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Limits of the measurability of the local quantum electromagnetic-field amplitude

G. Compagno and F. Persico
Istituto Nazionale di Fisica della Materia and Istituto di Fisica dell’ Universita`, Via Archirafi 36, 90123 Palermo, Italy

~Received 8 July 1997!

The precision with which the amplitude of the free electromagnetic field can be measured locally in QED is
evaluated by analyzing a well-known gedanken experiment originally proposed by Bohr and Rosenfeld~BR!.
The analysis is performed by applying standard theoretical techniques familiar in quantum optics. The main
result obtained for the precision is significantly different from the generally accepted Bohr-Rosenfeld result.
This leads to questioning the widely accepted notion of the compensating field, fostered by these authors. A
misconception at the origin of this notion is pointed out by a careful investigation of the self-force acting on the
apparatus designed to measure the field. The correct expression for this self-force is found to be at variance
with that proposed by Bohr and Rosenfeld and generally accepted. It is argued that, as a consequence of this
new expression and in contrast with the generally accepted view, no compensating force of nonelectromagnetic
nature is required in order to perform measurements of the quantum field amplitude with any desired accuracy.
It is shown that the only limitations to the precision of the measurement, in the BR gedanken experiment, arise
from the time-energy uncertainty principle, as well as from the finite dimensions of the measuring apparatus.
@S1050-2947~98!06903-0#

PACS number~s!: 12.20.Ds
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I. INTRODUCTION

The present paper deals with the precision with which
amplitude of the electric componentEext of an electromag-
netic field can be measured in the neighborhood of a sp
time point, in the context of nonrelativistic QED. This pro
lem has a long history and dates back to a paper publishe
Landau and Peierls in the early days of quantum field the
@1#. These authors, paving the way for others who took
the problem up to recent times, analyzed a gedanken ex
ment in which the momentum increase of a massive char
test body under the influence of the field is measured an
related to the amplitude of the field in a simple way. Th
realized the impossibility of discerning the force exerted
the test body by the external fieldEext from the force exerted
by the field created by the same test body during the m
surement. The latter field is intrinsically uncertain due to
quantum nature of measurement the and consequently ca
an uncertainty in the total field. This uncertainty must
compared with the the minimum precision needed to rev
the quantum features of the electromagnetic field. Lan
and Peierls used a pointlike test body and they found that
former uncertainty exceeds the latter minimum precision
all cases. Thus they concluded that no meaningful field a
plitude measurement is possible in QED.

In a subsequent paper Bohr and Rosenfeld propose
spread the test body of large massM over a volumeV of
finite linear dimensionsa, thereby obtaining a perfectly
rigid, finite, and uniform charge densityr @2#. They also
emphasized the need for a finite time intervalt5t192t18 be-
tween the initial and final momentum measurements at18
andt19 and they constrained the test body~which in this paper
we shall often call thepointeraccording to modern usage! to
move rigidly along the1 direction in order to measure the1
component of the electric field. Their protocol for the me
surement of the pointer momentum is such that att18 , and
571050-2947/98/57~3!/1595~9!/$15.00
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within a small time intervalDt!t, the pointer gets rigidly
displaced over a distanceQ along1. Due to the large value
of M , Q does not change much for the rest of the measu
ment timet until t19 , when the second and final momentu
measurement brings the body back to the original configu
tion (Q50) in a time intervalDt. The finite extent of the
test body ensures that the electromagnetic forces, cause
the acceleration withinDt during either momentum measure
ment, have a negligible effect on the motion of the point
thereby disposing of the difficulty of the Landau-Peie
treatment for a pointlike test body, at least during the init
and final acts of momentum measurement.

Another important feature of the gedanken apparatus c
trived by Bohr and Rosenfeld~BR!, in contrast with the
Landau-Peierls setup, is that in the initial undisplaced c
figuration the test body is perfectly neutralized by a fix
body of identical shape and charge density2r. BR solve
Maxwell equations by prescribing a gatelike form forQ(t)
@i.e., Q(t)50 for t,t18 and for t.t19 ; Q(t)5Q for t18,t
,t19# and they obtain an expression for the electric fieldE1

created by the system~neutralizing body plus pointer! during
t, under the reasonable assumption of negligible magn
effects. From the BR expression forE1 it follows immedi-
ately that the forceF exerted on the pointer and stemmin
from E1 , which in this paper we shall call theself-force, is
proportional toQ according to the expression

F~ t2!5r2QE
V
d3x1E

V
d3x2E

t
dt1Axx

~1,2! ,

~1!

Axx
~1,2!52S ]2

]x2]x1
2

1

c2

]2

]t2]t1
D 1

r
dS t22t12

r

cD .

In this expressionF, Q, x1 , andx2 are along1, the space
integrations are over the volumeV of the pointer in its un-
displaced configuration of the beginning of the experime
1595 © 1998 The American Physical Society



r
e

ry
in
s
pr

us

a
m

s
,

ly
n
is

p
te
ea
ci
n-

u

th
-
a

th
ea

t
-
n

ai

c
tu
n
ic

as
et
e
c-

o
th

r-
hus
ith
of

er,

e

i-
y
in

nce
rm
of
-

r a
e of
its
and

ct-
nt

iliar
a-

ken
dis-

tum
in
p-

1596 57G. COMPAGNO AND F. PERSICO
the time integration extends overt from t18 to t19 , xi

[(xi ,yi ,zi) for i 51 or 2, r 5ux22x1u, t18,t1 , t2,t19 , and
c is the velocity of light.

The self-force~1! contributes an impulse to the pointe
proportional toQ, which adds to the impulse provided by th
external fieldE1

ext. In view of the uncertainty principle, this
contribution linear inQ cannot be measured with arbitra
precision simultaneously with the pointer momentum
crease betweent18 andt19 . On the other hand, both quantitie
should be accurately measured in order to determine
cisely E1

ext, or rather its space-time averageE% 1
ext defined in

Eq. ~23!, from the momentum balance equation. Indeed,
ing expression~1!, BR find that the precision with whichE% 1

ext

is measured cannot exceed the limit

~DE% 1
ext!min;A\uA% xx

~ I ,I !u,

A% xx
~ I ,I !5

1

V2t2 E
V
d3x1E

V
d3x2E

t
dt1E

t
dt2Axx

~1,2! . ~2!

This is less stringent than the limit estimated by Land
and Peierls for a pointlike test body. Nevertheless, it see
enough to preclude the measurement of field amplitude
the range where quantum effects become evident since
view of the form of the field commutation relations, on
fields weaker than@\uA% xx

(I ,I )u#1/2 display quantum features i
view of the form of the field commutation relations. It
essential at this point to note that the limit~2! estimated by
BR is truly fundamental, since it depends only on the pro
erties of the free field and not on the structure of the poin
Consequently, it would seem impossible in principle to m
sure field amplitudes in the quantum range. In order to
cumvent this difficulty, BR proceed to modify their geda
ken apparatus by the addition of an elastic force2F of
nonelectromagnetic nature, which acts on the pointer in s
a way as to cancel the self-forceF evaluated in Eq.~1!. This
trick leads to the disappearance of the contribution to
impulse which is linear inQ, thereby yielding a simple mo
mentum balance equation which relates directly the incre
in pointer momentum withE% 1

ext. In this way E% 1
ext can be

measured with any desired precision, by measuring only
momentum gained by the pointer, also in the case of w
fields in the quantum domain.

This argument seems to have been accepted in all
subsequent work on the subject@3–5# and the additional non
electromagnetic force has been incorporated in the Lagra
ian of the field-pointer system in the context of the algebr
treatment of the theory of measurement@6#. The BR com-
pensation mechanism has also been used in more re
work on the theory of measurement of more general quan
fields @7,8#, although it must be noted that Pauli fails to me
tion it in the latest edition of his book on quantum mechan
@9#.

The BR argument, however, is unsatisfactory for at le
two reasons. First, the introduction of a nonelectromagn
force, which is apparently necessary in order to eliminat
limitation of quantum origin in the measurability of the ele
tromagnetic field, seems to indicate a fundamental lack
self-consistency of QED. Second, the physical nature of
-
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self-forceF in Eq. ~1! is rather unclear. In fact fort18,t2,t19
expression~1! can be partitioned as

F52KQ1r2QE
V
d3x1E

V
d3x2E

t
dt1

1

c2

]2

]t2]t1

1

r

3dS t22t12
r

cD ,
~3!

K5r2E
V
d3x1E

V
d3x2

]2

]x2]x1

1

r
uS t22t182

r

cD .

The first contribution in Eq.~3! is the linear approximation to
the Coulomb attraction between two identical initially ove
lapping oppositely charged bodies of arbitrary shape. T
one would expect the second contribution to coincide w
the radiation-reaction force arising because of the motion
the pointer. The textbook expression of the latter, howev
is @10#

FRR~ t !5 (
n50

`
~21!n

cn12

1

n!
Q~n12!E

V
d3x1E

V
d3x2r~x1!r~x2!

3Fn11

n12
2

n21

n12 S x22x1

r D 2G r n21,

Q~n!5
]nQ

]tn ~4!

for a body of spherically symmetric charge density, fort
.a/c, for small velocity of the pointer and for negligibl
nonlinear terms inQ and in its time derivatives. Evidently
expression~4! looks rather different from the second contr
bution in Eq.~3! since, for example, it does not contain an
term linear inQ. It must be emphasized, however, that
contrast with Eq.~1! the validity of expression~4! is re-
stricted to a body of spherical symmetry and in the abse
of the neutralizing charge distribution. Nevertheless the fo
of Eq. ~4! renders unclear both the physical interpretation
the self-force ~1! and its connection with the radiation
reaction force.

Thus the above remarks indicate the opportunity fo
closer consideration of the measurement of the amplitud
the quantum electromagnetic field, particularly in view of
basic conceptual importance. This summarizes the aim
the scope of the present paper.

II. QED OF THE POINTER-FIELD SYSTEM

In this section we present anab initio quantum-
mechanical treatment of the dynamics of the pointer intera
ing with the local quantized field. We develop the treatme
in the Coulomb gauge and we use an approximation fam
to quantum opticians, namely, the electric dipole approxim
tion.

In the presence of the neutralizing body, the BR gedan
apparatus can be schematically represented, for small
placements, by a harmonic oscillator coupled to the quan
electromagnetic field. Thus the pointer-field Hamiltonian
the minimal coupling scheme and in the electric dipole a
proximation is@11#
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H5
1

2M
P21

1

2
KQ21HF2q

1

Mc
P•A'~R!

1q2
1

2Mc2 A'
2 ~R!,

~5!

HF5
1

8p E S 1

c2 Ȧ'
2 ~x!1@“∧A'~x!#2Dd3x.

In Eq. ~5! K is given by Eq.~3! with t1852`, P5MQ̇
1qA'(R)/c is the canonical momentum,q5rV is the total
charge of the pointer, and

A'~R!5
1

V E
V
d3xA'~x! ~6!

is the ~transverse! vector potential in the electric dipole ap
proximation, coinciding with the space average ofA'(x)
within the volumeV occupied by the pointer at equilibrium
(Q50). The difference between the displacementQ of the
pointer from its equilibrium position andR, the position of
the center of mass of the pointer at equilibrium, should
noted sinceQ is a dynamic variable whereasR is not. For
the moment we shall treatQ as a three-dimensional vecto
and we shall constrain it later to the1 direction.

It is convenient to second quantize the field as

A'~x!5(
k j

S 2p\c2

L3vk
D 1/2

ek j~ak je
ik•x1ak j

† e2 ik•x!, ~7!

whereL3 is the field quantization volume,ak j are the usual
field annihilation operators, andek j are real polarization vec
tors for photons in the modek j of frequencyvk . Using Eq.
~7! it is easy to show that

@A' l~x!,A'm~x8!#5@A' l~x!,A'
2 ~x8!#50,

@A' l~x!,HF#52 i\cE' l~x!, ~8!

where

E'~x!5 i(
k j

S 2p\vk

L3 D 1/2

ek j~ak je
ik•x2ak j

† e2 ik•x!. ~9!

It should be noted that, consistently with the electric dip
approximation, all sums overk are restricted tok,kM
;p/2a and this is equivalent to assigning finite dimensio
to the pointer. Use of Eqs.~6! and ~8! leads to

Q̈l52
i

\ F 1

M S P2q
1

c
A'~R! D

l

,HG
52

K

M
Ql1

1

M
qE' l~R!, ~10!

where E'(R) is the transverse electric field at the point
location in the electric dipole approximation, as obtained
the same kind of averaging leading to Eq.~6!. Moreover we
have
e

e

s

y

@ak j ,A' l~R!#5S 2p\c2

L3vk
D 1/2

~ek j! le
2 ik•R,

@ak j ,A'
2 ~R!#52A'~R!•@ak j ,A'~R!#. ~11!

Thus, after some algebra,

ȧk j52
i

\
@ak j ,H#52 ivkak j

1
i

\
qS 2p\

L3vk
D 1/2

~ek j! l Q̇le
2 ik•R. ~12!

We now constrain the pointer to move along1 using

Ql
~n![Q~n!d l1 . ~13!

This gives

ȧk j52 ivkak j1
i

\
qS 2p\

L3vk
D 1/2

~ek j!1Q̇e2 ik•R, ~14!

which can be straightforwardly integrated as

ak j~ t !5ak j~0!e2 ivkt

1
i

\
qS 2p\

L3vk
D 1/2

~ek j!1e2 ik•Re2 ivktE
0

t

eivkt8Q̇~ t8!dt8.

~15!

Substitution of Eq.~15! in Eq. ~9! yields

E'1~R,t !5E'1
ext~R,t !

24pqE
0

t

Q̇~ t8!
1

L3 (
k j

~ek j!1
2cosvk~ t2t8!dt8,

~16!

where

E'1
ext~R,t !5 i(

k j
S 2p\vk

L3 D 1/2

~ek j!1@ak j~0!ei ~k•R2vkt8!2hc#

~17!

is the transverse field amplitude operator in the absenc
the pointer, which is the object of the measurement. Furth
it is not difficult to show that

1

L3 (
k j

~ek j!
2cosvk~ t2t8!

52
1

3p2c3

d2

dt82

sin kMc~ t2t8!

t2t8
52

1

3pc3 d9~ t2t8!.

~18!

The last equality in Eq.~18! is symbolic and valid only in the
limit kM→`, which strictly speaking we cannot take in vie
of the electric dipole approximation. It is, however, useful
adopt it as an approximate equality, in which case it yiel
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E
0

t

Q̇~ t8!
1

L3 (
k j

~ek j!1
2cosvk~ t2t8!dt8

5
1

3pc3 S c

p
Q̈~ t !E

0

kM
dk2

1

2
Q̂~ t ! D . ~19!

Use of Eq.~19! in Eq. ~16! gives

E'1~R,t !5E'1
ext~R,t !2

4

3pc2 qQ̈~ t !E
0

kM
dk1

2

3c3 qQ̂~ t !.

~20!

The last two terms in Eq.~20! represent the radiation
reaction contribution to the electric field acting on the poin
@12# in the electric dipole approximation. Substitution of th
expression in Eq.~10! yields the equation of motion of th
pointer in the form

MQ̈~ t !52KQ~ t !1qE'1
ext~R,t !2

4kM

3pc2 q2Q̈~ t !

1
2

3c3 q2Q̂~ t !. ~21!

Inspection of Eq.~21! leads to identification of the first term
on the right-hand side as the linearized Coulomb attrac
on the pointer by the neutralizing body and the last two ter
as the radiation-reaction force operator acting on the poin
In the latter contribution higher-order derivatives inQ are
absent due to the electric dipole approximation. Clearly
radiation-reaction force in Eq.~21! seems compatible with
the textbook expression~4! and in disagreement with the BR
expression linear inQ which can be derived from Eq.~3!.

III. MEASURABILITY OF THE LOCAL ELECTRIC FIELD

We cast the equation of motion of the pointer between
two momentum measurements and in the presence of
neutralizing body in the form

MQ̈52KQ1rVĒ1
ext1FRR,

FRR52
4kM

3pc2 q2Q̈1
2

3c3 q2Q̂. ~22!

In this expressionĒ1
ext is the space average of the extern

field within the volume of the pointer and coincides wi
Ē'1

ext(R). Moreover the assumption of largeM entails that all
time derivatives ofQ are small and entitles us to neglectFRR
in Eq. ~22!. Subsequent time integration yields the followin
operator equation for the momentum balance:

p~ t19!2p~ t18!52E
t
KQ dt21rVtE% 1

ext,

E% 1
ext5

1

Vt E
V
d3xE

t
dt E1

ext~x,t !, p5MQ̇. ~23!

It must be emphasized that in the absence of the neutrali
body it isK50, and Eq.~23! expresses perfect correlation
the pointer momentum operator with the space- and tim
r

n
s
r.

e

e
he

l

ng

-

averaged external field operator. Consequently a meas
ment of the latter field can be performed by measuring
increase in pointer momentum, without additional uncerta
ties of quantum nature, provided the neutralizing body
eliminated from the experimental setup. It is thus clear
ready at this point that, in contrast with the BR conclusio
there is no need to invoke an additional nonelectromagn
force in order to compensate the effects of the self-fo
contribution linear inQ, since it is sufficient to eliminate the
neutralizing body from the gedanken apparatus.

Equation~23! is exact within the electric dipole approx
mation and, in some sense, constitutes the final result of
treatment. The rest of this section is devoted to discuss
the impact of this result on the BR analysis. To this aim
shall implement the same procedure used by BR to de
expression~2!. More precisely, following BR, we assum
that the momentum measurement att18 is contrived in such a
way that the operatorQ does not depend on time betweent18
andt19 , and we also assume thatQ can be taken out of thet2

integration in Eq.~23!. This leads to

p~ t19!2p~ t18!52K̄tQ1rVtE% 1
ext, K̄5

1

t E
t
K~ t2!dt2 .

~24!

It is appropriate to remark at this point that the express
for E% 1

ext is given by

E% 1
ext5

1

t E
t
dt E'1

ext~R,t !dt

5 i(
k j

S 2p\vk

V D 1/2

~ek j!1@ak j~0!ei ~k•R2vkt18!

3F~vk ,t !2hc#,
~25!

F~vk ,t !5
12e2 ivkt

ivkt
.

The quantityF(vk ,t) appearing in this expression is 1 fo
vk!t21 and vanishes forv@t21. Thus the components o
the field of frequencyvk.t21 are more or less severel
distorted by the measurement process. Such a distor
however, is of a rather trivial nature because it is implicit
the model of measurement and it is not related to any qu
tum effect.

We now note that Eq.~24! is the counterpart of the BR
momentum balance equation. In fact the latter is exactly
the same form as Eq.~24!, the only difference being that th
BR coefficient of the term linear inQ is r2V2t2A% xx

(I ,I ) rather

than 2K̄t. Since BR obtain expression~2! from their mo-
mentum balance equation, proceeding in the same way
derive from Eq. ~24! that the minimum uncertainty with
which E% 1

ext can be measured is

~DE% 1
ext!min;S \K̄

r2V2t D
1/2

. ~26!

This expression is the counterpart of the BR expression~2!.
The contrast between Eqs.~2! and~26! is manifest, since

the former is independent of the structure of the detector~by



b
of

e
e
ce
-
th
d

fo

sio
o

m
an
n
o

t
a
.
th
a
o

ha
m
a
tl

ol

tin

in
rt
y

b

n
na
s

e

is-

he
dy
po-

l

tend

he
and

the

dis-

tion

57 1599LIMITS OF THE MEASURABILITY OF THE LOCAL . . .
which we mean the system constituted by the pointer and
the neutralizing body! and depends only on the properties
the free electromagnetic field@13#, whereas in the latter the
influence of the physical structure of the detector is pres
through the quantityK̄ which, for example, vanishes in th
absence of the neutralizing body. Consequently the un
tainty ~26!, contrary to Eq.~2!, does not constitute a funda
mental limit for the precision of the measurement even in
presence of the neutralizing body, since this uncertainty
creases with increasingt.

On the other hand, expression~26! has an interesting
physical meaning that is worth pointing out. We note that
long measurementst.2a/c we can roughly evaluateK̄
from Eqs.~3! and ~24! as

K̄;r2E
V
d3x1E

V
d3x2

1

r 3 5r2V2S 1

r 3D;r2V. ~27!

Thus, squaring both sides of Eq.~26!, we get

V~DE% 1
ext!min

2 ;\/t. ~28!

Since in a field measurement of durationt within a volumeV
an energy density\/tV is inevitably conferred to the field
because of the time-energy uncertainty principle, expres
~28! indicates that this additional energy is at the origin
the minimum field uncertainty~26!.

Thus we reach the conclusion that no impassable li
exists to prevent measuring the field amplitude in the qu
tum range and that no necessity arises for the introductio
a compensating force of nonelectromagnetic nature, in c
trast with the BR conclusion.

It must be emphasized, however, that the approach to
measurement of the field amplitude presented in Secs. II
III is in some sense complementary to the BR approach
fact BR choose to discuss the problem in a domain where
zero-point quantum fluctuations of the field are smaller th
the field uncertainty related to the commutation relations
the field in disjoint space-time regions, in such a way t
classical electrodynamics can be used in a first approxi
tion. This requirement leads BR to concentrate on the c
a.ct @2#, although this BR procedure was subsequen
criticized by Corinaldesi@3#. In contrast, it is possible to
show that our approach, which relies on the electric dip
approximation, involvesa,ct. In fact in our framework the
finite value ofa involves a finite value ofkM;p/2a such
that all components ofEext with wave vectors larger thankM
do not contribute to the impulse imparted byEext to the
pointer, and consequently cannot give rise to measurable
fects. This has been taken into account simply by trunca
at kM the sums overk in expressions like Eq.~9!. Clearly
such a truncation introduces a limitation in the time doma
since it prevents considering phenomena of duration sho
thanvM

2152a/pc. This condition must be satisfied also b
the measurement duration, which leads tot.a/c in our
treatment. Thus the doubt might arise that the difference
tween results~2! and ~26! is simply a reflection of the dif-
ferent domains of validity of the BR and of the prese
theory. This forces us to consider in more detail the origi
BR argument. We shall devote the next section to this ta
y

nt

r-

e
e-

r

n
f

it
-

of
n-

he
nd
In
e

n
f
t
a-
se
y

e

ef-
g

,
er

e-

t
l

k.

IV. THE BR SELF-FORCE

It is easy to convince oneself that expression~2! follows if
the BR expression~1! for the self-force is assumed. Thus w
concentrate on rederiving expression~1!, following closely
the BR method, in order to understand the origin of the d
crepancy between Eqs.~2! and ~26!.

It is convenient to consider first the field created by t
pointer disregarding the contribution of the neutralizing bo
during the measurement. The classical electromagnetic
tentials in the Lorentz gauge, generated at pointx2 and time
t2 by a classical charge densityr(x1 ,t1) and by a classica
current densityj (x1 ,t1) are @10#

f~x2 ,t2!5E d3x1E dt1
r~x1 ,t1!

r
dS t12t21

r

cD ,
~29!

A~x2 ,t2!5
1

c E d3x1E dt1
j ~x1 ,t1!

r
dS t12t21

r

cD .

Except where otherwise indicated, space integrations ex
over all space whereas time integrations are betweent18 and
t19 . The latter condition is equivalent to assuming that t
charge density is rigidly fastened to the reference frame
neutralized up to timet18 and after timet19 .

If r(x1) represents the undisplaced charge density of
pointer for t1,t18 , its time developmentr(x1 ,t1) can be
described as due to a rigid displacement over a small
tanceQ(t1). Then clearlyr(x1 ,t1)5r„x12Q(t1)…, and it is
convenient to introduce the displacement operator

T~ i !~Q!5 (
n50

`
1

n!
~Q•“

~ i !!n, ~30!

where the superscript (i ) indicates differentiation with re-
spect toxi ( i 51,2). The action ofT( i ) on any function ofxi
is to change its argument toxi1Q. Thus in Eq.~29! we have

f~x2 ,t2!5E d3x1E dt1r~x12Q!
1

r
dS t12t21

r

cD
5E d3x1E dt1r~x1!T~1!~Q!

1

r
dS t12t21

r

cD ,

~31!

A~x2 ,t2!5
1

c E d3x1E dt1r~x12Q!Q̇~ t1!
1

r
dS t12t21

r

cD
5

1

c E d3x1E dt1r~x1!Q̇~ t1!T~1!~Q!
1

r

3dS t12t21
r

cD ,

where we have performed a change of the space integra
variable fromx1 to x12Q(t1) and where we have usedj
5rQ̇. Neglecting terms of orderQ2 andQQ̇ for Q/a,Q̇/c
!1, we get from Eq.~31!, for t18,t2,t19 ,
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f~x2 ,t2!5E d3x1r~x1!
1

r
uS t22t182

r

cD
1E d3x1E dt1r~x1!Q~ t1!•“

~1!
1

r

3dS t12t21
r

cD ,

A~x2 ,t2!5
1

c E d3x1E dt1r~x1!Q̇~ t1!
1

r
dS t12t21

r

cD .

~32!

Thus the electric field created by the pointer atx2 ,t2 for
t18,t2,t19 is

E~x2 ,t2!52¹~2!f~x2 ,t2!2
1

c

]

]t2
A~x,t2!

52E d3x1r~x1!¹~2!
1

r
uS t22t182

r

cD
2E d3x1E dt1r~x1!¹~2!FQ~ t1!•“

~1!
1

r

3dS t12t21
r

cD G
2

1

c2 E d3x1E dt1r~x1!Q̇~ t1!
]

]t2

1

r

3dS t12t21
r

cD . ~33!

We shall neglect the magnetic field, since we have alre
assumedQ̇(t1)!c. Specializing to a displacementQ along1
and transforming the time integration in the last term of E
~33! by the use of the well-known properties of thed func-
tion, we obtain for the component ofE along1

E1~x2 ,t2!5E0~x2 ,t2!1ED~x2 ,t2!,

E0~x2 ,t2!52E d3x1r~x1!
]

]x2

1

r
uS t22t182

r

cD ,
~34!

ED~x2 ,t2!52E d3x1E dt1r~x1!Q~ t1!

3S ]2

]x2]x1
2

1

c2

]2

]t2]t1
D 1

r

3dS t22t12
r

cD .

E0 can be visualized as the electric field created by a rep
of the pointer appearing at timet18 in the original undisplaced
configuration andED as the electric field of a distribution o
dipoles generated by the displacement of the pointer. Co
quently the 1 component of the self-force acting on th
pointer at timet2 is
y

.

a

e-

F~ t2!5E d3x2r~x2 ,t2!E1~x2 ,t2!5E d3x2r~x2

2Q!E1~x2 ,t2!5E d3x2r~x2!T~2!~Q!E1~x2 ,t2!,

~35!

where we have performed a change of the integration v
able fromx2 to x22Q. Remembering thatQ in Eq. ~34! is
along 1, substituting Eq.~34! in Eq. ~35!, and neglecting
terms ofO(Q2) we get

F~ t2!5F00~ t2!1F0D~ t2!1FD~ t2!,

F00~ t2!52E d3x1E d3x2r~x1!r~x2!
]

]x2

1

r

3uS t22t182
r

cD ,
~36!

F0D~ t2!52E d3x1E d3x2r~x1!r~x2!Q~ t2!
]2

]x2
2

1

r

3uS t22t182
r

cD ,

FD~ t2!52E d3x1E d3x2E dt1r~x1!r~x2!Q~ t1!

3S ]2

]x2]x1
2

1

c2

]2

]t2]t1
D 1

r
dS t22t12

r

cD .

In this expressionF00 arises fromE0 and is the force exerted
by the replica upon the pointer taken in the initial config
ration. F0D also arises fromE0 and is the force exerted b
the replica on the distribution of dipoles generated by
displacement of the pointer. Finally,FD arises fromED and
it can be visualized as the force on the pointer due to the fi
created by the distribution of dipoles and evaluated up
terms linear inQ. ClearlyF00 vanishes, since for anyf (r ) it
is

] f ~r !

]x2
5~x22x1!

1

r

] f ~r !

]r
.

Thus the contribution from an infinitesimal volume with
givenx22x1 in the integration in Eq.~36! is canceled by the
contribution of the infinitesimal volume obtained by e
changingx2 and x1 . Thus the only contributions toF are
F0D and FD which, specializing to the uniformly charge
pointer, can be written as

F~ t2!5F0D~ t2!1FD~ t2!,

F0D~ t2!52r2Q~ t2!E
V
d3x1E

V
d3x2

]2

]x2
2

1

r
uS t22t182

r

cD ,
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FD~ t2!52r2E
V
d3x1E

V
d3x2E dt1Q~ t1!

3S ]2

]x2]x1
2

1

c2

]2

]t2]t1
D 1

r
dS t22t12

r

cD ,

~37!

where the space integrations are over the arbitrarily sha
volumeV occupied by the pointer in the initial configuratio

SettingF0D aside for the moment, we concentrate onFD ,
which has the interesting property of coinciding with t
total self-force when the neutralizing body is present. In f
the effect of the latter is simply to annihilate the replica a
its field, yielding immediatelyF(t2)5FD(t2). We remark
that if we could takeQ(t1) out of all integrations inFD , we
would obtain the BR expression~1! for the self-force in the
presence of the neutralizing body. This, however, is no
trivial step as we shall now show. Indeed, performing
time integration inFD for t18,t2,t19 and remembering tha
Q(t18)5Q(t19)50, we find

FD~ t2!52r2E
V
d3x1E

V
d3x2F ]2

]x2]x1

1

r
QS t22

r

cD
3uS t22t182

r

cD1
1

c2r
Q̈S t22

r

cD uS t22t182
r

cD
1Q̇S t22

r

cD dS t22t182
r

cD G . ~38!

This shows that takingQ(t1) out of the integral~37! in FD ,
in order to obtain the BR result in the presence of the n
tralizing body, is incorrect. Moreover the singular nature
the distributionAxx

(1,2) defined in Eq.~2! and appearing in the
expression~37! for FD introduces a dependence ofQ on r
which must be properly dealt with. This can be convenien
done by the series expansion

QS t22
r

cD5 (
n50

`
~21!n

n! S r

cD n

Q~n!~ t2!,

Q~n!~ t2!5
]nQ~ t2!

]t2
n . ~39!

This leads to

FD~ t2!5FQ~ t2!1FRR~ t2!,

FQ~ t2!52r2Q~ t2!E
V
d3x1E

V
d3x2

]2

]x2]x1

1

r

3uS t22t182
r

cD , ~40!
ed

t

a
e

-
f

y

FRR~ t2!52r2(
n51

`
~21!n

n!

1

cn Q~n!~ t2!

3E
V
d3x1E

V
d3x2

]2

]x2]x1
r n21uS t22t182

r

cD
2r2(

n50

`
~21!n

n!

1

cn12 FQ~n12!~ t2!E
V
d3x1E

V
d3x2

3r n21uS t22t182
r

cD1Q~n11!~ t2!

3E
V
d3x1E

V
d3x2r n21dS t22t182

r

cD G .
Clearly the only contribution toFD linear inQ is FQ . Since
for any f (r ) it is ] f (r )/]x152] f (r )/]x2 in the absence of
the neutralizing body we haveFQ52F0D . As we have
seen,F0D is the electrostatic force exerted by the replica
the distribution of dipoles generated by the displacemen
the pointer; henceFQ can be interpreted as the force exert
by the dipolar field on the pointer taken in the original u
displaced configuration. In the absence of the neutraliz
body this forceFQ is canceled byF0D , so that the total
self-force is simplyF5FRR; in the presence of the neutra
izing body FQ contributes to the self-force according toF
5FQ1FRR and corresponds to the attractive force the n
tralizing body exerts on the pointer displaced over a dista
Q, whenȦ can be neglected. In fact expression~40! for FQ

is currently used to evaluate the plasma frequency of a m
roscopic body in solid state physics@14#.

Moreover we shall show thatFRR in Eq. ~40!, which is the
only contribution to the self-forceF surviving in the absence
of the neutralizing body, reduces to the usual radiatio
reaction force under appropriate circumstances. To this
we use

]2

]x2]x1
r n21uS t22t182

r

cD
5r n21H 12n

r 2 F11~n23!S x22x1

r D 2GuS t22t182
r

cD
1

1

cr F11~2n23!S x22x1

r D 2GdS t22t182
r

cD
1

1

c S x22x1

r D 2 ]

]r
dS t22t182

r

cD J ~41!

in Eq. ~40!, which we specialize to the case of measureme
of long durationt@2a/c. For such measurements we a
entitled to consider timest2.t181r /c for any pair of points
x1 and x2 within the pointer. Restriction to these timest2
amounts to assuming that any part of the pointer is caus
related to all others. With this restriction expression~40!
yields
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FRR~ t2!52
r2

c2 (
n50

`
~21!n

n!

1

cn Q~n12!~ t2!

3E
V
d3x1E

V
d3x2r n21

3Fn11

n12
2

n21

n12 S x22x1

r D 2G . ~42!

We note that this result is valid for an arbitrarily shap
pointer of uniform density. Thus its domain of validity
different from that of Eq.~4!. The two domains, however
coincide if we takeV spherical in the former and if in addi
tion we taker uniform within the pointer in the latter. With
this choice expressions~4! and ~42! coincide. We conclude
that FRR in Eq. ~40! is the genuine radiation-reaction contr
bution to the self-force, which exists independently of t
presence of the neutralizing body.

Thus we reach the following conclusions:
~1! In the presence of the neutralizing body, the only te

in the self-force proportional to the displacementQ arises
from the attraction by this body on the pointer. This term
electrostatic in nature and is expressed byFQ as in Eq.~40!
rather than by the BR expression in Eq.~1!. In this case the
self-force is given byF5FQ1FRR.

~2! In the absence of the neutralizing body no contribut
proportional toQ exists in the expression for the self-forc
which is simply given byF5FRR.

These conclusions seem in agreement with the result
our theory presented in Secs. II and III. Thus the origin of
discrepancy between Eqs.~2! and ~26! is related to the ap-
proximation implicit in expression~1!. As we have shown
such an approximation has far-reaching consequences
deed the introduction of a compensating force of nonelec
magnetic nature, proposed by BR, seems superfluous
misleading in the circumstances considered, since from
~26! it is clear that the same result can be obtained simply
eliminating the neutralizing body from the gedanken appa
tus, provided the mass of the test body is large enoug
make the radiation-reaction force negligible.

Finally we remark that the only condition for the validit
of our results in this section is that terms nonlinear inQ and
in its time derivatives, as well as magnetic effects, should
negligible. These constraints are respectively equivalen
assuming thatQ should be negligible with respect toa and
that Q̇ should be negligible with respect toc. A sufficiently
large value ofM should ensure the validity of both assum
tions.

V. CONCLUSIONS

We have reconsidered the old problem of the precis
with which the electromagnetic-field amplitude can be m
sured in the neighborhood of a space-time point in a non
ativistic context. We have applied theoretical techniques,
miliar in quantum optics, to the gedanken experime
devised long ago by BR to discuss this problem. In analo
with the results of the BR analysis, our theory yields a mi
mum uncertainty with which the field amplitude can be me
sured locally. Our expression for this minimum, however
significantly different from the BR expression. Moreover
of
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to

e
to

n
-
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-
t
y
-
-
s

has a clear physical meaning in terms of the energy\/t
which is inevitably conveyed to any object in the course o
quantum measurement of finite durationt @15# because of
the time-energy uncertainty principle, and it vanishes afte
straightforward modification of the BR gedanken appara
consisting of the elimination of the neutralizing body. Th
leads us to conclude that there is no ground for the introd
tion of nonelectromagnetic forces, fostered by BR in order
perform an exact measurement of the field amplitude.
note that this conclusion establishes QED as a self-consis
theory also in the context of the quantum theory of measu
ment. In addition, we have investigated the discrepancy
tween our results and those obtained by BR, and we h
shown that it stems from an approximation in the BR tre
ment which we have carefully avoided in our theory.

Finally, we make three further comments. First, in t
theory presented in this paper we have been concerned
with measurements of the local field amplitude in the reg
occupied by the pointer~‘‘single field averages’’ in BR’s
language!. Thus the question of the measurability of fie
correlations~‘‘twofold averages’’ in BR’s language!, which
is discussed at length in the BR paper@2#, remains an open
question. Second, we emphasize that problems of s
acceleration and runaway solutions@16# are out of the scope
of this paper. It should be mentioned, however, that expr
sion ~40! for the radiation-reaction force indicates the pre
ence of a contribution proportional toQ̇ for times shorter
than that taken by light to traverse the pointer. It might
interesting to speculate if the Abraham-Lorentz paradox s
vives in the presence of this damping term, which of cou
vanishes for sufficiently long times. Third, one might rai
doubts about the relevance of the present work for QED a
branch of modern science, since the modern point of v
emphasizes the concept of photon rather than that of fi
amplitude. The notion of photon, however, seems inextri
bly related to that of normal modes of the field and, as it h
been pointed out recently, there are cases where the ele
magnetic field cannot be represented in terms of nor
modes@17#, particularly in the physically important case o
time-dependent boundaries@18#. In these cases the descrip
tion of the quantized field in terms of photons, defined
quanta of the excitation of the normal modes, apparen
fails. One is then led to adopt other descriptions of the fie
In this paper we have shown that a description in terms
field amplitudes is feasible and self-consistent, since the fi
amplitude can be measured in the context of QED with
making recourse to compensating forces of nonelectrom
netic nature.
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