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Entanglement measures and purification procedures

V. Vedral and M. B. Plenio
Optics Section, Blackett Laboratory, Imperial College London, London SW7 2BZ, England

~Received 17 July 1997; revised manuscript received 19 August 1997!

We improve previously proposed conditions each measure of entanglement has to satisfy. We present a class
of entanglement measures that satisfy these conditions and show that the quantum relative entropy and Bures
metric generate two measures of this class. We calculate the measures of entanglement for a number of mixed
two spin-1/2 systems using the quantum relative entropy, and provide an efficient numerical method to obtain
the measures of entanglement in this case. In addition, we prove a number of properties of our entanglement
measure that have important physical implications. We briefly explain the statistical basis of our measure of
entanglement in the case of the quantum relative entropy. We then argue that our entanglement measure
determines an upper bound to the number of singlets that can be obtained by any purification procedure.
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PACS number~s!: 03.67.2a, 03.65.Bz
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I. INTRODUCTION

It was thought until recently that Bell’s inequalities pr
vided a good criterion for separating quantum correlatio
~entanglement! from classical ones in a given quantum sta
While it is true that a violation of Bell’s inequalities is
signature of quantum correlations~nonlocality!, not all en-
tangled states violate Bell’s inequalities@1#. So, in order to
completely separate quantum from classical correlation
new criterion was needed. This also initiated the search
the related question of the amount of entanglement conta
in a given quantum state. There are a number of ‘‘goo
measures of the amount of entanglement for two quan
systems in a pure state~see@2# for an extensive presenta
tion!. A ‘‘good’’ measure of entanglement for mixed stat
is, however, very hard to find. In an important work Benn
et al. @3# have recently proposed three measures of entan
ment ~we will discuss the entanglement of formation a
distillation in more detail later in this paper!. Their measures
are based on concrete physical ideas and are intuitively
to understand. They investigated many properties of th
measures and calculated the entanglement of formation
number of states. More recently, Hill and Wootters have p
posed a closed form for the entanglement of formation
two spin-1/2 particles@4#. Uhlmann’s recent work implies
that the entanglement of formation can also be calcula
numerically in an efficient way for those cases that are
analytically known@5#.

We have recently shown how to construct a whole cl
of measures of entanglement@6,7#, and also imposed condi
tions that any candidate for such a measure has to satisfy@6#.
In short, we consider the disentangled states that form a
vex subset of the set of all quantum states. Entangleme
then defined as a distance~not necessarily in the mathemat
cal sense! from a given state to this subset of disentang
states~see Fig. 1!. An attractive feature of our measure
that it is independent of the number of systems and th
dimensionality, and is therefore completely general@6,7#.
We present here two candidates for measuring distance
our set of states and prove that they satisfy improved co
tions for a measure of entanglement~the third condition pre-
571050-2947/98/57~3!/1619~15!/$15.00
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sented here is an improvement over the one given in@6#!.
It should be noted that in much the same way we c

calculate the amount of classical correlations in a state. O
would then define another subset, namely, that of all prod
states that do not contain any classical correlations. Give
disentangled state one would then look for the closest un
related state. The distance could be interpreted as a mea
of classical correlations. In addition to many analytical r
sults we also explain how to calculate efficiently using n
merical methods our measure of entanglement of two s
1/2 particles. We present a number of examples and pr
several properties of our measure that have important ph
cal consequences. To illuminate the physical meaning beh
the above ideas we present a statistical view of our entan
ment measure in the case of quantum relative entropy@7#.
We then relate our measure to a purification procedure
use it to define a reversible purification. This reversible p
rification is then linked to the notion of entangleme
through the idea of distinguishing two classes of quant
states. We also argue that the measure of entanglement
erated by the quantum relative entropy that we propose g

FIG. 1. The set of all density matricesT is represented by the
outer circle. Its subset, a set of disentangled statesD, is represented
by the inner circle. A states belongs to the entangled states, andr*
is the disentangled state that minimizes the distanceD(suur), thus
representing the amount of quantum correlations ins. State
rA* ^ rB* is obtained by tracingr* over A and B. D(r* uurA* ^ rB* )
represent the classical part of the correlations in the states.
1619 © 1998 The American Physical Society
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1620 57V. VEDRAL AND M. B. PLENIO
an upper bound for the number of singlet states that can
distilled from a given state. We find that in general the d
tillable entanglement is smaller than the entanglement of
ation. This result was independently proven by Rains
Bell diagonal states using completely different methods@8#.

The rest of the paper is organized as follows. Section
introduces the basis of purification procedures, conditions
a measure of entanglement and our suggestion for a mea
of entanglement. We also prove that the quantum rela
entropy and the Bures metric satisfy the imposed conditi
and can therefore be used as generators of measures o
tanglement. We compute our measure explicitly for so
examples. In Sec. III we introduce a simple numeri
method to compute our measure of entanglement num
cally and we apply it to the case of two spin-1/2 systems.
present a number of examples of entanglement computa
using the quantum relative entropy. In Sec. IV we presen
statistical basis for the quantum relative entropy as a mea
of distinguishability between quantum states and hence
amount of entanglement. Based on this, in Sec. V we de
an upper bound to the efficiency~number of maximally en-
tangled pairs distilled! of any purification procedure. We als
show how to extend our measure to more than two s
systems.

II. THEORETICAL BACKGROUND

A. Purification procedures

There are three different ingredients involved in proc
dures aiming at distilling locally a subensemble of high
entangled states from an original ensemble of less entan
states.

~1! Local general measurements~LGM!: these are per-
formed by the two partiesA and B separately and are de
scribed by two sets of operators satisfying the completen
relations( iAi

†Ai51 and ( jBj
†Bj51. The joint action of the

two is described by( i j Ai ^ Bj5( iAi ^ ( jBj , which is again
a complete general measurement, and obviously local.

~2! Classical communication~CC!: this means that the
actions ofA andB can be correlated. This can be describ
by acomplete measurementon the whole spaceA1B and is
not necessarily decomposable into a sum of direct prod
of individual operators~as in LGM!. If rAB describes the
initial state shared betweenA andB then the transformation
involving ‘‘LGM 1CC’’ would look like

F~rAB!5(
i

Ai ^BirABAi
†

^Bi
† , ~1!

where( iAi
†AiBi

†Bi51 i.e., the actions ofA andB are ‘‘cor-
related.’’

~3! Postselection~PS! is performed on thefinal ensemble
according to the above two procedures. Mathematically
amounts to the general measurement not being complete
we leave out some operations. The density matrix describ
the newly obtained ensemble~the subensemble of the orig
nal one! has to be renormalized accordingly. Suppose t
we kept only the pairs where we had an outcome correspo
ing to the operatorsAi andBj , then the state of the chose
subensemble would be
be
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rAB→
Ai ^BirABAi

†
^Bi

†

Tr~Ai ^ BirABAi
†

^ Bi
†!

, ~2!

where the denominator provides the necessary normaliza

A manipulation involving any of the above three elemen
or their combination we shall henceforth call apurification
procedure. It should be noted that the three operations d
scribed above are local. This implies that the entanglem
of the total ensemble cannot increase under these operat
However, classical correlations between the two subsyst
can be increased, even for the whole ensemble, if we all
classical communication. A simple example confirms th
Suppose that the initial ensemble contains sta
u0A& ^ (u0B&1u1B&)/A2. The correlations~measured by, e.g.
von Neumann’s mutual information@2,6#! betweenA andB
are zero. Suppose thatB performs measurement of his pa
ticles in the standard 0, 1 basis. If 1 is obtained,B commu-
nicates this toA who then ‘‘rotates’’ his qubit to the state
u1A&. Otherwise they do nothing. The final state will ther
fore be

r5 1
2 ~ u0A&^0Au ^ u0B&^0Bu1u1A&^1Au ^ u1B&^1Bu!, ~3!

where the correlations are now ln2~i.e., nonzero!. So, the
classical content of correlations can be increased by perfo
ing local general measurements and classically commun
ing.

An important result was proved for pairs of spin-1/2 sy
tems in @9#: all states that are not of the form
rAB5( i pirA

i
^ rB

i , where( i pi51 andpi>0 for all i , can
be distilled to a subensemble of maximally entangled sta
using only operations 1, 2, and 3.~The states of the abov
form obviously remain of the same form under any purific
tion procedure!. The local nature of the above three oper
tions implies that we define a disentangled state of two qu
tum systemsA and B as a state from which by means o
local operations no subensemble of entangled states ca
distilled. It should be noted that these states are someti
called separable in the existing literature. We also note th
is not proven in general that if the state is not of this fo
then it can be purified.

Definition 1. A staterAB is disentangled iff

rAB5(
i

pirA
i

^ rB
i , ~4!

where, as before,( i pi51 andpi>0 for all i . Otherwise it is
said to be entangled. Note that all the states in the ab
expansion can be taken to be pure. This is because eacr i

can be expanded in terms of its eigenvectors. So, in
above sum we can in addition require that (rA

i )25rA
i and

(rB
i )25rB

i for all i . This fact will be used later in this sectio
and will be formalized further in Sec. III.
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57 1621ENTANGLEMENT MEASURES AND PURIFICATION PROCEDURES
B. Quantification of entanglement

In the previous section we have indicated that out of c
tain states it is possible to distill by means of LGM1CC1PS
a subensemble of maximally entangled states~we call these
states entangled!. The question remains open about ho
much entanglement a certain state contains. Of course,
question is not entirely well defined unless we state w
physical circumstances characterize the amount of entan
ment. This suggests that there is no unique measure of
tanglement. Before we define three different measures of
tanglement we state three conditions that every measur
entanglement has to satisfy. The third condition represen
generalization of the corresponding one in@6#.

~E1! E(s)50 iff s is separable.
~E2! Local unitary operations leaveE(s) invariant, i.e.,

E(s)5E(UA^ UBsUA
†

^ UB
†).

~E3! The expected entanglement cannot increase un
LGM1CC1PS given by(Vi

†Vi51, i.e.,

( tr~s i !E„s i /tr~s i !…<E~s!, ~5!

wheres i5VisVi
† .

Condition ~E1! ensures that disentangled and only dise
tangled states have a zero value of entanglement. Cond
~E2! ensures that a local change of basis has no effect on
amount of entanglement. Condition~E3! is intended to re-
move the possibility of increasing entanglement by perfor
ing local measurements aided by classical communicatio
is an improvement over the condition~3! in @6#, which re-
quired that E(( iVisVi

†)<E(s). This condition ~E3! is
physically more appropriate than that in@6# as it takes into
account the fact that we have some knowledge of the fi
state. Namely, when we start withn systems all in the states
we know exactly whichmi5n3tr(s i) pairs will end up in
the states i after performing a purification procedure. Ther
fore we can separately access the entanglement in each o
possible subensembles described bys i . Clearly the total ex-
pected entanglement at the end should not exceed the o
nal entanglement, which is stated in~E3!. This, of course,
does not exclude the possibility that we can select a sub
semble whose entanglement per pair is higher than the o
nal entanglement per pair. We emphasize that if we ass
that E(s) is also convex~as it, indeed, is in the case of th
quantum relative entropy presented later in the paper! then
~E3! immediately implies thatE(( iVisVi

†)<E(s). On the
other hand, convexity ofE(s) and E(( iVisVi

†)<E(s) do
not imply ~E3!, which also provides a reason for requirin
~E3! rather than the condition in@6#. We now introduce three
different measures of entanglement that obey~E1!–~E3!.

First we discuss the entanglement of creation@3#. Bennett
et al. @3# define the entanglement of creation of a stater by

Ec~r!:5 min(
i

piS~rA
i ! , ~6!

whereS(rA)52 trrAlnrA is the von Neumann entropy an
the minimum is taken over all the possible realizations of
state,rAB5( j pj uc j&^c j u with rA

i 5 trB(uc i&^c i u). The en-
tanglement of creation satisfies all three conditions~E1!–
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~E3! @3#. The physical basis of this measure presents
number of singlets needed to be shared in order to crea
given entangled state by local operations. We will discu
this in greater detail in Sec. IV. It should also be added t
progress has been made recently in finding a closed form
the entanglement of creation@4#.

Related to this measure is the entanglement of distillat
@3#. It defines the amount of entanglement of a states as the
proportion of singlets that can be distilled using a purific
tion procedure~Bennettet al. distinguish one- and two-way
communication which give rise to two different measure
but we will not go into that much detail; we assume the m
general two-way communication!. As such, it is dependen
on the efficiency of a particular purification procedure a
can be made more general only by introducing some sor
universal purification procedure or asking for the best sta
dependent purification procedure. We investigate this in S
V. We now introduce our suggestion for a measure of
amount of entanglement. It is seen in Sec. V that this m
sure is intimately related to the entanglement of distillati
by providing an upper bound for it.

If D is the set of all disentangled states, the measure
entanglement for a states is then defined as

E~s!:5min
rPD

D~suur!, ~7!

whereD is any measure ofdistance~not necessarily a met
ric! between the two density matricesr and s such that
E(s) satisfies the above three conditions~E1!–~E3! ~see Fig.
1!.

Now the central question is what condition a candidate
D(suur) has to satisfy in order for~E1!–~E3! to hold for the
entanglement measure? We present here a set of suffi
conditions.

~F1! D(suur)>0 with the equality saturated iffs5r.
~F2! Unitary operations leaveD(suur) invariant, i.e.,

D(suur)5D(UsU†uuUrU†).
~F3! D(trpsuutrpr)<D(suur), where trp is a partial trace.
~F4! (piD(s i /pi uur i /qi)<(D(s i uur i), where pi

5tr(s i), qi5tr(r i), and s i5VisVi
† and r i5VirVi

† ~note
that Vi ’s are not necessarily local!.

~F5a! D(( i PisPi uu( i PirPi)5( iD(PisPi uuPirPi),
where Pi is any set of orthogonal projectors such th
Pi Pj5d i j Pi .

~F5b! D(s ^ Pauur ^ Pa)5D(suur) wherePa is any pro-
jector.

Conditions~F1! and ~F2! ensure that~E1! and ~E2! hold;
~F2!, ~F3!, ~F4!, and ~F5! ensure that~E3! is satisfied. The
argument for the former is trivial, while for the latter it i
more lengthy and will be presented in the remainder of t
section.

C. Proofs

We claim that~F2!, ~F3!, ~F4!, and~F5! are sufficient for
~E3! to be satisfied and hence need to prove t
(F2)2(F5)⇒(E3). If ~F2!, ~F3!, and ~F5b! hold, then we
can prove the following statement.
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Theorem 1.For any completely positive, trace preservin
mapF, given byFs5(VisVi

† and(Vi
†Vi51, we have that

D(FsuuFr)<D(suur).1

Proof. It is well known that a complete measurement c
alwaysbe represented as a unitary operation1partial tracing
on an extended Hilbert SpaceH^Hn , where dimHn5n
@10–12#. Let $u i &% be an orthonormal basis inHn andua& be
a unit vector. So we define

W5(
i

Vi ^ u i &^au. ~8!

Then,W†W51^ Pa , wherePa5ua&^au, and there is a uni-
tary operatorU in H^Hn such thatW5U(1^ Pa) @10#.
Consequently,

U~A^ Pa!U†5(
i j

ViAVj
†

^ u i &^ j u, ~9!

so that

tr2$U~A^ Pa!U†%5(
i

ViAVi
† . ~10!

Now using ~F3!, then ~F2!, and finally ~F5b! we find the
following:

D„tr2$U~s ^ Pa!U†%uutr2$U~r ^ Pa!U†%… ~11!

<D„U~s ^ Pa!U†uuU~r ^ Pa!U†
… ~12!

5D~s ^ Pauur ^ Pa! ~13!

5D~suur!. ~14!

This proves Theorem 1.
Corollary. Since for a complete set of orthonormal pr

jectors P, ( i PisPi is a complete positive trace preservin
map, then

(
i

D~PisPi uuPirPi !<D~suur!. ~15!

@The sum can be taken outside as~F5a! requires that
D(( i PisPi uu( i PirPi)5( iD(PisPi uuPirPi).# Now from
~F2!, ~F3!, ~F5b!, and Eq.~15! we have the following.

Theorem 2.If s i5VisVi
† then(D(s i uur i)<D(suur).

Proof. Equations~8! and~9! are introduced as in the pre
vious proof. From Eq.~9! we have that

tr2$1^ PiU~A^ Pa!U†1^ Pi%5ViAVi
† , ~16!

wherePi5u i &^ i u. Now, from ~F3!, the corollary, and~F5b! it
follows that

1We frequently interchange theF and (V†V notations for one
another throughout this section.
(
i

D„tr2$1^ PiU~s ^ Pa!U†1^ Pi%uu

3tr2$1^ PiU~r ^ Pa!U†1^ Pi%… ~17!

<(
i

D„1^ PiU~s ^ Pa!U†1^ Pi uu1

^ PiU~r ^ Pa!U†1^ Pi… ~18!

<D„U~s ^ Pa!U†uuU~r ^ Pa!U†
… ~19!

5D~s ^ Pauur ^ Pa! ~20!

5D~suur!. ~21!

This proves Theorem 2.
From Theorem 2 and~F4! we have

( piDS s i

pi
UU r i

qi
D<D~suur!. ~22!

Now let E(s)5D(suur* ), i.e., let the minimum ofD(suur)
over all rPD be attained atr* . Then from Eq.~22!,

E~s!:5D~suur* !>( piDS s i

pi
UU Vi

†r* Vi

qi
D

>( piE~s i /pi ! ~23!

and~E3! is satisfied. Note that in all the proofs forD(suur)
we never use the fact that the completely positive, trace p
serving mapF is local. This is only used in the last inequa
ity of Eq. ~23! where LGM ~1CC1PS! maps disentangled
states onto disentangled states. This ensures thatr i* is disen-
tangled and thereforeD(s i /pi uur i* /qi)>E(s i /pi). So, the
need for localF arises only in Eq.~23!; otherwise all the
other proofs hold for a generalF. Note also that one can
prove, by the same methods, a slightly more general co
tion:

~E3* ! The expected entanglement of the initial sta
sn5s1^ ••• ^ sn cannot increase under LGM1CC1PS
given by(Vi

†Vi51, i.e.,

E~sn![E~s1^ ••• ^ sn!

>( tr~Vis
nVi

†!E„Vis
nVi

†/tr~Vis
nVi

†!…. ~24!

However, in the following we will not make use of this gen
eralization.

D. Two realizations of D„s,r…

In this section we show that~F1!–~F5! hold for the quan-
tum relative entropy and for the Bures metric, which as
have seen immediately renders them generators of a g
measure of entanglement.
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1. Quantum relative entropy

We first prove ~F1!–~F5! for the quantum relative en
tropy, i.e., when D(suur)5S(suur):5 Tr$s(lns2lnr)%.
~Note that the quantum relative entropy is not a true met
as it is not symmetric and does not satisfy the triangle
equality. In the next section the reasons for this will beco
clear. For further properties of the quantum relative entro
see@13–15#.! Properties~F1! and~F2! are satisfied@16#. ~F3!
follows from the strong subadditivity property of the vo
Neumann Entropy @11,16,17#. Since (S(s i uur i)
5(piS(s i /pi uur i /qi)1(pi lnpi /qi and (pi lnpi /qi>0 ~see
@18# for proof! ~F4! is also satisfied. Property~F5! can be
proved to hold by inspection@11#. Now, a question arises a
to why the entanglement is not defined
E(s)5minrPDS(ruus). Since the quantum relative entrop
is asymmetric this gives a different result from the origin
definition. However, the major problem with this conventi
is that for all pure states this measure is infinite. Althou
this does have a sound statistical interpretation~see the next
section! it is hard to relate it to any physically reasonab
scheme~e.g., a purification procedure! and, in addition, it
fails to distinguish between different entangled pure sta
This is the prime reason for excluding this convention fro
any further considerations. The measure of entanglem
generated by the quantum relative entropy will hereafter
referred to as the relative entropy of entanglement.

Properties of the relative entropy of entanglement.For
pure, maximally entangled states we showed that the rela
entropy of entanglement reduces to the von Neumann
duced entropy@6#. We also conjectured@6# that for a general
pure state this would be true. Now we present a proof of
conjecture. In short, our proof goes as follows: we alrea
have a guess as to what the minimum for a pure stats
,
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should be—say it is a disentangled stater* . Then we show
that the gradient (d/dx)S„suu(12x)r* 1xr… for any rPD
is non-negative. However, ifr* was not a minimum the
above gradient would be strictly negative, which is a cont
diction. Now we present a more formal proof@19# that ap-
plies to arbitrary dimensions of the two subsystems. An
ternative proof that also applies to arbitrary dimensions w
be given in Sec. III. In the Appendix we present a third pro
that is restricted to two spin-1/2 systems but that can
generalized to arbitrary dimensions.

Theorem 3. For pure states
s5(n1n2

Apn1
pn2

ufn1
cn1

&^fn2
cn2

u the relative entropy of
entanglement is equal to the von Neumann reduced entr
i.e., E(s)52(npnlnpn .

Proof. For a.0, lna5*0
`@(at21)/(a1t)# dt/(11t2), and

thus, for any positive operatorA, lnA5*0
`@(At21)/(A

1t) dt/(11t2). Let f (x,r)5S„suu(12x)r* 1xr…. Then

] f

]x
~0,r!52 lim

x→0
trH s~ ln@~12x!r* 1xr#2 lnr* %

x J
5 trS sE

0

`

~r* 1t !21~r* 2r!~r* 1t !21dtD
512E

0

`

tr@s~r* 1t !21r~r* 1t !21#dt

512E
0

`

tr@~r* 1t !21s~r* 1t !21r#dt.

~25!

Take r* 5(npnufncn&^fncnu ~this is our guess for the
minimum!. Then
~r* 1t !21s~r* 1t !215 (
n1 ,n2 ,n3 ,n4

~pn1
1t !21ufn1

cn1
&^fn1

cn1
uApn2

pn3
ufn2

cn2
&^fn3

cn3
u~pn4

1t !21ufn4
cn4

&

3^fn4
cn4

u

5 (
n,n8

~pn1t !21Apnpn8~pn81t !21ufncn&^fn8cn8u. ~26!

Setg(p,q)5*0
`(p1t)21Apq(q1t)21dt. Then it follows thatg(p,p)51 and, forp,q,

g~p,q!5ApqE
0

`S 1

p1t
2

1

q1t D 1

q2p
dt ~27!

5
Apq

q2p
ln

q

p
. ~28!

Lemma:0<g(p,q)<1 for all p,qP@0,1#.
Proof. We know thatg(p,q)5Apq*0

`(p1t)21(q1t)21dt. But,

~p1t !~q1t !5pq1t~p1q!1t2>pq12tApq1t25~Apq1t !2, ~29!

and so
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g~p,q!<ApqE
0

`

~Apq1t !22dt51. ~30!

Let r5ua&^au ^ ub&^bu whereua&5(nanufn& andb5(nbncn are normalized vectors. Then

] f

]x
~0,r!2152 trS E

0

`

~r* 1t !21s~r* 1t !21dtr D
52 trS (

n1 ,n2 ,n3 ,n4 ,n5 ,n6

g(pn1
,pn2

)ufn1
cn1

^fn2
cn2

uan3
bn4

ā n5
b̄ n6

ufn3
cn4

&^fn5
cn6

u D
52 (

n1 ,n2

g~pn1
,pn2

!an2
bn2

ā n1
b̄ n1

~31!

and

U ] f

]x
~0,r!21U< (

n1 ,n2

uan1
uubn1

uuan2
uubn2

u5S (
n

uanuubnu D 2

<(
n

uanu2(
n

ubnu251. ~32!
n
o

t,
t
t

io

uc

ne

do
n.

a-
t of
en-
p-
Thus it follows that (] f /]x)(0,uab&^abu)>0.
But any rPD can be written in the form

r5( i r i ua ib i&^a ib i u and so (] f /]x)(0,r)
5( i r i(] f /]x)(0,ua ib i&^a ib i u)>0.

Proposition:Let FPH have Schmidt decomposition@20#

uF&5(
n

Apnuwncn& ~33!

and sets5uF&^Fu. ThenE(s)52(npnlnpn .
Proof. S(suur* )52(npnlnpn so it is sufficient to prove

that S(suur)>S(suur* ) for all rPD. Suppose that
S(suur),S(suur* ) for somerPD. Then, for 0,x<1,

f ~x,r!5S„suu~12x!r* 1xr…<~12x!S~suur* !1xS~suur!

5~12x! f ~0,r!1x f~1,r!. ~34!

This implies

f ~x,r!2 f ~0,r!

x
< f ~1,r!2 f ~0,r!,0. ~35!

This is impossible since (] f /]x)(0,r)5 limx→0@ f (x,r)
2 f (0,r#/x>0. This therefore proves the above propositio

Therefore we have shown that for arbitrary dimensions
the subsystems the entropy of entanglement reduces to
entropy of entanglement for pure states. This is, in fac
very desirable property, as the entropy of entanglemen
known to be a good measure of entanglement for pure sta
In fact one might want to elevate Theorem 3 to a condit
for any good measure of entanglement, i.e.:

~E4!: For pure states the measure of entanglement red
to the entropy of entanglement, i.e.,

E~s!52tr$sAlnsA%, ~36!

with sA5trB$s% being the reduced density operator of o
subsystem of the entangled pair.
.
f

the
a
is
es.
n

es

However, in Sec. II D 2 we will see that measures that
not satisfy~E4! can nevertheless contain useful informatio
We will discuss this point later in this paper.

We would like to point out another property of the rel
tive entropy of entanglement that helps us find the amoun
entanglement. It gives us a method to construct from a d
sity operators with known entanglement a new density o
erators8 with known entanglement.

Theorem 4.If r* minimizesS(suur* ) overrPD thenr*
is also a minimum for any state of the form
sx5(12x)s1xr* .

Proof. Consider

S~sxuur!2S~sxuur* !5 tr$sxlnr* 2sxlnr%52x tr~s lnr!

2~12x!tr~r* lnr!1x tr~s lnr* !

1~12x!tr~r* lnr* !

5x$S~suur!2S~suur* !%1~12x!

3S~r* uur!>0. ~37!

This is true for anyr. Thusr* is indeed a minimum ofsx .
For completeness we now prove here thatE(s) is convex:

Theorem 5. E(x1s11x2s2)<x1E(s1)1x2E(s2), where
x11x251.

Proof. This property follows from the convexity of the
quantum relative entropy in both arguments@15#

S~x1s11x2s2uux1r11x2r2!<x1S~s1uur1!1x2S~s2uur2!.
~38!

Now,

E~x1s11x2s2!<S~x1s11x2s2uux1r1* 1x2r2* !

<x1S~s1uur1* !1x2S~s2uur2* !

5x1E~s1!1x2E~s2!, ~39!
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57 1625ENTANGLEMENT MEASURES AND PURIFICATION PROCEDURES
which completes our proof of convexity. This is physically
very satisfying property of an entanglement measure. It s
that when we mix two states having a certain amount
entanglement we cannot get a more entangled state, i.e.,
cinctly stated, ‘‘mixing does not increase entanglemen
This is what is indeed expected from a measure of entan
ment to predict.

As a last property we state that the entanglement of
ation Ec is never smaller than the relative entropy of e
tanglementE. We will show later that this property has th
important implication that the amount of entanglement t
we have to invest to create a given quantum state is usu
larger than the entanglement that you can recover u
quantum state distillation methods.

Theorem 6. Ec(s)>E(s)5minrPDS(suur).
Proof. Given a states then by definition of the entangle

ment of creation there is a convex decompositions5(pis i
with pure statess i such that

Ec~s!5( piEc~s i !. ~40!

As the entanglement of creation coincides with our entan
ment for pure states and as our entanglement is conve
follows that

Ec~s!5( piEc~s i !5( piE~s i !>ES ( pis i D5E~s!,

~41!

and the proof is completed.
The physical explanation of the above result lies in

fact that a certain amount of additional knowledge is
volved in the entanglement of formation, which gives it
higher value to the relative entropy of entanglement. T
will be explained in full detail in Sec. V. We add that th
relative entropy of entanglementE(s) can be calculated eas
ily for Bell diagonal states@6#. Comparing the result to thos
for the entanglement of creation@3# one finds that, in fact,
strict inequality holds. In general, we have unfortunat
found no ‘‘closed form’’ for the relative entropy of entangle
ment and a computer search is necessary to find the m
mum r* , for each givens. However, we can numerically
find the amount of entanglement for two spin-1/2 subsyste
very efficiently using general methods independent of
dimensionality and the number of subsystems involv
which are described in the next section.

2. Bures metric

Another distance measure that leads to a measure o
tanglement that satisfies the conditions~E1!–~E3! is induced
by the Bures metric. However, it will turn out that it does n
satisfy condition~E4! and is therefore a less useful measu
In fact some people would say it is not a measure of
tanglement at all, however, we believe that this very mu
depends on the questions one asks.

We now prove~F1!–~F5! for the Bures metric, i.e., when
D(suur)5DB(suur):5222AF(s,r), where F(s,r)
:5@ tr$ArsAr%1/2#2 is the so-called fidelity~or Uhlmann’s
transition probability!. Property~F1! follows from the fact
that the Bures metric is a true metric and~F2! is obvious.
ys
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~F3! is a consequence of the fact thatDB does not increase
under a complete positive trace preserving map@21#. We can
also easily check thatpiqiF(s i /pi ,r i /qi)5F(s i ,r i), from
where~F4! immediately follows asqiP@0,1#. ~F5! is seen to
be true by inspection. As conditions~F1!–~F5! are satisfied,
it immediately follows that conditions~E1!–~E3! are satis-
fied too.

In the following we present some properties of the Bu
measure of entanglementEB(s). First we show that for pure
states we do not recover the entropy of entanglement.

Theorem 7:For a pure stateuc&5au00&1bu11& one has

EB~ uc&^cu!54a2~12a2!. ~42!

Proof. To prove Theorem 7 we have to show that t
closest disentangled state tos5uc&^cu under the Bures met
ric is given byr* 5a2u00&^00u1b2u11&^11u. To this end we
consider a slight variation aroundr* of the form
rl5(12l)r* 1lr whererPD. Now we need to calculate

d

dl
DB~suurl!ul505

d

dl
tr$AAsrlAs%<0. ~43!

Using the fact thatAs5s ass is pure we obtain

d

dl
DB~suurl!ul505

d

dl
Aa41b41l~^curuc&21!ul50<0.

~44!

Using the closest stater* one then obtains Eq.~42!. To
obtain the entanglement of an arbitrary pure state one
has to calculate the Schmidt decomposition@20# and then by
local unitary transformation transform the state to the fo
uc&5au00&1bu11&. As local unitary transformations do no
change the entanglement, we have therefore shown tha
Bures measure of entanglement does not reduce to the
tropy of entanglement for pure states. The proof presen
here can be generalized to many-dimensional systems bu
do not state this generalization.

In fact, it is now easy to see the following.
Corollary. The Bures measure of entanglement for pu

states is smaller than the entropy of entanglement, i.e.,
any pure states,

EB~s!<2$sAlnsA%. ~45!

Proof. One can see quickly that foraP@0,1#

4a2~12a2!<2a2lna22~12a2!ln~12a2! ~46!

from which the corollary follows.
As the Bures measure of entanglement does not sa

condition ~E4!, i.e., does not reduce to the entropy of e
tanglement for pure states, one might argue that it does
provide a sensible measure of entanglement. Howeve
should be noted that the Bures metric immediately gives
upper bound on the following very special purification pr
cedure. Assume that Alice and Bob are given EPR pairs,
one pair at a time. Then they are allowed to perform a
local operations they like, and then decide whether we k
the pair or discard it. Then, they are given the next EPR p
The question is, how many pure singlet states they can p
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1626 57V. VEDRAL AND M. B. PLENIO
sibly distill out of such a purification procedure. The answ
is immediately obvious from condition~E3!. The best that
Alice and Bob can do is to have one subensemble with p
singlets and all other subensembles with disentangled st
Then the probability to obtain a singlet is simply given
the Bures measure of entanglement for the initial ensem
As this is smaller than the entropy of entanglement we h
found the nontrivial, though not very surprising, result th
this restricted purification procedure is strictly less efficie
than entanglement concentration described in@27#.

3. Other candidates

A reasonable candidate to generate a measure of enta
ment is the Hilbert-Schmidt metric. Here we have th
D(AuuB)5uuA2Buu2:5tr(A2B)2. ~F1! follows from the
fact thatuuA2Buu is a true metric, and~F2! is obvious.~F3!
and ~F4! remain to be shown to hold. We also believe th
there are numerous other nontrivial choices forD(AuuB) ~by
nontrivial we mean that the choice is not a simple sc
transformation of the above candidates!. Each of those gen
erators would arise from a different physical procedure
volving measurements conducted ons andr* . None of the
choices could be said to be more important than any otha
priori , but the significance of each generator would have
be seen through physical assumptions. To illustrate this p
further, let us take an extreme example. Define

D~AuuB!5H 1, AÞB,

0, A5B.

If entanglement is calculated using this distance, then

E~s!5H 1, sP” D,

0, sPD.

This measure therefore tells us if a given states is en-
tangled, i.e., whenE(s)51, or disentangled, i.e., whe
E(s)50. We can call it the ‘‘indicator measure’’ of en
tanglement. It should be noted that this measure trivially s
isfies conditions~E1!–~E3!. This shows that there are nume
ous different choices forD(AuuB) and each is related to
different physical considerations. We explain the statisti
basis of the relative entropy of entanglement in Sec. IV. T
relative entropy of entanglement is then seen to be lin
very naturally to the notion of a purification procedure. Fir
however, we present an efficient numerical method to ob
entanglement for arbitrary particles.

III. NUMERICS FOR TWO SPIN-1/2 PARTICLES

In order to understand how our program for calculati
the amount of entanglement works, we first need to introd
one basic definition and one important result from conv
analysis@22#. From this point onwards we concentrate on t
quantum relative entropy as a measure of entanglemen
though most of the considerations are of a more general
ture.

Definition 2. The convex hull@co(A)# of a setA is the set
of all points that can be expressed as~finite! convex combi-
nations of points inA. In other words,xP co(A) if and only
if x has an expression of the formx5(k51

K pkak , whereK is
r

re
es.

le.
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finite, (k51
K pk51, and, fork51, . . . ,K, pk.0 andakPA.

We immediately see that the set of disentangled stateD
is a convex hull of its pure states. This means that any s
in D can be written as a convex combination of the fo
(pnufncn&^fncnu. However, there is now a problem in th
numerical determination of the measure of entanglement.
have to perform a search over the set of disentangled s
in order to find that disentangled state that is closest to
states of which we want to know the entanglement. B
how can we parametrize the disentangled states? We k
that the disentangled states are of the form given by Defi
tion 1. However, there the number of states in the con
combination is not limited. Therefore one could think th
we have to look over all convex combinations with one sta
then two states, then 1000 states, and so forth. The
theorem, however, shows that one can put an upper lim
the number of states that are required in the convex com
nation. This is crucial for our minimization problem as
shows that we do not have to have an infinite number
parameters to search over.

Caratheodory’s theorem. Let A,RN. Then any x
P co(A) has an expression of the formx5(n51

N11pnan where
(n51

N11pn51, and, forn51, . . . ,N11, pn>0 andanPA.
A direct consequence of Caratheodory’s theorem is t

any state inD can be decomposed into a sum of at mo
@ dim(H1)3 dim(H2)#2 products of pure states. So, for tw
spin-1/2 particles there are at most 16 terms in the expan
of any disentangled state. In addition, each pure state ca
described using two real numbers, so that there are altoge
at most 1511634579 real parameters needed to com
pletely characterize a disentangled state in this case.

A random search over the 79 real parameters would
be very inefficient. However, we can now make use of a
other useful property of the relative entropy, which is the fa
that it is convex. This means that we have to minimize
convex function over the convex set of disentangled state
can easily be shown that any local minimum must also b
global minimum. Therefore we can perform a gradie
search for the minimum~basically we calculate the gradien
and then perform a step in the opposite direction and rep
this procedure until we hit the minimum!. As soon as we
have found any relative minimum we can stop the sear
since this is also a global minimum. To make the gradi
search efficient we have to choose a suitable parametriza
The parametrization that we use has the advantage th
also provides us with another proof of Theorem 3, whi
states that for pure states the relative entropy of entan
ment reduces to the von Neumann reduced entropy. We
explain the parametrization and then state the alterna
proof for Theorem 3. The following results can easily
extended to two subsystems of arbitrary dimensions but
clarity we restrict ourselves to two spin-1/2 systems.

Our aim is to find the amount of entanglement of a states
of two spin-1/2 states, i.e., we have to minimiz
tr$s lns2slnr% for all rPD. From Caratheodory’s theorem
we know that we only need convex combinations of at m
16 pure statesrk

i to representrPD, i.e.,

r5(
i 51

16

pi
2r1

i
^ r2

i . ~47!
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57 1627ENTANGLEMENT MEASURES AND PURIFICATION PROCEDURES
~Notice that we usepi
2 instead ofpi for convenience, so tha

here we require that( i 51
16 pi

251.) The parametrization we
chose is now given by

pi5sinf i 21)
j 5 i

15

cosf j with f05
p

2
~48!

and

rk
i 5uck

i &^ck
i u ,

uc1
i &5cosa i u0&1sina ie

ih iu1& ,

uc2
i &5cosb i u0&1sinb ie

im iu1&. ~49!

All angles a i ,b i ,f i ,h i ,m i can have arbitrary values, bu
due to the periodicity only the interval@0,2p# is really rel-
evant. Numerically this has the advantage that our param
space has no edges at which problems might occur. The
gram for the search of the minimum is now quite straightf
ward. The idea is that givens we start from a randomr, i.e.,
we generate 79 random numbers. Then we computeS(suur),
as well as small variations of the 79 parameters ofr, to
obtain the approximate gradient ofS(suur) at the pointr.
We then move opposite to the gradient to obtain the nexr.
We continue this until we reach the minimum. As explain
before, a convex function over a convex set can only hav
global minimum, so that the minimum value we end up w
is the one and only. The method outlined above immedia
generalizes to two subsystems of arbitrary dimension, h
ever, the number of parameters rises quickly to large val
which slows down the program considerably.

Before we state some numerical results we now indic
an alternative proof of Theorem 3 using Caratheodor
theorem and the parametrization given in Eqs.~47!–~49!. For
this proof we use the fact that we can represent the logari
of an operatorr by

lnr5
1

2p i R lnz
1

z12r
, ~50!

where the path of integration encloses all eigenvalues or.
We can now take the partial derivative of lnr with respect to
a parameterf on whichr might depend.

] lnr

]f
5

1

2p i R lnz
1

z12r

]r

]f

1

z12r
. ~51!

Now, we have a given pure state

s5a2u00&^00u1aA12a2~ u00&^11u1u11&^00u!

1~12a2!u11&^11u. ~52!

The suspected closest approximation tos within the disen-
tangled states is given by

rmin5a2u00&^00u1~12a2!u11&^11u. ~53!

If we want to representrmin using the parametrization give
in Eqs. ~47!–~49! then we find for these paramete
cos2f15a2; a25b25p/2 and zero for all other parameter
ter
ro-
-

a

ly
-
s,

te
s

m

Using Eq.~51! one can now calculate all the partial deriv
tives of the relative entropy around the pointrmin . It is easy,
but rather lengthy, to check that these derivatives vanish
that thereforermin is a relative minimum. This concludes th
proof as a relative minimum of a convex function on a co
vex set is also a global minimum.

After this additional proof of Theorem 3 we now sta
some results that we have obtained or confirmed with
program that implements the gradient search. We pre
four nontrivial statess for which we can find the closes
disentangled stater that minimize the quantum relative en
tropy thereby giving the relative entropy of entangleme
Using the same ideas as for the proof of Theorem 3 in
~50!–~53! one can then prove that these are indeed the c
est disentangled states.

Example 1:

s15luF1&^F1u1~12l!u01&^01u, ~54!

r15
l

2 S 12
l

2D u00&^00u1
l

2 S 12
l

2D $u00&^11u1 H.c.%

1S 12
l

2D 2

u01&^01u1
l2

4
u10&^10u

1
l

2 S 12
l

2D u11&^11u, ~55!

E~s1!5~l22!lnS 12
l

2D1~12l!ln~12l!. ~56!

Here uF1& is one of the four Bell states defined by

uF6&5
1

A2
~ u00&6u11&), ~57!

uC6&5
1

A2
~ u01&6u10&). ~58!

Example 2:

s25luF1&^F1u1~12l!u00&^00u, ~59!

r25S 12
l

2D u00&^00u1
l

2
u11&^11u, ~60!

E~s2!5s1lns11s2lns22S 12
l

2D lnS 12
l

2D
2S 12

l

2D lnS 12
l

2D , ~61!

where

s65
16A122l~12l/2!

2
~62!

are the eigenvalues ofs2. One could argue that in the abov
two cases the following reasoning can be applied:s1(2) is a
mixture of a maximally entangled state~for which the
amount of entanglement is given by ln2) and a complet
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1628 57V. VEDRAL AND M. B. PLENIO
disentangled state (E50). Thus one would expect a tota
amount of entanglement ofl ln2. It is curious that this rea
soning does not work for either of the two states, since
fact,E(s1(2))<l ln2. Now, we show how to use Theorem
to generate more states and their minima. For pure st
s25s we know the minimumr. Now, the state that is a
convex sum ofs andr should also have the same minimu
r. So we have the following.

Example 3:

s35Au00&^00u1Bu00&^11u1B* u11&^00u1~12A!u11&^11u,
~63!

r35Au00&^00u1~12A!u11&^11u, ~64!

E~s3!5e1lne11e2lne22AlnA2~12A!ln~12A!,
~65!

where

e65
16A124A~12A!2uBu2

2
. ~66!

Using Theorem 4, the amount of entanglement can be fo
for a number of other spin-1/2 states. Our program can a
help us infer the entanglement of some other nontrivial sta
as the last example shows.

Example 4:

s45Au00&^00u1Bu00&^11u1B* u11&^00u1~122A!u01&

3^01u1Au11&^11u, ~67!

r45Cu00&^00u1Du00&^11u1D* u11&^00u1Eu01&^01u
~68!

1~122C2E!u10&^10u1Cu11&^11u, ~69!

where

E5
~122A!~12A!2

~12A!22B2
, ~70!

C512A2E, ~71!

D5AE~12E22C!5
~122A!~12A!

~12A!22B2
B. ~72!

It is now easy to compute the amount of entanglement fr
the above information.

In addition to the above described methods there i
simple way of obtaining a lower bound for the amount
entanglement for any two spin-1/2 system. Suppose tha
have a certain states. We first find themaximallyentangled
state uc& such that the fidelityF5^cusuc& is maximized.
Then we apply local unitary transformations tos, which
transformuc& into the singlet state~this is, of course, always
possible!. Now, we apply local random rotations@3# to both
particles. These will transforms into a Werner state, wher
the singlet state will have a weightF ~since it is invariant
under rotations! and all the other three Bell states will hav
equal weights of (12F)/3 ~since they are randomized!.
n

es

d
o
s

a
f
e

Since these operations are local they cannot increase
amount of entanglement, and we have that for anys

E~s!>E~WF!5F lnF1~12F !ln~12F !1 ln2, ~73!

whereWF is the above-described Werner state~the relative
entropy of entanglement for a general Bell diagonal stat
calculated in@6#!.

We note that this efficient computer search provides
alternative criterion for deciding when a given states of two
spin-1/2 systems is disentangled, i.e., of the form given
Eq. ~4!. The already existing criterion is the one given b
Peres and Horodeckiet al. ~see second and third referenc
in @1#!, which states that a state is disentangled iff its par
trace over either of the subsystems is a non-negative op
tor. This criterion is only valid for two spin-1/2, or one spin
1/2 and one spin-1 systems. In the absence of a more ge
analytical criterion our computational method provides
way of deciding this question. In addition we would like
point out that the program is also able to provide us with
convex decomposition of a disentangled stater.

At the end of this section we mentionadditivity as an
important property desired from a measure of entanglem
i.e., we would like to have

E~s12^ s34!5E~s12!1E~s34!, ~74!

where systems 112 and systems 314 are entangled sepa
rately from each other. The exact definition of the left-ha
side is

E~s12^ s34!5 min
pi ,r13 ,r24

SS s12^ s34UU(
i

pir13
i

^ r24
i D .

~75!

Why this form? One would originally assume thats12^ s34
should be minimized by the states of the for
(( i pir1

i
^ r2

i ) ^ (( j pjr3
j

^ r4
j ). However, Alice, who holds

systems 1 and 3, and Bob, who holds systems 2 and 4,
also perform arbitrary unitary operation on their subsyste
~i.e., locally!. This obviously leads to the creation of en
tanglement between 1 and 3 and between 2 and 4 and h
the form given in Eq.~75!. Additivity is, of course, already
true for the pure states, as can be seen from the proof ab
when our measure reduces to the von Neumann entropy.
more general cases we were unable to provide an analy
proof, so that the above additivity property remains a co
jecture. However, for two spin-1/2 systems, our program
not find any counterexample. It should be noted that it
easy to see that we have

E~s12^ s34!<E~s12!1E~s34!. ~76!

In the following we will assume that Eq.~74! holds and use
it in Sec. V to derive certain limits to the efficiency of pur
fication procedures.

IV. STATISTICAL BASIS OF ENTANGLEMENT
MEASURE

Let us see how we can interpret our entanglement m
sure in the light of experiments, i.e., statistically. This w
presented in@7# in greater detail. Here we present a summa
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which is sufficient to understand the following section. O
interpretation relies on the result concerning the asympto
of the quantum relative entropy first proved in@14#, and here
presented under the name of quantum Sanov’s theorem
first show how the notion of relative entropy arises in cla
sical information theory as a measure of distinguishability
two probability distributions. We then generalize this idea
the quantum case, i.e., to distinguishing between two qu
tum states~for a discussion of distinguishability of pur
quantum states see e.g.,@23#!. We will see that this naturally
leads to the notion of the quantum relative entropy. It is th
straightforward to extend this concept to explain the relat
entropy of entanglement. Suppose we would like to chec
a given coin is ‘‘fair,’’ i.e., if it generates a ‘‘head-tail’’
distribution of f 5(1/2,1/2). If the coin is biased then it wil
produce some other distribution, sayu f5(1/3,2/3). So, our
question of the coin fairness boils down to how well we c
differentiate between two given probability distribution
given a finite,n, number of experiments to perform on one
the two distributions. In the case of a coin we would toss in
times and record the number of 0’s and 1’s. From sim
statistics we know that if the coin is fair than the number
0’s N(0) will be roughly n/22An<N(0)<n/21An, for
largen and the same for the number of 1’s. So if our expe
mentally determined values do not fall within the above li
its the coin is not fair. We can look at this from another po
of view; namely, what is the probability that a fair coin wi
be mistaken for an unfair one with the distribution
(1/3,2/3) givenn trials on the fair coin? For largen the
answer is@7,18#

p~ fair→ unfair!5e2nScl~u f uu f !, ~77!

where Scl(u f uu f )51/3 ln1/312/3 ln2/321/3 ln1/2
22/3 ln1/2 is the classical relative entropy for the two d
tributions. So,

p~ fair→ unfair!53n22 ~5/3!n, ~78!

which tends exponentially to zero withn→`. In fact we see
that already after;20 trials the probability of mistaking the
two distributions is vanishingly small,<10210.

This result is true, in general, for any two distribution
Asymptotically the probability of not distinguishing the di
tributions P(x) and Q(x) after n trials is e2nScl„P(x)uuQ(x)…,
where

Scl„P~x!uuQ~x!…5(
i

pi lnpi2pi lnqi ~79!

~this statement is sometimes called Sanov’s theorem@18#!.
To generalize this to quantum theory, we need a mean
generating probability distributions from two quantum sta
s andr. This is accomplished by introducing a general me
surementEi

†( iEi51. So, the probabilities are given by

pi5tr~Ei
†Eir!,

~80!

qi5tr~Ei
†Eis!.

Now, we can use Eq.~79! to distinguish betweens and r.
The above is not the most general measurement that we
r
s

e
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f

n-

n
e
if

e
f
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t

-

.

of
s
-

an

make, however. In general we haveN copies ofs andr in
the state

~81!

~82!

We may now apply a POVM( iAi51 acting onsN andrN.
Consequently, we define a new type of relative entropy

SN~suur!:5supA’sH 1

N(
i

trAis
Nln trAis

N

2trAis
Nln trAir

NJ . ~83!

Now it can be shown that@15#

S~suur!>SN , ~84!

where, as before,

S~suur!:5tr~s lns2s lnr! ~85!

is the quantum relative entropy@6,7,11,12,15,16# ~for the
summary of the properties of the quantum relative entro
see@13#!. Equality is achieved in Eq.~84! iff s andr com-
mute @24#. However, for anys andr it is true that@14#

S~suur!5 lim
N→`

SN .

In fact, this limit can be achieved by projective measu
ments, which are independent ofs @25#. It is known that if
Eq. ~79! is maximized over all general measurementsE, the
upper bound is given by the quantum relative entropy~see,
e.g.,@15#!. In quantum theory we therefore state a law ana
gous to Sanov’s theorem~see also@7#!,

Theorem 8~or quantum Sanov’s theorem!. The probabil-
ity of not distinguishing two quantum states~i.e., density
matrices! s andr after n measurements is

p~r→s!5e2nS~suur!. ~86!

In fact, as explained before, this bound is reached asymp
cally @14#, and the measurements achieving this are glo
projectors independent of the states @25#. We note that the
quantum Sanov theorem was presented by Donald in@26# as
a definition justified by properties uniquely characterizi
the quantitye2nS(suur). The underlying intuition in the above
measurement approach and Donald’s approach are basi
the same. Now the interpretation of the relative entropy
entanglement becomes immediately transparent@7#. The
probability of mistaking an entangled states for a closest,
disentangled state,r, is e2nminrPDS(s,r)5e2nE(s). If the
amount of entanglement ofs is greater, then it takes fewe
measurements to distinguish it from a disentangled state~or,
fixing n, there is a smaller probability of confusing it wit
some disentangled state!. Let us give an example. Consider
state (u00&1u11&)/A2, known to be a maximally entangle
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1630 57V. VEDRAL AND M. B. PLENIO
state. The closest to it is the disentangled st
(u00&^00u1u11&^11u)/2 @6#. To distinguish these states it
enough to perform projections onto (u00&1u11&)/A2. If the
state that we are measuring is the above mixture, then
sequence of results~1 for a successful projection, and 0 fo
an unsuccessful projection! will contain on average an equa
number of 0’s and 1’s. For this to be mistaken for the abo
pure state the sequence has to contain alln 1’s. The prob-
ability for that is 22n, which also comes from using Eq.~86!.
If, on the other hand, we performed projections onto the p
state itself, we would then never confuse it with a mixtu
and from Eq.~86! the probability is seen to bee2`50. We
next apply this simple idea to obtaining an upper bound
the efficiency of any purification procedure.

V. THERMODYNAMICS OF ENTANGLEMENT:
PURIFICATION PROCEDURES

There are two ways to produce an upper bound to
efficiency of any purification procedure. Using conditio
~E3! and the fact that the relative entropy of entanglemen
additive, we can immediately derive this bound. Howev
this bound can be derived in an entirely different way. In t
section we now abandon conditions~E1!–~E3! and use only
methods of the previous section to put an upper bound to
efficiency of purification procedures. In particular, we sho
that the entanglement of creation is in general larger than
entanglement of distillation. This is in contrast with the sit
ation for pure states where both quantities coincide. T
quantum relative entropy is seen to play a distinctive r
here, and is singled out as a ‘‘good’’ generator of a meas
of entanglement from among other suggested candidate

A. Distinguishability and purification procedures

In the previous section we presented a statistical bas
the relative entropy of entanglement by considering dis
guishability of two~or more! quantum states encapsulated
the form of the quantum Sanov theorem. We now use
quantum Sanov theorem to put an upper bound on
amount of entanglement that can be distilled using any p
fication procedure. This line of reasoning follows from t
fact that any purification scheme can be viewed as a m
surement to distinguish entangled and disentangled quan
states. Suppose that there exists a purification procedure
the following property: Initially there aren copies of the
states. If s is entangled, then the end product is 0,m<n
singlets andn2m states inrPD. Otherwise, the final state
does not contain any entanglement, i.e.,m50 ~in fact, there
is nothing special about singlets: the final state can be
other known, maximally entangled state because these ca
converted into singlets by applying local unitary operation!.

Note that we can allow the complete knowledge of t
states. We also allow that purification procedures differ f
different statess. Perhaps there is a ‘‘universal’’ purificatio
procedure independent of the initial state. However, in re
ity, this property is hard to fulfill@9#. At present the best tha
can be done is to purify a certain class of entangled st
~see, e.g.,@27–29#!. The above is therefore an idealizatio
that might never be achieved. Now, by calculating the up
bound on the efficiency of a procedure described above
e
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present an absolute bound for any particular procedure.
ask: ‘‘What is the largest number of singlets that can
produced~distilled! from n pairs in states ’’? Suppose that
we producem pairs. We now project themnonlocally onto
the singlet state. The procedure will yield positive outcom
(1) with certainty so long as the state we measure indee
a singlet. Suppose that after performing singlet projectio
onto all m particles we get a string ofm 1’s. From this we
conclude that the final state is a singlet~and therefore the
initial states was entangled!. However, we could have mad
a mistake. But with what probability? The answer is as f
lows: the largest probability of making a wrong inference
22m5e2mln2 ~if the state that we were measuring had
overlap with a singlet state of 1/2). On the other hand, if
were measurings from the very beginning~without per-
forming the purification first!, then the probability~i.e., the
lower bound! of the wrong inference would bee2nE(s). But,
purification procedure might waste some information~i.e., it
is just a particular way of distinguishing entangled from d
entangled states, not necessarily the best one!, so that the
following has to hold

e2nE~s!<e2mln2, ~87!

which implies that

nE~s!>m, ~88!

i.e., we cannot obtain more entanglement than is origina
present. This, of course, is also directly guaranteed by
condition ~E3!. The above, however, was a deliberate ex
cise in deriving the same result from a different perspecti
abandoning conditions~E1!–~E3!. Therefore the measure o
entanglement given in Eq.~7!, whenD(suur)5S(suur), can
be used to provide an upper bound on the efficiency of
purification procedure. For Bell diagonal states, Rains@8#
found an upper bound on distillable entanglement us
completely different methods. It turns out that the bound t
he obtains in this case is identical to the one provided by
relative entropy of entanglement.

Actually, in the above considerations we implicitly a
sumed that the entanglement ofn pairs, equivalently pre-
pared in the states, is the same asn3E(s). We already
indicated that this is a conjecture with a strongly suppor
basis in the case of the quantum relative entropy. Based
the upper bound considerations we can introduce the foll
ing definition.

Definition 3. A purification procedure given by a loca
complete positive trace preserving maps→(VisVi

† is de-
fined to beideal in terms of efficiency iff

( tr~s i !E„s i /tr~s i !…5E~s!, ~89!

where, as usual,s i5VisVi
† and pi5tr(VisVi

†) ~i.e., a the
ideal purification is the one where~E3! is an equality rather
than an inequality!. Notice an apparent formal analogy b
tween a purification procedure and the Carnot cycle in th
modynamics. The Carnot cycle is the most efficient cycle
thermodynamics~i.e., it yields the greatest ‘‘useful work to
heat’’ ratio!, since it is reversible~i.e., it conserves the ther
modynamical entropy!. We would now like to claim that the
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57 1631ENTANGLEMENT MEASURES AND PURIFICATION PROCEDURES
ideal purification procedure is the most efficient purificati
procedure~i.e., it yields the greatest number of singlets fo
given input state!, since it is reversible~i.e., it conserves
entanglement, measured by the minimum of the quan
relative entropy over all disentangled states!. Unfortunately
this analogy between the Carnot cycle and purification p
cedures is not exact~it is only strictly true for the pure
states!. This is seen when we compare the entanglemen
creation with the relative entropy of entanglement. In The
rem 6 we have, in fact, shown that the entanglement of
ation is never smaller than the relative entropy of Entang
ment. As an example one can consider Bell diagonal st
for which we can exactly calculate both the entanglemen
creation@6# and the relative entropy of entanglement@3#. It
turns out that the entanglement of creation is always stri
larger than the relative entropy of entanglement except
the limiting cases of maximally entangled Bell states or
disentangled Bell diagonal states~see Fig. 2 for Werner
states!. This result leads to the following.

Implication. In general, the amount of entanglement th
was initially invested in creation ofs cannot all be recovered
~‘‘distilled’’ ! by local purification procedures.

Therefore, the ideal purification procedure, though m
efficient, is nevertheless irreversible, and some of the
vested entanglement is lost in the purification process its
The solution to this irreversibility lies in the loss of certa
information as can easily be seen from the following ana
sis. Suppose we start with an ensemble ofN singlets and we
want to locally create any mixed states. Now s can always
be written as a mixture of pure statesC1 ,C2 , . . . with the
corresponding probabilitiesp1 ,p2 , . . . . We now use Ben-
nett et al.’s ~de!purification procedure@27# for pure states
~whose efficiency is governed by the von Neumann entrop!.
We convert the firstp13N singlets into the stateC1, the
secondp23N singlets into the stateC2, and so on. In this
way, the whole ensemble is in the states. But, we have

FIG. 2. Comparison of the entanglement of creation and
relative entropy of entanglement for the Werner states~these are
Bell diagonal states of the formW5 diag„F,(12F)/3,(1
2F)/3,(12F)/3…. One clearly sees that the entanglement of c
ation is strictly larger than the relative entropy of entanglement
0,F,1.
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additional information: we know exactly that the firstp13N
pairs are in the stateC1, the secondp23N states are in the
stateC2, and so on. This is not the same as being given
initial ensemble of identically prepared pairs in the sta
sigma without any additional information. In this, secon
case we do not have the additional information of knowi
exactly the state of each of the pairs. This is why the pur
cation without this knowledge is less efficient, and hence o
expects that the relative entropy of entanglement is sma
than the entanglement of formation.

An open question remains as to whether we can use s
other generator, such as the Bures metric, to give an e
more stringent bound on the amount of distillable entang
ment.

B. More than two subsystems

We see that the above treatment does not refer to
number~or indeed dimensionality! of the entangled systems
This is a desired property as it makes our measure of
tanglement universal. However, in order to perform minim
zation in Eq.~7! we need to be able to define what we me
by a disentangled state of sayN particles. As pointed out in
@7# we believe that this can be done inductively. Namely,
two quantum systems,A1 andA2, we define a disentangle
state as one that can be written as a convex sum of di
tangled states ofA1 andA2 as follows@6,7#:

r125(
i

pir i
A1^ r i

A2 , ~90!

where( i pi51 and thep’s are all positive. Now, forN en-
tangled systemsA1 ,A2 , . . . ,AN , the disentangled state is

r12•••N5 (
perm$ i 1i 2••• i N%

r i 1i 2••• i N
rAi 1

Ai 2
•••Ai n^ rAi n11

Ai n12
•••Ai N,

~91!

where (perm$ i 1i 2••• i N%r i 1i 2••• i N
51, all r ’s are positive and

where(perm$ i 1i 2••• i N% is a sum over all possible permutation

of the set of indices$1,2, . . . ,N%. To clarify this let us see
how this looks for 4 systems:

r12345(
i

pir i
A1A2A3^ r i

A41qir i
A1A2A4^ r i

A31r ir i
A1A3A4

^ r i
A21sir i

A2A3A4^ r i
A11t ir i

A1A2^ r i
A3A41uir i

A1A3

^ r i
A2A41v ir i

A1A4^ r i
A2A3 ~92!

where, as usual, all the probabilitiespi ,qi , . . . ,v i are posi-
tive and add up to unity. The above two equations, at leas
principle, define the disentangled states for any numbe
entangled systems. Note that this form describes a diffe
situation from the one given in Eq.~75!, which refers to a
number of pairs shared by Alice and Bob only. The abo
definition of a disentangled state is justified by extending
idea that local actions cannot increase the entanglemen
tween two quantum systems@3,6,7#. In the case ofN par-
ticles we haveN parties~Alice, Bob, Charlie, . . . ,Wayne! all
acting locally on their systems. The general action that a
includes communications can be written as@7#
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r→ (
i 1 ,i 2 , . . . ,I N

Ai 1
^ Bi 2

^ ••• ^ Wi N
rAi 1

†
^ Bi 2

†
^ ••• ^ Wi N

†

~93!

and it can be easily seen that this action does not alter
form of a disentangled state in Eqs.~91! and ~92!. In fact,
Eq. ~91! is the most general state invariantin form under the
transformation given by Eq.~93!. This can be suggested as
definition of a disentangled state forN>3, i.e., it is the most
general state invariant in form under local POVM and cl
sical communications. Of course, an alternative to definin
disentangled state would be

r12•••N5(
i

r ir i
A1^ r i

A2••• ^ r i
AN , ~94!

which means that we do not allow any entanglement in
subset of theN states. This would be a disentangled st
based on some local hidden variable model. Again we rep
that the particular choice of a form of disentangled states
depend on the physical background in our model and the
no absolute sense in which we can resolve this dichotom
should be stressed that for two particles this free choice d
not exist as both pictures coincide.

VI. CONCLUSIONS

We can look at the entanglement from two different p
spectives. One insists that local actions cannot increase
tanglement and do not change it if they are unitary. The ot
one looks at the way we can distinguish an entangled s
from a disentangled one. In particular, the following quest
is asked: what is the probability of confusing an entang
state with a disentangled one after performing a certain n
ber of measurements? These two, at first sight different
proaches, lead to the same measure of entanglement.
results in the fact that a purification procedure can be
garded as a protocol of distinguishing an entangled s
from a disentangled set of states. From this premise we
rived the upper bound on the efficiency of any purificati
procedure. It turns out that distillable entanglement is in g
eral smaller than the entanglement of creation. Our entan
ment measure is independent of the number of systems
their dimensionality. This suggests applying it to more th
two entangled systems in order to understand multipart
entanglement. We have shown how to compute entan
ment efficiently for two spin-1/2 subsystems using compu
tional methods. However, a closed form for the expression
this entanglement measure is desirable. However, a clo
form for the entanglement of formation has been propo
for two spin-1/2 particles in@4#. An interesting problem is to
specify all the states that have the same amount of entan
ment. We know that all the states that are equivalent up
local unitary transformation have the same amount of
tanglement@by definition ~E2!#. However, there are state
with the same amount of entanglement but that are
equivalent up to a local unitary transformation~for example,
one state is pure and the other one is mixed!. A question for
further research is whether they are linked by a local co
plete measurement. Our work in addition suggest a ques
of finding a general local map that preserves the entan
ment of a given entangled state.
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APPENDIX A: ANOTHER PROOF FOR THE PURE STATE
ENTANGLEMENT

In the following we present a third proof for the value
the relative entropy of entanglement for pure states. As in
second proof we use the representation of the logarithm
density operator in terms of a complex integral as in E
~50! and ~51!. We would like to know the value of the rela
tive entropy of entanglement for a pure states5uc&^cu with
uc&5au00&1bu11&. We assume that r5a2u00&^00u
1b2u11&^11u is the closest disentangled state tos. Therefore
we would have that

E~s!5S~suur!. ~A1!

Assume that we changer a little bit, i.e., we have

rl5~12l!r1lr* ~A2!

with a smalll such thatrl andr* are disentangled. Forr to
be the closest disentangled state tos we have to have that

d

dl
S„suu~12l!r1lr* …ul50>0. ~A3!

Using the complex representation of Eq.~51! for the deriva-
tive of the logarithm we quickly find

d

dl
S„suu~12l!r1lr* …ul50

52
d

dl
tr$s ln@~12l!r1lr* #%ul50

52
d

dl

1

2p i R dz trH s
1

z12rl
J lnzul50

52
1

2p i R dz tr$~r* 2r!~z12r!21

3s~z12r!21% lnz

512tr$r* ~ u00&^00u1u11&^11u1xu00&

3^11u1xu11&^00u!, ~A4!

wherex5ab(lna22lnb2)/(a22b2) and we have used the ex
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plicit form of s andr together with Cauchy’s theorem@30#.
Now we have to show that Eq.~A4! is always positive. One
easily checks that

x5ab~ lna22 lnb2!/~a22b2!<1, ~A5!

where the maximum is achieved fora251/2. The right-hand
side of Eq.~A4! can become smallest forx51. For Eq.~A3!
to be positive we therefore need to show that
d,

.

.

s.

v

l
,

tr$r* ~ u00&^00u1u11&^11u1u00&^11u1u11&^00u!%<1. ~A6!

Using uf1&5(u00&1u11&)/A2 this follows easily asr* is
not entangled and therefore^f1ur* uf1&<1/2, which imme-
diately confirms Eq.~A6!. Thereforer indeed represents th
closest disentangled state tos and our proof is complete.

This proof can easily be extended to arbitrary dimensio
subsystems where the maximally entangled states have
form (naunn&. In that case the proof becomes more simi
to the one presented in Sec. II.
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