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Renormalization-group method for simple operator problems in quantum mechanics
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The failure of conventional perturbation theory due to secularity is considered with renormalization-group
tecniques in two operator problems. Specifically, some results concerning the quantum anharmonic oscillator
and quantum parametric resonance are obtained with a rather modest effort in comparison to other methods.
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I. INTRODUCTION AND MOTIVATIONS

In many different contexts perturbation theory fails m
erably because of the growth of higher-order terms, contr
to the basic perturbative assumption. This secularity
present in both classical and quantum theories, and perv
the motivation for the search for analytical methods to i
prove on perturbative expansions.

We will here analyze two simple quantum-mechani
problems where secularities appear and invalidate naive
turbation expansions

It is the renormalization-group~RG! method for global
asymptotic analysis, as advocated by Goldenfeld and
laborators@1–3#, which we extend to operator problems
this short note~see also@4# for a geometrical point of view of
the RG method!. The key idea of the RG method for glob
asymptotic analysis is the introduction of a time parame
additional to the initial value point, in such a way that t
perturbation expansion is valid in the vicinity of the intr
duced time parameter. The coupling constants, constan
motion, and/or initial conditions~depending on your view-
point and background one or another of these descript
will be more suitable! are turned into running constants, th
is to say that these constants are suitably modified by
change of the introduced time parameter. On the other h
the solution itself cannot depend on the additional, new ti
parameter, so derivation with respect to the latter of the p
turbative solution will impose evolution equations for th
running constants. These equations are then solved for
running constants, and on substitution in the perturbative
pansion, together with the choice that the time paramete
constantly updated to be time itself, we obtain an improv
solution.

This method has the clear advantage over the elemen
multiple-scale perturbation analysis@5,6# that noa priori de-
termination of the scales that appear in the problem is n
essary, and a naive perturbation expansion is enough
starting point~it has to be pointed out, though, that in som
variants of the multiple scales analysis the functional form
the secondary scales is fixed aposteriori, according to a
consistency condition—see, for example@7#!. Many ex-
amples and illustrations of this advantage of the RG met
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can be found in the works of Goldenfeld and collaborato
The multiple scales method itself has been applied to

erator problems@8,9#, but not the RG method, and this pap
shows the application of the RG method to operator pr
lems. We shall choose the quantum anharmonic oscilla
and the phenomenon of quantum parametric resonanc
our case studies, because of the important role they h
traditionally had as theoretical laboratories for new pertur
tive methods, and because of their paradigmatic characte
the context of cosmological~p!reheating, in which we are
interested~for an application of the RG method in this con
text, see@10#!. Our results are comparable to all other me
ods, and since they are obtained with a modest effort,
think that the RG method is highly competitive in the ope
tor context as well. There are a number of areas where
usefulness might be proved, such as quantum optics, bu
leave that for further work.

II. RG ANALYSIS OF THE QUANTUM ANHARMONIC
OSCILLATOR

The first problem we shall first address within the R
method is the quantum anharmonic oscillator. It is describ
by the classical action

S5E dtS 1

2
mq̇22

1

2
mv2q22

1

4
lmq4D , ~2.1!

from which follows the nonlinear motion equation

d2q

dt2
1v2q1lq350 , ~2.2!

known as Duffing’s equation. Also, it is easily seen that t
same equation governs the quantum dynamics, now w
q(t) understood as the position operator in the Heisenb
picture.

Let us perform a simple perturbation expansion in thel
coupling constant,q5q01lq11O(l2). The solution to or-
der 0 is simply

q05A \

2mv
~be2 ivt1b†eivt!. ~2.3!

In this expressionb† and b are creation and annihilation
operators for the oscillator problem. The first-order equat
1586 © 1998 The American Physical Society
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57 1587RENORMALIZATION-GROUP METHOD FOR SIMPLE . . .
presents resonance and, therefore, secular terms. Wr
down just the singular~i.e., secular! part ofq1, which we call
q1,s ,

q1,s5S \

2mv D 3/2 i ~ t2t!

2v
$@b~b†!21b†bb†1~b†!2b#eivt

2~b2b†1bb†b1b†b2!e2 ivt%. ~2.4!

Let us now allow a dependence int of the pair of opera-
tors b and b†. Imposing the RG conditiondq/dt50, we
obtain

db

dt
1

il\

4mv2
~b2b†1bb†b1b†b2!5O~l2!, ~2.5!

and the Hermitian conjugate thereof. We notice thatN5b†b
and @b,b†# are constants under the flow oft, which allows
us to solve these equations in the form

b~t!5b~0!e23il\Nt/~4mv2!,
~2.6!

b†~t!5e3il\Nt/~4mv2!b†~0!,

which, on being substituted in the perturbative expansion
q, together with the changet→t, gives us

q~ t !5A \

2mv
@e2 ivtb~0!e23il\Nt/~4mv2!

1eivte3il\Nt/~4mv2!b†~0!#. ~2.7!

We have thus obtained an asymptotic expression for
operator. On computinĝn21uq(t)un&, we see that the en
ergy difference between levels comes out
En2En215\v@11(3l\n)/(4mv3)1O(l2)#, consistent
with all previous computations of this quantity.

It has to be observed that our result is identical to the
obtained by Bender and Bettencourt@8#, as is only to be
expected, given the equivalence of the multiple-scale met
and the RG methods for a wide class of differential eq
tions, to which the~classical! Duffing equation belongs. On
the other hand, note the simplicity of our approach, where
a priori scale has to be assumed.

In order to stress this latter point, let us consider
second-order computation for this problem. The source t
for q2 is given by2(q0

2q11q0q1q01q1q0
2), where we have

to consider the fullq1 and not just the singular part. In thi
source term there will be terms that will give rise to sec
larities of the forme63ivt(t2t) ande6 ivt(t2t)2. These we
shall be able to ignore, because the renormalization to
order takes care of them. As a matter of fact, this is precis
what the statement of perturbative renormalizability amou
to in our case: that no divergences of a different form arise
the process of renormalization, that is to say, that all div
gent~secular! terms can be taken care of by renormalizati
of the termsbe2 ivt andb†eivt.

Another ~simple! technicality in the problem at hand i
that, since we have checked that@b,b†# is constant to order
l2, we can use the commutator in thel andl2 terms, thus
making the computation somewhat easier.
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This results in the following expression for the secu
relevant part ofq2, q2,sr:

q2,sr5
23i l 5~ t2t!

16v3
@~5N221!b†eivt2b~5N221!e2 ivt#,

~2.8!

whence the improved RG equation reads

db

dt
1

3il\

4mv2
bN2

3il2\2

64m2v5
b~5N221!5O~l3!,

~2.9!

thus giving us

b~t!5b~0!expS 23il\Nt

~4mv2!
1

3il2h2~5N221!t

64m2v5 D ,

~2.10!

and, as a consequence,

En2En215\v@11~3l\n!/~4mv3!

23l2\2~5n221!/~64m2v6!1O~l3!#.

~2.11!

III. QUANTUM PARAMETRIC RESONANCE

As a last example of the usefulness of the RG method
quantum-mechanical problems, we shall now illustrate
application to the phenomenon of quantum parametric re
nance. Consider then the following Hamiltonian:

H5
1

2m
P21

1

2
mv0

2@A12q cos~v0t !#X2, ~3.1!

whereA, q, andv0 are constants. The evolution of any give
state is computed by acting on it with the evolution opera
U(t,t0), which satisfies

i\
]U

]t
~ t,t0!5H~ t !U~ t,t0!, ~3.2!

with U(t0 ,t0)5I , the identity operator.
Let us divide the Hamiltonian into an unperturbed and

perturbation part:

H5H01H15S 1

2m
P21

1

8
mv0

2X2D
1H 1

2
mv0

2F S A2
1

4D12qcos~v0t !GX2J . ~3.3!

The reason for this decomposition lies in our previo
knowledge that resonance will definitely set in ifA is equal
to 1/4, but this is not essential for the final results.

The evolution operator can be written as

U~ t,t0!5e2 i ~ t2t0!H0 /\UI~ t,t0!, ~3.4!

in such a way that the interaction picture evolution opera
obeys the following equation:
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i\
]UI

]t
~ t,t0!5HI~ t !UI~ t,t0!, ~3.5!

and in our case

HI5
1

2
mv0

2F S A2
1

4D12q cos~v0t !GXI
2

5
\v0

2 F S A2
1

4D12q cos~v0t !G~e2 iv0~ t2t0!/2a

1eiv0~ t2t0!/2a†!2. ~3.6!

The constant operatorsa and a† are the annihilation and
creation operators at timet0.

We now perform the usual perturbative expansion for
interaction picture evolution operator, restricting ourselves
the Born formula,UI512 ( i /\) * t0

t ds HI(s). However, this

leads to secular terms, and in order to eliminate them,
shall rather use this approximation close to the timet5t, by
using the initial conditionUI(t,t0)5a(t), such that

UI~ t,t0!5a~t!2
i

\Et

t

ds HI~s!a~t!

1~higher order terms!. ~3.7!

Retaining only the secular terms, we obtain

UI~ t,t0!5a~t!2
iv0

2
~ t2t!F S A2

1

4D ~aa†1a†a!

1q„eiv0t0a21e2 iv0t0~a†!2
…Ga~t! . ~3.8!

For the sake of simplicity, let us sett050, without any loss
of generality. We know thatUI cannot depend on the choic
of t, and we are thus led to the RG equation to first orde
ou

s
c

e
o

e

]a

]t
1

iv0

2 F S A2
1

4D ~aa†1a†a!1q@a21~a†!2#Ga~t!50 ,

~3.9!

which, on being solved, provides us with an improved e
pression for the interaction picture evolution operat
UI(t,0)5exp(2itHeff /\), where Heff is the large time
asymptotic effective Hamiltonian read off directly from th
RG equation:

Heff5
\v0

2 F S A2
1

4D ~aa†1a†a!1q@a21~a†!2#G
52F 1

2m S A2
1

4
2qD P21

1

8
mv0

2S A2
1

4
1qDX2G .

~3.10!

This is the first important result of our computation: we ha
resummed the effect of the variable frequency into an eff
tive large-time constant Hamiltonian. If it happens that,
small positiveq, 1

4 2q,A, 1
4 1q, this effective Hamiltonian

corresponds to an upside-down harmonic oscillator, t
marking the principal instability band~to the order we have
computed!.

It now behooves us to compute the creation of partic
due to this instability. In order to do this, we shall first wri
down the integral kernel that corresponds toUI in the posi-
tion representation,K(x,t;x8,t8), using standard results fo
quadratic Hamiltonians@11#. Let g5v0Aq22(A21/4)2 and
w5A(q21/41A)/(q11/42A). The integral kernel
K(x,t;x8,0):5^xuUI(t,0)ux8& is computed to be~asymptoti-
cally!
the
K~x,t;x8,0!5S imv0w

4p\ sinh~gt ! D
1/2

expS 2 imv0w

4\ sinh~gt !
@~x21x82!cosh~gt !22xx8# D . ~3.11!

It is now feasible to compute the asymptotic value of^nuU(t,0)u0& through simple tabulated integrals, and we can calculate
transition probability from the ground state to even states:

P0→2l~ t !5
~2l !!

~ l ! !222l

2w

A4w21~11w2!2 sinh2~gt !
S ~11w2!2 sinh2~gt !

4w21~11w2!2 sinh2~gt !
D l

. ~3.12!
o
v-
f

ua-
It is easy to check that unitarity is preserved. An analog
computation leads to the rate of particle production,

N~ t !5
~11w2!2

4w2
sinh2~gt !. ~3.13!

These results can be compared with the computation
Shtanovet al. @12#, and coincide completely for the specifi
case at hand. Shtanovet al. arrive at this result through
s

of

Bogolyubov transformations~to identify the function giving
particle creation! and Krylov-Bogolyubov averaging~to per-
form the asymptotic analysis!. This coincidence comes as n
surprise given the first-order equivalence of Krylo
Bogolyubov averaging to two-timing~a particular instance o
the multiple-scale method! for a wide class of differential
equations@6#, and the~again first-order! equivalence of the
multiple-scale and RG methods for many instances of eq
tions.
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IV. CONCLUSIONS

We have performed several operator computations
quantum mechanics using the RG method for glo
asymptotic analysis. This method has the serious advan
that unitarity is built in, and that computations are simp
and more direct than in other techniques for asympto
analysis. These ideas should be useful in a wide realm
applications. In the special case of quantum parametric r
nance we derive explicitly an~asymptotic! effective Hamil-
tonian, which is an upside-down harmonic oscillator whe
ever the system is in the instability region: the instabil
associated with the parametric resonance is turned into
unboundedness of the interaction Hamiltonian, thus dem
strating the basic equivalence~asymptotically! of such dif-
ferent systems. Even so, unitarity is preserved through
our computation, and the asymptotic results we obtain
well behaved with respect to this fundamental property
quantum mechanical evolution. We have performed
analysis of the first instability band only for the quantu
or

v
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Mathieu equation. However, it is possible within this meth
to examine the whole forbidden or allowed band structure
this model, following in the quantum context the study ca
ried out for the classical case by Goldenfeld and collabo
tors. As a matter of fact, for quadratic Hamiltonians t
whole instability analysis can be reduced to classical m
chanics, i.e., to classical Mathieu~or similar! equations.
What we emphasize as novel in our results is the interpr
tion of instabilities as being due to effective large tim
upside-down harmonic oscillator Hamiltonians. Furthermo
analogous analyses can be carried for nonquadratic Ham
nians, even time dependent, where the quantum-mecha
character of the problem would show itself to its fullest.

ACKNOWLEDGMENTS

This work was supported in part by the European Co
mission under the Human Capital and Mobility programm
Contract No. ERB-CHRX-CT94-0423, and by the CICY
under Project No. AEN-96-1668.
e,

v. D
@1# N. Goldenfeld,Lectures on Phase Transitions and the Ren
malization Group, Frontiers in Physics Vol. 85~Addison-
Wesley, New York, 1992!.

@2# Lin-Yuan Chen, Nigel Goldenfeld, and Y. Oono, Phys. Re
Lett. 73, 1311~1994!.

@3# Lin-Yuan Chen, Nigel Goldenfeld, and Y. Oono, Phys. Rev
54, 376 ~1996!.

@4# T. Kunihiro, e-print patt-sol/9709003 and references therei
@5# C. M. Bender and S. A. Orszag,Advanced Mathematica

Methods for Scientists and Engineers~McGraw-Hill, New
York, 1978!, Chap. 11.

@6# D. R. Smith, Singular-Perturbation Theory. An Introductio
-

.

with Applications ~Cambridge University Press, Cambridg
1985!.

@7# J. D. Murray, Asymptotic Analysis~Springer-Verlag, New
York, 1984!, p. 156.

@8# C. M. Bender and L. M. A. Bettencourt, Phys. Rev. Lett.77,
4114 ~1996!; Phys. Rev. D54, 7710~1996!.

@9# M. Frasca, Nuovo Cimento B107, 915 ~1992!.
@10# H. J. de Vega and J. F. J. Salgado, Phys. Rev. D56, 6524

~1997!.
@11# R. P. Feynman and A. R. Hibbs,Quantum Mechanics and

Path Integrals~McGraw-Hill, New York, 1965!.
@12# Y. Shtanov, J. Traschen, and R. Brandenberger, Phys. Re

51, 5438~1995!.


