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Stability and positron annihilation of positronium hydride L 50,1,2 states:
A quantum Monte Carlo study

Dario Bressanini*
Istituto di Scienze Matematiche, Fisiche e Chimiche, Universita` degli Studi di Milano, sede di Como, via Lucini 3, 22100 Como, Ital

Massimo Mella† and Gabriele Morosi‡

Dipartimento di Chimica Fisica ed Elettrochimica, Universita` degli Studi di Milano, via Golgi 19, 20133 Milano, Italy
~Received 9 September 1997!

States of positronium hydride having different angular momenta have been studied by means of quantum
Monte Carlo techniques. Explicitly correlated wave functions for different states have been obtained using the
variational Monte Carlo optimization method. These wave functions have been used in variational Monte Carlo
and diffusion Monte Carlo~DMC! simulations to compute energies, annihilation rates, and other observables.
Our DMC results compare well with the best published variational ground-state binding energy, and show that
positronium hydride has metastable states with angular momentumL51 and 2 above the ground-state disso-
ciation threshold. The values of the other observables for the ground state are comparable with the best
variational calculations. The results for theL51 and 2 states are used to discuss a proposed model for the
annihilation of positrons in alkali hydrides crystals.@S1050-2947~98!09502-X#

PACS number~s!: 36.10.2k, 02.70.Lq
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I. INTRODUCTION

During the last few years, attention has been paid to
properties of systems containing one or more positrons w
the aim to elucidate the problem of their stability and t
annihilation behavior of positrons in ordinary matter. Amo
the systems studied, there are the positronium anion2

@1,2#, the dipositronium molecule Ps2 @3–5#, the positronium
hydride PsH@6–18# and other small atomic and model sy
tems @19#. These issues are still wide open, and there i
growing mass of experiments and experimental techniq
that can accurately probe the interaction between matter
antimatter, and which need theoretical support to be in
preted. So far, few attempts have been devoted to solving
problems of stability and annihilation in a systematic wa
Cade and Farazdel@20#, Patrick and Cade@21#, Kurtz and
Jordan@22#, and Gol’danskii, Ivanova, and Prokop’ev@8#
proposed applying the Hartree-Fock method to compute
positron affinity and positronium (e1,e2) binding energy of
atoms, ions, and molecules; the authors of Refs.@10,12#,
@14,15#, and @13# used explicitly correlated trial wave func
tions to compute energies for small atomic systems cont
ing positrons; attempts have been made to apply den
functional theory~DFT! to the calculation of average value
for first-row atoms, ions, and solids@17,23–25#. Although
the cited methods can help to rationalize the increas
amount of experimental data, each one has his own dr
backs: DFT theory lacks knowledge of the exact ene
functional, and its results are dependent on the partic
choice of the exchange and correlation potential used in
computation, while self-consistent-field~SCF! theory does
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not include electron-electron and electron-positron corre
tion. It relies on a ‘‘mean-field’’ description, missing th
local behavior of the exact wave function near particle c
lescence points; as a consequence it underestimates both
itron affinity and positronium binding energy. To correct th
SCF deficiencies, correlation has been introduced by me
of standard molecular-orbital methods, like the Molle
Plesset perturbation theory@26# and the many-body-
perturbation theory@16,27#. Recently, some attempts hav
been made to explore the possibility of using configuratio
interaction techniques@28,29#, but convergence of energ
and other mean values has proved to be painfully slow.
the other hand, to correct for the lack of a description of
positron-electron cusp in DFT, a pair correlation correcti
has been developed@24#: by means of an enhancement fact
one is able to estimate the annihilation properties sim
using the positron and electron densities, but this is rath
heuristic approach to the problem since it has been de
oped starting from model systems and extrapolating th
behavior to larger ones.

The best theoretical approach used so far to describe
class of systems exploits explicitly correlated trial wa
functions to compute accurate values of the observables.
trix elements between explicitly correlated wave functio
are not easy to compute for systems containing more t
two particles, unless one uses correlated Gaussians@30,4#.
Since these functions do not reproduce the cusp conditi
i.e., the behavior of the exact wave function at small int
particle distances, very large basis sets must be emplo
and also a careful and computationally expensive optim
tion of the nonlinear parameters of the trial wave function
required in order to obtain an accurate description.

Monte Carlo techniques are flexible and powerful me
ods to solve the Schro¨dinger equation for small atoms an
molecules, even if they contain exotic particles like positro
or muons@31–38#, or if one is interested in observables di
ferent from the energy@39#. In this work we present a nu
1678 © 1998 The American Physical Society
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57 1679STABILITY AND POSITRON ANNIHILATION OF . . .
merical study of various states of PsH having different to
angular momentum by means of variational and diffus
Monte Carlo~VMC and DMC! methods. The ground state o
this system has been studied in the past using various s
dard methods, namely, SCF and Hartree-Fock meth
@8,20,22,23#, DFT @17#, and DMC @33,36#. Also, explicitly
correlated trial functions have been used@6,7,10–15#, the
most recent and accurate calculation being the one perfor
by Frolov and Smith@18# using a linear combination of ex
plicitly correlated Gaussians. A compilation of the main r
sults on the PsH ground state was published by Yoshida
Miyado @36# in their paper on the stability of PsH an
@Li, e1#. Although a lot of computational effort has bee
spent on the ground state of this system, and accurate in
mation is now available, the results obtained so far nee
be checked by independent calculations exploiting differ
methods, especially regarding the annihilation behavior
PsH. This position can be justified noticing that even the 3
term wave function by Ho@15#, a reference calculation in
this field, does not seem to be well converged to definit
results, if compared with the other values of the shorter
ear combinations published in the same paper and with
results published in Ref.@18#. The ground state of PsH is
good candidate for the application of our methods sinc
contains all the relevant physics of this class of syste
without a complete description of the correlation between
particles, no meaningful information could be obtained,
pecially for properties like the annihilation rates that a
strongly dependent on the quality of the description of
correlated motion. Our work is therefore motivated by t
need to compute accurate values for these observable
addition, we applied Monte Carlo methods to higher angu
momentum states of this system, since these have been m
less studied than the ground state and could be of rele
interest in scattering experiments with positron beams@40#.
Furthermore these results will allow to test the model p
posed in Ref.@8# to explain the annihilation behavior of slow
positrons in alkali hydrides. It is also worth noting that du
ing the last few years, experiments@40# with positron beams
opened the possibility to detect positron systems in the
phase, giving rise to a new amount of experimental inform
tion needing theoretical counterparts to be interpreted me
ingfully.

II. TRIAL WAVE-FUNCTION FORM
AND MONTE CARLO SIMULATION

In the following an alphabetic subscript denotes a po
tron, while a numerical subscript denotes an electron.
atomic units, the Hamiltonian operator for PsH system in
Born-Oppenheimer approximation has the form

H52 1
2 ~¹1

21¹2
21¹a

2!1V~R!, ~1!

whereV(R) is the Coulomb interaction potential,

V~R!52
1

r 1
2

1

r 2
1

1

r a
1

1

r 12
2

1

r 1a
2

1

r 2a
, ~2!

between the four-unit-charge particles~i.e., two electrons,
the positron, and the nucleus!, andR is a point in configu-
ration space.
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The breakup of this system in a three-particle cluster p
a free particle is not possible because the Coulomb attrac
between the two fragments binds them together: so the l
est energy dissociation threshold for this system is given
@41#

Ethr5EHgs
1EPsgs

52 1
2 2 1

4 52 3
4 , ~3!

where PsH dissociates in two neutral fragments, both in th
ground state. The stability of higher angular momentu
states is relative to their own dissociation threshold, i
where the two fragments are resting at infinity and the po
tronium carries the total angular momentumL of the system:

Ethr
L 5EHgs

1EPs~L !
52

1

2
2

1

4~L11!2
. ~4!

The other possibilities, in which the hydrogen atom carrie
nonzero angular momentum, or when forL>2 the angular
momentum is shared between the two fragments, alw
have a higher energy. To approximate the wave function
states having different total angular momenta, we propos
use a linear combination of explicitly correlated functio
@38,42,43#

CT5 (
i 51

Nterms

ciF i , ~5!

where

F i~R,k i !5A$ f i~R!

3e2ki ,1r 12ki ,2r 22ki ,3r a1ki ,4r 121ki ,5r 1a1ki ,6r 2a

3Q0,0
1,2Q1/2,1/2

a %. ~6!

In this equationA is the antisymmetrization operator;f i(R)
is a function that explicitly contains the dependence on
spatial coordinates of the particles~we refer to this as the
preexponential part of the trial wave function!, but does not
contain any variational parameter;Q0,0

1,2 is the spin eigenfunc-
tion for the two electrons, whileQ1/2,1/2

a is the spin function
for the positron; andk i is a vector of parameters for thei th
term of the linear expansion. The first three components
this vector were forced to have only positive values for
the terms of the linear combination. As already stated in
previous work@43#, it is possible to write this trial wave
function in a spin-free formalism by means of a linear co
bination of spatial terms with exchanged particle indices, i

F i~R,k i !5(
j 51

Np

Pj
sym@ f i~R!

3e2ki ,1r 12ki ,2r 22ki ,3r a1ki ,4r 1a1ki ,5r 2a1ki ,6r 12#, ~7!

wherePj
sym are the exchange operators generated by ac

with A on Eq.~6! and collecting all the terms with the sam
spin product@e.g.,a(1)b(2)a(a)#. This trial wave function,
which has the correct spin and space symmetry, describe
correlation between the electrons and the positron by me
of the exponential part depending on the explicit electro
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1680 57DARIO BRESSANINI, MASSIMO MELLA, AND GABRIELE MOROSI
positron and electron-electron distances. This analytical fo
allows an accurate description of the correct behavior of
exact wave function at the coalescence point for equal
opposite sign charges. Satisfying the cusp condition usu
accelerates the convergence@44# of the linear expansion an
reduces its length for a chosen accuracy. This is usefu
reduce the computational cost of the optimization of the
rameters in the trial wave function, usually a quite hea
task. Moreover, for the specific system we are dealing w
the trial wave function must explicitly contain the positro
electron distance, otherwise the annihilation behavior and
‘‘pile-up’’ effect of the electron density due to the positro
are not correctly described.

The chosen form for the trial wave function makes it ve
difficult, if not impossible, to compute analytically the m
trix elements of the Hamiltonian operator of the system.
numerical method must be used to obtain the energy m
value and other observables for a given trial wave functi
The variational Monte Carlo method@45# is well suited for
this goal since it requires only the evaluation of the wa
function, its gradient, and its Laplacian. Since the VMC a
other Monte Carlo methods are well described in the lite
ture @45#, we only summarize the main points relevant to th
work.

The mean value of a local operator over a given trial wa
function is computed using

^O&VMC5

E CT
2~R!Oloc~R!dR

E CT
2~R!dR

, ~8!

where

Oloc~R!5
OCT~R!

CT~R!
. ~9!

HereCT
2(R) is interpreted as a probability distribution and

is sampled using Metropolis or Langevin algorithms@45#. As
an explicit example, the expectation value of the Ham
tonian is written as

^H&VMC5

E CT
2~R!Hloc~R!dR

E CT
2~R!dR

,

Hloc~R!5
HCT~R!

CT~R!
. ~10!

Other operators can be converted to form~9!; for example,
the mean value for the Dirac’s delta operatord(r i j ) can be
computed using the identity

d~r i j !52
1

4p
¹ r i

2 1

r i j
. ~11!

Introducing Eq.~11! into Eq. ~8!, and integrating by parts
one obtains
m
e
d
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to
-

y
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^d~r i j !&52
1

2pE CT
2~R!$¹ r i

2 @ lnCT~R!#

12@¹ r i
lnCT~R!#2%

1

r i j
dR, ~12!

whereCT is assumed to be normalized. Using the differe
tial identity

¹ r i

2 f ~R!

f ~R!
5¹ r i

2 lnf ~R!1@¹ r i
ln f ~R!#2, ~13!

Eq. ~12! can be written as

^d~r i j !&52
1

2pE CT
2~R!H ¹ r i

2 CT~R!

CT~R!

1@¹ r i
lnCT~R!#2J 1

r i j
dR, ~14!

which is easy to implement in a VMC and DMC code, a
has been used in this work to estimate the collision proba
ity and the annihilation time of the PsH system.

To optimize the linear and nonlinear parameters in
trial wave function, we minimized the function

m2~Er !5 (
j 51

Nconf

@Eloc~Rj !2Er #
2, ~15!

where$Rj , j 51,Nconf% is a set ofNconf fixed configurations
sampled fromCT

2 , and Er is an approximation to the true
value of the energy for the system. This method, proposed
Frost @46# and Conroy@47#, has been described in detail b
Umrigar, Wilson, and Wilkins@48# and by Mushinski and
Nightingale @49# and has been proved to be much mo
stable than the optimization of the energy itself.

The optimized trial wave functions can be used to co
pute approximated mean values of the observables of
studied systems and to give upper and lower bounds to t
energy. Unfortunately, the mean values strongly depend
only on the analytical form of the function employed, b
also on the optimization method used@50# to define the trial
wave function. In order to obtain the exact ground-state
ergy and improve the accuracy of the other mean values,
DMC method @51,45# is employed to simulate the time
dependent Schro¨dinger equation in imaginary time as a di
fusion equation having source and sink terms. This met
samples the distributionf (R)5CT(R)C0(R), whereC0(R)
is the ground-state wave function of the system with
same nodal surface of the trial wave function if we use
fixed node approximation to sample an antisymmetriz
wave function. The value of the energy can be compu
using the ‘‘mixed estimator’’

^H&DMC5
*CT~R!C0~R!Hloc~R!dR

*CT~R!C0~R!dR
. ~16!

If the ground state has no nodes, orCT(R) has the correct
nodal structure, this equation gives the correct ground-s
energy; otherwise one obtains an upper bound to it. To co
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TABLE I. Mean energy and various values and observables for the ground state2,1S of the positronium hydride.

N ^E& ^V& ^r 12& ^r 22& ^r 2& ^r 1& ^d12& x

3 20.778 001(26) 21.5332(2) 3.708 64~61! 4.3337~11! 2.7497~12! 4.3209~11! 0.022 00~10! 0.0115~3!

4 20.782 189(24) 21.5466(3) 3.789 33~57! 4.2071~10! 2.6647~11! 4.2071~10! 0.021 64~21! 0.0117~3!

5 20.784 848(11) 21.5587(2) 3.586 62~34! 3.972 88~55! 2.545 40~65! 3.972 88~55! 0.024 70~9! 0.0071~3!

6 20.786 310(11) 21.5562(2) 3.554 87~30! 3.757 13~47! 2.427 20~50! 3.862 14~49! 0.023 74~17! 0.0107~2!

7 20.786 788(12) 21.5514(3) 3.576 36~45! 3.739 90~59! 2.412 73~66! 3.834 84~66! 0.023 19~23! 0.0145~3!

DMC 20.789 175(10) 21.5652(3) 3.5236~8! 3.6550~9! 2.361~10! 3.743~1! 0.02438~20!

SOE 21.5895(3) 3.4708~8! 3.5701~9! 2.308~1! 3.651~1! 0.02556~30!

Ho a 20.778 45 0.0243
Ho b 20.788 945 3.849 3.556 3.644 0.0244
FSc 20.789 1794 21.578 38 3.479 3.573 2.311 3.661 0.024 134 0.000 01

aHo’s 126-term wave function@15#.
bHo’s 396-term wave function@15#.
cFrolov and Smith’s wave function@18#.
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pute the mean values of dynamical observables whose op
tors do not commute with the Hamiltonian, i.e., the gene
case, one can still exploit the ‘‘mixed estimator’’ substitutin
the new operator to the Hamiltonian, but the value so co
puted is biased by the errors of the trial wave function.
simple strategy to partially correct for this bias is to use
quantity @45#

^O&SOE52^O&DMC2^O&VMC , ~17!

where

^O&DMC5
*CT~R!C0~R!Oloc~R!dR

*CT~R!C0~R!dR
. ~18!

Equation~17! gives an estimate of̂O& that is second orde
~SOE! on the error of the trial wave function.

III. VARIATIONAL AND DIFFUSION MONTE CARLO
RESULTS

A. 2,1S ground state of PsH

The 2,1S ground state of PsH was chosen as starting p
of our investigation on systems containing positron. For t
state the trial wave function must be written using only p
exponential terms having spherical symmetry or contain
explicitly the interparticle distances. Since the exponen
part of the trial wave function already possesses an analy
form that should be able to describe the interparticle co
lation correctly, the preexponential part of the analytical a
satz has been used only to modify the shape of the positr
density, expressing it as function of the positron-nucleus
tance only. This choice makes it possible for the trial wa
function to describe the positron-nucleus cusp condition c
rectly, reducing the probability to find the positron in th
nuclear region.

To optimize the wave function, the simple one-term fun
tion given in Ref.@7# was used as starting point: its param
eters were fully optimized minimizing the quantitym2(Er)
given by Eq. ~15!. Starting from this new wave function
more terms were added to reduce the variance of the l
energy and to lower the mean energy. These steps were
ra-
l
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t
s
-
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l
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-
-
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e
r-

-

al
ar-

ried out using a stochastic selection procedure@42,43,52,53#
for the nonlinear parameters of the new term, and choos
the linear coefficientcnew that minimizes the value o
m2(Er). Usually one or two thousand nonlinear parame
sets were randomly chosen, and the one that gave the lo
m2(Er), once the linear parameter had been optimized, w
kept as the new trial term. Usually, this procedure give
small reduction of the variance of the local energy and
fairly good starting point for the following optimization
During all the optimization procedures, a set of 8000 co
figurations in the nine-dimensional configuration space w
used. This set was chosen after sampling the best wave f
tion previously optimized~e.g., the one-term function give
by Ref. @7# for the first step of the optimization!. After three
or four optimization steps this ensemble was updated
means of a VMC run, usually 53104 steps long, sampling
the square of the new wave function. These VMC simu
tions are long enough to give reliable average values for
the observables. The variational results of the optimized t
wave functions for the2,1S ground state of PsH are reporte
in Table I for a number of termsN5327, together with the
results obtained by Ho@15# using Hylleraas-type wave func
tions, and the results by Frolov and Smith@18#. In this table,
^V& is the expectation value for the potential energy, wh
x5u11(^V&/2^E&22^V&)u is the so-called virial parameter
This parameter, since we did not optimize the expectat
value of the energy, does not have to be equal to zero f
full optimized wave function written as a linear combinatio
of a small number of terms. These results show that
expansion is quickly convergent toward an accurate value
the total energy, the three-term wave function already rec
ering more than 70%, and the seven-term one more than
of the binding energy computed by Frolov and Smith. Co
paring the other mean values for our seven term, and H
396-term trial wave function, it is worth noting that the me
distance between an electron and a positron is shorter for
trial wave functions than for that of Ho, while the mea
distance between the two electrons is larger. These dif
ences might be due to incomplete convergence of the
wave functions of different analytical forms, or to the op
mization method used. Our mean distance between an e
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TABLE II. Parameters of the optimized seven-term trial wave function.

N ci ki ,1 ki ,2 ki ,3 ki ,4 ki ,5 ki ,6 f i

1 1.00000 20.36659 21.00580 20.34328 20.37344 20.04846 0.03263 r a

2 0.35442 20.12301 20.75828 20.14497 20.30421 20.81432 20.05546 1
3 0.45760 21.58378 20.95978 20.39332 20.18145 0.11324 0.18718 1
4 20.65857 20.77919 20.46739 20.32126 20.03521 20.45572 20.39182 r a

5 0.72787 20.46927 21.26244 20.28601 20.89774 20.10067 0.15699 1
6 0.23700 20.86864 20.22488 20.38221 20.11085 20.79638 0.03429 r a

7 20.12385 20.53677 20.73638 20.60591 20.10452 0.00031 20.03292 1
n
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tron and the positron is in better agreement with the o
computed by Frolov and Smith@18#, being slightly larger
like our mean electron-nucleus and positron-nucleus
tances; that is, our VMC wave function describes a sys
less compact than Frolov and Smith@18# do. On the whole,
our seven-term expansion, whose optimized parameters
shown in Table II, is a very compact and good quality wa
function, well suited as guide function in a DMC calculatio

DMC simulations were performed to project out the r
maining components of the excited states of the same s
metry of the ground state. Five simulations using differe
time steps spanning the range 0.001–0.012 hartree21 have
been carried out to obtain extrapolated zero time step va
for the energy and other observables. These results~DMC!
and their second-order estimates are shown in Table I.
worth noting that our value for the ground-state energy
PsH, 20.78917(1) hartree, is 0.23~1! m hartree lower than
the value computed by Ho: this is not a surprising res
since the mean energy values published by Ho did not ap
as conclusive, due to their slow convergence. Our energ
in good agreement with the two recently published DM
calculations of20.7885(5) @33# and 20.789(1) hartree
@36#, but it is more accurate, due to the smaller stand
deviation obtained in our simulation. Finally, we found com
plete agreement with the latest result20.789179 hartree by
Frolov and Smith@18#.

Both DMC and SOE values show a decrease of their
solute values when compared with the VMC results: t
effect can be attributed to a better description of the corr
tion between the various particles in the system. The S
correction improves the agreement with the results of R
@18#, but it appears that higher-order corrections are nee
to obtain accurate predictions of these observables.

B. Lower 2,1P and 2,1D states of PsH

As to the 2,1P state, we adopted the preexponential te

f i~R!5z12za , ~19!

to describe both the relevant dissociative channel, i.e.,
e
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one that leads to the fragmentation of PsH in H(L50) and
Ps(L51) both at rest, and the nodal surfaces due to a to
angular momentum equal to 1. Using this analytical form
F i(R,k i) in the linear expansion, a two-term wave functio
was optimized, as already explained for the ground-state
culations. As an initial guess for the one-term wave functi
we wrote the total wave function as the product between
exact functions of the two fragments, modified introduci
some correlation between the particles belonging to the
different fragments, in a way to produce a trial wave functi
that is square integrable: its parameters quickly rearran
into a pair of optimization steps to give a much better tr
wave function, whose energy was below the dissociat
threshold for this state. The second term was added using
previously described stochastic selection procedure,
lowed by full reoptimization of the wave function.

The VMC, DMC, and SOE results for the2,1P state, ob-
tained using this function, are shown in Table III. DM
simulations were carried out using three different time ste
spanning the range 0.005–0.015 hartree21, to check for the
time step bias: this appears smaller than the statistical e
of the ^E& values, as shown in Fig. 1.

For the 2,1D state the preexponential part has the form

f i~R!5~x12xa!~y12ya!, ~20!

and a one-term trial wave function has been optimized us
the same procedure as for2,1P state. The VMC, DMC, and
SOE results for this state are shown in Table IV.

IV. DISCUSSION

In this work we studied the PsH system, computing t
energy and some mean values for the states carrying a
angular momentumL50, 1, and 2. This has been done b
optimizing explicitly correlated trial wave functions, writte
as linear combinations of different numbers of correla
terms, by means of the variational Monte Carlo techniq
followed by diffusion Monte Carlo simulations.

Since a trial wave function always contains some err
l
TABLE III. Mean energy and other observables for the2,1P state of positronium hydride: two-term tria
wave function.

^E& ^r 12& ^r 22& ^r 2& ^r 1& ^d12&

VMC 20.592 11(5) 9.472~4! 4.202~1! 2.574~1! 9.212~3! 0.001 25~5!

DMC 20.615 28(5) 8.377~3! 3.953~2! 2.448~2! 8.172~5! 0.000 90~3!

SOE 7.822~4! 3.704~2! 2.332~2! 7.132~5! 0.000 55~5!
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TABLE IV. Mean energy and other observables for the2,1D state of positronium hydride: one-term tria
wave function.

^E& ^r 12& ^r 22& ^r 2& ^r 1& ^d12&

VMC 20.543 40(2) 12.937~2! 4.5517~9! 2.788~1! 12.380~3! 0.000 066~13!

DMC 20.566 72(3) 14.615~5! 4.147~1! 2.569~1! 14.345~5! 0.000 017~2!

SOE 16.293~5! 3.742~1! 2.350~1! 16.310~5!
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due to the incompleteness of the basis set used, the re
will be incorrect by some amount. The DMC technique a
pears as a very useful tool to correct partially for this bi
since it is able to sample the correct wave function if t
state has no nodal surfaces or if the trial function used
guide the simulation has the correct nodal structure. For
2,1S state of PsH, our optimized seven term trial wave fun
tion allows one to compute accurate values for both the
ergy and the other observables shown in Table I: for t
state the relative error (^ODMC&2^OVMC&)/^ODMC& is al-
ways less than 0.04. Although it is not generally possible
estimate the quality of the DMC and SOE corrections to
VMC mean values, some relevant hints could be obtai
using some model systems as a benchmark. In this reg
for the two systems Ps and XZ Ps @19,33#, i.e., the system
composed by a fixed fractional charge 0<Z<1 and a Ps
atom, we found that for an order of magnitude of the relat
error similar to the one we obtain for PsH, SOE values g
an accurate approximation to the correct mean values, b
in error by less than 1%. Therefore we estimate the val
reported in Table I to have a similar accuracy.

Using Eq.~3! of Ref. @15# and our mean values for th
d12 operator, we obtain 2.341~17!, 2.461~20!, and 2.580~30!
ns21, respectively, for the VMC, DMC, and SOE two
photon annihilation rateG2g . These results are in goo
agreement with the value of 2.463 ns21 published by Ho
@15#, and with the one of 2.4361 ns21 computed by Frolov
and Smith, but the SOE value seems to suggest a faste
nihilation in PsH than the previously published results.

Due to the shorter length of the linear combinations u
to approximate the states having higher angular moment
the VMC results for these states are less accurate than
ones for the ground state. This fact is stressed by the dif

FIG. 1. DMC energy vs time step in the simulation of the2,1P
state of PsH.
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e
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e
e
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d
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ences between VMC and DMC values, usually of the or
of 10% of the DMC values. This means that the observab
computed for these states can be used only as indicato
the order of magnitude of the exact ones.

Although the mean values of the Dirac’s delta opera
d12 for the two excited states are not as accurate as for
ground state, they can be usefully employed to discuss a
hilation of positrons in alkali hydrides@54#. To interpret the
experimental results, Ref.@8# proposed a model where2,1S
and 2,1P states of PsH are assumed as responsible of the
different extrapolated annihilation ratesG152.347(110) and
G251.149(66) ns21 that are seen experimentally. Whil
their results based on Hartree-Fock calculations were
conclusive due to some computational error~see Ref.@10#!,
their model could not be definitely ruled out, and the pro
lem is still waiting for a definitive answer. As already state
accurate 2.463 and 2.4361-ns21 values for theG2g annihila-
tion rate of the PsH ground state have been obtained res
tively by Ho and Frolov and Smith, but for the2,1P state no
explicitly correlated results are available to compare wi
Our ^d12& value for 2,1P appears to be at least an order
magnitude less than the one for the ground state: assig
the G1 annihilation rate to2,1S, it appears obvious that th
computed VMCG2g rate for the2,1P state is too small by a
factor of 10 at least. We strongly believe that this discre
ancy cannot be resolved by means of a more accurate
wave function: the DMC method is supposed to improve
the mean values computed, reducing the error in the sam
walker distribution, but it further decreases the^d12& value,
indicating the need to further reduce the overlap between
positronic and electronic densities.

The VMC and DMC binding energies for the differentL
states,

EVMC,DMC
L 5EVMC,DMC

L 2Ethr
L ~21!

are shown in Table V.2,1P and 2,1D states are bound i
compared with the relevant threshold. The only previous
sult for 2,1P excited state of PsH was published by Kurtz a
Jordan@22#: their SCF total energy was20.5873 hartree,
giving a binding energy@Eq. ~21!# of 0.0248 hartree, i.e.

TABLE V. Binding energy~hartree! of PsH. VMC energies are
computed using the best available wave function.

2,1S 2,1P 2,1D

EVMC 0.036 79~1! 0.029 61~5! 0.015 62~2!

EDMC 0.039 17~1! 0.052 78~5! 0.039 97~3!

Eanalytic 0.039 179 4a 0.0248b

aFrolov and Smith’s result@18#.
bKurtz and Jordan’s result@22#.
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47% of our DMC result. Our two-term trial wave function
already better than the SCF description, recovering 56%
the DMC binding energy.

As far as it is concerned with the experiment carried
in Ref. @40# by means of the reaction

e11CH45CH31PsH~L ! ~22!

whose energetic balance is given by

14.35 eV2
6.8025

~L11!2
2EPsH

~L ! ~23!

our energy values do not change the interpretation of th
results, but suggest the onset of the production of PsH
higher angular momentum states at the threshold energ
11.22 eV for theP state, and of 12.51 eV for theD state.
Unfortunately these regions of kinetic energy of the posit
beam were not explored in the experiment@40#.

While the electronic distribution changes only slightl
increasing the angular momentum, as is shown in Fig

FIG. 2. Difference of the electronic distribution of the2,1P and
2,1D states with the electronic distribution of the2,1S ground state.
.

of

t

se
in
of

n

2,

being polarized outward by the positron-electron interacti
both the SOE value of̂r 1& and the SOE positron distribu
tions shown in Fig. 3 for differentL values show that posi
tron carries almost all the total angular momentum of
system. This physical picture was already pointed out
Kurtz and Jordan@22# using SCF calculations, even for th
highly polarizable hydride anion.

Using the SOE positron-electron distributiond(r 12), one
could obtain useful information about the analytical for
that should be used to describe the correlation between t
two particles: for all three states these distributions can
accurately fitted by means of the function

d~r 12!5r 12
2 (

i 51

Nd

cie
2a i r 12, ~24!

usingNd52, showing that a good way to describe the co
relation between light particles having opposite charges
given by an exponential form, such as the one used in
work.
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