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Using a quantum computer to investigate quantum chaos

Rüdiger Schack*
Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom

~Received 12 May 1997!

We show that the quantum baker’s map, a prototypical map invented for theoretical studies of quantum
chaos, has an efficient realization in terms of quantum gates. Chaos in the quantum baker’s map could be
investigated experimentally on a quantum computer based on only three quantum bits.
@S1050-2947~98!08102-5#
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Since the discovery that a quantum computer can in p
ciple factor large integers in polynomial time@1,2#, quantum
information has become a major theoretical and experime
research topic, focusing on properties, applications, gen
tion, and preservation of highly entangled quantum sta
@3#. Although it is not clear if a full-scale quantum comput
will ever be realized@4,5#, experiments with quantum gate
are being performed at present@6–9#. It is important to de-
vise applications for early quantum computers that are in
pable of large-scale computations such as factoring.

Early quantum computers appear to be well suited
study the dynamics of simple quantum maps. The quan
baker’s map@10#, one of the simplest quantum maps used
quantum chaos research, has been extensively studied i
cent years@11–16#. Hannayet al. @17# have proposed a re
alization of the baker’s map in classical optics, which allo
them to understand its quantization in terms of the relati
ship between ray and wave optics. Here we describe a g
ine quantum system whose dynamics is governed by
quantum baker’s map. As a consequence of recent prog
in the field of quantum computing@6–9#, an experimental
realization of the quantum baker’s map seems possible in
near future.

Any unitary operator can be approximated by a seque
of simple quantum gates@18–20#. The main result of this
paper is that the quantum baker’s map can be realize
terms of quantum gates in a particularly simple and effici
way. Similar to the quantum Fourier transform, simulati
the quantum baker’s map on a quantum computer is ex
nentially faster than a simulation on a classical compute

The quantum baker’s map displays behavior of fun
mental interest even for a Hilbert space of small dimensi
Numerical simulations@13# in D516 dimensional Hilbert
space suggest that a rudimentary quantum computer b
on as few as three quantum bits~qubits! ~i.e., three two-state
systems spanningD58 dimensional Hilbert space! could be
used to study chaos in the quantum baker’s map. In part
lar, it may be possible to find experimental evidence for h
persensitivity to perturbation, a proposed informatio
theoretical characterization of quantum chaos@13,21–23#.

The classical baker’s transformation@24# maps the unit
square 0<q,p<1 onto itself according to

~q,p!°H ~2q, 1
2 p! if 0<q< 1

2

@2q21,1
2 ~p11!# if 1

2 ,q<1.
~1!
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This corresponds to compressing the unit square in thp
direction and stretching it in theq direction, while preserving
the area, then cutting it vertically, and finally stacking t
right part on top of the left part, in analogy to the way
baker kneads dough.

To define the quantum baker’s map@10#, we quantize the
unit square following@11,25#. To represent the unit square i
D-dimensional Hilbert space, we start with unitary ‘‘dis
placement’’ operatorsÛ and V̂, which produce displace
ments in the ‘‘momentum’’ and ‘‘position’’ directions, re
spectively, and obey the commutation relation@25#

ÛV̂5V̂Ûe, ~2!

whereeD51. We choosee5e2p i /D. We further assume tha
V̂D5ÛD51, i.e., periodic boundary conditions. It follow
@11,25# that the operatorsÛ and V̂ can be written as

Û5e2p i q̂, V̂5e22p i p̂. ~3!

The position and momentum operatorsq̂ and p̂ both have
eigenvaluesj /D, j 50, . . . ,D21.

In the following, we restrict the discussion to the ca
D52L, i.e., the dimension of Hilbert space is a power of
For consistency of units, let the quantum scale on ‘‘pha
space’’ be 2p\51/D522L. A transformation between the
position basis$uqj&% and the momentum basis$upj&% is ef-
fected by the discrete Fourier transformFL8 , defined by the
matrix elements

~FL8 !k j5^pkuqj&5A2p\e2 ipkqj /\5
1

AD
e22p ik j /D. ~4!

There is no unique way to quantize a classical map. H
we adopt the quantized baker’s map introduced by Bal
and Voros@10# and defined by the matrix

T85FL8
21S FL218 0

0 FL218
D , ~5!

where the matrix elements are to be understood relativ
the position basis$uqj&%. Saraceno@11# has introduced a
quantum baker’s map with stronger symmetry properties
using antiperiodic boundary conditions, but in this article w
restrict the discussion to periodic boundary conditions
used in@10#.
1634 © 1998 The American Physical Society
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The discrete Fourier transform used in the definition
the quantum baker’s map~5! plays a crucial role in quantum
computation and can be easily realized as a quantum netw
using simple quantum gates. The following discussion of
quantum Fourier transform follows@2# closely. TheD52L

dimensional Hilbert space modeling the unit square can
realized as the product space ofL qubits ~i.e., L two-state
systems! in such a way that

uqj&5u j L21& ^ u j L22& ^ ••• ^ u j 0&, ~6!

where j 5( j k2
k, j kP$0,1% (k50, . . . ,L21), and each qu-

bit has basis statesu0& and u1&.
To construct the quantum Fourier transform, two ba

unitary operations orquantum gatesare needed: the gateAm
acting on themth qubit and defined in the basis$u0&,u1&% by
the matrix

Am5
1

A2
S 1 1

1 21D ~7!

and the gateBmn operating on themth and nth qubits
(m,n) and defined by

Bmnu j L21& ^ ••• ^ u j 0&5eifmnu j L21& ^ ••• ^ u j 0&, ~8!

where

fmn5H p/2n2m if j m5 j n51

0 otherwise.
~9!

In addition we define the gateSmn that swaps the qubitsm
andn.

The discrete Fourier transformFL can now be expresse
in terms of the three types of gates as
on
r

A

f

rk
e

e

c

FL5S3~A0B01•••B0,L21!3•••~AL23BL23,L22BL23,L21!

3~AL22BL22,L21!3~AL21!, ~10!

where

S5H S0,L21S1,L22•••SL/221,L/2 for L even

S0,L21S1,L22•••S~L23!/2,~L11!/2 for L odd
~11!

reverses the order of the qubits. The quantum baker’s m
~5! is then given by

T5FL
21~ I ^ FL21!, ~12!

whereFL21 acts on theL21 least significant qubits andI is
the identity operator acting on the most significant qubit. T
gates corresponding to the bit-reversal operatorS can be
omitted if the qubits in the tensor product~6! are relabeled
after each execution ofFL or FL21.

In D58523 dimensional Hilbert space, one iteration
the quantum baker’s map is performed by the short seque
of gates

T5S02A0B01
† B02

† A1B12
† A2S01A0B01A1 . ~13!

This implementation of the quantum baker’s map can
viewed in two complementary ways. On the one hand
shows that the quantum baker’s map can be efficiently sim
lated on a quantum computer. A 30-qubit quantum compu
could perform simulations that are virtually impossible
present-day classical computers. On the other hand, an i
tion of the gate sequence~12! on anL-qubit quantum com-
puter is a physical realization of the quantum baker’s m
This opens up the possibility of an experimental investig
tion of chaos in a physical system in a purely quantum
gime.
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