, for large r' , i.e., outside its range of validity. Th
properties of the distributionQZ(kW ,bW ) for finite charge are
considered in Appendix D.
c-
t

-

s.

,
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rse
of
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V. A PIECEWISE SOLUTION
TO THE SHARP DIRAC EQUATION

In this section, the formalism that was introduced in S
IV is used to obtain the transition amplitudes betwe
asymptotic plane wavesAk

( j ) defined in Sec. III.
The singular interaction on the planes perpendicular to

trajectories of the ions cut space time along the light fro
into four regions, as is shown in Fig. 5. A piecewise soluti
is defined off the light fronts by ug6(qW' ;t1 ,t2)&
5ug6

(i) (qW' ;t1 ,t2)&, where~i!5 I for t1,0 andt2,0, ~i!
5 II for t1.0 andt2,0, ~i!5 III for t1,0 andt2.0,
and~i!5 IV for t1.0 andt2.0. In each region, the wave
function is continuous and solves the local free Dirac eq
tion. At any time, except fort→6`, the wave function ex-
tends in space through three~or two, at t50) of these re-
gions. The solution presented here is not complete in
sense that it does not include the solution on the light fron
t150 and t250 are excluded. The physics on the lig
fronts may contribute to bound-free pair production. Th
our present work is limited to free pair production.

A. Initial condition and intermediate states

Consider the initial condition, Eq.~22!, of a single plane
wave with the quantum numbersj 5$ jW,l j ,sj%, or, using
light-front variables,j 5$ jW' , j 1 , j 2 ,sj%, with the constraint
j 1 j 2511 j'

2 . The continuity off the light fronts gives the
solution in region I,

ug6
I ~qW'!&5d~ jW'2qW'!e2 i ~t2 j 11t1 j 2!uG6

j &, ~55!

where the bispinorsuG6
j & are defined as in Eq.~48!.

The solution in regions II and III is obtained by first ap
plying Eq. ~52! for the discontinuity acrosst150 and Eq.
~53! for the discontinuity acrosst250 and then solving the
coupled Eqs.~41,42! inside each of the intermediate spac
time regions. We obtain, in region II,

ug1
II ~qW'!&5expF2it2j12it1S11q'

2

j1
DGQZB

~ jW'2qW' ,2bW!uG1
j &,

ug2
II ~qW'!&5S I 21 ivW̌ •qW'

j 1
D ug1

II ~qW'!&, ~56!

FIG. 5. The light fronts, i.e., the hypersurfaces defined byt6

50, divide space time into four distinct regions:~I! t1,0, t2

,0; ~II ! t1.0, t2,0; ~III ! t1,0, t2.0; ~IV ! t1.0, t2.0.



ec

e

te

to
e

t
tio
e
m

ol
th
e
e
IV

y
rg

t

is
he

e

ing
for

en-

of

ur-

he
,

57 1855LIGHT-FRONTS APPROACH TO ELECTRON-POSITRON . . .
and in region III,

ug2
III ~pW'!&5expF2it1j22it2S11p'

2

j2
DGQZA

~ jW'2pW' ,bW!uG2
j &,

ug1
III ~pW'!&5S I 22 ivW̌ •pW'

j 2
D ug2

III ~pW'!&. ~57!

It is now apparent why the Fourier transform with resp
to rW' and the definition ofug6(qW' ;t1 ,t2)& in Eq. ~40! were
needed. The simple discontinuity condition~50! at t150
applies only touG1&. The other bispinoruG2& is influenced
indirectly by the field att150 through its coupling touG1&.
Likewise, att250 the simple discontinuity condition~51!
for uG2& induces a nontrivial change inuG1&. The coupling
betweenuG1& and uG2& in free space on either side of th
singular interaction is best described by Eqs.~41,42! for their
Fourier components with respect torW' . Thus, while the dis-
continuity conditions~52,53! for ug6& seem more compli-
cated than the discontinuity conditions~50,51! for uG6&,
using ug6& allows for a simple derivation of the comple
spinor wave function in regions II and III.

It is a well-known fact that two ions are needed in order
create an electron-positron pair. This can also be seen h
In the presence of ionB alone, for example, Eqs.~56! give
the solution fort1.0, including the asymptotic solution a
t f→`. Projection on a plane wave then gives a conserva
law for the positive light-front momentum. Likewise, in th
presence of ionA alone the negative light-front momentu
is conserved:

Ak
~ j !~ZA50!}d~k12 j 1!, ~58!

Ak
~ j !~ZB50!}d~k22 j 2!. ~59!

A direct result fromk15 j 1 or k25 j 2 is that the sign of the
energy of the electron is the same before and after the c
sion. Thus, our formalism satisfies the known result that
passage of a uniformly moving charge does not induc
transition changing the sign of the energy. The presenc
both ions defines a new region of space time, region
(t6.0), which is the space between the ions (2t,z,t)
after the collision (t.0), i.e., when the ions are alread
moving apart. It is shown below that the sign of the ene
can change and pairs may be created in transitions from
initial state in region I (t i→2`) to the final state in region
IV ( t f→`).

The solution of the free Dirac equation in region IV
complicated by the nontrivial boundary conditions on t
light fronts. Applying Eq.~52! again for the discontinuity
acrosst1 and Eq.~53! for the discontinuity acrosst2 , we
cross from regions II and III into region IV to obtain on th
hypersurfaces adjacent to the light fronts,

ug2
IV~kW' ;t2501!&5E dqW' expF2 i t1S 11q'

2

j 1
D G

3QZA
~qW'2kW' ,bW !QZB

~ jW'2qW' ,2bW !

3S I 21 ivW̌ •qW'

j 1
D uG1

j &, ~60!
t

re.

n

li-
e
a
of

y
he

ug1
IV~kW' ;t1501!&5E dpW'expF2 i t2S 11p'

2

j 2
D G

3QZB
~pW'2kW' ,2bW !QZA

~ jW'2pW' ,bW !

3S I 22 ivW̌ •pW'

j 2
D uG2

j &. ~61!

Instead of solving now forug6
IV& at anyt6.0, the transition

amplitudes are obtained in the next subsection by defin
the transition current and by applying Gauss’ theorem
this current.

B. Transition amplitudes

The transition amplitudesAk
( j ) were defined in Eq.~23!,

Ak
~ j ![ lim

t f→`
E drWxk

†~rW,t f !c
~ j !~rW,t f !. ~62!

The integrand is a component of a four-vector current d
sity, which is a conserved quantity~see Appendix E!. This
transition current@35#, (JW (k, j ),J0

(k, j )), is defined by

J0
~k, j ![xk

†c~ j !

JW ~k, j ![xk
†aW̌ c~ j !. ~63!

An equivalent form for the transition current in terms
light-fronts representation wave functions includes

J6
~k, j ![J0

~k, j !6Jz
~k, j !52F6

k†G6
~ j ! . ~64!

It is now possible to use Gauss’ theorem on the hypers
face of the inner border of region IV to show that~see Ap-
pendix F and Fig. 6!

FIG. 6. Depicted is the intersection of the surfaceS enclosing
region IV ~shown as the broken line! with thet12t2 plane. Light-
front components of the transition currentJ6 are shown flowing
into region IV at the light fronts, and the timelike component of t
transition currentJ0 is shown flowing out of IV at the constant
large timet f .
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Ak
~ j ![ lim

t f→`
E drW'E

2`

`

dzJ0
~k, j !~rW,t f !

52E drW'E
01

`

dt2J1
~k, j !~rW' ,t1501,t2!

22E drW'E
01

`

dt1J2
~k, j !~rW' ,t1 ,t2501!. ~65!

The transition currentsJ6
(k, j ) are calculated from the result

of the last subsection by using Eqs.~40,45–47,64!.

J6
~k, j !~rW' ,t1 ,t2!52E dpW'E d lW'exp@ irW'•~ lW'2pW'!#

3^ f 6
k ~pW' ;t1 ,t2!ug6

IV~ lW' ;t1 ,t2!&.

~66!

Integrating overrW' and using the explicit expression~47! for
the plane waves,

Ak
~ j !516p2E

01

`

dt2ei t2k1^G1
k ug1

IV~kW' ;t1501,t2!&

216p2E
01

`

dt1ei t1k2^G2
k ug2

IV~kW' ;t1 ,t2501!&.

~67!

The amplitudes are finally obtained by substituting E
~60,61! and integrating overt6 . The integration overt6

would have given ad-function conservation law for the
light-front momenta, had it been on the complete line2`
,t6,`. Instead, the integrals on the half lines 0,t6,`
are regulated in the usual way with an infinitesimally sm
constant,h @41#

E
01

`

dt exp~ i tk!5
i

k1 ih
. ~68!

The transition amplitudes corresponding to theexactso-
lution of the sharp Dirac equation off the light fronts are

Ak
~ j !5

~2p!3

ip H E dpW'QZB
~pW'2kW' ,2bW !

3QZA
~ jW'2pW' ,bW !

^G1
k uI 22 ivW̌ •pW'uG2

j &

j 2k12~11p'
2 !1 ih~21!l j

2E dqW'QZA
~qW'2kW' ,bW !QZB

~ jW'2qW' ,2bW !

3
^G2

k uI 21 ivW̌ •qW'uG1
j &

j 1k22~11q'
2 !1 ih~21!l j

J , ~69!

where the infinitesimally small, positive constanth can be
omitted for pair-production amplitudes corresponding toEj
,0 andEk.0, i.e., j 6k7,0. This is an interesting result. I
the ultrarelativistic limit of Eq.~5!, the asymptotic time evo
lution of the gauge-transformed electron wave functio
uC(rW,t)&, is exactly given by these amplitudes. An expone
.

l

,
-

tial, nonperturbative dependence on the coupling cons
aZ appears here as nontrivial phases in the integral re
sentation of the distributionsQZA

(kW' ,bW ) andQZB
(kW' ,2bW )

which were defined in Eq.~54!. The two terms in Eq.~69!
correspond to two different time orderings of the interacti
with the ions. In the next subsection, they are shown to
duce in the small-coupling perturbative limit to the we
known two-photon exchange diagrams as depicted in Fig
For vanishing charges, as could be expected,

Ak
~ j !~ZA50,ZB50!5d~kW2 jW !dlk ,l j

dsk ,sj
. ~70!

C. The perturbative limit

The small-charge perturbative limit of the pair-producti
amplitude was calculated in Ref.@18#. To leading order in
aZ ~second order!, the amplitude is given by a sum over tw
diagrams, where each diagram describes a two-photon
change process. The second-order perturbation-theory re
Sk

2 ( j ) , for the transition amplitude between an initi

negative-energy statej 5$ jW,l j51,sj% and a final positive-
energy statek5$kW ,lk50,sk%, is given by Eqs.~24–32! of
Ref. @18#. In the ultrarelativistic limit,b→1 and largeg, the
perturbative result reduces to

Sk
2 ~ j !5E dpW'exp@2 ibW •~2pW'2 jW'2kW'!#

3
i8~aZA!~aZB!

~pW'2kW'!2~pW'2 jW'!2

^G1
k uI 22 ivW̌ •pW'uG2

j &

j 2k12~11p'
2 !

2E dqW'exp@ ibW •~2qW'2 jW'2kW'!#

3
i8~aZA!~aZB!

~qW'2kW'!2~qW'2 jW'!2

^G2
k uI 21 ivW̌ •qW'uG1

j &

j 1k22~11q'
2 !

.

~71!

FIG. 7. On the left are two terms of our result Eq.~69! for the
amplitudes, indicated by their respective space-time maps: I→ II→
IV, and I→ III→ IV. On the right are shown the two Feynma
diagrams of second-order perturbation theory@18# with their respec-
tive time ordering. Our result assumes largeg. Reference@18# as-
sumes smallaZ. Exact agreement between the two results is o
tained in the combined limit.
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A transformation to the light-fronts representation was u
here to obtain bispinor bra-kets from the four-spinor bra-k
of Ref. @18#. For example, usingL†L[I4,

^uku~ I 42ǎz!~ ǎ•pW'1ǧ0!~ I 41ǎz!uuj&

[^G1
k uI 22 ivW̌ •pW'uG2

j &. ~72!

It is interesting to compare theperturbativeresult of Eq.
~71! to our nonperturbativeresult of Eq.~69!. In the small-
charge limit of aZ→0, after proper regularization, th
leading-order perturbative limit forQZ from Appendix D can
be used,

QZ~kW ,bW !→d~kW !2
iaZ

p

1

k2
exp@ ibW •kW #. ~73!

Direct substitution shows that in this limit the nonperturb
tive result of Eq.~69! exactly reproduces the perturbativ
result of Eq.~71!.

VI. CONCLUSIONS AND OUTLOOK

We have used a gauge transformation to obtain a us
ultrarelativistic limit for the two-center Dirac equation
which allows for an exact solution off the planes perpendi
lar to the ions’ trajectories, i.e., off the light fronts. In ge
eral, the amplitudes of the gauge-transformed Dirac equa
are related to the amplitudes of the original equation in
nontrivial way due to long-range Coulomb effects. For sy
metric collisions, and calculations in the collider fram
some of these long-range effects cancel. The two differ
amplitudes are then related by a series expansion, an
leading order, they are equal.

The amplitudes were calculated here in the ultrarelativ
tic limit, assumingg to be large. No assumption was ma
on the value of the charge times the fine-structure cons
Za. When taking the limit of smallZa, we are able to show
a complete agreement with the ultrarelativistic limit of t
expression obtained from standard second-order perturba
theory @18#. In second-order perturbation theory, pair pr
duction is described as a two-photon exchange proces
which each ion exchanges one photon with a negat
energy electron. The negative-energy electron is kicked
its energy shell by the first interaction and then kicked ba
to the energy shell by the second ion, but with a posit
energy. The two diagrams that contribute to the amplitu
differ in the time order of these photon exchanges,
‘‘kicks.’’ Our result, which provides a very similar physica
picture of pair production as a ‘‘two-kicks’’ process, is o
tained in the ultrarelativistic limit within a rather differen
and completelynonperturbativeapproach.

In our work, the electromagnetic fields of the ions a
confined to the light fronts by the extreme Lorentz contr
tion and by a choice of a particular gauge designed to
move the long-range Coulomb effects. In this gauge, as
velocity of the ions approaches the velocity of light, each
carries with it, perpendicular to its trajectory, a wall of si
gular electromagnetic interaction. An initial plane wave
the space between the approaching ions acquires a sp
dependent phase shift as it is swept by this singu
d
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ff
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interaction wall. A single plane wave between the ions giv
a distribution of local plane waves in the space behind e
ion. Had there been only one ion, no transition would
allowed between the negative-energy continuum and
positive-energy continuum, i.e., no pairs could be produc
Pairs are produced because, as the ions move past each
the two phase-shift planes collide. After the peripheral co
sion, as the ions move apart, the solution in the space
tween them is determined by the nontrivial boundary con
tions at the light fronts. The main result of this work, th
exact integral representation for the free pair creation am
tudes of Eq.~69!, is finally obtained in this framework by
calculating the transition currents flowing from the lig
fronts into the space between the separating ions. The
terms correspond to the two time orderings of the interact
of the two phase-shift walls with the electronic wave fun
tion. In the perturbative limit of a small coupling constan
the effect of the singular field perpendicular to each ion
duces to a single photon exchange. For finite charges of
ions, the perturbative linear dependence of the amplitude
each charge is replaced by nonperturbative, nontrivial pha
in our integral representation. Numerical evaluation of t
nonperturbative effects, differential cross sections, and ap
cations to multiple pair production will be considered in f
ture work.
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APPENDIX A:
THE SHARP, ULTRARELATIVISTIC LIMIT

In this appendix, we will outline the derivation of th
d-function limit of the electromagnetic interactions,WA and
WB , given in Eqs.~11! and ~12! beginning with their defi-
nitions given in Eqs.~9! and ~10!, respectively.~The same
limit has been previously obtained; see Refs.@32,34,39#.!

In the limit of extreme ultrarelativistic collisions, one ma
neglect terms in the interaction proportional tog22. It is then
possible to first setb→1 and then use

h~t;a,b![S b2

g2
1t2D 21/2

2S a2

g2
1t2D 21/2

g@a,b→d~t!lnS a2

b2D . ~A1!

It is easy to verify that in the limitg@a,b,

E
2`

`

dth~t;a,b!→ lnS a2

b2D , ~A2!

and that in the same limit
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h~tÞ0;a,b!}
a22b2

g2
→0. ~A3!

APPENDIX B: GAUGE-TRANSFORMED AMPLITUDES

In Sec. III, the transition amplitudesSk
( j ) and Ak

( j ) were
defined and an exact relation, Eq.~24!, was established be
tween them. However, this relation is not always useful a
involves infinite integrals and sums over the complete pla
wave basis set. In this appendix, a series expansion in inv
powers of the asymptotic time will be shown to relateSk

( j )

andAk
( j ) in a simpler way for symmetric collisions and ca

culations in the collider frame.
Two evolution operators can be defined foruF& anduC&,

from Eqs.~1! and ~8!, respectively,

uF~rW,t f !&5V̂~ t f ,t i !uF~rW,t i !&, ~B1!

uC~rW,t f !&5Û~ t f ,t i !uC~rW,t i !&. ~B2!

They are related by the gauge transformation of Eq.~7!,

Û~ t f ,t i !5U~z,t f !V̂~ t f ,t i !U
†~z,t i !. ~B3!

The amplitudes are given by

Sk
~ j !5 lim

t i→2`
t f→`

^xk~rW,t f !uV̂~ t f ,t i !ux j~rW,t i !&, ~B4!

Ak
~ j !5 lim

t i→2`
t f→`

^xk~rW,t f !uÛ~ t f ,t i !ux j~rW,t i !&. ~B5!

A direct substitution gives

Sk
~ j !5 lim

t i→2`
t f→`

^xk~rW,t f !uU†~z,t f !Û~ t f ,t i !U~z,t i !ux j~rW,t i !&.

~B6!

The asymptotic expressions,

U~z,t i ! →
t i→2`

@2g~ ut i u1z!# iZAa

@2g~ ut i u2z!/b2# iZBa
, ~B7!

U†~z,t f ! →
t f→`

@2g~ t f2z!/b2# iZAa

@2g~ t f1z!# iZBa
, ~B8!

reduce, for symmetric collisions, (Z[ZA5ZB), to power se-
ries in z/t,

U~z,t i !'bi2ZaS 11 i2Za
z

ut i u
1••• D , ~B9!

U†~z,t f !'b2 i2ZaS 12 i2Za
z

t f
1••• D . ~B10!

Substituting these power series in Eq.~B6! and integrating
term by term one gets
it
-

rse

Sk
~ j !'Ak

~ j !1 i2Za lim
t i→2`
t f→`

^xk~rW,t f !uÛ~ t f ,t i !
z

ut i u
ux j~rW,t i !&

2 i2Za lim
t i→2`
t f→`

^xk~rW,t f !u
z

t f
Û~ t f ,t i !ux j~rW,t i !&1••• .

~B11!

Using completeness, Eq.~B11! can equivalently be written
as

Sk
~ j !'Ak

~ j !1 i2Za(
l

FAk
~ l ! lim

t i→2`
^x l~rW,t i !u

z

ut i u
ux j~rW,t i !&

2Al
~ j ! lim

t f→`
^xk~rW,t f !u

z

t f
ux l~rW,t f !&G1••• . ~B12!

It is clear thatSk
( j ) and Ak

( j ) are in general different. Fo
nonsymmetric collisions, the relation between them involv
for example, a highly oscillatory,z-dependent phase whic
explicitly depends ong. However, this phase cancels for th
interesting case of symmetric collisions. The first-order c
rections toSk

( j )'Ak
( j ) decrease linearly with time and have

functional nature of polarization effects. Higher-order co
rections are higher moments ofz/t.

APPENDIX C: DISCONTINUITY AT THE LIGHT FRONTS

In this appendix, the discontinuities of the spinor wa
function at the light fronts~at t150 and att250, exclud-
ing only t15t250) are deduced from Eq.~35!. Previous
derivations of the discontinuity of a wave function due to
ultrarelativistic charge are reviewed.

At one light front (t150, t2Þ0), Eq. ~35! for uG1&
reads

i ]t1
uG1&5ĥ0uG2&1B~rW'!d~t1!uG1&. ~C1!

The d-function singularity rendersuG1& discontinuous at
t150, as can be seen by integrating both sides of Eq.~C1!
with respect tot1 from 2e to e and taking the limite→0,

uG1~t1501!&ÞuG1~t1502!&. ~C2!

An auxiliary bispinor can be defined by a piecewise gau
transformation,

uG̃1&[exp@ iB~rW'!u~t1!#uG1&. ~C3!

Direct substitution gives

i ]t1
uG̃1&5exp@ iB~rW'!u~t1!#ĥ0uG2&. ~C4!

The auxiliary bispinor is continuous att150, as can be seen
by operating on both sides of Eq.~C4! with lime→0*2e

e dt1 ,
obtaining

uG̃1~t1501!&5uG̃1~t1502!&. ~C5!
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The continuity of uG̃1& at t150 (t2Þ0), implies the
discontinuity of Eq.~50! for uG1&. Likewise, a continuity of

uG̃2&[exp@ iA~rW'!u~t2!#uG2& ~C6!

at t250, (t1Þ0,! implies the discontinuity of Eq.~51! for
uG2&.

This Heavyside step-function, space-dependent, ph
discontinuity was previously obtained in Ref.@32#. In earlier
work @34#, a gauge transformation was used to establish
fact that the electromagnetic field of a charge, that is mov
at the speed of light can be equivalently given by gau
potentials with ad-function singularity at the light front, or
by gauge potentials with only a step-function discontinu
there. The wave function of a particle interacting with th
field is discontinuous or continuous, depending on the ga
choice. We choose to work with such a gauge that wo
give a sharp interaction and a discontinuous spinor w
function, yet we have used here other gauges to find
discontinuities in an explicit form.

APPENDIX D: MOMENTUM-TRANSFER DISTRIBUTION

When the singularities at the light fronts are crossed,
transverse momentum changes. The distribution for this
mentum change is given in Sec. IV by Eq.~54!,

QZ~kW ,bW ![
1

~2p!2E drW'eirW'•kWF ~rW'2bW !2

b2 G2 iaZ

. ~D1!

As mentioned in Sec. IV, divergence ofQZ(kW ,bW ) is an arti-
fact of the ultrarelativistic approximation used in Eqs.~11!
and~12!. The integral over this distribution converges and
normalized to 1:

E dkW QZ~kW ,bW !51. ~D2!

For a vanishing charge,QZ50(kW ,bW )5d(kW ), but for finite
chargeZÞ0, this distribution diverges both for vanishin
and finite momentum transferkW . In this appendix, we show
that for kW Þ0 in the perturbative limit,aZ!1, and after
proper regularization, the leading order correction to thed
function is given by Eq.~73!, i.e.,

QZ~kW ,bW !→d~kW !2
iaZ

p

1

k2
exp~ ibW •kW !. ~D3!

Integrating first over the angular variable,

QZ~kW Þ0,bW !5
b2 exp~ ibW •kW !

2p E
0

`

dsJ0@sbk#s12 i2aZ,

~D4!

where b5ubW u, k5ukW u, and J0 is the Bessel function. The
integral overs diverges, but can be regulated for finitek in
the limit of aZ!1.

Using, for example, Eq.~6.631.1! in Ref. @42# and Eq.
~13.5.1! in Ref. @43# one has
se

e
g
e

e
d
e
e

e
o-

lim
e→0

1

2pE0

`

dse2es2
J0@sbk#s12 i2aZ

5 lim
e→0

G~12 iaZ!

4pe12 iaZ 1F1S 12 iaZ,1;
2~bk!2

4e D
5 lim

e→0

1

4pe
exp@2~bk!2/4e#S ibk

2e D 2 i2aZ

2
iaZ

p
~bk!22e2paZ

G~2 iaZ!

G~1 iaZ! S ibk

2 D 1 i2aZ

,

~D5!

where 1F1 is the confluent hypergeometric function. Equ
tion ~73! is now obtained by takingaZ→0 and using
d(bkW )[ lime→0(1/4pe) exp@2(bk)2/4e#. Note that the limit
e→0 can only be takenafter taking the perturbative limit
aZ→0.

APPENDIX E: TRANSITION CURRENT

As we are unaware of an appropriate reference, we pr
in this appendix that the transition four-current density d
fined in Eq.~63! is conserved. In fact, any two solutions o
the free Dirac equation can be used to define a conse
current in a similar way. This proof is very similar to the on
found in textbooks proving the probability current to be co
served@2#.

Both xk andc ( j ) solve in region IV the free Dirac equa
tion in the Dirac representation

i
]

]t
c~ j !~rW,t !5@2 i ǎ•¹W 1ǧ0#c~ j !~rW,t !, ~E1!

i
]

]t
xk~rW,t !5@2 i ǎ•¹W 1ǧ0#xk~rW,t !. ~E2!

Multiplying Eq. ~E1! from the left by the adjoint ofxk gives

ixk
† ]c~ j !

]t
52 ixk

†ǎ•¹W c~ j !1xk
†ǧ0c~ j !. ~E3!

Multiplying the Hermitian conjugate of Eq.~E2! from the
right by c ( j ) gives

2 i
]xk

†

]t
c~ j !5 i ~ ǎ•¹W xk

†!c~ j !1xk
†ǧ0c~ j !. ~E4!

Subtracting Eq.~E4! from Eq. ~E3! gives

]

]t
~xk

†c~ j !!52¹W •~xk
†ǎc~ j !!, ~E5!

where the Hermiticity of the Dirac matrices has been us
Using the definition of the transition current in Eq.~63!, Eq.
~E5! is revealed as the continuity equation

]

]t
J0

~ j ,k!1¹W •JW ~ j ,k!50, ~E6!
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proving the transition-current density to be conserved.

APPENDIX F: APPLICATION OF GAUSS’ THEOREM

As Appendix E shows, the transition four-current, defin
in Eq. ~63!, is a conserved quantity,

]Jm

]xm
50. ~F1!

Integrating Eq.~F1! over any empty space-time hypervolum
V and applying Guass’ theorem to convert the volume in
gral into a surface integral over the hypersurfaceS enclosing
V in general gives

E
S
dsJmnm50, ~F2!

where the unit four-vectornm is defined as the outwar
pointing normal toS.

For our purposes, it is useful to apply Eq.~F2! to the
space-time region IV, defined in Fig. 5 byt6.0. The closed
hypersurfaceS enclosing region IV is made of the followin
,

er
ev

W

W

, H

F

.
.

-

open hyper-surfaces:~i! t5t f→1`, ~ii ! t1501, t2.0,
~iii ! t2501, t1.0, ~iv! x→6`, and~v! y→6`; ~see Fig.
6!. Writing Eq. ~F2! for this surface gives

05 lim
t f→`

E dr'E
1`

2`

J0~rW,t f !

22E dr'E
1`

01

dt2J1~rW' ,t1501,t2!

22E dr'E
01

1`

dt1J2~rW' ,t1 ,t2501!, ~F3!

where use was made of the fact that in any physical situat
i.e. for a square-integrable wave packet, the currents va
asrW→`. The hypersurfaces~iv! and~v! do not contribute to
the integral of Eq.~F2!. The factors of 2 arise from the
Jacobian relating the original differentials to the differentia
for the light-front variables, and the negative sign in the s
ond and third terms arise because the unit normal vectorsn̂6

are directed outside the volumeV, i.e., J•n̂652J6 . This
completes our proof of Eq.~65!.
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ev.
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ev.
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