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Stability and positron annihilation of positronium hydride L=0,1,2 states:
A quantum Monte Carlo study
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States of positronium hydride having different angular momenta have been studied by means of quantum
Monte Carlo techniques. Explicitly correlated wave functions for different states have been obtained using the
variational Monte Carlo optimization method. These wave functions have been used in variational Monte Carlo
and diffusion Monte CarlgDMC) simulations to compute energies, annihilation rates, and other observables.
Our DMC results compare well with the best published variational ground-state binding energy, and show that
positronium hydride has metastable states with angular momelntafn and 2 above the ground-state disso-
ciation threshold. The values of the other observables for the ground state are comparable with the best
variational calculations. The results for the=1 and 2 states are used to discuss a proposed model for the
annihilation of positrons in alkali hydrides crystal§1050-294®8)09502-X]

PACS numbeps): 36.10—k, 02.70.Lq

[. INTRODUCTION not include electron-electron and electron-positron correla-
tion. It relies on a “mean-field” description, missing the
During the last few years, attention has been paid to théocal behavior of the exact wave function near particle coa-
properties of systems containing one or more positrons withescence points; as a consequence it underestimates both pos-
the aim to elucidate the problem of their stability and theitron affinity and positronium binding energy. To correct the
annihilation behavior of positrons in ordinary matter. Among SCF deficiencies, correlation has been introduced by means
the systems studied, there are the positronium anion PsOf standard molecular-orbital methods, like the Moller-
[1,2], the dipositronium molecule P§3-5], the positronium ~ Plesset perturbation theory26] and the many-body-
hydride PsH6—18 and other small atomic and model sys- perturbation theoryf16,27. Recently, some attempts have

tems[19]. These issues are still wide open, and there is een made to explore the possibility of using configuration-

growing mass of experiments and experimental technique'gter"JlCtlon technique$28,29, but convergence of energy
and other mean values has proved to be painfully slow. On

that can accurately probe the interaction between matter arn I
antimatter, and which need theoretical support to be inter- © _other hand, to correct for the Iacl_< of a des_crlpnon of _the

' . ositron-electron cusp in DFT, a pair correlation correction
preted. So far, few attempts have been devoted to solving the, < paen developd@4]: by means of an enhancement factor
problems of stability and aqnihilation in a systematic way: a is able to estimate the annihilation properties simply
Cade and Farazd¢p0], Patrick and Cad¢21], Kurtz and ging the positron and electron densities, but this is rather a
Jordan[22], and Gol'danskii, Ivanova, and Prokop'd8]  heuristic approach to the problem since it has been devel-
proposed applying the Hartree-Fock method to compute thgped starting from model systems and extrapolating their
positron affinity and positroniume(",e~) binding energy of  pehavior to larger ones.
atoms, ions, and molecules; the authors of REf€,12, The best theoretical approach used so far to describe this
[14,15, and[13] used explicitly correlated trial wave func- class of systems exploits explicitly correlated trial wave
tions to compute energies for small atomic systems contairfunctions to compute accurate values of the observables. Ma-
ing positrons; attempts have been made to apply densitytrix elements between explicitly correlated wave functions
functional theory(DFT) to the calculation of average values are not easy to compute for systems containing more than
for first-row atoms, ions, and solid47,23-23. Although  two particles, unless one uses correlated Gaus$zmg].
the cited methods can help to rationalize the increasingince these functions do not reproduce the cusp conditions,
amount of experimental data, each one has his own draw:e., the behavior of the exact wave function at small inter-
backs: DFT theory lacks knowledge of the exact energyparticle distances, very large basis sets must be employed,
functional, and its results are dependent on the particulasind also a careful and computationally expensive optimiza-
choice of the exchange and correlation potential used in théon of the nonlinear parameters of the trial wave function is
computation, while self-consistent-fiel6CH theory does required in order to obtain an accurate description.

Monte Carlo techniques are flexible and powerful meth-
ods to solve the Schdinger equation for small atoms and

*Electronic address: dario@rs0.csrsrc.mi.cnr.it molecules, even if they contain exotic particles like positrons
"Electronic address: max@rs6.csrsrc.mi.cnr.it or muons[31-38§, or if one is interested in observables dif-
*Electronic address: moro@rs0.csrsrc.mi.cnr.it ferent from the energy39]. In this work we present a nu-
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merical study of various states of PsH having different total The breakup of this system in a three-particle cluster plus
angular momentum by means of variational and diffusiona free particle is not possible because the Coulomb attraction
Monte Carlo(VMC and DMC) methods. The ground state of between the two fragments binds them together: so the low-
this system has been studied in the past using various staast energy dissociation threshold for this system is given by
dard methods, namely, SCF and Hartree-Fock methodgi1]

[8,20,22,23, DFT [17], and DMC[33,36. Also, explicitly

correlated trial functions have been usg7,10-15, the Ei=EntEpg=—2—5=— 1, (3
most recent and accurate calculation being the one performed ® ®

by Frolov and Smitt{18] using a linear combination of ex- where PsH dissociates in two neutral fragments, both in their
plicitly correlated Gaussians. A compilation of the main re-ground state. The stability of higher angular momentum
sults on the PsH ground state was published by Yoshida anstates is relative to their own dissociation threshold, i.e.,
Miyado [36] in their paper on the stability of PsH and where the two fragments are resting at infinity and the posi-
[Li,e"]. Although a lot of computational effort has been tronium carries the total angular momentunof the system:
spent on the ground state of this system, and accurate infor-

mation is now available, the results obtained so far need to 1 1

be checked by independent calculations exploiting different = EnytEpg =~ P RYTIVE

methods, especially regarding the annihilation behavior of 4L+1)

PsH. This position can be justified noticing that even the 396I'he other possibilities, in which the hydrogen atom carries a

term wave function by Hd15], a reference calculation in nonzero anaular momentum. or when fop2 the anaular
this field, does not seem to be well converged to definitive z gu um, or w gu

results, if compared with the other values of the shorter “n_momentum is shared between the two fragments, always

ear combinations published in the same paper and with thlfalave a hlg_her energy. To approximate the wave functions of
results published in Ref18]. The ground state of PsH is a States having different total angular momenta, we propose to

good candidate for the application of our methods since ;Fse a linear combination of explicitly correlated functions

contains all the relevant physics of this class of system 38:42,43

without a complete description of the correlation between the Nierms

particles, no meaningful information could be obtained, es- V= 2 c®;, (5)
pecially for properties like the annihilation rates that are i=1

strongly dependent on the quality of the description of the

correlated motion. Our work is therefore motivated by thewhere

need to compute accurate values for these observables. In

addition, we applied Monte Carlo methods to higher angular ~ Pi(R.ki)=A{f;(R)

INTH

4

momentum states of this system, since these have been much x e Kia1ki 22—k gatkiar12tki o 1a*Ki 624
less studied than the ground state and could be of relevant
interest in scattering experiments with positron bedAt. x@é%@él‘,z 12 (6)

Furthermore these results will allow to test the model pro-

posed in Ref[8] to explain the annihilation behavior of slow In this equationA is the antisymmetrization operatdi(R)
positrons in alkali hydrides. It is also worth noting that dur-is a function that explicitly contains the dependence on the
ing the last few years, experimer#0] with positron beams spatial coordinates of the particlése refer to this as the
opened the possibility to detect positron systems in the gasreexponential part of the trial wave functipiut does not
phase, giving rise to a new amount of experimental informacontain any variational paramet@g3is the spin eigenfunc-
tion needing theoretical counterparts to be interpreted meanpn for the two electrons, whil®3,, 1, is the spin function

ingfully. for the positron; and; is a vector of parameters for thith
term of the linear expansion. The first three components of
Il. TRIAL WAVE-FUNCTION FORM this vector were forced to have only positive values for all
AND MONTE CARLO SIMULATION the terms of the linear combination. As already stated in our

In the following an alphabetic subscript denotes a posi_previous work[43], it is possible to write this trial wave

tron, while a numerical subscript denotes an electron. Ir{)ant!on na sp_m-free forr_nallsm by means O.f a !me_ar com-
. . L . ination of spatial terms with exchanged particle indices, i.e.,
atomic units, the Hamiltonian operator for PsH system in the

Born-Oppenheimer approximation has the form Np
®(R,k) =2, PYMfi(R
H==3(Vi+ V3t VD +V(R), (1) (Rke)= 2, PR
whereV(R) is the Coulomb interaction potential, xe MrikiZemkigatkidiathigaatkiciz), (7)
1 1 1 1 where P}’™ are the exchange operators generated by acting
V(R)=— nor + . + " T 2 (2)  with .4 on Eq.(6) and collecting all the terms with the same
spin producfe.g.,a(1)B(2)a(a)]. This trial wave function,

between the four-unit-charge particlése., two electrons, which has the correct spin and space symmetry, describes the
the positron, and the nucleysandR is a point in configu- correlation between the electrons and the positron by means

ration space. of the exponential part depending on the explicit electron-
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positron and electron-electron distances. This analytical form 1
allows an accurate description of the correct behavior of the (a(rij))= _ﬁf PHRN{VE[INW+(R)]
exact wave function at the coalescence point for equal and
opposite sign charges. Satisfying the cusp condition usually 1
accelerates the convergerjdd] of the linear expansion and +2[Vri|n‘1’T(R)]2}erR, (12)
reduces its length for a chosen accuracy. This is useful to .
reduce the computational cost of the optimization of the pawhere ¥ is assumed to be normalized. Using the differen-
rameters in the trial wave function, usually a quite heavytja| identity
task. Moreover, for the specific system we are dealing with,
the trial wave function must explicitly contain the positron- Vf_f(R)
electron distance, otherwise the annihilation behavior and the '
“pile-up” effect of the electron density due to the positron f(R)
are not correctly described.

The chosen form for the trial wave function makes it very

=VZInf(R)+[V,,Inf(R)]?, (13

Eqg. (12) can be written as

difficult, if not impossible, to compute analytically the ma- 1 V29 (R)

trix elements of the Hamiltonian operator of the system. A (8(ri))=— _J W2(R) T

numerical method must be used to obtain the energy mean b 2m T Vr(R)

value and other observables for a given trial wave function.

The variational Monte Carlo methdd5] is well suited for o1

this goal since it requires only the evaluation of the wave +[Vfi|n‘PT(R)] GdR’ (14

function, its gradient, and its Laplacian. Since the VMC and
other Monte Carlo methods are well described in the literawhich is easy to implement in a VMC and DMC code, and
ture[45], we only summarize the main points relevant to thishas been used in this work to estimate the collision probabil-

work. ity and the annihilation time of the PsH system.
The mean value of a local operator over a given trial wave To optimize the linear and nonlinear parameters in the
function is computed using trial wave function, we minimized the function
Nconf
f‘Pi(R)Obc(R)dR Mz(Er)=JZl [Eioe(Rj) —E( 1%, (15
(O)vmc= : (8)
f ¥i(R)dR where{R;,j=1Ngn is a set ofN¢, fixed configurations
sampled from¥2, andE, is an approximation to the true
where value of the energy for the system. This method, proposed by
Frost[46] and Conroy{47], has been described in detail by
OV (R) Umrigar, Wilson, and Wilking48] and by Mushinski and
Omc(R):W- (9 Nightingale [49] and has been proved to be much more
T

stable than the optimization of the energy itself.
P e . The optimized trial wave functions can be used to com-
Here\IfT(R) |s.|nterpreted as a probab|[|ty d|str.|but|on and it pute approximated mean values of the observables of the
is sampled using Metropolis or Langevin algorithpdS]. As gy, died systems and to give upper and lower bounds to their
an explicit example, the expectation value of the Hamil-gnergy. Unfortunately, the mean values strongly depend not
tonian is written as only on the analytical form of the function employed, but
also on the optimization method usgsD] to define the trial
f W%(R)HmC(R)dR wave funqtion. In order to obtain the exact ground-state en-
ergy and improve the accuracy of the other mean values, the
5 ' DMC method[51,45 is employed to simulate the time-
J Y#(R)dR dependent Schdinger equation in imaginary time as a dif-
fusion equation having source and sink terms. This method
HVL(R) samples the distributiof( R) =¥ (R) ¥ ((R), whereW (R)
ol R) =5 (10) is the ground-state wave function of the system with the
Wr(R) same nodal surface of the trial wave function if we use the

_ fixed node approximation to sample an antisymmetrized
Other operators can be converted to fof@y for example, \yaye function. The value of the energy can be computed
the mean value for the Dirac’s delta operaffr;) can be sjng the “mixed estimator”

computed using the identity

<H>VMC:

1) _JYr(R)Wo(R) Hio(R)dR
S(rij)= 1 v2 ! (11 pMe JY(R)¥o(R)dR

(16)

Tan iy

If the ground state has no nodes,Br(R) has the correct
Introducing Eqg.(11) into Eq. (8), and integrating by parts nodal structure, this equation gives the correct ground-state
one obtains energy; otherwise one obtains an upper bound to it. To com-
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TABLE |. Mean energy and various values and observables for the ground®$&tsf the positronium hydride.

N (E) \% (rio) (r--) (r-) (ry) (8:-) X

3 —-0.778001(26) —1.5332(2) 3.7086461)  4.333711)  2.749712)  4.320911)  0.0220010) 0.01133)
4 —0.782189(24) —1.5466(3) 3.7893%7)  4.207110)  2.664711)  4.207110) 0.0216421) 0.01173)
5 —0.784848(11) —1.5587(2) 3.586634) 3.9728855 2.5454065 3.9728855 0.024709)  0.00713)
6 —0.786310(11) —1.5562(2) 3.5548B0) 3.7571347) 2.4272050) 3.8621449) 0.0237417)  0.01072)
7 —0.786788(12) —1.5514(3) 3.5763@5 3.7399059) 2.4127366) 3.8348466) 0.0231923)  0.01453)
DMC —0.789175(10) —1.5652(3)  3.523®) 3.655Q9) 2.36110) 3.7431) 0.0243§20)

SOE —~1.5895(3)  3.4708) 3.57019) 2.3081) 3.6511) 0.0255630)

Ho? —-0.778 45 0.0243

Ho® —0.788 945 3.849 3.556 3.644 0.0244

FS¢ -0.7891794  —1.57838 3.479 3.573 2.311 3.661 0.024134  0.000 0131

3Ho's 126-term wave functiopl5].
PHo’s 396-term wave functiofil5].
®Frolov and Smith’s wave functiofi.8].

pute the mean values of dynamical observables whose operaed out using a stochastic selection proceddi®43,52,53

tors do not commute with the Hamiltonian, i.e., the generafor the nonlinear parameters of the new term, and choosing
case, one can still exploit the “mixed estimator” substituting the linear coefficientc,,, that minimizes the value of
the new operator to the Hamiltonian, but the value so comy,2(E,). Usually one or two thousand nonlinear parameter
puted is biased by the errors of the trial wave function. Asets were randomly chosen, and the one that gave the lowest
simple strategy to partially correct for this bias is to use the,2(g ) once the linear parameter had been optimized, was
quantity [45] kept as the new trial term. Usually, this procedure gives a
small reduction of the variance of the local energy and a

(O)soe=2(O)ome = {Ohwwc (17 fairly good starting point for the following optimization.
where During all the optimization procedures, a set of 8000 con-
figurations in the nine-dimensional configuration space was
JVY+(R)¥o(R)Op(R)dR used. This set was chosen after sampling the best wave func-
(O)omc= JPH{(R)V,R)AR 18 tion previously optimizede.g., the one-term function given

by Ref.[7] for the first step of the optimizationAfter three
Equation(17) gives an estimate dfO) that is second order or four optimization steps this ensemble was updated by

(SOB on the error of the trial wave function. means of a VMC run, usually 10* steps long, sampling
the square of the new wave function. These VMC simula-
I1l. VARIATIONAL AND DIFFUSION MONTE CARLO tions are long enough to give reliable average values for all
RESULTS the observables. The variational results of the optimized trial

wave functions for the"!S ground state of PsH are reported
in Table | for a number of termil=3—7, together with the
The 2S ground state of PsH was chosen as starting pointesults obtained by HEL5] using Hylleraas-type wave func-
of our investigation on systems containing positron. For thigions, and the results by Frolov and Smitt8]. In this table,
state the trial wave function must be written using only pre<V) is the expectation value for the potential energy, while
exponential terms having spherical symmetry or containingy=|1+ ((V)/2(E)—2(V))| is the so-called virial parameter.
explicitly the interparticle distances. Since the exponentiallThis parameter, since we did not optimize the expectation
part of the trial wave function already possesses an analyticafalue of the energy, does not have to be equal to zero for a
form that should be able to describe the interparticle correfull optimized wave function written as a linear combination
lation correctly, the preexponential part of the analytical an-of a small number of terms. These results show that our
satz has been used only to modify the shape of the positronexpansion is quickly convergent toward an accurate value of
density, expressing it as function of the positron-nucleus disthe total energy, the three-term wave function already recov-
tance only. This choice makes it possible for the trial waveering more than 70%, and the seven-term one more than 93%
function to describe the positron-nucleus cusp condition coref the binding energy computed by Frolov and Smith. Com-
rectly, reducing the probability to find the positron in the paring the other mean values for our seven term, and Ho'’s
nuclear region. 396-term trial wave function, it is worth noting that the mean
To optimize the wave function, the simple one-term func-distance between an electron and a positron is shorter for our
tion given in Ref.[7] was used as starting point: its param- trial wave functions than for that of Ho, while the mean
eters were fully optimized minimizing the quantip?(E,) distance between the two electrons is larger. These differ-
given by Eq.(15). Starting from this new wave function, ences might be due to incomplete convergence of the two
more terms were added to reduce the variance of the locavave functions of different analytical forms, or to the opti-
energy and to lower the mean energy. These steps were canization method used. Our mean distance between an elec-

A. 21s ground state of PsH
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TABLE Il. Parameters of the optimized seven-term trial wave function.

N Ci Ki 1 P Kia Ki 4 Kis Ki6 f;

1 1.00000 —0.36659 —1.00580 —0.34328 —0.37344 —0.04846 0.03263 r,

2 0.35442 —0.12301 -—0.75828 —0.14497 —0.30421 —0.81432 —0.05546 1
3 0.45760 —1.58378 —0.95978 —0.39332 —0.18145 0.11324 0.18718 1
4 —0.65857 —0.77919 -0.46739 —0.32126 —0.03521 —0.45572 —-0.39182 r,

5 0.72787 —0.46927 —1.26244 —0.28601 —0.89774 —0.10067 0.15699 1
6 0.23700 —0.86864 —0.22488 —0.38221 —0.11085 -—0.79638 0.03429 r,

7 —0.12385 —0.53677 —0.73638 —0.60591 —0.10452 0.00031 —0.03292 1

tron and the positron is in better agreement with the ongne that leads to the fragmentation of PsH in H) and
computed by Frolov and Smitfl8], being slightly larger ps, _;) both at rest, and the nodal surfaces due to a total
like our mean electron-nucleus and positron-nucleus disangular momentum equal to 1. Using this analytical form for
tances; that is, our VMC wave function describes a SySter@i(R,ki) in the linear expansion’ a two-term wave function
less compact than Frolov and Sm[th8] do. On the whole, was optimized, as already explained for the ground-state cal-
our seven-term expansion, whose optimized parameters agglations. As an initial guess for the one-term wave function,
shown in Table II, is a very compact and good quality wavewe wrote the total wave function as the product between the
function, well suited as guide function in a DMC calculation. exact functions of the two fragments, modified introducing

DMC simulations were performed to project out the re-some correlation between the particles belonging to the two
maining components of the excited states of the same synifferent fragments, in a way to produce a trial wave function
metry of the ground state. Five simulations using differentthat is square integrable: its parameters quickly rearranged
time steps spanning the range 0.001-0.012 hartrémve into a pair of optimization steps to give a much better trial
been carried out to obtain extrapolated zero time step valuagave function, whose energy was below the dissociation
for the energy and other observables. These re$DRSC)  threshold for this state. The second term was added using the
and their second-order estimates are shown in Table I. It igreviously described stochastic selection procedure, fol-
worth noting that our value for the ground-state energy ofiowed by full reoptimization of the wave function.

PsH, —0.78917(1) hartree, is 0.2B m hartree lower than The VMC, DMC, and SOE results for the'P state, ob-

the value computed by Ho: this is not a surprising resultained using this function, are shown in Table lll. DMC
since the mean energy values published by Ho did not appeaimulations were carried out using three different time steps,
as conclusive, due to their slow convergence. Our energy ispanning the range 0.005—0.015 hartrego check for the

in good agreement with the two recently published DMCtime step bias: this appears smaller than the statistical error
calculations of —0.7885(5) [33] and —0.789(1) hartree of the (E) values, as shown in Fig. 1.

[36], but it is more accurate, due to the smaller standard For the 21D state the preexponentia| part has the form
deviation obtained in our simulation. Finally, we found com-

plete agreement with the latest restl0.789179 hartree by fi(R)=(X1—Xo)(Y1—Ya), (20)
Frolov and Smith 18].

Both DMC and SOE values show a decrease of their aband a one-term trial wave function has been optimized using
solute values when compared with the VMC results: thisthe same procedure as férP state. The VMC, DMC, and
effect can be attributed to a better description of the correlaSOE results for this state are shown in Table IV.
tion between the various particles in the system. The SOE
correction improves the agreement with the results of Ref. IV. DISCUSSION
[18], but it appears that higher-order corrections are needed
to obtain accurate predictions of these observables. In this work we studied the PsH system, computing the

energy and some mean values for the states carrying a total
B. Lower 2P and 2D states of PsH angular momentunh. =0, 1, and 2. This has been done by
optimizing explicitly correlated trial wave functions, written
as linear combinations of different numbers of correlated
f(R)=21—2,, (19) terms, by me.ans.of the variationaI.Mont(_a Carlo technique,
followed by diffusion Monte Carlo simulations.
to describe both the relevant dissociative channel, i.e., the Since a trial wave function always contains some errors

As to the P state, we adopted the preexponential term

TABLE lIl. Mean energy and other observables for th#® state of positronium hydride: two-term trial
wave function.

(E) (reo) (r--) (r-) (re) (6:-)
VMC —0.592 11(5) 9.47@) 4.2021) 2.5741) 9.2123) 0.001 25%5)
DMC —0.615 28(5) 8.37@) 3.9532) 2.4482) 8.1725) 0.000 903)

SOE 7.8274) 3.7042) 2.3322) 7.1325) 0.000 5%5)
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TABLE IV. Mean energy and other observables for h® state of positronium hydride: one-term trial
wave function.

(E) (reo) (r-—-) (ro (re) (8:-)
VMC -054340(2)  12.932) 455179  2.7881)  12.38G3)  0.000 06613)
DMC —056672(3)  14.61%)  4.1471)  2.5691)  14.3485)  0.0000172)
SOE 16.29%)  3.7421)  2.3501)  16.31G5)

due to the incompleteness of the basis set used, the resubtaces between VMC and DMC values, usually of the order
will be incorrect by some amount. The DMC technique ap-of 10% of the DMC values. This means that the observables
pears as a very useful tool to correct partially for this biascomputed for these states can be used only as indicators of
since it is able to sample the correct wave function if thethe order of magnitude of the exact ones.

state has no nodal surfaces or if the trial function used to Although the mean values of the Dirac’s delta operator
guide the simulation has the correct nodal structure. For thé, _ for the two excited states are not as accurate as for the
213 state of PsH, our optimized seven term trial wave func-ground state, they can be usefully employed to discuss anni-

tion allows one to compute accurate values for both the enhilation of positrons in alkali hydridels4]. To interpret the
ergy and the other observables shown in Table I: for thisexperimental results, Ref8] proposed a model wherg!s

state the relative error{Opmc) —{Ovmc))/{Opmc) is al-

and 2P states of PsH are assumed as responsible of the two

ways less than 0.04. Although it is not generally possible tadifferent extrapolated annihilation rat€s=2.347(110) and
estimate the quality of the DMC and SOE corrections to the,=1.149(66) ns! that are seen experimentally. While
VMC mean values, some relevant hints could be obtainedheir results based on Hartree-Fock calculations were not
using some model systems as a benchmark. In this regardpnclusive due to some computational erfeee Ref[10]),

for the two systems Ps and“XPs[19,33, i.e., the system
composed by a fixed fractional charges@<1 and a Ps

their model could not be definitely ruled out, and the prob-
lem is still waiting for a definitive answer. As already stated,

atom, we found that for an order of magnitude of the relativeaccurate 2.463 and 2.4361-rtsvalues for thel’,,, annihila-

error similar to the one we obtain for PsH, SOE values givetion rate of the PsH ground state have been obtained respec-
an accurate approximation to the correct mean values, beirtively by Ho and Frolov and Smith, but for the'P state no

in error by less than 1%. Therefore we estimate the valueexplicitly correlated results are available to compare with.

reported in Table | to have a similar accuracy.

Using Eq.(3) of Ref.[15] and our mean values for the
&, _ operator, we obtain 2.3417), 2.46120), and 2.58(30)
ns !, respectively, for the VMC, DMC, and SOE two-
photon annihilation ratd’,,. These results are in good
agreement with the value of 2.463 Hspublished by Ho
[15], and with the one of 2.4361 n$ computed by Frolov

Our (8, _) value for 2P appears to be at least an order of
magnitude less than the one for the ground state: assigning
the I'; annihilation rate to>!S, it appears obvious that the
computed VMCI',,, rate for the?'P state is too small by a
factor of 10 at least. We strongly believe that this discrep-
ancy cannot be resolved by means of a more accurate trial
wave function: the DMC method is supposed to improve all

and Smith, but the SOE value seems to suggest a faster atire mean values computed, reducing the error in the sampled

nihilation in PsH than the previously published results.

walker distribution, but it further decreases th#._) value,

Due to the shorter length of the linear combinations usedndicating the need to further reduce the overlap between the
to approximate the states having higher angular momentunpositronic and electronic densities.
the VMC results for these states are less accurate than the The VMC and DMC binding energies for the different
ones for the ground state. This fact is stressed by the differstates,

-0.615

-0.6151

-0.6152 -

Energy (hartree)
S

A
b

-0.6153 - J

-0.6154 -

-0.6155
0

L L
0.005 0.015 0.02

0.01
Time step (1/hartree)

FIG. 1. DMC energy vs time step in the simulation of thtP
state of PsH.

€|\_/MC,DMC: EI\_/MC,DMC_ Egir (21

are shown in Table V2P and ?'D states are bound if
compared with the relevant threshold. The only previous re-
sult for 2P excited state of PsH was published by Kurtz and
Jordan[22]: their SCF total energy was-0.5873 hartree,
giving a binding energyEq. (21)] of 0.0248 hartree, i.e.,

TABLE V. Binding energy(hartreg¢ of PsH. VMC energies are
computed using the best available wave function.

2,18 2,1P 2'1D
Eume 0.036 791) 0.029 615) 0.015 622)
Eome 0.039 171) 0.052 785) 0.039 973)
Eanalytic 0.039179 4 0.0248°

#rolov and Smith’s result18].
bKurtz and Jordan’s resul@2].
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0.002 T T T 0.025

. 0.02 |

0.0015

0.015 |-

0.001

°
2

Positron distribution (Arbitrary units)

0.0005
0.005 |-

18
R (bohr)

Electronic distribution difference (Arbitrary units)

0.0005 FIG. 3. Positronic distribution for thé's, 2P, and D states.

L being polarized outward by the positron-electron interaction,
both the SOE value ofr ;) and the SOE positron distribu-
-0.001 h — 1'0 1'5 20 tions shown in Fig. 3 for different values show that posi-
R (bohr) tron carries almost all the total angular momentum of the
system. This physical picture was already pointed out by
FIG. 2. Difference of the electronic distribution of tiéP and ~ Kurtz and Jordari22] using SCF calculations, even for the
21D states with the electronic distribution of tRéS ground state. highly polarizable hydride anion.
Using the SOE positron-electron distributid(r , ), one
47% of our DMC result. Our two-term trial wave function is could obtain useful information about the analytical form
already better than the SCF description, recovering 56% oihat should be used to describe the correlation between these
the DMC binding energy. two particles: for all three states these distributions can be
As far as it is concerned with the experiment carried outaccurately fitted by means of the function
in Ref.[40] by means of the reaction

Ng
e++CH4:CH3+PSHL) (22) d(r+_):ri_z Cie_”‘ir+f' (24)
i=1

whose energetic balance is given by
using Ny= 2, showing that a good way to describe the cor-
14.35 e\ 6-8025_5“_) 23 relation between light particles having opposite charges is
' (L+1)2 PsH given by an exponential form, such as the one used in this
work.
our energy values do not change the interpretation of these
rgsults, but suggest the onset of the production of PsH in ACKNOWLEDGMENTS
higher angular momentum states at the threshold energy of
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