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Kohn-Sham equations for multiplets

Á. Nagy
Institute of Theoretical Physics, Kossuth Lajos University, H–4010 Debrecen, Hungary

~Received 18 March 1997!

Kohn-Sham equations are derived for lowest-lying multiplets. A recently proposed method of the author is
used to construct exchange potentials of multiplets.@S1050-2947~98!08902-1#

PACS number~s!: 31.15.Ew
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I. INTRODUCTION

The density-functional theory was originally develop
for the ground state@1#. It can be applied only for the lowest
energy state in each symmetry class@2#. The symmetry prob-
lem in the density-functional theory was analyzed by seve
authors@3–6#.

The multiplet structure was already treated using
density-functional theory. The most important approac
were proposed by Bagus and Bennett@7#, Ziegler, Rauk, and
Baerends@8#, von Barth@9#, and Wood@10#. All these meth-
ods have the same feature of not being completely within
frame of the density-functional theory. Recently, the meth
of fractionally occupied states of Gross, Oliveira, and Ko
@11# was used to treat the multiplet problem@12#, and the
exchange potential was determined for ensembles of l
lying multiplets.

In this paper another way of treating the multiplet pro
lem is proposed. Go¨rling @6# showed via the constraine
search approach how the density-functional theory can
formalized for the lowest-energy state in each symme
class. Here, instead of wave functions, density matrices
used. The constrained search is done not on the wave f
tions of a given symmetry, but on ‘‘subspace density ma
ces’’ constructed from the wave functions of the given m
tiplet.

Recently, a method determining the exchange
exchange-correlation potential in the knowledge of the d
sity was proposed@13#. ~Similar approaches were introduce
by Almbladh and Pedroza@14#, Stott and co-workers@15#,
Parr and co-workers@16#, van Leeuwen and Baerends@17#,
and Görling @18#.! This method is now applied to obtain th
exchange potential for multiplets.

II. HOHENBERG-KOHN THEOREM FOR MULTIPLETS

Consider the lowest-lying solutions of the symmetryG of
the Schro¨dinger equation

ĤuCg
G&5E0

GuCg
G& ~g51,2, . . . ,gG!, ~1!

wheregG is the degeneracy. For case of simplicity, only o
index is used to denote the symmetry both in spin and o
nary space. The subscript 0 in the energyE0

G emphasizes the
fact that only the lowest-lying solution of symmetryG is
regarded. In a recent paper, Go¨rling @6# applied the con-
strained search technique to these wave functionsCg

G . Now
the space of all antisymmetric wave functions is divided in
571050-2947/98/57~3!/1672~6!/$15.00
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disjoint subspaces with different symmetries. The variat
is done over a subspaceSG of a given symmetryG. This
subspace is spanned by a set of wave functions of the g
symmetryG. The dimension of the subspace is equal to
degeneracygG . In this case the constrained-search form
ism can be used as follows:

EG@%G#5min
SG

(
g51

gG

wg^Cg
GuĤuCg

G&

5min
%G

H min
SG→%G

(
g51

gG

wg^Cg
GuĤuCg

G&J
5min

%G
HFG@%G#1E %G~r !v~r !dr J , ~2!

where the weighting factorswg should satisfy the conditions

15 (
g51

gG

wg ~3!

and

wg>0. ~4!

In principle, any set of weighting factorswg satisfying con-
ditions ~3! and ~4!, can be used.v is the external potentia
and

FG@%G#5 min
SG→%G

(
g51

gG

wg^Cg
GuT̂1V̂ee!uCg

G&. ~5!

T̂ and V̂ee are, respectively, the kinetic and the electro
electron repulsion operators. The density is given by

%G5 (
g51

gG

wgE uCg
Gu2ds1dx2•••dxN , ~6!

where x stands for both the coordinates and the spin. T
superscriptG in %G and the subspace density matrix deno
that they are constructed from wave functions that belong
the subspaceSG. The densities do not generally have th
symmetryG. Their symmetry also depends on the weighti
factorswg . One is free to select the values of the weighti
factorswg ; they only should satisfy conditions~3! and~5!. If
the weighting factorswg are all equal, the density has th
1672 © 1998 The American Physical Society
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57 1673KOHN-SHAM EQUATIONS FOR MULTIPLETS
property of transforming according to the first row of th
character table. So, for instance, for atoms, the density
be spherically symmetric. But it is possible to select oth
values for the weighting factorswg .

The functionalFG@%G# can be expressed with the dens
matrix defined in subspaceSG,

D̂G5 (
g51

gG

wguCg
G&^Cg

Gu, ~7!

as follows:

FG@%G#5 min
SG→%G

tr$D̂G~ T̂1V̂ee!%. ~8!

Then the generalized Hohenberg-Kohn theorem has a fo

FG@%G#1E %G~r !v~r !dr>E0
G , ~9!

that can be readily proved as follows:

FG@%G#1E %G~r !v~r !dr5 min
SG→%G

tr$D̂G~ T̂1V̂ee!%

1E %G~r !v~r !dr

5 min
SG→%G

tr$D̂G~ T̂1V̂1V̂ee!%>E0
G ,

~10!

where the last inequality follows from the variational pri
ciple. The variational principle is valid here because we
considering the lowest-lying energy level of symmetryG.
There is an equality if and only if the trial density%G is equal
to the true density of the multipletG.

III. KOHN-SHAM EQUATIONS FOR MULTIPLETS

Following the method proposed by Hadjisavvas a
Theophilou@19#, the Kohn-Sham equations can be derive
The noninteracting wave functions of symmetryG are con-
structed as a linear combination of Slater determinantsFk :

Cs,g
G 5(

k
cg,k

G Fk ~g51,2, . . . ,gG!. ~11!

The noninteracting density matrix is defined as

D̂s
G5 (

g51

gG

wguCs,g
G &^Cs,g

G u. ~12!

The density corresponding to the density matrixD̂s
G is %G:

%G5 (
g51

gG

wgE uCs,g
G u2ds1dx2•••dxN , ~13!

The functionals of the Kohn-Sham scheme are now defi
over the set of noninteracting density matricesD̂s

G . Follow-
ing Hadjisavvas and Theophilou@19#, we can state that to
ill
r

e

d
.

d

derive a minimum principle for a functional overD̂s
G , it is

necessary to define a functionalQ over D̂s
G whose value is

either~a! always equal to the expectation value of an ope
tor Ô of the interacting system for some density matrixD̂G,

i.e., Q@D̂s
G#5tr$D̂GÔ%; or ~b! one can defineQ@D̂s

G#

Þtr$D̂GÔ%, but the minimum value ofQ@D̂s
G# coincide with

the minimum value of tr$D̂GÔ%. In the usual construction o
the Kohn-Sham scheme, case~a! is followed. Here, however,
just like in the paper by Hadjisavvas and Theophilou@19#,
the second case is used. So we define the following fu
tional:

Ts
G@%G;D̂s

G#5 min
D̂s

G→%G

tr$D̂s
GT̂%. ~14!

According to a theorem of Lieb@20#, the minimum of the
kinetic energy exists. This is a functional defined over
noninteracting density matricesD̂s

G with the density%G.
Then another functional is defined:

FG@%G;D̂s
G#5 min

D̂G→%G

tr$D̂G~ T̂1V̂ee!%. ~15!

This can again be considered as a functional of noninter
ing density matricesD̂s

G . Let us denote byD̂s,min
G and D̂min

G

the noninteracting and interacting density matrices minim
ing Eqs.~14! and ~15!, respectively. We can also define th
following functionals:

Tc
G@%G;D̂s

G#5tr$D̂min
G T̂%2tr$D̂s,min

G T̂% ~16!

and

Vxc
G @%G;D̂s

G#5tr$D̂GV̂ee%2
1

2E %G~r !%G~r 8!

ur2r 8u
dr dr 8.

~17!

With the kinetic-energy differenceTc and the exchange
correlation energyVxc , the total energy functional has th
form

EG@%G;D̂s
G#5Ts

G@%G;D̂s
G#1Tc

G@%G;D̂s
G#

1E %G~r !v~r !dr1Vxc
G @%G;D̂s

G#

1
1

2E %G~r !%G~r 8!

ur2r 8u
dr dr 8. ~18!

EG@%G;D̂s
G# is a well-defined functional. It is really a func

tional of the noninteracting density matrixD̂s
G , as all terms

in Eq. ~18! can be considered as a functional ofD̂s
G through

Eqs.~14! and ~15!.
One can easily see that the following theorem holds: T

minimum of the functionalEG@%G;D̂s
G# exists, and its value

is equal toE0
G , the lowest energy of symmetry typeG. The

density coming from the noninteracting density matrixD̂s
G ,
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1674 57Á. NAGY
minimizing the functionalEG@%G;D̂s
G#, is equal to the den-

sity corresponding to the true density matrixD̂G.
To prove this theorem Eq.~18! is written in the form

EG@%G;D̂s
G#5tr$D̂s

GT̂%2tr$D̂s,min
G T̂%1tr$D̂G~ T̂1V̂ee1V̂!%.

~19!

Equations~14! and ~15! lead to the inequalities

tr$D̂s
GT̂%>tr$D̂s,min

G T̂% ~20!

and

tr$D̂G~ T̂1V̂ee1V̂!%>E0
G , ~21!

respectively. These relations, combining with Eq.~19!, give
the inequality

EG@%G;D̂s
G#>E0

G . ~22!

The minimum ofEG@%G;D̂s
G# is E0

G , as can readily be see
from the equalities in Eqs.~20!, ~21!, and ~22!. From Eqs.
~14! and ~15! it follows that the density coming from th
noninteracting density matrixD̂s

G , minimizing the functional

EG@%G;D̂s
G#, is equal to the density corresponding to the tr

density matrixD̂G.
Now, the Kohn-Sham equations can be obtained from

~14!, carrying out the minimalization. Because of the fa
that Cs,g

G is a linear combination of several Slater determ
nants, the form of the Kohn-Sham equations is rather co
plicated for an arbitrarily selected set of weighting factorswg
and have to be derived separately for each desired case
a spherically symmetric case and equal weighting fact
however, the Kohn-Sham equations have a very simple fo
as is shown in the Appendix. In this case the noninterac
kinetic energy is given by

Ts5(
j 51

N

l jE Pj
GF2

1

2
~Pj

G!91
l j~ l j11!

2r 2
Pj

GGdr, ~23!

wherePj
G and l j are the radial wave functions and the o

cupation numbers corresponding to the given configurat
respectively.9 denotes the second derivative with respect
r . The density

%G5(
j 51

N

l j~Pj
G!2 ~24!

in this particular case is spherically symmetric. The minim
zation of the noninteracting kinetic energy~23!, keeping the
density%G @Eq. ~24!# fixed, leads to the radial Kohn-Sham
equations

2 1
2 ~Pj

G!91
l j~ l j11!

2r 2
Pj

G1v
KS

G Pj
G5« j

GPj
G , ~25!

where

v
KS

G ~r !5v~r !1E %G~r 8!

ur2r 8u
dr1vxc

G ~%G;r !, ~26!
e

q.
t
-
-

For
s,

,
g

n,
o

-

vxc
G ~%G;r !5

d~Vxc
G 1Tc

G!

dn
~27!

is the exchange-correlation potential of the lowest-lying mu
tiplet of symmetryG. An essential point in the theory is tha
the exchange-correlation potential, and so the Kohn-Sh
potential, depends onG, and we have different potentials fo
different multiplets.~The fact that the exchange-correlatio
potential must in general be different for each symme
multiplet was first pointed out by Gunnarsson and Lundqv
@2#, and later Weiner and Trickey@21#.! The exchange-
correlation potential also depends on the weighting fact
wg .

We end this section by emphasizing the difference b
tween the present approach and the subspace theory of T
philou @22#, the method of fractionally occupied states o
Gross, Oliveira, and Kohn@11#, and the symmetrized
constrained-search procedure of Go¨rling @6#. The present

FIG. 1. The exchange factorsaG ~in a.u.! of the C atom for the
multiplets (3P) ~—!, 1D ~ . . .!, and 1S ~- - -! as functions of the
square root of the radius~in a.u.!.

FIG. 2. The exchange factorsaG ~in a.u.! of the C atom for the
multiplets (3P) ~—!, 1D ~ . . .!, and 1S ~- - -! as functions of the
density~in a.u.!.
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57 1675KOHN-SHAM EQUATIONS FOR MULTIPLETS
method can be considered a generalization of the subs
theory of Theophilou@22#. Here the space of all antisymme
ric wave functions is divided into disjoint subspaces w
different symmetries, and the variation is done over a s
spaceSG of a given symmetryG. In the subspace theory o
Theophilou@22#, subspaces are constructed over wave fu
tions of all kinds of symmetries. However, in a recent pa
@23# considering noninteracting systems, he mentioned
advantages of constructing subspace densities from all ei
states of a given symmetry.

Comparing the present approach with the method of fr
tionally occupied states of Gross, Oliveira, and Kohn@11#,
the main difference is that, in an ensemble-constrai
search, the search is done over all density matrices w
give a certain density, while here the search is over a s
space of a given symmetry. There is a similarity in the fa
however, that the construction contains weighting factors
both methods. The freedom in selecting the value of
weighting factors may come useful in practice. It has
consequence, however, that the exchange-correlation po
tial depends on these weighting factors.

There are several differences between the present me
and the symmetrized constrained-search procedure of¨r-
ling @6#. In the latter approach, the search is also over
subspace of all antisymmetric wave functions of a giv
symmetry. However, the wave functions do not have to g
a certain density; only the totally symmetric part of the de
sity is specified. The Kohn-Sham wave function has
same symmetry as the corresponding full interacting w
function. In the present method, on the other hand, den
matrices and not wave functions are considered both in
interacting and noninteracting systems. This approach
the advantage that with equal weighting factors the den
has the symmetry of the external potential.

IV. EXCHANGE POTENTIAL FOR MULTIPLETS

There is a growing interest in determining the exact
change, exchange-correlation, and Kohn-Sham potentia
the knowledge of the density@14–18#. The present autho
has also proposed a method@13# that enables one to calcula
these potentials if the density is known. The method has
been generalized to ensemble states@12#. Now we show that
it can be applied to the lowest-lying multiplets of each sy
metry class.

The method proposed earlier is outlined for the pres
problem. If the density%G of the multiplet of symmetryG is

TABLE I. One-electron, kinetic, and total energies for the m
tiplet 3P of the C atom calculated with the Hartree-Fock@24# ~HF!
and the exchange-only density functional~DF! ~this work! methods
~in Ry!.

« i HF DF

1s -22.651 -20.707
2s -1.411 -1.505
2p -0.867 -0.867

T 75.377 75.372
E -75.377 -75.372
ce
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known, the exchange and the exchange-correlation poten
are calculated as follows: Starting out from an appropri
~e.g., a local density! potential, the Kohn-Sham equations a
solved, and the density of the first iteration is calculated. T
potential of thei th iteration can be given by

V~ i !
G 5V~ i 21!

G
% input

G

% ~ i 21!
G

, ~28!

and an appropriate damping is applied to obtain a sta
convergence. Then the Kohn-Sham potential of the sec
iteration is constructed. The process goes on until the den
equals the input density. If the input density is the ex
density, the exact Kohn-Sham potential and the ex
exchange-correlation potential are obtained. If the input d
sity is the Hartree-Fock density a potential very close to
exact exchange potential is gained. Here, the exchange
tentials for multiplets are calculated from the Hartree-Fo
densities@24#.

V. RESULTS AND DISCUSSION

The exchange potentials are studied for the multipl
3P, 1D, and 1S for the atom C. The exchange potentials a
written in the form

vxc
G ~r ;%G!523aGS 3

8p
%GD 1/3

. ~29!

The factorsaG are functions of the radial distancer . The
exchange factorsaG for the atom C is presented in Fig.
versus the square of the radial distance. The upper~solid!

TABLE II. One-electron, kinetic, and total energies for the mu
tiplet 1D of the C atom calculated with the Hartree-Fock@24# and
the exchange-only density functional,~this work! methods~in Ry!.

« i HF DF

1s -22.703 -20.607
2s -1.437 -1.398
2p -0.763 -0.763

T 75.264 75.259
E -75.263 -75.258

TABLE III. One-electron, kinetic, and total energies for th
multiplet 1S of the C atom calculated with the Hartree-Fock@24#
and the exchange-only density-functional~this work! methods
~in Ry!.

« i HF DF

1s -22.782 -20.481
2s -1.479 -1.252
2p -0.620 -0.623

T 75.101 75.099
E -75.099 -75.094
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1676 57Á. NAGY
line is for 3P, the middle~point! line is obtained for1D, and
the lower function arises from1S ~dashed line!.

These figures show a shell structure.~For the ground and
ensemble states the shell structure has already been de
strated@13,12#.! The fact that the exchange potentials beha
similarly for the multiplets suggests that approximating e
pressions for these potentials might also be similar. Pr
ably, a small change in the presently used ground-state
change functionals might lead to a good approximation
multiplets.

Figure 2 presents the factoraG as a function of the den
sity. The shell structure can also be clearly seen. Though
curves are very close together, they are not exactly the sa
So the exchange potential has a different dependence o
density for different multiplets.

The method described in Sec. IV makes it possible
calculate the one-electron and total energies.~Details can be
found in Refs.@13,12#.! Table I–III present the results for th
multiplets 3P, 1D, and 1S of the C atom. For comparison
the Hartree-Fock values@24# are also included in Table I
The exchange-only density functional and the Hartree-F
total energies are very close together, the latter being so
what lower, as is expected. However, the one-electron e
gies are different~except the highest orbital energies! @13#.
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APPENDIX

It can be easily shown that for a spherically symmet
case and equal weighting factors and supposingLS coupling,
the Kohn-Sham equations have a very simple form. In t
case the noninteracting kinetic energy is given by

Ts5tr $D̂s
GT̂%. ~A1!

Substituting Eqs.~11! and ~12! into Eq. ~A1!, we obtain

Ts5 (
g51

gG

wg(
k

(
m

cg,k
G* cg,m

G

on-
e
-
b-
x-
r

he
e.

the

o

k
e-
r-

s
t

is

3E Fk* S 2(
i 51

N
1
2 ¹ i

2DFmdx1•••dxN . ~A2!

The Slater determinantsFk are built of one-electron orbitals

uj
G5Pnl

G Ylml
sms

, ~A3!

corresponding to the given electron configuration.Pnl
G are

radial wave functions with quantum numbersn and l , Ylml

are the spherical harmonics, andsms
stands for the spin

eigenfunction. The Slater determinantsFk andFm may dif-
fer only in orbitals of the open shells; that is, in the quantu
numbersml and ms . Taking into consideration that th
spherical harmonics are eigenfunctions of the Laplacian
the orthogonality of the wave functions in Eq.~A3! we no-
tice that the integrals taken with different determinants d
appear in Eq.~A2!. So the noninteracting kinetic energy
given by

Ts5 (
g51

gG

wg(
k

ucg,k
G u2(

j 51

N

lk, j
G ^uj

Gu2 1
2 ¹2uuj

G&. ~A4!

Now, the occupation numberslk, j
G do not depend onk, be-

cause we have the same electron configuration.~e.g., in the
case studied in Sec. V we havep2; i.e., the occupation num
bers are 2 for thep electrons in each determinant.! Making
use of the orthogonality of the wave functionsCs,g

G and the
equality of the weighting factorswg we arrive at Eq.~23!.

Equation ~24! can be similarly derived. The density i
given by

%G5 (
g51

gG

wg(
k

(
m

cg,k
G* cg,m

G E Fk* Fmds1dx2•••dxN .

~A5!

Taking into account thatFk and Fm should correspond to
the same quantum numbersML andMS and the orthogonal-
ity of the wave functions in Eq.~A3!, we arrive at Eq.~24!.
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