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Radiative transition processes between initial and final channels
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Based on multichannel quantum-defect theory, a method to calculate and compile radiative transition pro-
cesses for atoms~including highly ionized high-Z atoms! is proposed. Through defining the renormalized
transition matrix elements from initial eigenchannels to final eigenchannels, the transition processes between
infinitely many initial states and infinitely many final states can be treated conveniently. As illustrative ex-
amples, we study the alkali-metal atoms in detail.@S1050-2947~98!04903-8#

PACS number~s!: 31.10.1z
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I. INTRODUCTION

In recent years, with advances in many fields such
radio astronomy, radiation physics, and plasma physics,
tensive quantities of atomic radiative transition data betw
excited states are needed. Although many works on th
data have been published@1,2#, they are still incomplete
since an excited atom involves infinitely many Rydbe
states and adjacent continuum states. It is a formidable
to calculate all the transition processes individually. Ev
after we have obtained these data, it is still a problem
compile them efficiently. Thus it is an issue to find an ef
cient method to obtain and compile radiative transition d
for excited atoms. In the past years, Bates and Damg
have studied the ‘‘bound-bound’’ transitions@3#, Burgess,
Seaton, and Peach have studied the ‘‘bound-free ’’ tra
tions@4,5#, and Peach has studied the ‘‘free-free ’’ transitio
@6# for simple atomic systems~i.e., a single electron outsid
closed shells!. In the present paper, the method we propos
based on multichannel quantum-defect theory~MQDT! and
can be applied to any atoms or ions~including complex sys-
tems with high atomic numberZ and high ionization degree
q where a full relativistic treatment is required!.

In the framework of MQDT, with a set of physical param
eters (ma ,Uia) which vary smoothly with the excitation en
ergy, all the Rydberg states, autoionization states, and a
cent continuum states can be described in a unified ma
@7–15#. According to MQDT, the energy eigenstate is a s
perposition of eigenchannels and the coefficients of the
perposition can be calculated analytically by the bound
conditions at infinity. The transitions from a certain initi
state to infinitely many final states can be treated as tra
tions from an initial state to final eigenchannels whose
perpositions represent the final-energy eigenstates~i.e., final
states! @11,12,16#. However, Burgess and Seaton’s meth
can only be applied to one-channel problems@4#. Thus the
calculation of the transition matrix elements from a spec
initial state to any final state can be reduced to the calc
tion of the transition matrix elements from the specific init
state to final eigenchannels, which vary smoothly with
final eigenchannel energy. Similarly, the relevant infinite
many initial energy eigenstates~i.e., initial states! can be
considered as superpositions of initial eigenchannels. Th
571050-2947/98/57~3!/1747~6!/$15.00
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fore the transitions from infinitely many initial states to infi
nitely many final states are reduced to transitions from ini
eigenchannels to final eigenchannels. Here we prese
method to calculate renormalized transition matrix eleme
from initial eigenchannels to final eigenchannels which va
smoothly with the initial and final eigenchannel energie
The initial and final eigenchannel wave functions can be
tained from first principles calculations by relativistic mult
channel theory~RMCT! @17–20#. In earlier works which
were only for one-channel problems@3–6#, the concept of
‘‘renormalized transition matrix element from initial eigen
channel to final eigenchannel’’ has never been pointed
explicitly. In Bates and Damgaard’s paper@3#, the transition
matrix elements calculated based on approximate analy
wave functions, which are accurate only for large rad
distances, are expressed in the product fo
F(nl* ,l )I (nl 21* ,nl* ,l ), whereF is analytically known. For
eachl , I varies with two variables,nl 21* andnl* , in a large
domain~i.e., nl 21* ,nl*→`) with smooth variations along the
line of constantnl 21* 2nl* . In our method, the renormalize
transition matrix elements, which are calculated in an ex
numerical manner without any analytical approximation
vary smoothly with two energy variables~initial and final
energies,e i ande f). In order to obtain the transition matri
elements between infinitely many initial states and infinite
many final states, we need to perform interpolation on s
renormalized transition matrix elements. Especially for tra
sitions between infinitely many bound initial states and in
nitely many bound final states, we only need to perform
interpolation in a very small domain~the lowest initial en-
ergy e i0<e i,e f<0). It can also be extended to the phot
ionization ~bound-free! processes (e i,0<e f) and the
inverse-bremsstrahlung~free-free! transition processes (0
,e i,e f). The transition matrix elements sometimes ha
nodal curves, on which the matrix elements equal zero. S
matrix elements near the nodal curves cannot be calcul
analytically, since the main contributions come from smal
radial distances~also pointed out by Peach@5,6#!. In this
way, with only a few benchmark points, we can obtain a
renormalized transition matrix elements from initial eige
channels to final eigenchannels by interpolation instead
state-to-state calculations. Thus, the formidable radia
1747 © 1998 The American Physical Society
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transition data concerning infinitely many Rydberg states
adjacent continuum states can be calculated and comp
quite conveniently. As illustrative examples, we consider
alkali-metal atoms in the energy range around the first i
ization threshold in detail; this is a one-eigenchannel pr
lem in MQDT. For multichannel problems, the initial an
final eigenchannel wave functions can be calculated
RMCT @17–20#, and then, the renormalized transition mat
elements can be obtained similarly. Our calculated res
show that the renormalized transition matrix elements
three kinds of transition processes, ‘‘s1/2-p1/2, ’’ ‘‘ p1/2-d3/2, ’’
and ‘‘d3/2-f 5/2, ’’ for both K and Cs atoms form severa
smooth surfaces in the initial- and final-energy space, wh
represent all radiative transition processes between infin
many initial and infinitely many final states.

II. THEORETICAL METHOD AND CALCULATIONAL
RESULTS

Let us consider the transition processes of a gen
atomic system from an initial statee i to final statese f ~in-
cluding Rydberg states, autoionization states, and adja
continuum states!. According to MQDT @7–15#, the final
state wave functionue f& can be written as the superpositio
of final eigenchannel wave functions,

ue f&5(
a f

ua f&Aa f

e f , ~1!

wherea f is the index of final eigenchannels. The coefficien
Aa f

e f and the eigenenergy of the final statee f can be calcu-

lated analytically through MQDT parameters. The transit
matrix element frome i to e f can be written as

^e i uuDuue f&5(
a f

^e i uuDuua f&Aa f

e f , ~2!

whereD is the dipole transition operator and^e i uuDuua f& is
the transition matrix element from initial statee i to final
eigenchannela f . Therefore the calculation of the transitio
matrix element̂ e i uuDuue f& from initial state to final state is
reduced to the calculation of the transition matrix eleme
^e i uuDuua f& from initial state to final eigenchannels with e
ergy normalization @8–15#. The final-energy normalized
transition matrix elements vary smoothly with the fin
eigenchannel energy. With several benchmark points,
final-energy normalized transition matrix elemen
^e i uuDuua f& at any energy points can be obtained by interp
lation, namely, the transition matrix elements from an init
state to final channels can be calculated conveniently by
pression~2!. Similarly, the relevant initial statese i ~e.g., Ry-
dberg states and autoionization states! can also be written as
the superposition of initial eigenchannel wave functions

ue i&5(
a i

ua i&Aa i

e i , ~3!
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where a i is the index of initial eigenchannels. The coef
cientsAa i

e i and the eigenenergy of the initial statee i can be

calculated analytically through MQDT parameters. From e
pressions~2! and ~3!, we get

^e i uuDuue f&5(
a i

(
a f

Aa i

e i ^a i uuDuua f&Aa f

e f , ~4!

where^a i uuDuua f& is the initial-final-energy normalized tran
sition matrix element from initial eigenchannela i to final
eigenchannela f . Therefore the calculation of the transitio
matrix element̂ e i uuDuue f& from initial state to final state can
be reduced to the calculation of the transition matrix elem
^a i uuDuua f& from initial eigenchannel to final eigenchanne
Since^a i uuDuua f& has the limiting behavior proportional t
v25/3 whenv→0 @21#, we can define the renormalized tra
sition matrix element from initial eigenchannel to fin
eigenchannel as

^a i uuM uua f&5v5/3^a i uuDuua f&. ~5!

The renormalized transition matrix elements vary smoot
with initial and final eigenchannel energies, and form smo
surfaces in the energy space of initial and final eigench
nels. Only with several benchmark points can any renorm
ized transition matrix element on the surface be obtained
interpolation. Therefore any transition matrix eleme
^e i uuDuue f& from initial state to final state and the corre
sponding absorption cross section can be calculated
much less calculational effort. For ‘‘bound-bound’’ trans
tions, the absorption cross section is written as@22#

s5
pe2h

mc
f e i ,e f

L, ~6!

whereL is the profile factor such that*Lde51. f e i ,e f
is the

oscillator strength,

f e i ,e f
5

2v

3ge i

z^e i uuDuue f& z2, ~7!

wherev is the photon energy andge i
is the degeneracy o

initial state. For ‘‘bound-free’’ transitions, the absorptio
cross section is written as@22#

s5
pe2h

mc

d fe i ,e f

de
, ~8!

where (d fe i ,e f
/de) is the oscillator strength density,

d fe i ,e f

de
5

2v

3ge i

z^e i uuDuue f& z2. ~9!

As illustrative examples, we consider the alkali-metal
oms. Since the excitation energy of the core is relativ
high, it is a one-channel problem in MQDT, and then there
only one term in the right side of expressions~2! and ~4!.
The initial and final eigenchannel wave functionsua i&, ua f&
can be calculated adequately by the Dirac-Slater s
consistent field with local exchange approximation@23,24#,
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in which the matrix elements calculated with length formu
equal those calculated with velocity formula. The calcula
orbital energies are in agreement with the experimental
sults within a few percent, and the agreement should be
ter for highern orbitals as shown in Table I and Table I
The calculated transition wavelengths are also anticipate
be within a few percent. It may be adequate for most ap
cations except for some special fine structure split transi
lines, e.g., involvingn f states of Cs with the abnormal in
verse of fine structure (n f7/2,n f5/2) due to the difference o
the relativistic nonlocal exchange interactions@25#, which is
very small anyway. Returning to the oscillator strength,
present calculated results are in fair agreement with
available tabulated values@26,27#, as shown in Table III and

TABLE I. Comparison of orbital energy~in a.u.! for K.

State Present work Expt.@26#

4s 20.1549 20.1595
5s 20.0623 20.0624
6s 20.0344 20.0344
7s 20.0216 20.0216
4p 20.0989 20.1003
5p 20.0468 20.0469
6p 20.0274 20.0274
7p 20.0179 20.0179
4d 20.0389 20.0347
5d 20.0246 20.0220
6d 20.0167 20.0151
7d 20.0120 20.0110
4 f 20.0312 20.0314
5 f 20.0200 20.0201

TABLE II. Comparison of orbital energy~in a.u.! for Cs.

State Present work Expt.@34#

6s1/2 20.1356 20.1431
7s1/2 20.0579 20.0586
8s1/2 20.0321 20.0323
6p1/2 20.0891 20.0921
7p1/2 20.0433 20.0439
8p1/2 20.0258 20.0259
6p3/2 20.0868 20.0896
7p3/2 20.0425 20.0431
8p3/2 20.0254 20.0256
6d3/2 20.0419 20.0401
7d3/2 20.0252 20.0244
8d3/2 20.0169 20.0164
6d5/2 20.0413 20.0400
7d5/2 20.0250 20.0243
8d5/2 20.0167 20.0163
6 f 5/2 20.0139 20.0140
7 f 5/2 20.0102 20.0103
8 f 5/2 20.0078 20.0079
6 f 7/2 20.0139 20.0140
7 f 7/2 20.0102 20.0103
8 f 7/2 20.0078 20.0079
d
e-
t-

to
i-
n

e
e

Table IV for K and Cs, respectively. When the renormaliz
transition matrix elements have nodal curves, in the vicin
of the nodal curves, the transition matrix elements canno
described precisely by the Dirac-Slater approximation,
the absolute values of the transition matrix elements are v
small anyway. Nevertheless, the present calculation w
Dirac-Slater approximation will not affect the discussion
the general properties of the renormalized matrix eleme
between the initial eigenchannels and the final eigench
nels. The accuracy can be improved by the RMCT@17–20#
or equivalent theoretical methods. For bound statesen , the
corresponding eigenchannel wave function can be calcul
according to the normalization per unit energy@16#, namely,
ua&5uenkn&(Aa

en)21 with (Aa
en)225nn

3/(q11)2. Herenn is
the effective principal quantum number, andq is the degree
of ionization. For continuum statese, the eigenchannel wave
function ua&5uek& @corresponding to (Aa

e )51]. Thus the
renormalized transition matrix elements can be obtained.
have calculated the renormalized transition matrix eleme
of three kinds of transition processes, ‘‘s1/2-p1/2, ’’ ‘‘ p1/2-
d3/2, ’’ and ‘‘ d3/2-f 5/2, ’’ for K and Cs, respectively, as show
in part ~b! of Figs. 1–6@in order to make a comparison, th
corresponding final-energy normalized transition matrix e
ments ^e i uuDuua f& are also shown, as in part~a!#. For the
continuum-continuum transitions, we first calculate the re

TABLE III. Comparison of oscillator strength for K.

State Present worka Wieseet al. @26#a

4s-4p1/2 3.47@21# 3.39@21#(625%)
4s-5p1/2 3.32@23# 3.05@23#(625%)
4s-6p1/2 4.23@24# 2.99@24#(625%)
4s-7p1/2 1.15@24# 7.1@25#(625%)
5s-5p1/2 5.01@21# 5.0@21#(650%)
5s-6p1/2 9.55@23# 1.1@22#(650%)
5s-7p1/2 1.68@23# 2.0@23#(650%)
5p3/2-6s 3.22@21# 3.2@21#(650%)
5p3/2-7s 2.67@22# 2.7@22#(650%)
5p3/2-8s 8.57@23# 8.7@23#(650%)
5p3/2-4d3/2 7.34@22# 1.2@21#(650%)

•••b
••• •••

aThe numbera@b# denotesa310b.
bSince an excited atom involves infinitely many Rydberg states
adjacent continuum states, it is a formidable task to tabulate all
transition processes individually.

TABLE IV. Comparison of oscillator strength for Cs.

State Present worka Moore @27#a

6s-6p 1.15 1.04
6s-7p 2.14@22# 1.48@22#

6s-8p 4.26@23# 2.0@23#

•••b
••• •••

aThe numbera@b# denotesa310b.
bSince an excited atom involves infinitely many Rydberg states
adjacent continuum states, it is a formidable task to tabulate all
transition processes individually.
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tivistic continuum eigenchannel wave functions. Then
can calculate the matrix elements@28–30# with proper
asymptotic correction@31#.

First, let us consider the transition processes from chan
s1/2 to channelp1/2. The final-energy normalized transitio
matrix elements of K and Cs are shown in Fig. 1~a! and Fig.
2~a!, respectively. Each curve represents the transition fro
specific initial statens1/2 to a final channelp1/2 and varies
smoothly with the final energy across the ionization thre
old. The renormalized transition matrix elements from t
initial channels1/2 to the final channelp1/2 are shown in Fig.
1~b! and Fig. 2~b! for K and Cs, respectively. The curv
labeled ‘‘e0s-p’’ represents the transitions from an initia
continuum state (e050.01 a.u.!. All the curves form a

FIG. 1. ~a! Final-energy normalized matrix elemen
^ns1/2uuDuuep1/2,a f&, ~b! renormalized matrix element
^es1/2,a i uuM uue8p1/2,a f& for K, heree050.01 a.u.

FIG. 2. ~a! Final-energy normalized matrix elemen
^ns1/2uuDuuep1/2,a f&, ~b! renormalized matrix element
^es1/2,a i uuM uue8p1/2,a f& for Cs, heree050.01 a.u.
e

el

a

-
e

smooth surface, as shown in Fig. 1~b! and Fig. 2~b!. Note
that in Fig. 1~a! and Fig. 2~a! the starting point of each curv
shows a singular behavior as the initial energye i→0 ~i.e.,
ni→`), and however, there is a smooth variation for t
renormalized transition matrix element as shown in Fig. 1~b!
and Fig. 2~b!. With only a few benchmark points on th
surface, we can obtain the renormalized transition matrix
ements by interpolation. It should provide a compact pres
tation of the infinitely many transitions to avoid the form
dable task of tabulating the transition arrays as shown ab
in the discussion of the accuracy of our calculated results
can also be a useful way to check systematically the intrin
consistency of the ‘‘infinitely many’’ transition arrays. Fo
the transition processes ‘‘p1/2-d3/2’’ and ‘‘ d3/2-f 5/2, ’’ there

FIG. 3. ~a! Final-energy normalized matrix elemen
^np1/2uuDuued3/2,a f&, ~b! renormalized matrix element
^ep1/2,a i uuM uue8d3/2,a f& for K, heree050.01 a.u.

FIG. 4. ~a! Final-energy normalized matrix elemen
^np1/2uuDuued3/2,a f&, ~b! renormalized matrix element
^ep1/2,a i uuM uue8d3/2,a f& for Cs, heree050.01 a.u.
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exist similar properties, as shown in Fig. 3 and Fig. 5 for
and Fig. 4 and Fig. 6 for Cs.

III. DISCUSSION

We have defined the renormalized transition matrix e
ments from initial eigenchannels to final eigenchannels
expression~5!. The MQDT parameters (ma ,Uia) and the
eigenchannel wave functionsua i& andua f& can be calculated
by relativistic multichannel theory@17–20#. Then the renor-
malized transition matrix elementŝa i uuM uua f& for bench-
mark points can be calculated and any renormalized tra
tion matrix elements can be obtained conveniently
interpolation. The mixing coefficientsAa i

e i for initial-energy

FIG. 5. ~a! Final-energy normalized matrix elemen
^nd3/2uuDuue f 5/2,a f&, ~b! renormalized matrix element
^ed3/2,a i uuM uue8 f 5/2,a f& for K, heree050.01 a.u.

FIG. 6. ~a! Final-energy normalized matrix elemen
^nd3/2uuDuue f 5/2,a f&, ~b! renormalized matrix element
^ed3/2,a i uuM uue8 f 5/2,a f& for Cs, heree050.01 a.u.
,

-
n

i-
y

eigenstate and mixing coefficientsAa f

e f for final-energy eigen-

state can be calculated analytically through MQDT para
eters (ma ,Uia) i and (ma ,Uia) f , respectively@9–15#. Thus
we can get any transition matrix element and the correspo
ing oscillator strength~or oscillator strength density! and
cross section according to the expressions~4!–~9!.

As mentioned before, all the transition processes fr
infinitely many states in an initial eigenchannel to infinite
many states in a final eigenchannel can be treated as tr
tions between a certain pair of initial and final eigenchann
and then, the state-to-state calculations, which may seem
midable at first glance, can be greatly simplified. Furth
more, the transitions from initial eigenchannels to fin
eigenchannels can be classified into two categories:~1! tran-
sitions between certain pairs of eigenchannels involving o
large l , and ~2! transitions between certain pairs of eige
channels involving smalll . They should be calculated sep
rately.

For the first category, both the initial and final eigencha
nels involving largel are nonpenetrating eigenchannels w
quantum defectm'0 because of the centrifugal potentia
They are reduced to one-channel problems, respectiv
Therefore, the eigenchannel wave functions can be descr
exactly as hydrogenic wave functions. Although the num
of pairs of channels involving only largel is huge, the renor-
malized transition matrix elements can be calculated ana
cally @32#. The earlier works by Bates and Damgaard, B
gess, Seaton, and Peach@3–6# should also be applicable. Fo
the second category~in general, it is a multichannel problem
because the penetrating channels with smalll are involved!,
the renormalized transition matrix elements cannot be ca
lated by analytical hydrogenic formulas. In this case, the d
ference of quantum defect between initial and final sta
does not equal zero. For a certain initial statee i , the final-
energy normalized transition matrix element has nodes
which the matrix element is equal to zero@33#. When we
consider all the statese i in an initial channel, there exis
nodal curves on the surface of the renormalized transi
matrix element. For example, consider the transitions fr
the channeld3/2 to the channelf 5/2 for K, as shown in Fig. 5
~the nodal curve is denoted as the dot-dashed line!. The dif-
ference of quantum defectDmnd5m` f2mnd is an important
parameter to describe the position of the final energy of
nodes @33#. Since Dm4d.Dm5d.Dm6d.Dm7d.20.41
.Dm8d.•••.Dm`d.0.00120.56520.559, the final-
energy positions of the nodes for transitions from the init
states, 4d, 5d, 6d, and 7d, are negative and the final-energ
positions of the nodes for transitions from the initial stat
8d, 9d, ..., `d, are positive. Such matrix elements near t
nodal curves cannot be calculated analytically, since
main contributions are coming from smaller radial distanc
The renormalized transition matrix elements here are ca
lated in an exact numerical manner without any analyti
approximations. Since the number of pairs of channels
volving small l for dipole allowed transitions is limited~re-
stricted by the dipole selection rules!, these transitions can b
calculated and compiled through a limited number of s
faces, as shown in part~b! of Figs. 1–6 for K and Cs. With
only a few benchmark points on the surfaces, the transiti
from any states in the initial channel to any states in the fi
channel can be obtained conveniently by interpolation.
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