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Kohn-Sham equations for multiplets
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Kohn-Sham equations are derived for lowest-lying multiplets. A recently proposed method of the author is
used to construct exchange potentials of multiple24.050-294{@8)08902-1

PACS numbdps): 31.15.Ew

[. INTRODUCTION disjoint subspaces with different symmetries. The variation
is done over a subspa@® of a given symmetnf". This
The density-functional theory was originally developedsubspace is spanned by a set of wave functions of the given
for the ground statgl]. It can be applied only for the lowest- symmetryl’. The dimension of the subspace is equal to the
energy state in each symmetry cld8% The symmetry prob- degeneracygy. In this case the constrained-search formal-
lem in the density-functional theory was analyzed by severalsm can be used as follows:
authors[3-6].
The multiplet structure was already treated using the P o 1o e T
density-functional theory. The most important approaches E'le me; W (W |H[W)
were proposed by Bagus and Benné&tt Ziegler, Rauk, and st
Baerend$8], von Barth[9], and Wood 10]. All these meth- ar
{ min >, w(¥ |A[w)
sl 771

ods have the same feature of not being completely within the =min

frame of the density-functional theory. Recently, the method ol

of fractionally occupied states of Gross, Oliveira, and Kohn

[11] was used to treat the multiplet problg2], and the — inl ETF AT r

exchange potential was determined for ensembles of low- —m|rn[F [ Hf @ (r)v(r)dr], @

lying multiplets.
In this paper another way of treating the multiplet prob-where the weighting factons,, should satisfy the conditions

lem is proposed. GQting [6] showed via the constrained

search approach how the density-functional theory can be gr

formalized for the lowest-energy state in each symmetry 1= W, 3

class. Here, instead of wave functions, density matrices are

used. The constrained search is done not on the wave fung;, 4

tions of a given symmetry, but on “subspace density matri-

ces” constructed from the wave functions of the given mul- W.=0. (4)

tiplet.
Recently, a method determining the exchange ofn principle, any set of weighting factoxs,, satisfying con-

exchange-correlation potential in the knowledge of the denlitions (3) and (4), can be usedv is the external potential

sity was proposeff13]. (Similar approaches were introduced and

by Almbladh and Pedrozpl4], Stott and co-worker§l5],

e

Parr and co-workergl6], van Leeuwen and Baerenfik7], _—_ L e .
and Goling [18].) This method is now applied to obtain the F'[e ]= min 21 W (V| T+ Ved [ P7). (5
exchange potential for multiplets. sh—el 77

T and V. are, respectively, the kinetic and the electron-

Il. HOHENBERG-KOHN THEOREM FOR MULTIPLETS . oo
electron repulsion operators. The density is given by

Consider the lowest-lying solutions of the symmelrpf

the Schrdinger equation )

ol'= 21 w, [ |} |2ds;dx, - - dxy, (6)
=

AW =Eg|¥})  (y=12,...9r), (1)

where x stands for both the coordinates and the spin. The
wheregy is the degeneracy. For case of simplicity, only onesuperscripf™ in o' and the subspace density matrix denotes
index is used to denote the symmetry both in spin and ordithat they are constructed from wave functions that belong to
nary space. The subscript 0 in the eneEd;yemphasizes the the subspac&'. The densities do not generally have the
fact that only the lowest-lying solution of symmetly is  symmetryl’. Their symmetry also depends on the weighting
regarded. In a recent paper, 1Gog [6] applied the con- factorsw, . One is free to select the values of the weighting
strained search technique to these wave functibgs Now  factorsw,,; they only should satisfy conditior{8) and(5). If
the space of all antisymmetric wave functions is divided intothe weighting factorsv, are all equal, the density has the
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property of transforming according to the first row of the derive a minimum principle for a functional ové. , it is
character table. So, for instance, for atoms, the density W'Ihecessary to define a functional overDF whose value is

be spherically symmetric. But it is possible to select other e|ther(a) always equal to the expectation value of an opera-

values for the weighting factons,, .
The functionalF [ o] can be expressed with the density tor O of the interacting system for some density mafbik,

matrix defined in subspacd, i.e., QIDI1=tr{D'O}; or (b) one can defineQ[D.]
o #tr{D" O}, but the minimum value o®[D'] coincide with
DF=> w, | ¥y W (7) ~ the minimum value of {D"O}. In the usual construction of
= 7 y !

the Kohn-Sham scheme, casgis followed. Here, however,
just like in the paper by Hadjisavvas and Theophi[d9],

as follows: the second case is used. So we define the following func-
A A A tional:
Fl'le"]= min tr{D"(T+ Vol (8)
s'—et To":Bl)= min tr{DFT} (14)
Then the generalized Hohenberg-Kohn theorem has a form Di—el

According to a theorem of Liep20], the minimum of the

rr T r r

Fle ]+f @ (Nu(rdr=Ey, ©) kinetic energy exists. This is a functional defined over all
noninteracting density matriceB. with the densityo'.

that can be readily proved as follows: Then another functional is defined:

F[QF]+j o' (Nuv(rydr= min tr{DF +Veo} F'lo";DL]1= min tr{DF(T+Vee)} (15)
ﬁe b —>g
+f o"(No(r)dr This can again be considered as a functional of noninteract-
ing density matrice®} . Let us denote by} i, and Dy,
= min tr{f)r(i-Jr\A/Jr\“/ee)}ZEr, f[he noninteracting and interaqting density matrices r_mmmiz-
& ol ing Egs.(14) and(15), respectively. We can also define the
following functionals:
(10)
where the last inequality follows from the variational prin- Telo;D51=t{D T —tr{Dg inT} (16)

ciple. The variational principle is valid here because we are
considering the lowest-lying energy level of symmefry and
There is an equality if and only if the trial densigy is equal . -
to the true density of the multipldt. R A 1 r r'
y P V£C[QF;D£]=tr{DFVee}—§f e e tr) (| e ,(| )dr dr’
r—r
11l. KOHN-SHAM EQUATIONS FOR MULTIPLETS 17

Following the method proposed by Hadjisavvas andW
Theophilou[19], the Kohn-Sham equations can be derived.
The noninteracting wave functions of symmetryare con-
structed as a linear combination of Slater determindnts

ith the kinetic-energy differencd. and the exchange-
‘correlation energy,., the total energy functional has the
form

- - Ee";D]1=Te[e";D¢]+Tc[e";D;]
wL=>c D, (y=12,...9p). (11)
+f e"(Nu(rdr+V,Je";Dy]
The noninteracting density matrix is defined as

or Qr(r o' (r' )

. rdr’. (18)
D£=7§=jl Wy|\1f£y><\lf£7 . (12) [r—r |

E'Te";DL] is a well-defined functional. It is really a func-
tional of the noninteracting density matrfkg, as all terms

- g - in Eq. (18) can be considered as a functional@f through

e"=2 w, | [Wg |Pdsidx,: - -dxy, (19 Egs.(14) and(15).
=t One can easily see that the following theorem holds: The

The functionals of the Kohn-Sham scheme are now defineghinimum of the functionaE"[@";D{] exists, and its value
over the set of noninteracting density matrié@s. Follow- IS equal toEg , the lowest energy of symmetry tyge The
ing Hadjisavvas and Theophildd 9], we can state that to density coming from the noninteracting density mamg

The density corresponding to the density mafix is o'
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minimizing the functionaE'[o";DL], is equal to the den- 15
sity corresponding to the true density matiix . L4t
To prove this theorem E@.8) is written in the form 3
E'To";De]=t{DiT}—tr{Df minT} +tr{DT(T+Veet V). 12
(19 11
Equations(14) and (15) lead to the inequalities S 10
[ s Ar 0.9
tr{D T}=tr{Dg ninl (20
’ 0.8
and 0.7
tr{ DT (T+Veet V)} =EL, (21) 061
0.5
respectively. These relations, combining with Ep), give 0.0 02 0.4 0.6 038 L0 12 L4
the inequality 7
E'lo";Dl1=EL. (22) FIG. 1. The exchange factotg (in a.u) of the C atom for the

multiplets P) (—), D (...), and 'S (- - -) as functions of the

The minimum ofE'[";D ] is El, as can readily be seen square root of the radiugn a.u).
from the equalities in Eq920), (21), and (22). From Egs.
(14) and (15) it follows that the density coming from the

c

Fop SV T

noninteracting density matri®’ , minimizing the functional Uxe( @73 én @9
E'[e";DL], is equal to the density corresponding to the true
density matrixD". is the exchange-correlation potential of the lowest-lying mul-

Now, the Kohn-Sham equations can be obtained from Egfiplet of symmetryl". An essential point in the theory is that
(14), carrying out the minimalization. Because of the factthe exchange-correlation potential, and so the Kohn-Sham
that W{  is a linear combination of several Slater determi-Potential, depends oh, and we have different potentials for
nants, the form of the Kohn-Sham equations is rather comdifferent multlplgts.(The fact that the exchange-correlation
plicated for an arbitrarily selected set of weighting facters potential must in general be different for each symmetry
and have to be derived separately for each desired case. F@ltiplet was first pointed out by Gunnarsson and Lundgvist
a spherically symmetric case and equal weighting factord2l: and later Weiner and Trickey21].) The exchange-
however, the Kohn-Sham equations have a very simple fornforrelation potential also depends on the weighting factors
as is shown in the Appendix. In this case the noninteractingVy -

kinetic energy is given by We end this section by emphasizing the difference be-
tween the present approach and the subspace theory of Theo-
N 1 (1, +1) philou [22], the method of fractionally occupied states of
Te=2, )\Jf Pi| —5(PD)"+ ———P{|dr, (29 Gross, Oliveira, and Kohn{11], and the symmetrized
=1 2r constrained-search procedure of ridw [6]. The present

where PjF and\; are the radial wave functions and the oc-
cupation numbers corresponding to the given configuration
respectively” denotes the second derivative with respect ta 1.4
r. The density

N
o= N(P])? (24) .
=1 T

in this particular case is spherically symmetric. The minimi-ts
zation of the noninteracting kinetic ener(®3), keeping the 0.9
density o' [Eq. (24)] fixed, leads to the radial Kohn-Sham 43
equations

0.7

li(l;+1) 0.6
1phyry i ply T pr=gl'pr 25
2 ( J) 2r2 i TV BT (25

0.5

where Inp

o (") FIG. 2. The exchange factorg (in a.u) of the C atom for the
- dr+vl(e";r), (26)  multiplets €éP) (—, D (...), and 1S (- - -) as functions of the
[r—r'] density(in a.uy).

ﬁ;m=un+f
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TABLE I. One-electron, kinetic, and total energies for the mul-  TABLE Il. One-electron, kinetic, and total energies for the mul-

tiplet 3P of the C atom calculated with the Hartree-Fdék] (HF) tiplet 'D of the C atom calculated with the Hartree-Fd@4] and

and the exchange-only density functiof@F) (this work methods  the exchange-only density functionéhis work) methods(in Ry).

(in Ry).

g HF DF
& HF DF
1s -22.703 -20.607
1s -22.651 -20.707 2s -1.437 -1.398
2s -1.411 -1.505 2p -0.763 -0.763
2p -0.867 -0.867 T 75.264 75.259
T 75.377 75.372 E -75.263 -75.258
E -75.377 -75.372

known, the exchange and the exchange-correlation potentials
method can be considered a generalization of the subspaeee calculated as follows: Starting out from an appropriate
theory of Theophilodi22]. Here the space of all antisymmet- (e.g., a local densiypotential, the Kohn-Sham equations are
ric wave functions is divided into disjoint subspaces withsolved, and the density of the first iteration is calculated. The
different symmetries, and the variation is done over a subpotential of theith iteration can be given by
spaceS' of a given symmetnf. In the subspace theory of

Theophilou[22], subspaces are constructed over wave func- of

tions of all kinds of symmetries. However, in a recent paper Vi =V = (28)

[23] considering noninteracting systems, he mentioned the (i-1)

advantages of constructing subspace densities from all eigen-

states of a given symmetry. and an appropriate damping is applied to obtain a stable
Comparing the present approach with the method of fraceonvergence. Then the Kohn-Sham potential of the second

tionally occupied states of Gross, Oliveira, and Kdid], iteration is constructed. The process goes on until the density

the main difference is that, in an ensemble-constraineequals the input density. If the input density is the exact
search, the search is done over all density matrices whictlensity, the exact Kohn-Sham potential and the exact
give a certain density, while here the search is over a subexchange-correlation potential are obtained. If the input den-
space of a given symmetry. There is a similarity in the factsity is the Hartree-Fock density a potential very close to the
however, that the construction contains weighting factors irexact exchange potential is gained. Here, the exchange po-
both methods. The freedom in selecting the value of thdentials for multiplets are calculated from the Hartree-Fock
weighting factors may come useful in practice. It has thedensitieq24].

consequence, however, that the exchange-correlation poten-
tial depends on these weighting factors.

There are several differences between the present method
and the symmetrized constrained-search procedure of Go The exchange potentials are studied for the multiplets
ling [6]. In the latter approach, the search is also over thé’P, D, and!S for the atom C. The exchange potentials are
subspace of all antisymmetric wave functions of a givenwritten in the form
symmetry. However, the wave functions do not have to give
a certain density; only the totally symmetric part of the den- . . o3
sity is specified. The Kohn-Sham wave function has the Uyl @ )=—3a 8¢
same symmetry as the corresponding full interacting wave

function. In the present method, on the other hand, densit;f.he factorsa® are functions of the radial distange The

matrices and not wave functions are considered both in the T . A
. : : ; . exchange factorg:' for the atom C is presented in Fig. 1
interacting and noninteracting systems. This approach havsersus the square of the radial distance. The ugelid)
the advantage that with equal weighting factors the density q ' pel

has the symmetry of the external potential.

V. RESULTS AND DISCUSSION

13
(29

TABLE IIl. One-electron, kinetic, and total energies for the
multiplet 'S of the C atom calculated with the Hartree-Fd@d]
IV. EXCHANGE POTENTIAL FOR MULTIPLETS and the exchange-only density-function@his work methods
. L . .. (in Ry).
There is a growing interest in determining the exact ex-
change, exchange-correlation, and Kohn-Sham potentials in = DF
the knowledge of the densityl4—18. The present author :
has also proposed a methdd] that enables one to calculate
these potentials if the density is known. The method has also 1s -22.782 -20.481
been generalized to ensemble stgfed. Now we show that 2s -1.479 -1.252
it can be applied to the lowest-lying multiplets of each sym- 2p -0.620 -0.623
metry class. T 75.101 75.099
The method proposed earlier is outlined for the present g -75.099 -75.094

problem. If the density" of the multiplet of symmetny" is
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N

line is for 3P, the middle(point) line is obtained for'D, and
qua’; > %Viz)fbﬂdxl--de. (A2)
i=1

the lower function arises fromS (dashed ling

These figures show a shell structug€or the ground and
ensemble states the shell structure has already been demon-
strated 13,12).) The fact that the exchange potentials behaveThe Slater determinantg, are built of one-electron orbitals,
similarly for the multiplets suggests that approximating ex-
pressions for these potentials might also be similar. Prob- L =Py o
ably, a small change in the presently used ground-state ex- j i Vim Omgs
change functionals might lead to a good approximation for
multiplets. corresponding to the given electron configuratiétl, are

Figure 2 presents the factar as a function of the den- radial wave functions with quantum numbersandl, Y,

f |
sity. The shell structure can also be clearly seen. Though th&re the spherical harmonics, amg, stands for the spin
curves are very close together, they are not exactly the same, ¢ . he S| d .S b dd dif
So the exchange potential has a different dependence on t geniunction. The Slater determinaxiig and®, may dit-
density for different multiplets er only in orbitals of the open shells; that is, in the quantum

The method described in Sec. IV makes it possible tdﬁumbgrsm and M. Taki.ng into _consideration that. the
calculate the one-electron and total energiBetails can be  SPherical harmonics are eigenfunctions of the Laplacian and
found in Refs[13,12].) Table I-IIl present the results for the 1€ orthogonality of the wave functions in EGi3) we no-
multiplets 3P, D, and 1S of the C atom. For comparison, tice that. the integrals taken Wl'th dlﬁerent dgtermmants Q|s-
the Hartree-Fock valuek4] are also included in Table |. @PPear in EQ(A2). So the noninteracting kinetic energy is

The exchange-only density functional and the Hartree-FoclIven by

(A3)

total energies are very close together, the latter being some-
what lower, as is expected. However, the one-electron ener-

gies are differentexcept the highest orbital energig¢43].
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APPENDIX

It can be easily shown that for a spherically symmetric

case and equal weighting factors and suppoki8goupling,

g
Ts= 2

N

2, Wi 2 [0 22 Nogujl— 2 VEu)). (Ad)
Now, the occupation numbemsl;j do not depend om, be-
cause we have the same electron configuraiiery., in the
case studied in Sec. V we hapé; i.e., the occupation num-
bers are 2 for the@ electrons in each determinaniaking
use of the orthogonality of the wave functioﬂ'.{’ , and the
equality of the weighting factore/,, we arrive at Eq(23).

Equation (24) can be similarly derived. The density is
given by

the Kohn-Sham equations have a very simple form. In this

case the noninteracting kinetic energy is given by
T=tr {DLT}. (A1)
Substituting Eqs(11) and(12) into Eq. (A1), we obtain

ar
Ts= ;1 WVE 2 CI;V*KCl;,M

K p

o'=

y=1

WyEK % chxct f DX D, dsydx,- - - dxy.
(A5)
Taking into account tha®, and ®, should correspond to

the same quantum numbdvl, andM g and the orthogonal-
ity of the wave functions in EqA3), we arrive at Eq(24).
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