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Radiative transition processes between initial and final channels
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Based on multichannel quantum-defect theory, a method to calculate and compile radiative transition pro-
cesses for atoméncluding highly ionized highZz atomg is proposed. Through defining the renormalized
transition matrix elements from initial eigenchannels to final eigenchannels, the transition processes between
infinitely many initial states and infinitely many final states can be treated conveniently. As illustrative ex-
amples, we study the alkali-metal atoms in def&/1050-29478)04903-9

PACS numbdps): 31.10+z

[. INTRODUCTION fore the transitions from infinitely many initial states to infi-
nitely many final states are reduced to transitions from initial
In recent years, with advances in many fields such agigenchannels to final eigenchannels. Here we present a
radio astronomy, radiation physics, and plasma physics, exnethod to calculate renormalized transition matrix elements
tensive quantities of atomic radiative transition data betweeifrom initial eigenchannels to final eigenchannels which vary
excited states are needed. Although many works on thesamoothly with the initial and final eigenchannel energies.
data have been publishdd,2], they are still incomplete, The initial and final eigenchannel wave functions can be ob-
since an excited atom involves infinitely many Rydbergtained from first principles calculations by relativistic multi-
states and adjacent continuum states. It is a formidable taghannel theory(RMCT) [17-20. In earlier works which
to calculate all the transition processes |nd|V|dUa”y EVer\Nere On'y for one-channel prob|enﬁ3_6], the Concept of
after we have obtained these data, it is still a problem to:renormalized transition matrix element from initial eigen-
compile them efficiently. Thus it is an issue to find an effi- .nannel to final eigenchannel” has never been pointed out
cient method to obtain and compile radiative transition dat%xplicitly. In Bates and Damgaard’s pag@, the transition

Lor exclte; 3t(1hms.“:)n thz EaSt é/”ezirs, B?tess anéj Damgaart iy elements calculated based on approximate analytical
ave studie € 'bound-boun ranil iorhS], urg:ass, wave functions, which are accurate only for large radial
Seaton, and Peach have studied the “bound-free ” transi-

tions[4,5], and Peach has studied the “free-free ”transitionsdlStinces’ * are* expressed. n the product_ form
[6] for simple atomic systemé.e., a single electron outside (M :DH(N-1.n7 1), whereF is aralyﬂcall)’/k known. For
closed shells In the present paper, the method we propose i€achl, | varies with two variablesy”; andny’, in a large
based on multichannel quantum-defect the@QDT) and ~ domain(i.e.,n"_;,nj —2) with smooth variations along the
can be applied to any atoms or iofiscluding complex sys- line of constann”_; —n;* . In our method, the renormalized
tems with high atomic numbez and high ionization degree transition matrix elements, which are calculated in an exact
g where a full relativistic treatment is requined numerical manner without any analytical approximations,
In the framework of MQDT, with a set of physical param- vary smoothly with two energy variablgnitial and final
eters (u,,U;,) which vary smoothly with the excitation en- energiesg; and ;). In order to obtain the transition matrix
ergy, all the Rydberg states, autoionization states, and adj&ements between infinitely many initial states and infinitely
cent continuum states can be described in a unified mannenany final states, we need to perform interpolation on such
[7—-15]. According to MQDT, the energy eigenstate is a su-renormalized transition matrix elements. Especially for tran-
perposition of eigenchannels and the coefficients of the susitions between infinitely many bound initial states and infi-
perposition can be calculated analytically by the boundaryitely many bound final states, we only need to perform the
conditions at infinity. The transitions from a certain initial interpolation in a very small domaitthe lowest initial en-
state to infinitely many final states can be treated as transergy €< ¢;<¢€;<0). It can also be extended to the photo-
tions from an initial state to final eigenchannels whose suionization (bound-fre¢ processes €<0<e¢;) and the
perpositions represent the final-energy eigenstates final  inverse-bremsstrahlungdfree-freg transition processes (0
state$ [11,12,18. However, Burgess and Seaton’s method<e¢;<e;). The transition matrix elements sometimes have
can only be applied to one-channel proble$ Thus the nodal curves, on which the matrix elements equal zero. Such
calculation of the transition matrix elements from a specificmatrix elements near the nodal curves cannot be calculated
initial state to any final state can be reduced to the calculaanalytically, since the main contributions come from smaller
tion of the transition matrix elements from the specific initial radial distancegalso pointed out by Pead5,6]). In this
state to final eigenchannels, which vary smoothly with theway, with only a few benchmark points, we can obtain any
final eigenchannel energy. Similarly, the relevant infinitelyrenormalized transition matrix elements from initial eigen-
many initial energy eigenstatgse., initial states can be channels to final eigenchannels by interpolation instead of
considered as superpositions of initial eigenchannels. Therestate-to-state calculations. Thus, the formidable radiative
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transition data concerning infinitely many Rydberg states an@vhere «; is the index of initial eigenchannels. The coeffi-

adjacent continuum states can be calculated and compiletgjemsAZi_ and the eigenenergy of the initial statecan be

quite conveniently. As illustrative examples, we consider the ! .
i X . - . calculated analytically through MQDT parameters. From ex-

alkali-metal atoms in the energy range around the first ion- ressiong2) and (3), we get

ization threshold in detail; this is a one-eigenchannel prob—p ! g

lem in MQDT. For multichannel problems, the initial and

final eigenchannel wave functions can be calculated by (&||D||es)=> >, Aj_(ai||D||af>Afo, (4

RMCT [17-20Q, and then, the renormalized transition matrix @ e

elements can be obtained similarly. Our calculated result

. 7. ; here{ «;||D|| a;) is the initial-final-energy normalized tran-
show t_hat the renp_rmallzed tranS|‘t‘|on m,‘?‘ff'x eleme?ts 0fz\;tion matrix element from initial eigenchanne} to final
three kinds of transition processeSsj>-p12,” ““ P12-ds2,

eigenchannel . Therefore the calculation of the transition
and “ds-fs5,” for both K and Cs atoms form several 9 f

matrix element€;||D||e;) from initial state to final state can

smooth surfaces_ in the '”'“?"f and final-energy Space, Wh'dﬂ)e reduced to the calculation of the transition matrix element
represent all radiative transition processes between mfm'teIXaiHDIIaf) from initial eigenchannel to final eigenchannel.

many initial and infinitely many final states. Since(«;||D||as) has the limiting behavior proportional to
o~ ¥ whenw—0 [21], we can define the renormalized tran-

Il. THEORETICAL METHOD AND CALCULATIONAL sition matrix element from initial eigenchannel to final
RESULTS eigenchannel as
Let us consider the transition processes of a general (@il M| )= 0¥ ai]| D]| ay). 5

atomic system from an initial state to final statese; (in-

cluding Rydberg states, autoionization states, and adjacent'® renormalized transition matrix elements vary smoothly
continuum states According to MQDT [7—15], the final with initial and final eigenchannel energies, and form smooth

state wave functiofie;) can be written as the superposition Surfaces in the energy space of initial and final eigenchan-
of final eigenchannel wave functions nels. Only with several benchmark points can any renormal-

ized transition matrix element on the surface be obtained by
interpolation. Therefore any transition matrix element
B o (€i||D]|€;) from initial state to final state and the corre-
|Ef>_§ |“f>Aaf' (1) sponding absorption cross section can be calculated with
' much less calculational effort. For “bound-bound” transi-
tions, the absorption cross section is writter{ 23]
whereq; is the index of final eigenchannels. The coefficients

Asz and the eigenenergy of the final statecan be calcu- o= me’h ©6)
mc i

lated analytically through MQDT parameters. The transition

matrix element frome; to ; can be written as whereL is the profile factor such thgtLde=1.f_ _ is the

€ 1 €¢
oscillator strength,

(ellDllen=3 (allDllarAg, @ 20
S o foq= 35 KellDllenP U

whereD is the dipole transition operator arfé;|[D||ay) is  wherew is the photon energy ang, is the degeneracy of
the transition matrix element from initial staig to final . uial state. For “bound-free” transitions, the absorption
eigenchannek; . Therefore the calculation of the transition . .y<s section is written 482

matrix element €;||D|| ;) from initial state to final state is

reduced to the calculation of the transition matrix elements re2n df. .

(€i||D]]a;) from initial state to final eigenchannels with en- o= -t (8
ergy normalization[8—15]. The final-energy normalized mc de

transition matrix elements vary smoothly with the final
eigenchannel energy. With several benchmark points, th
final-energy normalized transition matrix elements

ghere @fei ’Ef/de) is the oscillator strength density,

(€i]|D|| ;) at any energy points can be obtained by interpo- dfe _ 2w D 5 9
lation, namely, the transition matrix elements from an initial de  3g. Keil[Dllenl ©
state to final channels can be calculated conveniently by ex- '

pression(2). Similarly, the relevant initial states (e.g., Ry- As illustrative examples, we consider the alkali-metal at-

dberg states and autoionization statesn also be written as oms. Since the excitation energy of the core is relatively
the superposition of initial eigenchannel wave functions  high, it is a one-channel problem in MQDT, and then there is
only one term in the right side of expressiof® and (4).
The initial and final eigenchannel wave functideg), |a;)
le)=>, |ai)AS (3) can be calculated adequately by the Dirac-Slater self-
aj ' consistent field with local exchange approximat|@3,24),
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TABLE |. Comparison of orbital energgin a.u) for K. TABLE Ill. Comparison of oscillator strength for K.
State Present work Expit26] State Present wofk Wieseet al.[26]?
4s —0.1549 —0.1595 4s-4p4) 3.471-1] 3.39 —1](*=25%)
5s —0.0623 —0.0624 4s-5p4), 3.37-3] 3.0 —3](*=25%)
6s —0.0344 —0.0344 4s5-6p4)0 423 4] 2.99 —4](*=25%)
7s —0.0216 —0.0216 4s-7p4p 1.1§ - 4] 7.0 —5](*=25%)
4p —0.0989 —0.1003 5s-5p1)» 5.0 —-1] 5.0 —1](*=50%)
5p —0.0468 —0.0469 5s-6p1/» 9.5 —-3] 1.1 —-2](+=50%)
6p —0.0274 —0.0274 5s8-7p1n 1.694 —3] 2.0 —3](*=50%)
7p —-0.0179 —-0.0179 5pg/-65 3.27—-1] 3.7 —1](*=50%)
4d —0.0389 —0.0347 5pg-7s 2.61—-2] 2.7 —2](*=50%)
5d —0.0246 —0.0220 5p3-8s 8.51—3] 8.7 —3](*=50%)
6d —0.0167 —0.0151 5pa-4ds), 7.34-2] 1.7 -1](+=50%)
7d —0.0120 —0.0110 -.b . .
4f —0.0312 —0.0314

@The numbem[b] denotesax 1CP.
bSince an excited atom involves infinitely many Rydberg states and
adjacent continuum states, it is a formidable task to tabulate all the
transition processes individually.

5f —0.0200 —0.0201

in which the matrix elements calculated with length formula
equal those calculated with velocity formula. The calculated
orbital energies are in agreement with the experimental refable IV for K and Cs, respectively. When the renormalized
sults within a few percent, and the agreement should be betransition matrix elements have nodal curves, in the vicinity
ter for highern orbitals as shown in Table | and Table Il. of the nodal curves, the transition matrix elements cannot be
The calculated transition wavelengths are also anticipated tdescribed precisely by the Dirac-Slater approximation, but
be within a few percent. It may be adequate for most applithe absolute values of the transition matrix elements are very
cations except for some special fine structure split transitio@mall anyway. Nevertheless, the present calculation with
lines, e.g., involvingnf states of Cs with the abnormal in- Dirac-Slater approximation will not affect the discussion of
verse of fine structuren(f;,<nfs;) due to the difference of the general properties of the renormalized matrix elements
the relativistic nonlocal exchange interactid@$], which is  petween the initial eigenchannels and the final eigenchan-
very small anyway. Returning to the oscillator strength, thene|s. The accuracy can be improved by the RM@T-20
present calculated results are in fair agreement with they equivalent theoretical methods. For bound statgsthe
available tabulated valu¢26,27, as shown in Table Il and  ¢orresponding eigenchannel wave function can be calculated
_ . . according to the normalization per unit enefd], namely,
TABLE Il. Comparison of orbital energ{in a.u) for Cs. |01>:|6nKn>(AZ")7l with (AZ")fZ: vﬁ/(q+1)2. Here v, is

the effective principal quantum number, ands the degree

State Present work Expit34] of ionization. For continuum states the eigenchannel wave
651/ —0.1356 —0.1431 function |a)=|ex) [corresponding to AS)=1]. Thus the
7S —0.0579 —0.0586 renormalized transition matrix elements can be obtained. We
8s1/ —0.0321 —0.0323 have calculated the renormalized transition matrix elements
6P/ —0.0891 —0.0921 of three kinds of transition processessij>pio,” “ Pz
7P12 —0.0433 —0.0439 dap,” and “dg;-fspn,” for K and Cs, respectively, as shown
8Py —0.0258 —0.0259 in part(b) of Figs. 1-6[in order to make a comparison, the
P32 —0.0868 —0.0896 corresponding final-energy normalized transition matrix ele-
7P ~0.0425 ~0.0431 ments(e||D||as) are also shown, as in paf@)]. For the
8ps —0.0254 —0.0256 continuum-continuum transitions, we first calculate the rela-
6ds, -0.0419 -0.0401

7da) —0.0252 —0.0244 TABLE IV. Comparison of oscillator strength for Cs.

8ds, —0.0169 —-0.0164

6ds/, ~0.0413 —0.0400 State Present wofk Moore[27]2

7ds), —-0.0250 —-0.0243 65-6p 115 104

8d), —0.0167 —0.0163 65-7p 214-2] 1.48-2]

6fc), —0.0139 —0.0140 65-8p 4.26-3] 2.0-3]

7fs -0.0102 -0.0103 b o T

8fs, -0.0078 —0.0079

6 —0.0139 —0.0140 @The numbem[b] denotesax 1CP.

Tt —0.0102 —-0.0103 bSince an excited atom involves infinitely many Rydberg states and
81 —0.0078 —0.0079 adjacent continuum states, it is a formidable task to tabulate all the

transition processes individually.
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FIG. 1. (a) Final-energy normalized matrix elements FIG. 3. (a
(nsy|D]||€py, ), (b) renormalized matrix elements (npy4l|D|
(€Syy2,i|[M||€'pyj2,5) for K, heree0=0.01 a.u.

Final-energy normalized matrix elements
€dsp,a5), (b) renormalized matrix elements
<6p1,2,ai||M ‘|E’d3/2,af> for K, hereEO:0.01 a.u.

tivistic continuum e|gen9hannel wave functhns. Then Wesmooth surface, as shown in Figll and Fig. 2b). Note
can calculate the matrix elemenf8-3Q0 with proper

. i hat in Fig. Fig. h i int of each
asymptofic correctiof31]. that in Fig. 1a) and Fig. Za) the starting point of each curve

. ) - hows a singular behavior as the initial ene 0 (i.e.,
First, let us consider the transition processes from channqj 9 ]gy- 0 (

) : - i—), and however, there is a smooth variation for the
S12 10 channelpy,. The final-energy normalized transition o malized transition matrix element as shown in Fio) 1
matrix elements of K and Cs are shown in Figa)land Fig.

; i and Fig. Zb). With only a few benchmark points on the
2(a), respectively. Each curve represents the transition from 8urface, we can obtain the renormalized transition matrix el-
specific initial statens;;, to a final channepy,, and varies '

thiv with the final the ionization th hements by interpolation. It should provide a compact presen-
smoothly wi € inal energy across the 1onizalion tresNy4, of the infinitely many transitions to avoid the formi-
old. The renormalized transition matrix elements from th

initial ch | he final ch h in Fi €dable task of tabulating the transition arrays as shown above
T'é'a Cda?:ne Sl’é t(;t eK madCCanne;bl,z are SI OV_VFT]'n '9- in the discussion of the accuracy of our calculated results. It
(b) an o '9. Z ) for K an S respt_actlve y. 1he CUVe can also be a useful way to check systematically the intrinsic
labeled “e0s-p” represents the transitions from an initial

. 0=0.01 All th ; consistency of the “infinitely many” transition arrays. For
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eigenstate and mixing coefficienﬂlséff for final-energy eigen-

state can be calculated analytically through MQDT param-
eters w,,U;,)i and (u,,U;,);, respectivelyf 9—-15. Thus

we can get any transition matrix element and the correspond-
ing oscillator strength(or oscillator strength densityand
cross section according to the expressiohs-(9).

As mentioned before, all the transition processes from
infinitely many states in an initial eigenchannel to infinitely
many states in a final eigenchannel can be treated as transi-
tions between a certain pair of initial and final eigenchannels,
and then, the state-to-state calculations, which may seem for-
midable at first glance, can be greatly simplified. Further-
more, the transitions from initial eigenchannels to final
eigenchannels can be classified into two categofigsran-
sitions between certain pairs of eigenchannels involving only
large |, and (2) transitions between certain pairs of eigen-
channels involving small. They should be calculated sepa-
rately.

For the first category, both the initial and final eigenchan-
nels involving largd are nonpenetrating eigenchannels with
quantum defecju~0 because of the centrifugal potential.
They are reduced to one-channel problems, respectively.
Therefore, the eigenchannel wave functions can be described

exist similar properties, as shown in Fig. 3 and Fig. 5 for K,exactly as hydrogenic wave functions. Although the number

and Fig. 4 and Fig. 6 for Cs.

Ill. DISCUSSION

We have defined the renormalized transition matrix ele-

of pairs of channels involving only lardes huge, the renor-
malized transition matrix elements can be calculated analyti-
cally [32]. The earlier works by Bates and Damgaard, Bur-
gess, Seaton, and Ped@-6] should also be applicable. For
the second categoiyn general, it is a multichannel problem

ments from initial eigenchannels to final eigenchannels ifP€cause the penetrating channels with sinalle involved,

expression(5). The MQDT parametersy,,U;,) and the
eigenchannel wave functiona;) and|«;) can be calculated
by relativistic multichannel theorfl7—20. Then the renor-
malized transition matrix elementsy;||M||a;) for bench-
mark points can be calculated and any renormalized trans
tion matrix elements can be obtained conveniently by
interpolation. The mixing coefficiem‘Aji for initial-energy

3¢
A- 21 (@) -
S F —_
E oF
=) 3
= -1r
o 20
c nd
v '35_
A_ F (b
C’-Q 1.5 :—( ) O/O’HM
T
s 0 - > =
> e -
g 05~ Y
qE . . . . . .
-0.025 -002 -0.015 -001 -0005 O 0005 001
Energy (a.u.)
FIG. 6. (a) Final-energy normalized matrix elements

(ndy|D||€fspp,af), (b)  renormalized
(€dyp,, ;| |M||€ f5p,a5) for Cs, heree0=0.01 a.u.

matrix

elements

the renormalized transition matrix elements cannot be calcu-
lated by analytical hydrogenic formulas. In this case, the dif-
ference of quantum defect between initial and final states
does not equal zero. For a certain initial state the final-
gnergy normalized transition matrix element has nodes, at
which the matrix element is equal to z€[83]. When we
consider all the states; in an initial channel, there exist
nodal curves on the surface of the renormalized transition
matrix element. For example, consider the transitions from
the channet, to the channef s, for K, as shown in Fig. 5
(the nodal curve is denoted as the dot-dashed.lifiee dif-
ference of quantum defedu,q= tot— Kng IS @n important
parameter to describe the position of the final energy of the
nodes [33]. Since Ausg>Apsg™>Apgg™Aumzg>—0.41
>Apgg™> - >Apng=0.001-0.56= —0.559, the final-
energy positions of the nodes for transitions from the initial
states, 4, 5d, 6d, and M, are negative and the final-energy
positions of the nodes for transitions from the initial states,
8d, 9d, ..., cod, are positive. Such matrix elements near the
nodal curves cannot be calculated analytically, since the
main contributions are coming from smaller radial distances.
The renormalized transition matrix elements here are calcu-
lated in an exact numerical manner without any analytical
approximations. Since the number of pairs of channels in-
volving smalll for dipole allowed transitions is limite¢te-
stricted by the dipole selection ru)eshese transitions can be
calculated and compiled through a limited number of sur-
faces, as shown in pafh) of Figs. 1-6 for K and Cs. With
only a few benchmark points on the surfaces, the transitions
from any states in the initial channel to any states in the final
channel can be obtained conveniently by interpolation.
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