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We improve previously proposed conditions each measure of entanglement has to satisfy. We present a class
of entanglement measures that satisfy these conditions and show that the quantum relative entropy and Bures
metric generate two measures of this class. We calculate the measures of entanglement for a number of mixed
two spin-1/2 systems using the quantum relative entropy, and provide an efficient numerical method to obtain
the measures of entanglement in this case. In addition, we prove a number of properties of our entanglement
measure that have important physical implications. We briefly explain the statistical basis of our measure of
entanglement in the case of the quantum relative entropy. We then argue that our entanglement measure
determines an upper bound to the number of singlets that can be obtained by any purification procedure.
[S1050-294{@8)03202-9

PACS numbdps): 03.67—a, 03.65.Bz

I. INTRODUCTION sented here is an improvement over the one give6jn
It should be noted that in much the same way we can
It was thought until recently that Bell’s inequalities pro- calculate the amount of classical correlations in a state. One
vided a good criterion for separating quantum correlationgvould then define another subset, namely, that of all product

(entanglementfrom classical ones in a given quantum state.states that do not contain any classical correlations. Given a
While it is true that a violation of Bell's inequalities is a disentangled state one would then look for the closest uncor-

signature of quantum correlatiorfeonlocality, not all en-  related state. The distance could be interpreted as a measure
tangled states violate Bell's inequalitigs]. So, in order to of classical correlations. In addition to many analytical re-
completely separate quantum from classical correlations 8ults we also explain how to calculate efficiently using nu-
new criterion was needed. This also initiated the search int§erical methods our measure of entanglement of two spin-
the related question of the amount of entanglement containelf2 particles. We present a number of examples and prove
in a given quantum state. There are a number of “good”Several properties of our measure that have important physi-
measures of the amount of entanglement for two quanturfial consequences. To illuminate the physical meaning behind
systems in a pure statsee[2] for an extensive presenta- the above ideas we present a statistical view of our entangle-
tion). A “good” measure of entanglement for mixed states Ment measure in the case of quantum relative entfapy
is, however, very hard to find. In an important work BennettWe then relate our measure to a purification procedure and
et al.[3] have recently proposed three measures of entangléise it to define a reversible purification. This reversible pu-
ment (we will discuss the entanglement of formation and'ification is then linked to the notion of entanglement
distillation in more detail later in this papefheir measures through the idea of distinguishing two classes of quantum
are based on concrete physical ideas and are intuitively eagjates. We also argue that the measure of entanglement gen-
to understand. They investigated many properties of thesgrated by the quantum relative entropy that we propose gives
measures and calculated the entanglement of formation for a
number of states. More recently, Hill and Wootters have pro-
posed a closed form for the entanglement of formation for
two spin-1/2 particleg4]. Uhlmann’s recent work implies
that the entanglement of formation can also be calculated
numerically in an efficient way for those cases that are not TSl ke P
analytically known[5]. N

We have recently shown how to construct a whole class
of measures of entanglemdi®, 7], and also imposed condi-
tions that any candidate for such a measure has to spéikfy
In short, we consider the disentangled states that form a con-
vex subset of the set of all quantum states. Entanglement is
then defined as a distan@eot necessarily in the mathemati-

cal sensgfrom a given state to this subset of disentangled rig. 1. The set of all density matricéSis represented by the
states(see Fig. 1 An attractive feature of our measure is guter circle. Its subset, a set of disentangled stitgis represented
that it is independent of the number of systems and theipy the inner circle. A state belongs to the entangled states, afid
dimensionality, and is therefore completely gendi@l7]. s the disentangled state that minimizes the distad¢e||p), thus
We present here two candidates for measuring distances @8presenting the amount of quantum correlations oin State
our set of states and prove that they satisfy improved condip} ® p} is obtained by tracing* over A andB. D(p*||p ® pg)
tions for a measure of entanglemétite third condition pre- represent the classical part of the correlations in the state
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an upper bound for the number (_)f single_t states that can be A®BipagAl @B
distilled from a given state. We find that in general the dis- PaE— P 2
tillable entanglement is smaller than the entanglement of cre- Tr(Ai®BipasAi ®By)

ation. This result was independently proven by Rains for ) ) o
Bell diagonal states using completely different methfgls ~ Where the denominator provides the necessary normalization.

. The rest of the Paper is _org_amzed as follows. S‘_E_Ct'on I A manipulation involving any of the above three elements
introduces the basis of purification procedures, conditions fOBr their combination we shall henceforth calparification

a measure of entanglement and our suggestion for a measytscedure It should be noted that the three operations de-
of entanglement. We aiso prove that thg quantum re!a}tlv cribed above are local. This implies that the entanglement
entropy and the Bures metric satisfy the imposed condltlongf the total ensemble cannot increase under these operations.
and can therefore be used as generators of measures of §li5yever, classical correlations between the two subsystems
tanglement. We compute our measure explicitly for SOM&,p e increased, even for the whole ensemble, if we allow
examples. In Sec. |l we introduce a simple numerlcalclassical communication. A simple example confirms this.
method to compute our measure of entanglement NUMery,hhose that the initial ensemble contains states
cally and we apply it to the case of two spin-1/2 systems. WﬁOA>®(|OB>+|lB>)/\/§- The correlationgmeasured by, e.g.,

pre_zsent a number of exa}mples of entanglement computatio ®n Neumann's mutual informatidi2,6]) betweenA andB
using the quantum relative entropy. In Sec. IV we present a

I . : are zero. Suppose thBt performs measurement of his par-
statistical basis for the quantum relative entropy as a measu Cles in the standard 0. 1 basis. If 1 is obtainBdcommu-
of disting?ishabilitly betwesn qganturr? st.atgs an\? her(ljce. Qicates this toA who th’en “rotat.es” his qubit to the state
an?il;gte? b%rtlltr?g Qtloeﬁzngffic?esr?cﬁylﬁrr]nggc;? mgii'mameen%”vfh).bOtherWIse they do nothing. The final state will there-
tangled pairs distilledof any purification procedure. We also ore be

show how to extend our measure to more than two sub-

systems.
p=13(]0a)(0a|®|0g)(0g| +]1a)(1al®|1g)(1g]), (3)

Il. THEORETICAL BACKGROUND

A. Purification procedures where the correlations are now InfRe., nonzerp So, the

There are three different ingredients involved in proce_classical content of correlations can be increased by perform-
dures aiming at distilling locally a subensemble of highly N9 local general measurements and classically communicat-

entangled states from an original ensemble of less entanglédd: _ ,
states. An important result was proved for pairs of spin-1/2 sys-
(1) Local general measurementtGM): these are per- €MS N [ig]: iall states that are not of the form
formed by the two partied and B separately and are de- Pas=ZiPipa®pg, WhereZip;=1 andp;=0 for alli, can
scribed by two sets of operators satisfying the completeneda€ distilled to a subensemble of maximally entangled states
relations=;A/A;=1 and 2;B/B;=1. The joint action of the USI"g only operations 1, 2, and @lhe states of the above
two is described by ;A;®B;=3;A;®X;B;, which is again fprm obviously remain of the same form under any purifica-
a complete general measurement, and obviously local. ~ tion procedurg The local nature of the above three opera-
(2) Classical communicatiofCC): this means that the tions implies that we define a disentangled state of two quan-

actions ofA andB can be correlated. This can be describedlUM SYStemsA and B as a state from which by means of
by acomplete measurement the whole spacA+ B and is local operations no subensemble of entangled states can be

not necessarily decomposable into a sum of direct productg{istilled. It should be noted that these states are sometimes
of individual operators(as in LGM). If pag describes the called separable in the existing literature. We also note that it
initial state shared betweehandB then the transformation IS N0t proven in general that if the state is not of this form

involving “LGM +CC” would look like then it can be purified. .
Definition 1 A statep,g is disentangled iff

P(ppe)= 2 AGBipaeA BB, (D)
_ i
where=,A'AB/B;=1i.e., the actions oA andB are “cor- pAB_Ei PiPA® P (4)
related.”
(3) PostselectiorPS is performed on théinal ensemble
according to the above two procedures. Mathematically this
amounts to the general measurement not being complete, i.&vhere, as before;;p;=1 andp;=0 for alli. Otherwise it is
we leave out some operations. The density matrix describingaid to be entangled. Note that all the states in the above
the newly obtained ensembithe subensemble of the origi- €xpansion can be taken to be pure. This is because @ach
nal oné has to be renormalized accordingly. Suppose thag¢an be expanded in terms of its eigenvectors. So, in the
we kept only the pairs where we had an outcome correspondbove sum we can in addition require that,J°=pj, and
ing to the operatorg; andB;, then the state of the chosen (pg)%=pg for all i. This fact will be used later in this section
subensemble would be and will be formalized further in Sec. Ill.



57 ENTANGLEMENT MEASURES AND PURIFICATION PROCEDURES 1621

B. Quantification of entanglement (E3) [3]. The physical basis of this measure presents the
In the previous section we have indicated that out of cerNUmMber of singlets needed to be shared in order to create a

tain states it is possible to distill by means of LGMLC+Ps ~ 9iven entangled state by local operations. We will discuss
a subensemble of maximally entangled stdtes call these this in greater detail in Sec. IV. It should also be added that
states entangled The question remains open about how Progress has been made recently in finding a closed form of

much entanglement a certain state contains. Of course, thi€ entanglement of creatigd]. N
question is not entirely well defined unless we state wha Related to this measure is the entanglement of distillation
physical circumstances characterize the amount of entangle3- It defines the amount of entanglement of a stats the
ment. This suggests that there is no unique measure of eRroportion of singlets that can be d_lstllled using a purifica-
tanglement. Before we define three different measures of edlon procedureBennettet al. distinguish one- and two-way
tanglement we state three conditions that every measure GPmmunication which give rise to two different measures,
entanglement has to satisfy. The third condition represents Ut we will not go into that much detail; we assume the most

generalization of the corresponding onel&). general two-way communicatipnAs such, it is dependent
(E1) E(0)=0 iff o is separable. on the efficiency of a particular purification procedure and
(E2) Local unitary operations leavE(o) invariant, i.e., N be made more general only by introducing some sort of

— o)l universal purification procedure or asking for the best state-
E(o)=E(Us®UgoUa® Ug). ependent purification procedure. We investigate this in Sec.
. We now introduce our suggestion for a measure of an
amount of entanglement. It is seen in Sec. V that this mea-
sure is intimately related to the entanglement of distillation
> tr(o)E(o;/tr(o)<E(0), (5) by providing an upper bound for it.
If D is the set of all disentangled states, the measure of
entanglement for a state is then defined as

(E3) The expected entanglement cannot increase und
LGM+CC+PS given bysVIv,=1, i.e.,

whereg;=VaV, .
Condition (E1) ensures that disentangled and only disen-
tangled states have a zero value of entanglement. Condition
(E2) ensures that a local change of basis has no effect on the
amount of entanglement. Conditidi3) is intended to re-
move the possibility of increasing entanglement by perform-

ing local measurements aided by classical communication. WhereD is any measure Gﬂistance(not necessar”y a met-

is an improvement over the conditidB) in [6], which re- i) petween the two density matricgs and o such that
quired that E(2V;aV])<E(o). This condition (E3) is  E(o) satisfies the above three conditidE)—(E3) (see Fig.
physically more appropriate than that[i] as it takes into 1),

account the fact that we have some knowledge of the final Now the central question is what condition a candidate for
state. Namely, when we start withsystems all in the state D(ol|p) has to satisfy in order fofE1)—(E3) to hold for the

we know exactly whichm;=nXtr(o;) pairs will end up in  entanglement measure? We present here a set of sufficient
the states; after performing a purification procedure. There- conditions.

fore we can separately access the entanglement in each of the (F1) D(o||p)=0 with the equality saturated itF=p.

E(o):=min  D(al|p), (7)

peD

possible subensembles describedhy Clearly the total ex- (F2) Unitary operations leaveD(col|p) invariant, i.e.,
pected entanglement at the end should not exceed the origd(¢||p)=D(UoU T||UpUT)_
nal entanglement, which is stated (B3). This, of course, (F3 D(trpg-”trpp)sD(g-”p), where th is a partial trace.

does not exclude the possibility that we can select a suben- (F4) >piD(oi/pillpildi)<=D(ail|p;), where p;

semble whose entanglement per pair is higher than the origi-:tr(gi), gi=tr(p;), and o;=V,oV! and p, :VipViT (note

nal entanglement per pair. We emphasize that if we assumgatv/.’s are not necessarily logal

that E(o) is also convexas it, indeed, is in the case of the  (E5y D(ZiPioPi|[ZPipP;) =2iD(P;oPi[|PipPi),

quantum relative entropy presented later in the pag®n  \yhere P, is any set of orthogonal projectors such that

(E3) immediately implies thaE(EiViaViT)sE(a). On the PiP;=5,P;.

other hand, convexity oE(o) andE(Z;V,oV{)<E(o) do (F5b D(0®P,||[p®P,)=D(a||p) whereP,, is any pro-

not imply (E3), which also provides a reason for requiring jector.

(E3) rather than the condition if6]. We now introduce three Conditions(F1) and(F2) ensure thatE1l) and(E2) hold:

different measures of entanglement that obie$)—(E3). (F2), (F3), (F4), and (F5) ensure thatE3) is satisfied. The
First we discuss the entanglement of creafi8h Bennett  argument for the former is trivial, while for the latter it is

et al. [3] define the entanglement of creation of a sjatey ~ more lengthy and will be presented in the remainder of this

section.

Ec(p):= minY, p;S(ph), (6)
I C. Proofs

whereS(pp) = — trpalnp, is the von Neumann entropy and ~ We claim that(F2), (F3), (F4), and(F5) are sufficient for
the minimum is taken over all the possible realizations of thgE3) to be satisfied and hence need to prove that
state, pag=Z;pj| ¥j)( ;| with pp= trg(|¢i)(si]). The en-  (F2)—(F5)=(E3). If (F2), (F3), and (F5b) hold, then we
tanglement of creation satisfies all three conditiggd)—  can prove the following statement.
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Theorem 1For any completely positive, trace preserving
map®, given by®o=3V,oV! and=V/V;=1, we have that
D(®o||Pp)<D(o]|p).*

Proof. It is well known that a complete measurement can
alwaysbe represented as a unitary operati@artial tracing
on an extended Hilbert Spack®H,,, where dinH,=n
[10-12. Let{|i)} be an orthonormal basis i, and|a) be
a unit vector. So we define

W=Z Viali)eal. ®)

Then,W'W=1®P,,, whereP,=|a){a|, and there is a uni-
tary operatorU in H®H, such thatw=U(lgP,) [10].
Consequently,

U(A® P, )UT=2 VAVI®li)]], 9)
ij
so that
tr{U(Ae P U =] VAV]. (10

Now using (F3), then (F2), and finally (F5b) we find the
following:

D(tr,{U(0®P, U |tro{U(p2 P )UT) (1D
<DU(ocoP )UM|U(pe P, U (12
=D(a®P,|[p®P,) (13
=D(ol|p). (14)

This proves Theorem 1.

Corollary. Since for a complete set of orthonormal pro-
jectors P, Z;P;oP; is a complete positive trace preserving
map, then

2 D(P;oP;||PipP;)<D(0l|p). (15)

[The sum can be taken outside @853 requires that
D(E|P|0P|||E|P,ppl):E|D(P|O'P|||P|pP|)] Now from
(F2), (F3), (F5b), and Eq.(15) we have the following.

Theorem 2If o;=V;aV! then=D(a||p;))<D(0]|p).

Proof. Equations(8) and(9) are introduced as in the pre-
vious proof. From Eq(9) we have that

tr{l1o P,U(A®P, )UTI® P} =V,AV/, (16)

whereP;=i){i|. Now, from (F3), the corollary, andF5b) it
follows that

we frequently interchange th® and =V'V notations for one
another throughout this section.

V. VEDRAL AND M.
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> D(tr,{leP,U(ceP, U P}

Xtr{leP;U(peP,)UTle P} (17
<> D(I®PU(ceP,)UTIeP||1
I
®PU(poP, )UTI®P)) (18)
<D(U(s®P)UT[U(peP,)U") (19
=D(0®P,|[p®P,) (20
=D(al|p). (21)
This proves Theorem 2.
From Theorem 2 an(F4) we have
ol pi
> piD(E' —f)sDpr). (22)
I |

Now let E(a)=D(al|p*), i.e., let the minimum oD (o||p)
over all p e D be attained ap*. Then from Eq.(22),

|

Vip*V,
i

aj

Pi

E(a):=D(ol|p*)=2 piD(

=2 piE(oi/p) (23)

and(EJ) is satisfied. Note that in all the proofs fox(a||p)
we never use the fact that the completely positive, trace pre-
serving mapd is local. This is only used in the last inequal-
ity of Eq. (23) where LGM (+CC+PS maps disentangled
states onto disentangled states. This ensurepthit disen-
tangled and therefor® (o /pi||p}/qi)=E(a;/p;). So, the
need for local® arises only in Eq(23); otherwise all the
other proofs hold for a generd@. Note also that one can
prove, by the same methods, a slightly more general condi-
tion:

(E3*) The expected entanglement of the initial state
o"=0,® - ®0, cannot increase under LGMCCHPS
given byEViTVi=}L ie.,

E(c")=E(01® - ®0,)

= tr(V;a"VE(V,a"VI/tr(V,a"V])). (24)

However, in the following we will not make use of this gen-
eralization.

D. Two realizations of D(o,p)

In this section we show thdF1)—(F5) hold for the quan-
tum relative entropy and for the Bures metric, which as we
have seen immediately renders them generators of a good
measure of entanglement.
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1. Quantum relative entropy should be—say it is a disentangled state Then we show

We first prove (F1)—(F5) for the quantum relative en- thatthe grad.|entd/dx)S(o||(.1: X)p* +xp) for any pe D
tropy, i.e., when D(O’”p) S(O_Hp) _ Tr{o-(lna' Inp)} IS non-negative. However, |b was not a minimum the
(Note that the quantum relative entropy is not a true me,mcabove gradient would be strictly negative, which is a contra-
as it is not symmetric and does not satisfy the triangle in diction. Now we present a more formal profdf9] that ap-
equality. In the next section the reasons for this will becomd?!i€S t0 arbitrary dimensions of the two subsystems. An al-
clear. For further properties of the quantum relative entropy€native proof that also applies to arbitrary dimensions will
see[13-15.) PropertiesF1) and(F2) are satisfied16]. (F3) be given in Sec. Il. In the Appendlx we present a third proof
follows from the strong subadditivity property of the von that is restricted to two spin-1/2 systems but that can be
Neumann Entropy [11,16,17. Since =S(ai||p)) generalized to arbitrary dimensions.
=2p;S(ai/pillpi/ai) + Zpiinpi/g;_and Ep;inp /=0 (see Theorem 3 For pure states
[18] for proof) (F4) is also satisfied. Propert§Fs) can be = Znyn,/Pn,Pn,| &n,¥n,)(bn ¥ | the relative entropy of
proved to hold by inspectiofi1]. Now, a question arises as entanglement is equal to the von Neumann reduced entropy,
to why the entanglement is not defined asi.e.,E(o)=—2,pnnp,.

E(o)=min,.pS(p||o). Since the quantum relative entropy  Proof. For a>0, Ina=fg[(at—1)/(a+t)] dt/(1+t?), and

is asymmetric this gives a different result from the originalthus, for any positive operatoA, InA=[g[(At—1)/(A

definition. However, the major problem with this convention +t) dt/(1+1t?). Let f(x,p) =S(o|[(1—x)p* +xp). Then

is that for all pure states this measure is infinite. Although

this does have a sound statistical interpretatiee the next of . [ o(In[(1—x)p* +XP]—|nP*}}
S . : —(0,p)=—lim tr

section it is hard to relate it to any physically reasonable X X0 X

scheme(e.g., a purification procedureand, in addition, it

fails to distinguish between different entangled pure states. % . .

This is the prime reason for excluding this convention from = tf( Uf (p* +1) " (p* —p)(p* +1) dt)

any further considerations. The measure of entanglement 0

generated by the quantum relative entropy will hereafter be %

referred to as the relative entropy of entanglement. = 1—J tfo(p* +1) " 1p(p* +1)~1]dt

Properties of the relative entropy of entanglemerkor 0
pure, maximally entangled states we showed that the relative w
entropy of entanglement reduces to the von Neumann re- =1—f trf (p* +t) "o (p* +t) 1p]dt.
duced entropy6]. We also conjecturefb] that for a general 0 25
pure state this would be true. Now we present a proof of this (25)
conjecture. In short, our proof goes as follows: we alreadylake p* =X ,p,|bnn){ dnibn| (this is our guess for the
have a guess as to what the minimum for a pure state minimum). Then

(P*"'t)_lU(P*"'t)_l: E (pnl+t)_1|¢nlwnl><¢nlwnl| \/pnzpn3|¢n2wn2><¢n3wn3|(pn4+t)_1|¢n4¢n4>

ny,Ny,N3,Ny
X{bn,¥n,|
= 2[ (pn+t)_l \/pnpn’(pn’ +t)_l| ¢n¢n><¢n’¢n’|- (26)

Setg(p,q)=/5(p+1t) *Vpqg(q+t) dt. Then it follows thatg(p,p)=1 and, forp<gq,

1
g(pq)—J_f e qH)Q Sdt 27
J_ a 28
q p p
Lemma:0<g(p,q)<1 for all p,qe[0,1].
Proof. We know thatg(p,q) = pa/5(p+t) ~*(q+t) dt. But,
(P+0(q+1)=pa+t(p+a)+t?=pa+2t\pa+t?=(Vpa+1)?, (29

and so
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g(pn)s@ﬁ(@ﬂ)*zm:x (30)

Let p=|a){a|®|B){B| where|a)==a,|¢,) and B=3,b, i, are normalized vectors. Then

of ®
—(0,p)—1=— trU (p* +t) " to(p* +1) " Hdtp
oX 0

= tl’( Z g(pnlapn2)|¢n1'//n1< ¢n2¢n2|an3bn4a—nSb_n6|¢n3¢n4><¢n5‘r//n6|

Ny.Ny.N3,N4,N5,Ng

== n%z g(pnlaI:)nz)anzbnza_nlb_n1 (31
and
of 2 5 5
—(0p)=1/< > [y |lby,[lan,/[bn|=| X lanllbal | =X [aq*> |byl>=1. (32)
IX ny,ny 1 1 2 2 n n n
|
Thus it follows that ¢f/9x)(0,|aB){apB])=0. However, in Sec. Il D 2 we will see that measures that do
But any peD can be written in the form not satisfy(E4) can nevertheless contain useful information.
p=3irilad'B)a'B|  and SO ¢f/ox)(0,0)  We will discuss this point later in this paper.
=3iri(afl19x)(0a' B a'B'|)=0. We would like to point out another property of the rela-

Proposition:Let ® € H have Schmidt decompositig20]  tive entropy of entanglement that helps us find the amount of
entanglement. It gives us a method to construct from a den-
_ sity operatore with known entanglement a new density op-
|CD>_; \/E|‘Pﬂ'/’n> (33) eratorg’ with known entanglement.
Theorem 4lf p* minimizesS(a||p*) overp e D thenp*
and seto=|®){®|. ThenE(c)= —=,p,Inp,. is also a minimum for any state of the form
Proof. Sal|p*)=—3,p.Inp, so it is sufficient to prove  ox=(1=X)o+Xp*.
that S(ol||p)=S(a]|p*) for all peD. Suppose that Proof. Consider
S(a||p)<S(a||p*) for somep e D. Then, for O<x<1,
S(ayl[p) = S(ayl|p*) = tr{oxInp* — axInp} = —x tr(alnp)

f(x,0)=S(a][(1=x)p* +xp)=<(1—-x)S(a]|p*) +xS(a]|p) — (1= X)tr(p* Inp) + x tr(olnp*)

=(1-x)f(0,p)+xf(1,p). (34) +(1=x)tr(p*Inp*)
This implies =x{S(al|p)—S(a||p*)} +(1—x)
B X S(p*||p)=0. (37)
wsf(lm—f(o,pxo. (35)

This is true for anyp. Thusp* is indeed a minimum ofr, .
For completeness we now prove here thétr) is convex:

This is impossible since df/dx)(0,p0)=Ilim,_ o[ f(X,
3 1% (0) ol FX:p) Theorem 5. Ex;01+X,0,) <X1E(01) +X:E(07), where

—f(0,0]/x=0. This therefore proves the above proposition.
Therefore we have shown that for arbitrary dimensions offatXxe=1. ) )
the subsystems the entropy of entanglement reduces to the Proof. This property follows from the convexity of the
entropy of entanglement for pure states. This is, in fact, &uantum relative entropy in both argumefts]
very desirable property, as the entropy of entanglement is
known to be a good measure of entanglement for pure statesS(X101+X205||X1p1+Xop2) <X1S( 01| p1) +X2S( 05| | ).
In fact one might want to elevate Theorem 3 to a condition (39
for any good measure of entanglement, i.e.:
(E4): For pure states the measure of entanglement reducgow,
to the entropy of entanglement, i.e.,

E(0)=—tr{oalno,), (36) E(X101+X202) <S(X101+ X05|[X1pT +X2p3)

<x;S(o4||pT)+X,S( 05| p3
with oa=trg{o} being the reduced density operator of one 1(1flp1) HxeS(llp2)
subsystem of the entangled pair. =x1E(01) +x:E(0y), (39
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which completes our proof of convexity. This is physically a (F3) is a consequence of the fact tHag does not increase
very satisfying property of an entanglement measure. It saysnder a complete positive trace preserving . We can
that when we mix two states having a certain amount ofalso easily check that;qiF(o;/p;.pi/d;)=F(o;i,p;), from
entanglement we cannot get a more entangled state, i.e., sughere(F4) immediately follows as); [0,1]. (F5) is seen to
cinctly stated, “mixing does not increase entanglement.”be true by inspection. As conditiori§1)—(F5) are satisfied,
This is what is indeed expected from a measure of entanglat immediately follows that condition$E1)—(E3) are satis-
ment to predict. fied too.

As a last property we state that the entanglement of cre- In the following we present some properties of the Bures
ation E. is never smaller than the relative entropy of en-measure of entanglemel (o). First we show that for pure
tanglemente. We will show later that this property has the states we do not recover the entropy of entanglement.
important implication that the amount of entanglement that Theorem 7:For a pure statéy)= a|00)+ 8|11) one has
we have to invest to create a given quantum state is usually

larger than the entanglement that you can recover using Es(|)(¢])=4a*(1-a?). (42)
guantum state distillation methods.
Theorem 6. (o) =E(c)=min,_pS(a]|p). Proof. To prove Theorem 7 we have to show that the

Proof. Given a stater then by definition of the entangle- closest disentaggledz statede- | ¢>2< #| under the Bures met-
ment of creation there is a convex decomposidonSp;o;  iC is given byp* = a<00)(00 + £%[11)(11]. To this end we

with pure statesr; such that consider a slight variation aroung* of the form
pr=(1—N\)p* +\p wherep e D. Now we need to calculate
Ec(0)=2 piEc(ay). (40 d d
aDB(U“P)\)h:o:atr{\/\/;PA\/;}SO. (43

As the entanglement of creation coincides with our entangle-
ment for pure states and as our entanglement is convex ising the fact that/oc= o aso is pure we obtain
follows that

d d

d_)\DB(U||P>\)|>\:0:a\/a4+ﬁ4+)\(<¢|P|¢>_1)|>\:0$0-
Ec(0)=2> piEc(a))=2 piE(Ui)ZE(E piUi)IE(U% (44)

(42)

Using the closest statp* one then obtains Eq42). To

and the proof is completed. obtain the entanglement of an arbitrary pure state one first
The physical explanation of the above result lies in thehas to calculate the Schmidt decompositiafi] and then by

fact that a certain amount of additional knowledge is in-local unitary transformation transform the state to the form
volved in the entanglement of formation, which gives it a|)=«|00)+ 8|11). As local unitary transformations do not
higher value to the relative entropy of entanglement. Thischange the entanglement, we have therefore shown that the
will be explained in full detail in Sec. V. We add that the Bures measure of entanglement does not reduce to the en-
relative entropy of entanglemeB{( o) can be calculated eas- tropy of entanglement for pure states. The proof presented
ily for Bell diagonal state§6]. Comparing the result to those here can be generalized to many-dimensional systems but we
for the entanglement of creatid3] one finds that, in fact, do not state this generalization.
strict inequality holds. In general, we have unfortunately In fact, it is now easy to see the following.
found no “closed form” for the relative entropy of entangle-  Corollary. The Bures measure of entanglement for pure
ment and a computer search is necessary to find the mingtates is smaller than the entropy of entanglement, i.e., for
mum p*, for each giveno. However, we can numerically any pure stater,
find the amount of entanglement for two spin-1/2 subsystems

very efficiently using general methods independent of the Eg(o)<—{oalnoa}. (45
dimensionality and the number of subsystems involved )
which are described in the next section. Proof. One can see quickly that fare[0,1]

> Bures metric 40%(1-a®)<—ad’lna®—(1—a®)In(1—a?) (46
Another distance measure that leads to a measure of efrom which the corollary follows.
tanglement that satisfies the conditiq&s)—(E3) is induced As the Bures measure of entanglement does not satisfy
by the Bures metric. However, it will turn out that it does not condition (E4), i.e., does not reduce to the entropy of en-
satisfy condition(E4) and is therefore a less useful measure.tanglement for pure states, one might argue that it does not
In fact some people would say it is not a measure of enprovide a sensible measure of entanglement. However, it
tanglement at all, however, we believe that this very muchshould be noted that the Bures metric immediately gives an
depends on the questions one asks. upper bound on the following very special purification pro-
We now prove(F1)—(F5) for the Bures metric, i.e., when cedure. Assume that Alice and Bob are given EPR pairs, but
D(ollp)=Dg(o||p):=2—2\F(o,p), Where F(o,p) one pair at a time. Then they are allowed to perform any
:=[tr{Jpapt?)? is the so-called fidelitfor Uhimann’s  local operations they like, and then decide whether we keep
transition probability. Property(F1) follows from the fact the pair or discard it. Then, they are given the next EPR pair.
that the Bures metric is a true metric aff?) is obvious. The question is, how many pure singlet states they can pos-
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sibly distill out of such a purification procedure. The answerfinite, 2K_,p,=1, and, fork=1,... K, p,>0 anda,e A.

is immediately obvious from conditiofE3). The best that We immediately see that the set of disentangled stRtes
Alice and Bob can do is to have one subensemble with purig a convex hull of its pure states. This means that any state
singlets and all other subensembles with disentangled statgs. D can be written as a convex combination of the form
Then the probability to obtain a singlet is simply given by Sp, | é,#n){ dnibn|. However, there is now a problem in the
the Bures measure of entanglement for the initial ensembléyumerical determination of the measure of entanglement. We
As this is smaller than the entropy of entanglement we hav@ave to perform a search over the set of disentangled states
found the nontrivial, though not very surprising, result thatin order to find that disentangled state that is closest to the
this restricted purification procedure is strictly less efficientstate o of which we want to know the entanglement. But

than entanglement concentration describefRiry. how can we parametrize the disentangled states? We know
) that the disentangled states are of the form given by Defini-
3. Other candidates tion 1. However, there the number of states in the convex

A reasonable candidate to generate a measure of entang@mbinaﬂon is not limited. Therefore one could think that
ment is the Hilbert-Schmidt metric. Here we have thatwe have to look over all convex combinations with one state,
D(A||B)=||A—B||%=tr(A—B)?. (F1) follows from the then two states, then 1000 states, and so forth. The next
fact that||A—B]|| is a true metric, andF2) is obvious.(F3) theorem, however, shows that one can put an upper limit to
and (F4) remain to be shown to hold. We also believe thatthe number of states that are required in the convex combi-
there are numerous other nontrivial choicesi{A||B) (by nation. This is crucial for our minimization problem as it
nontrivial we mean that the choice is not a simple scaleshows that we do not have to have an infinite number of
transformation of the above candidateBach of those gen- Parameters to search over.
erators would arise from a different physical procedure in- Caratheodory’s theorem Let ACRN. Then any x
volving measurements conducted erand p* . None of the € CO(A) has an expression of the forex S/ p,a, where
choices could be said to be more important than any ather =) {p,=1, and, forn=1,... N+1, p,=0 anda,A.
priori, but the significance of each generator would have to A direct consequence of Caratheodory’s theorem is that

be seen through physical assumptions. To illustrate this poirany state inD can be decomposed into a sum of at most

further, let us take an extreme example. Define [ dim(H,)x dim(H,)]? products of pure states. So, for two
spin-1/2 particles there are at most 16 terms in the expansion
|1 A#B, of any disentangled state. In addition, each pure state can be
D(A[[B)= 0, A=B. described using two real numbers, so that there are altogether
at most 15-16X4=79 real parameters needed to com-
If entanglement is calculated using this distance, then pletely characterize a disentangled state in this case.
A random search over the 79 real parameters would still
L oéD, be very inefficient. However, we can now make use of an-
E(o)= 0, oeD. other useful property of the relative entropy, which is the fact

that it is convex. This means that we have to minimize a
This measure therefore tells us if a given stateis en-  convex function over the convex set of disentangled states. It
tangled, i.e., wherE(o)=1, or disentangled, i.e., when can easily be shown that any local minimum must also be a
E(o)=0. We can call it the “indicator measure” of en- global minimum. Therefore we can perform a gradient
tanglement. It should be noted that this measure trivially satsearch for the minimunibasically we calculate the gradient
isfies condition§E1)—(E3). This shows that there are numer- and then perform a step in the opposite direction and repeat
ous different choices foD(A||B) and each is related to this procedure until we hit the minimumAs soon as we
different physical considerations. We explain the statisticahave found any relative minimum we can stop the search,
basis of the relative entropy of entanglement in Sec. IV. Thesince this is also a global minimum. To make the gradient
relative entropy of entanglement is then seen to be linkegearch efficient we have to choose a suitable parametrization.
very naturally to the notion of a purification procedure. First, The parametrization that we use has the advantage that it
however, we present an efficient numerical method to obtaimlso provides us with another proof of Theorem 3, which

entanglement for arbitrary particles. states that for pure states the relative entropy of entangle-
ment reduces to the von Neumann reduced entropy. We first
IIl. NUMERICS FOR TWO SPIN-1/2 PARTICLES explain the parametrization and then state the alternative

proof for Theorem 3. The following results can easily be
In order to understand how our program for calculatingextended to two subsystems of arbitrary dimensions but for
the amount of entanglement works, we first need to introducelarity we restrict ourselves to two spin-1/2 systems.
one basic definition and one important result from convex Our aim is to find the amount of entanglement of a state
analysig22]. From this point onwards we concentrate on theof two spin-1/2 states, i.e., we have to minimize
quantum relative entropy as a measure of entanglement ai{sIno—ainp} for all p e D. From Caratheodory’s theorem
though most of the considerations are of a more general nave know that we only need convex combinations of at most

ture. 16 pure statep, to represenpe D, i.e.,
Definition 2 The convex hul[ co(A)] of a setA is the set

of all points that can be expressed(&inite) convex combi- 16
nations of points irA. In other wordsx e co(A) if and only _ 20 o 4
if x has an expression of the form SK_,p,ay, whereK is P 21 Pip1EP2: @0
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(Notice that we us@? instead ofp; for convenience, so that Using Eq.(51) one can now calculate all the partial deriva-
here we require thakE®,p?=1.) The parametrization we tives of the relative entropy around the pojinf;,. It is easy,
chose is now given by but rather lengthy, to check that these derivatives vanish and
that thereforep,,;, is a relative minimum. This concludes the
T proof as a relative minimum of a convex function on a con-
pi:Sin¢i—lH cosp;  with ¢o=- (48  vex set is also a global minimum.
= After this additional proof of Theorem 3 we now state
and some results that we have obtained or confirmed with the
program that implements the gradient search. We present
pi= WU four nontrivial stateso for which we can find the closest
disentangled statp that minimize the quantum relative en-
|z//i1>=cos:1i|0)+sinaiei |1y, tropy thereby giving the relative entropy of entanglement.
Using the same ideas as for the proof of Theorem 3 in Eq.
|y,) = cosBi|0) + sinB;e'#i| 1). (49  (50)—(53) one can then prove that these are indeed the clos-
est disentangled states.
All angles a;,B;,¢;,7 ,1; can have arbitrary values, but ~ Example 1
due to the periodicity only the interv@D,27] is really rel- . N
evant. Numerically this has the advantage that our parameter a1 =N® 7@ 7|+ (1-1)[01)(01], (54)
space has no edges at which problems might occur. The pro-
gram for th_e sef_alrch of the minimum is now quite stra_ightfor— plzi( 1— ﬁ) |00)(00| + ﬁ( 1— i){|00><11| + H.c}
ward. The idea is that givem we start from a randorp, i.e., 2 2 2 2
we generate 79 random numbers. Then we com@(ue|p), 2 2
+ ( 1- E)

15

as well as small variations of the 79 parametersppfto |02)(01] + )\_|10><10|
obtain the approximate gradient 8{c||p) at the pointp. 4
We then move opposite to the gradient to obtain the pext A A
We continue this until we reach the minimum. As explained + —( 1- —) [11)(11], (55)
before, a convex function over a convex set can only have a 2 2
global minimum, so that the minimum value we end up with N
is the one and only. The method outlined above immediately E(oy)=(A— 2)In< 1——
generalizes to two subsystems of arbitrary dimension, how- 2
ever, the number of parameters rises quickly to large value
which slows down the program considerably.

Before we state some numerical results we now indicate 1
an alternative proof of Theorem 3 using Caratheodory’s |D*=)=—=(]00)=|11)), (57)
theorem and the parametrization given in E43)—(49). For J2
this proof we use the fact that we can represent the logarithm

+(1-M)In(1-N).  (56)

?—'|ere|<I>*) is one of the four Bell states defined by

of an operatop by . 1
(W)= —=(|01)=|10)). (58)
1 1 \/E
Inp=— \(ﬁ Inz , (50
2i zZl-p Example 2
where the path of integration encloses all eigenvalues. of ao=N® DT+ (1—)\)[00)(00], (59)
We can now take the partial derivative oplwith respect to
a parameterp on which p might depend. N A
p2=| 1- 510000+ 5 [11)(11], (60)
dlnp 1 1 9p 1
—=—=0Inz — . (51
d¢p 2 zZl—p d¢p zl—p A A
E(op)=s,Ins, +s_Ins_—|{1-=|In|1— =
. 2 2
Now, we have a given pure state
A A
o= a?|00)(00 + a\1— @?(|00)(11 +]11)(00)) —(1—§)In(1—§), (61)
+(1-a? .
(1-a?)[11)(11) 62 o
The suspected closest approximationstavithin the disen- IZon1=N2)
tangled states is given by s :1i 1-20M1-M2) (62)
* 2
pmin=a*/00)(00 + (1 - &?)[11)(11]. (53

are the eigenvalues af,. One could argue that in the above
If we want to represent,, using the parametrization given two cases the following reasoning can be appliegy is a
in Eqgs. (47-(49 then we find for these parameters mixture of a maximally entangled statdor which the
cogd=a?;, a,=B,=ml2 and zero for all other parameters. amount of entanglement is given by In2) and a completely
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disentangled stateE(=0). Thus one would expect a total Since these operations are local they cannot increase the
amount of entanglement af In2. It is curious that this rea- amount of entanglement, and we have that for any

soning does not work for either of the two states, since, in

fact, E(oy(2))<\ In2. Now, we show how to use Theorem 4 E(0)=E(Wg)=F InF+(1-F)In(1-F)+In2, (73

t02 generate more states and their minima. For pure Statev%herewp is the above-described Werner stétee relative

o= we know the minimump. Now, the state that is a . .
- entropy of entanglement for a general Bell diagonal state is
convex sum ofr andp should also have the same minimum calculated ir{6])
p- Egavr\;]e Ir;age the following. We note that this efficient computer search provides an
P alternative criterion for deciding when a given statef two
3= A|00)(00| + B|00)( 11| + B*|11)(00 + (1 — A)|11)(11], spin-1/2 systems is dlsgn.tangle_d, !.e.,.of the form given in
(63) Eq. (4). The already existing criterion is the one given by
Peres and Horodeclet al. (see second and third references

p3=A[00)(00/+ (1—A)|11)(11], (64) in [1]), which states that a state is disentangled iff its partial
trace over either of the subsystems is a non-negative opera-
E(oy)=e.Ine,+e_Ine_—AInNA—(1—A)In(1—A), tor. This criterion is only valid for two spin-1/2, or one spin-

(65) 1/2 and one spin-1 systems. In the absence of a more general
analytical criterion our computational method provides a

where way of deciding this question. In addition we would like to
point out that the program is also able to provide us with the
_1= V1-4A(1-A)—[B[? (66  Convex decomposition of a disentangled state
* 2 ' At the end of this section we menticedditivity as an

important property desired from a measure of entanglement,
Using Theorem 4, the amount of entanglement can be founge., we would like to have

for a number of other spin-1/2 states. Our program can also

help us infer the entanglement of some other nontrivial states E(0120 034) =E(012) + E(034), (74
as the last example shows.
Example 4 where systems 42 and systems 34 are entangled sepa-

rately from each other. The exact definition of the left-hand
o4=A|00)(00/+ B|00)(11|+ B*|11)({00 + (1— 2A)|01) side is

x(01]+A|11)(11], (67)

E(o120039)= min S( 0120034 E. PiP13® ph
pa=C|00)(00 + D|00)(11|+ D*|11)(00|+ E|01)(01] PioP13:b2e 75
(68)

Why this form? One would originally assume thaf,® o34
, (69  should be minimized by the states of the form
(Zipip1®p5) @ (Z;p;pt®ph). However, Alice, who holds
systems 1 and 3, and Bob, who holds systems 2 and 4, can
(1-2A)(1—A)? also perform arbitrary unitary operation on their subsystems
=— 7 7 (700  (i.e., locally. This obviously leads to the creation of en-
(1-A)*-B? tanglement between 1 and 3 and between 2 and 4 and hence
the form given in Eq(75). Additivity is, of course, already
C=1-A-E, (71 true for the pure states, as can be seen from the proof above,
: : when our measure reduces to the von Neumann entropy. For
= (1-2A)(1-A more general cases we were unable to provide an analytical
D=vE(1-E-2C)= mB' (72) proof, so that the above additivity property remains a con-
jecture. However, for two spin-1/2 systems, our program did
It is now easy to compute the amount of entanglement fronfiot find any counterexample. It should be noted that it is
the above information. easy to see that we have
In addition to the above described methods there is a
simple way of obtaining a lower bound for the amount of E(01,8 039 <E(012) + E(039). (76
entanglement for any two spin-1/2 system. Suppose that Wg, the following we will assume that E474) holds and use
have a certain staie. We first find themaximallyentangled i in Sec. V to derive certain limits to the efficiency of puri-
state|) such that the fidelityF =(y| o) is maximized. fication procedures.
Then we apply local unitary transformations ¢g which
transform| ) into the singlet staté&his is, of course, always
possiblg. Now, we apply local random rotatiof8] to both
particles. These will transformx into a Werner state, where
the singlet state will have a weiglft (since it is invariant Let us see how we can interpret our entanglement mea-
under rotationsand all the other three Bell states will have sure in the light of experiments, i.e., statistically. This was
equal weights of (+F)/3 (since they are randomized presented ifi7]in greater detail. Here we present a summary

+(1—2C—E)|10)(10/+ C|11)(11]

where

IV. STATISTICAL BASIS OF ENTANGLEMENT
MEASURE
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which is sufficient to understand the following section. Ourmake, however. In general we haMecopies ofc andp in
interpretation relies on the result concerning the asymptoticthe state
of the quantum relative entropy first proved[i¥], and here

presented under the name of quantum Sanov’s theorem. We N= oQ0.00c

first show how the notion of relative entropy arises in clas- total of N terms (81)
sical information theory as a measure of distinguishability of N = p®p.®p

two probability distributions. We then generalize this idea to ——— (82)
the quantum case, i.e., to distinguishing between two quan- total of N terms

tum states(for a discussion of distinguishability of pure

guantum states see e.[23]). We will see that this naturally

leads to the notion of the quantum relative entropy. It is therlWe may now apply a POVNE;A; =1 acting ono™ and pN.
straightforward to extend this concept to explain the relativeConsequently, we define a new type of relative entropy
entropy of entanglement. Suppose we would like to check if 1

a given coin is “fair,” i.e., if it generates a “head-tail” . = N N
distribution of f =(1/2.1/2). If the coin is biased then it will SN(UIIP)-—SUP\'s{ N2 UAtin A

produce some other distribution, say=(1/3,2/3). So, our

qgestion of the coin fairness l:_)oils down to_ how yvel] we can —trA;oMin tI’AipN] _ 83)
differentiate between two given probability distributions

given a finite,n, number of experiments to perform on one of

the two distributions. In the case of a coin we would toss it Now it can be shown th4tl5]

times and record the number of 0's and 1's. From simple

statistics we know that if the coin is fair than the number of S(allp)=Sy, (84)

0's N(0) will be roughly n/2—\n< N(0)=n/2+ Jn, for _where, as before,

largen and the same for the number of 1's. So if our experi-

mentally determined values do not fall within the above lim- S(a||p):=tr(a Inc—o Inp) (85)

its the coin is not fair. We can look at this from another point

of view; namely, what is the probability that a fair coin will is the quantum relative entropy6,7,11,12,15,1 (for the

be mistaken for an unfair one with the distribution of summary of the properties of the quantum relative entropy
(1/3,2/3) givenn trials on the fair coin? For large the  see[13]). Equality is achieved in E(84) iff o andp com-

answer i97,18| mute[24]. However, for anyo andp it is true that[14]
p(fair— unfair) =e "SiUfllD, (77 S(ol|p)= lim Sy.
N—o
where Su(uf||f)=1/3 In1/3+2/3 In2/3—1/3 In1/2 o ) o
—2/31n1/2 is the classical relative entropy for the two dis-!" fact, this limit can be achieved by projective measure-
tributions. So, ments, which are independent @f[25]. It is known that if
Eq. (79) is maximized over all general measuremegishe
p(fair— unfairn=3"2" (5/3, (78  upper bound is given by the quantum relative entrégse,

e.g.,[15]). In quantum theory we therefore state a law analo-
which tends exponentially to zero with—. In fact we see  gous to Sanov’s theorefisee alsd7]),
that already after- 20 trials the probability of mistaking the Theorem 8or quantum Sanov’s theorgnilhe probabil-
two distributions is vanishingly smals 1010, ity of not distinguishing two quantum stateégse., density
This result is true, in general, for any two distributions. matrice$ o andp aftern measurements is
Asymptotically the probability of not distinguishing the dis-
tributions P(x) and Q(x) after n trials is e "S(PXIIQM), p(p—o)=e "Selle), (86)

where . . : :
In fact, as explained before, this bound is reached asymptoti-

cally [14], and the measurements achieving this are global
Scl(P(X)HQ(X)):Z pilnp; — pilng; (79 projectors independent of the statg25]. We note that the
guantum Sanov theorem was presented by Donal@6has

(this statement is sometimes called Sanov’s theof&aj). a definition justified by properties uniquely characterizing
To generalize this to quantum theory, we need a means dhe quantitye™"<“I”). The underlying intuition in the above
generating probability distributions from two quantum stategneasurement approach and Donald's approach are basically
o andp. This is accomplished by introducing a general meathe same. Now the interpretation of the relative entropy of

suremenE S E;=1. So, the probabilities are given by entanglement becomes immediately transparafit The
probability of mistaking an entangled statefor a closest,
pi=tr(EEip), disentangled statep, is e "MM%erS(TP) = NE() |f the
(80) amount of entanglement af is greater, then it takes fewer
qi:tr(Ei’rEig). measurements to distinguish it from a disentangled state

fixing n, there is a smaller probability of confusing it with
Now, we can use Eq79) to distinguish betweewrr and p. some disentangled staté et us give an example. Consider a
The above is not the most general measurement that we catate (00)+|11))/y2, known to be a maximally entangled
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state. The closest to it is the disentangled statgresent an absolute bound for any particular procedure. We
(]00)(00 +|11)(11)/2 [6]. To distinguish these states it is ask: “What is the largest number of singlets that can be
enough to perform projections 0nt4:00)+|11>)/\/§. If the  produced(distilled) from n pairs in stater”? Suppose that
state that we are measuring is the above mixture, then thee producem pairs. We now project themonlocally onto
sequence of resultd for a successful projection, and 0 for the singlet state. The procedure will yield positive outcomes
an unsuccessful projectipmwill contain on average an equal (1) with certainty so long as the state we measure indeed is
number of 0’s and 1's. For this to be mistaken for the abovea singlet. Suppose that after performing singlet projections
pure state the sequence has to contaimalls. The prob- onto allm particles we get a string ah 1’s. From this we
ability for that is 2", which also comes from using E(86). conclude that the final state is a singleind therefore the
If, on the other hand, we performed projections onto the purénitial stateo was entangled However, we could have made
state itself, we would then never confuse it with a mixture,a mistake. But with what probability? The answer is as fol-
and from Eq.(86) the probability is seen to be"“=0. We lows: the largest probability of making a wrong inference is
next apply this simple idea to obtaining an upper bound t2 " M=e~ ™" (if the state that we were measuring had an
the efficiency of any purification procedure. overlap with a singlet state of 1/2). On the other hand, if we
were measurings from the very beginningwithout per-
forming the purification firgt then the probabilityi.e., the
V. THERMODYNAMICS OF ENTANGLEMENT: lower bound of the wrong inference would be "&(?), But,
PURIFICATION PROCEDURES purification procedure might waste some informat{oa., it

There are two ways to produce an upper bound to thds just a particular way of disting_uishing entangled from dis-
efficiency of any purification procedure. Using condition €ntangled states, not necessarily the bes,csw that the
(E3) and the fact that the relative entropy of entanglement idollowing has to hold
additive, we can immediately derive this bound. However, “NE(0) < @—min2 8
this bound can be derived in an entirely different way. In this € =€ ’ (87)
section we now aba_ndon conditiofEsl)—(ES) and use only which implies that
methods of the previous section to put an upper bound to the
efficiency of purification procedures. In particular, we show nE(o)=m, (88)
that the entanglement of creation is in general larger than the
entanglement of distillation. This is in contrast with the situ-i.e., we cannot obtain more entanglement than is originally
ation for pure states where both quantities coincide. Theresent. This, of course, is also directly guaranteed by our
guantum relative entropy is seen to play a distinctive rolecondition (E3). The above, however, was a deliberate exer-
here, and is singled out as a “good” generator of a measureise in deriving the same result from a different perspective,
of entanglement from among other suggested candidates. abandoning condition€E1)—(E3). Therefore the measure of
entanglement given in E7), whenD(a]|p) =S(a||p), can
be used to provide an upper bound on the efficiency of any
purification procedure. For Bell diagonal states, Rdi@k

In the previous section we presented a statistical basis tiound an upper bound on distillable entanglement using
the relative entropy of entanglement by considering distincompletely different methods. It turns out that the bound that
guishability of two(or more quantum states encapsulated in he obtains in this case is identical to the one provided by the
the form of the quantum Sanov theorem. We now use thiselative entropy of entanglement.
guantum Sanov theorem to put an upper bound on the Actually, in the above considerations we implicitly as-
amount of entanglement that can be distilled using any purisumed that the entanglement ofpairs, equivalently pre-
fication procedure. This line of reasoning follows from thepared in the stater, is the same asxE(o). We already
fact that any purification scheme can be viewed as a medandicated that this is a conjecture with a strongly supported
surement to distinguish entangled and disentangled quantubasis in the case of the quantum relative entropy. Based on
states. Suppose that there exists a purification procedure withe upper bound considerations we can introduce the follow-
the following property: Initially there ar@ copies of the ing definition.
stateo. If o is entangled, then the end product isth=<n Definition 3 A purification procedure given by a local
singlets anch—m states inp e D. Otherwise, the final state complete positive trace preserving map-3V,oV| is de-
does not contain any entanglement, ina= 0 (in fact, there  fined to beideal in terms of efficiency iff
is nothing special about singlets: the final state can be any
other known, maximally entangled state because these can be
converted into singlets by applying local unitary operatjons 2 tr(o)E(oi/tr(o))=E(0),

Note that we can allow the complete knowledge of the
states. We also allow that purification procedures differ for where, as usualr,rizvi(rviT and piztr(viavﬁ) (i.e., a the
different statesr. Perhaps there is a “universal” purification ideal purification is the one whef&3) is an equality rather
procedure independent of the initial state. However, in realthan an inequality Notice an apparent formal analogy be-
ity, this property is hard to fulfil[9]. At present the best that tween a purification procedure and the Carnot cycle in ther-
can be done is to purify a certain class of entangled stateamodynamics. The Carnot cycle is the most efficient cycle in
(see, e.9.[27-29). The above is therefore an idealization thermodynamicgi.e., it yields the greatest “useful work to
that might never be achieved. Now, by calculating the uppeheat” ratio), since it is reversibléi.e., it conserves the ther-
bound on the efficiency of a procedure described above weodynamical entropy We would now like to claim that the

A. Distinguishability and purification procedures

(89
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1.0 - additional information: we know exactly that the figstxX N
09 | -~~~ Entanglement of creation pairs are in the stat¥,, the secong,X N states are in the
— Relative Entropy of Entanglement state¥,, and so on. This is not the same as being given an
08 | initial ensemble of identically prepared pairs in the state
sigma without any additional information. In this, second,
0.7 , s . . :

= ! case we do not have the addltlongl mfor_mgtlon of knowm_g

@ 0.6 / exactly the state of each of the pairs. This is why the purifi-

5 05 | 2 cation without this knowledge is less efficient, and hence one

% ' ) expects that the relative entropy of entanglement is smaller

04t than the entanglement of formation.

w 7 An open guestion remains as to whether we can use some
031 other generator, such as the Bures metric, to give an even
02 more stringent bound on the amount of distillable entangle-

ment.
01
0.0 L—=si : : : B. More than two subsystems
0.5 0.6 0.7 0.8 0.9 1.0
Fidelity We see that the above treatment does not refer to the

_ _ number(or indeed dimensionalijyof the entangled systems.
F!G. 2. Comparison of the entanglement of creation and theThijs is a desired property as it makes our measure of en-
relative entropy of entanglement for the Werner statese are  tanglement universal. However, in order to perform minimi-
Bell diagonal states of the formW= diagF,(1-F)/3,(1  zation in Eq.(7) we need to be able to define what we mean
—F)/3,(1=F)/3). One clearly sees that the entanglement of cre-,, 5 gisentangled state of shparticles. As pointed out in
ation is strictly larger than the relative entropy of entanglement for[7] we believe that this can be done inductively. Namely, for
O<F<1. two quantum system#\; andA,, we define a disentangled

, e ) . .. . state as one that can be written as a convex sum of disen-
ideal purification procedure is the most efficient purlflcatlontang|ed states of; andA, as follows[6,7]:

procedurg(i.e., it yields the greatest number of singlets for a

given input statg since it is reversibldi.e., it conserves A A

entanglement, measured by the minimum of the quantum p12= 2, Pip;*®p; 2, (90)
relative entropy over all disentangled statdgnfortunately '

this analogy between the Carnot cycle and purification prowheres;p;=1 and thep’s are all positive. Now, foN en-

state$. This is seen when we compare the entanglement of

creation with the relative entropy of entanglement. In Theo- _ A A A A A A
rem 6 we have, in fact, shown that the entanglement of cre-P12--N= em{iEimi } Fijig iy 102 @ p e nre i,
ation is never smaller than the relative entropy of Entangle- Permiatzrin 91)

ment. As an example one can consider Bell diagonal states
for which we can exactly calculate both the entanglement ofvhere Zpern{iyiy:ing igip iy = s all r’s are positive and

creation[6] and the relative entropy of entanglem¢st. It WhereX peryi iy 1S @ sum over all possible permutations

turns out that the en.tanglement of creation is always stnctlyOf the set of indiced1,2,...N}. To clarify this let us see
larger than the relative entropy of entanglement except for10W this looks for 4 systems:
the limiting cases of maximally entangled Bell states or of '

disentangled Bell diagonal statésee Fig. 2 for Werner

states. This result leads to the following. proai= 2 Pip, 20 p 4 gipf M pl r p e
Implication. In general, the amount of entanglement that !

was initially invested in creation af cannot all be recovered ® pl24 5, p Mg pr1y 1 pP1R2g pAAL | pAIAS

(“distilled” ) by local purification procedures. ! : : : ! !
Therefore, the ideal purification procedure, though most ®p gy g phehs (92)

efficient, is nevertheless irreversible, and some of the in- ' ' '

vested entanglement is lost in the purification process itseliwhere, as usual, all the probabilitigs,q;, . . . ,v; are posi-

The solution to this irreversibility lies in the loss of certain tive and add up to unity. The above two equations, at least in
information as can easily be seen from the following analy-principle, define the disentangled states for any number of
sis. Suppose we start with an ensembléNdinglets and we entangled systems. Note that this form describes a different
want to locally create any mixed state Now o can always situation from the one given in E475), which refers to a

be written as a mixture of pure stat¥s ,V,, ... with the  number of pairs shared by Alice and Bob only. The above
corresponding probabilitiep;,p,, ... . We now use Ben- definition of a disentangled state is justified by extending the
nett et al.s (de)purification procedurd27] for pure states idea that local actions cannot increase the entanglement be-
(whose efficiency is governed by the von Neumann enfropy tween two quantum systeni8,6,7. In the case oN par-

We convert the firspp; XN singlets into the stated';, the ticles we haveN parties(Alice, Bob, Charlie. .., Wayne all
secondp, X N singlets into the stat&,, and so on. In this acting locally on their systems. The general action that also
way, the whole ensemble is in the state But, we have includes communications can be written[#@$
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B A Ae A APPENDIX A: ANOTHER PROOF FOR THE PURE STATE
plz"'N_Z Fipi"@p; = ®pi 94 ENTANGLEMENT

In the following we present a third proof for the value of
e relative entropy of entanglement for pure states. As in the
cond proof we use the representation of the logarithm of a

which means that we do not allow any entanglement in an){h
subset of theN states. This would be a disentangled state
based on some local hidden variable model. Again we repe . ) X ;
that the particular choice of a form of disentangled states wil ensity operator in terms of a complex integral as in Egs.
depend on the physical background in our model and there i(§0) and(51). We would like to know the value of the_rela—
no absolute sense in which we can resolve this dichotomy. [§V€ ntropy of entanglement for a pure state | )(y| with

— — 2
should be stressed that for two particles this free choice doed) > |00)+B|11). We assume that p=a*|00)(00
not exist as both pictures coincide. +°]11)(11] is the closest disentangled statestoTherefore

we would have that
VI. CONCLUSIONS

E(o)=S(a][p). (A1)
We can look at the entanglement from two different per-
spectives. One insists that local actions cannot increase epssume that we change a little bit, i.e., we have
tanglement and do not change it if they are unitary. The other
one looks at the way we can distinguish an entangled state pr=(1—N)p+Ap* (A2)
from a disentangled one. In particular, the following question

is asked: what is the probability of confusing an entangledyith a small\ such thap, andp* are disentangled. Fgrto

state with a disentangled one after performing a certain numye the closest disentangled statestove have to have that
ber of measurements? These two, at first sight different ap-

proaches, lead to the same measure of entanglement. This
results in the fact that a purification procedure can be re- aS(G‘H(l—)\)p-i-)\p*)h:OZO. (A3)
garded as a protocol of distinguishing an entangled state

from a disentangled set of states. From this premise we de- . . .
rived the upper bound on the efficiency of any purification?smgft:;]e cl:omp!tehx fepfesef“ﬁ“c’fﬂ gf ERD) for the deriva-
procedure. It turns out that distillable entanglement is in gen-Ive ot the fogarithm we quickly fin
eral smaller than the entanglement of creation. Our entangle- d

ment measure is independent of the number of systems and __ g(4||(1—\)p+Ap*)|, o

their dimensionality. This suggests applying it to more than dx

two entangled systems in order to understand multiparticle

entanglement. We have shown how to compute entangle-

ment efficiently for two spin-1/2 subsystems using computa- == gy o In[(L=M)p+Xp* BHx-o
tional methods. However, a closed form for the expression of
this entanglement measure is desirable. However, a closed

form for the entanglement of formation has been proposed S i i 35 tr[ o 1 ]|n2|>\—o
for two spin-1/2 particles ifi4]. An interesting problem is to d\ 2i 1—=p\

specify all the states that have the same amount of entangle-

ment. We know that all the states that are equivalent up to a 1 . _
local unitary transformation have the same amount of en- =T o % dz t{(p* —p)(zl-p)
tanglement{by definition (E2)]. However, there are states

with the same amount of entanglement but that are not X a(zl—p) " }inz

equivalent up to a local unitary transformati@dor example,

one state is pure and the other one is mjxédquestion for =1—1tr{p*(]00)(00 +|11)(11] + x| 00)
further research is whether they are linked by a local com-

plete measurement. Our work in addition suggest a question X (11 +x|11)(00)), (A4)

of finding a general local map that preserves the entangle-
ment of a given entangled state. wherex= aB(Ina?—Ing%/(a?— B?) and we have used the ex-
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plicit form of o and p together with Cauchy’s theoref80].
Now we have to show that EgA4) is always positive. One
easily checks that
x=apB(Ina’—InB?)/(a®— B> <1, (A5)
where the maximum is achieved faf=1/2. The right-hand

side of Eq.(A4) can become smallest far=1. For Eq.(A3)
to be positive we therefore need to show that

ENTANGLEMENT MEASURES AND PURIFICATION PROCEDURES
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tr{p* (|00)(00] + |11)(11] +]00)(11] +|11)(00))}<1. (A6)

Using |¢")=(]00)+|11))/2 this follows easily ap* is
not entangled and therefofe™ |p*| ¢ )< 1/2, which imme-
diately confirms Eq(A6). Thereforep indeed represents the
closest disentangled state doand our proof is complete.

This proof can easily be extended to arbitrary dimensional
subsystems where the maximally entangled states have the
form = ,a|nn). In that case the proof becomes more similar
to the one presented in Sec. Il.
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