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Using a quantum computer to investigate quantum chaos

Rudiger Schack
Department of Mathematics, Royal Holloway, University of London, Egham, Surrey TW20 OEX, United Kingdom
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We show that the quantum baker’'s map, a prototypical map invented for theoretical studies of quantum
chaos, has an efficient realization in terms of quantum gates. Chaos in the quantum baker's map could be
investigated experimentally on a quantum computer based on only three quantum bits.
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PACS numbgs): 03.67.Lx, 03.65.Sq, 05.45b, 89.70+c

Since the discovery that a quantum computer can in prinThis corresponds to compressing the unit square inpthe
ciple factor large integers in polynomial tinig,2], quantum  direction and stretching it in the direction, while preserving
information has become a major theoretical and experimentahe area, then cutting it vertically, and finally stacking the
research topic, focusing on properties, applications, generaight part on top of the left part, in analogy to the way a
tion, and preservation of highly entangled quantum statepaker kneads dough.

[3]. Although it is not clear if a full-scale quantum computer  Tq define the quantum baker's mglo], we quantize the
will ever be realized4,5], experiments with quantum gates ynjt square followind11,25. To represent the unit square in
are being performed at preseii-9. It is important to de-  p_gimensional Hilbert space, we start with unitary “dis-
vise applications for early quantum computers that are inca- . ~ ~ ) )
pable of large-scale computations such as factoring. placement” operatord) and V, which produce displace-

Early quantum computers appear to be well suited tgn"€Nts in the “momentum” and “position” directions, re-
study the dynamics of simple quantum maps. The quanturfiPectively, and obey the commutation relat[@3)
baker's magd 10], one of the simplest quantum maps used in A n oA
quantum chaos research, has been extensively studied in re- UV=VUEe, ()
cent yeard11-16. Hannayet al. [17] have proposed a re- b 2mliD
alization of the baker’s map in classical optics, which allowsWheree~=1. We choose=e“™"". We further assume that
them to understand its quantization in terms of the relationV°P=UP=1, i.e., periodic boundary conditions. It follows
ship between ray and wave optics. Here we describe a genpt1 25 that the operator) andV can be written as
ine quantum system whose dynamics is governed by the
guantum baker’'s map. As a consequence of recent progress 0=e2”“3, V=g 27 3)
in the field of quantum computinf6—9], an experimental

realization of the quantum baker’'s map seems possible in thf"he position and momentum operatarsand p both have

near future. ) eigenvalueg/D, j=0,... D—-1.
Any unitary operator can be approximated by a sequence™ ", following, we restrict the discussion to the case

of simple quantum gategl8-2(. The main result of this =2L, i.e., the dimension of Hilbert space is a power of 2.

paper is that the quantum baker's map can be realized i - ¢ units. let th | “oh
terms of quantum gates in a particularly simple and efficient ©" consistency ot units, let the quantum scale on “phase

way. Similar to the quantum Fourier transform, simulatingSPace” be 2rfi=1/D=2"". A transformation between the

the quantum baker's map on a quantum computer is expd?osition basis|q;)} and the momentum bas{$p;)} is ef-

nentially faster than a simulation on a classical computer. fected by the discrete Fourier transfoffj, defined by the
The guantum baker's map displays behavior of fundaimatrix elements

mental interest even for a Hilbert space of small dimension.

Numerical simulationd13] in D=16 dimensional Hilbert , I ki

space suggest that a rudimentary quantum computer based (FO=(pla;)= V2mhie” P /ﬁ:\/_ﬁe 2midib. (4

on as few as three quantum bitpubit9 (i.e., three two-state

systems spannin@ =8 dimensional Hilbert spageould be There is no unique way to quantize a classical map. Here

lar, it may be possible to find experimental evidence for hy-anq vorog[10] and defined by the matrix
persensitivity to perturbation, a proposed information-

theoretical characterization of quantum ch§b3,21-23. F,_, O
The classical baker's transformati¢84] maps the unit T’=FL1< , ) (5)
square B=q,p=<1 onto itself according to 0 FLoa
(20,3 p) if 0<qg= 3 where the matrix elements are to be understood relative to
(q,p)— (1)  the position basig|q;)}. Saracend11] has introduced a
[29—-135(p+1)] if 3<qg<L1. quantum baker’'s map with stronger symmetry properties by

using antiperiodic boundary conditions, but in this article we
restrict the discussion to periodic boundary conditions as
*Electronic address: r.schack@rhbnc.ac.uk used in[10].
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The discrete Fourier transform used in the definition of F| =Sx (A;By;- - Bor_1)X - (AL_3BL 31 2B 31 1)
the quantum baker’'s ma) plays a crucial role in quantum
computation and can be easily realized as a quantum network ~ X(AL—2Br—21 —1) X (AL-1), (10
using simple quantum gates. The following discussion of th‘?/vhere
quantum Fourier transform follow|2] closely. TheD=2"

dimensional Hilbert space modeling the unit square can be B Sor-1S1-2" " -Sip—1L2 for L even

realized as the product space lofqubits (i.e., L two-state SoL_1S10-2--Si_ay2w+1y2 for L odd

systemg in such a way that (11)
lap=liL-0®ljiL-2)®---®ljo), (6)  reverses the order of the qubits. The quantum baker's map

(5) is then given by
wherej=3j,2% j,e{0,1} (k=0,...L—1), and each qu- .
bit has basis statd®) and|1). T=F_(I®F-y), (12)
To construct the quantum Fourier transform, two basi
unitary operations oguantum gatesre needed: the gate,
acting on themth qubit and defined in the bagif0),|1)} by

SwhereF L1 acts on the_—1 least significant qubits aridis
the identity operator acting on the most significant qubit. The
gates corresponding to the bit-reversal oper&ocan be

the matrix omitted if the qubits in the tensor produ@) are relabeled
1(1 1 after each execution d¥f, or F| _;.
Am:_( ) 7) In D=8=23 dimensional Hilbert space, one iteration of
J2i1 -1 the quantum baker’'s map is performed by the short sequence
of gates
and the gateB,,, operating on themth and nth qubits J
(m<n) and defined by T=S0A0BY1BiAIBIA2S01A0Bo1A; (13

BunljL_1)® - ®|joy=€¢m|j _)®---®|jo), (8  This implementation of the quantum baker's map can be
viewed in two complementary ways. On the one hand, it

where shows that the quantum baker’s map can be efficiently simu-
S lated on a quantum computer. A 30-qubit quantum computer
w2 jn=ja=1 could perform simulations that are virtually impossible on
Pmn= 0 otherwise. ©) present-day classical computers. On the other hand, an itera-

tion of the gate sequendé&?2) on anL-qubit quantum com-
In addition we define the gat8,,, that swaps the qubits puter is a physical realization of the quantum baker's map.

andn. This opens up the possibility of an experimental investiga-
The discrete Fourier transforff, can now be expressed tion of chaos in a physical system in a purely quantum re-
in terms of the three types of gates as gime.
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