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Renormalization-group method for simple operator problems in quantum mechanics
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The failure of conventional perturbation theory due to secularity is considered with renormalization-group
tecniques in two operator problems. Specifically, some results concerning the quantum anharmonic oscillator
and quantum parametric resonance are obtained with a rather modest effort in comparison to other methods.
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[. INTRODUCTION AND MOTIVATIONS can be found in the works of Goldenfeld and collaborators.
The multiple scales method itself has been applied to op-

In many different contexts perturbation theory fails mis- erator problem$8,9], but not the RG method, and this paper
erably because of the growth of higher-order terms, contrarghows the application of the RG method to operator prob-
to the basic perturbative assumption. This secularity idems. We shall choose the quantum anharmonic oscillator
present in both classical and quantum theories, and pervad@gd the phenomenon of quantum parametric resonance as
the motivation for the search for analytical methods to im-our case studies, because of the important role they have
prove on perturbative expansions. traditionally had as theoretical laboratories for new perturba-

We will here analyze two simple quantum-mechanicaltive methods, and because of their paradigmatic character in
problems where secularities appear and invalidate naive pefhe context of cosmologicalp)reheating, in which we are
turbation expansions interestedfor an application of the RG method in this con-

It is the renormalization-groupRG) method for global text, seg10]). Our results are comparable to all other meth-
asymptotic analysis, as advocated by Goldenfeld and colds, and since they are obtained with a modest effort, we
laborators[1—3], which we extend to operator problems in think that the RG method is highly competitive in the opera-
this short notésee als§4] for a geometrical point of view of tor context as well. There are a number of areas where its
the RG metholl The key idea of the RG method for global usefulness might be proved, such as quantum optics, but we
asymptotic analysis is the introduction of a time parameterleave that for further work.
additional to the initial value point, in such a way that the
perturbation expansion is valid in the vicinity of the intro- 1. RG ANALYSIS OF THE QUANTUM ANHARMONIC
duced time parameter. The coupling constants, constants of OSCILLATOR
motion, and/or initial conditiongdepending on your view- , , L
point and background one or another of these descriptions 1 he first problem we shall first address within the RG
will be more suitablare turned into running constants, that method is th_e quantum anharmonic oscillator. It is described
is to say that these constants are suitably modified by thBY the classical action
change of the introduced time parameter. On the other hand,
the solution itself cannot depend on the additional, new time S:J' dt
parameter, so derivation with respect to the latter of the per-
turbative solution will impose evolution equations for the ] ) ) )
running constants. These equations are then solved for tHEem which follows the nonlinear motion equation

1 . 1 1
_ — 202_
2mq2 5> Mo’ 4)\mq4 : (2.3

running constants, and on substitution in the perturbative ex- 42

pansion, together with the_cho[ce that the time par_ameter is —g+w2q+)\q3=0 ' 2.2
constantly updated to be time itself, we obtain an improved dt

solution.

This method has the clear advantage over the elementakpown as Duffing’s equation. Also, it is easily seen that the
multiple-scale perturbation analy$’,6] that noa priori de- ~ Same equation governs the quantum dynamics, now with
termination of the scales that appear in the problem is necd(t) understood as the position operator in the Heisenberg
essary, and a naive perturbation expansion is enough asPture.
starting point(it has to be pointed out, though, that in some  Let us perform a simple perturbation expansion in xhe
variants of the multiple scales analysis the functional form ofcoupling constantg=go+\d;+O()\?). The solution to or-
the secondary scales is fixed pmsteriori according to a der O is simply
consistency condition—see, for exampglé]). Many ex-

amples and illustrations of this advantage of the RG method h i i
P ’ Qo= \/mo(Be ot ple). (23
w
*Electronic address: wtpegegi@Ig.ehu.es In this expressiond’ and 8 are creation and annihilation
"Electronic address: wtpvabam@lg.ehu.es operators for the oscillator problem. The first-order equation
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presents resonance and, therefore, secular terms. Writing This results in the following expression for the secular
down just the singulafi.e., secularpart ofq,, which we call  relevant part of,, q, -

Qis»

= 3il3(t—17) ) )
ho\3it—7) e Q2,srzw[(5/\/2—1)BT9"”t—B(5NZ—1)8_"‘“].
Ns=| oma 5, UBBH+B BB+ (B)Ble 2.8
—(B*B'+Bp' B+ BT Y. (2.4 whence the improved RG equation reads
Let us now allow a dependence iof the pair of opera- dB  3ink 3iN242
tors B and B'. Imposing the RG conditiomg/dr=0, we a, S BN— ———=B(5N*—1)=0(\),
obtain dmw 64m“w
(2.9
dg iNk thus giving us
Tt (BB AR BT B =00, (25 Mg
T  dmew

200 —3iINANT  BiN*h3(BAZ-1)7
and the Hermitian conjugate thereof. We notice tat 38 p(7)=p(0)ex (Amw?) + 64m2w®
and[3,8'] are constants under the flow of which allows (2.10
us to solve these equations in the form

B(T):ﬁ(o)e—amm\/ﬂmmw%’

and, as a consequence,

(2.6 B 3
E,—E,_1=fw[1+(3\AN)/(4Mw®)

—3\2A2(5n%—1)/(64m?w®) + O(\%)].
which, on being substituted in the perturbative expansion of (2.1
g, together with the change—t, gives us

,BT( T) — eSi)\hNT/(4mw2)IBT(O),

IIl. QUANTUM PARAMETRIC RESONANCE

h —iwt = 3iMiNT/ (4mw?)
A=\ L& “B0e As a last example of the usefulness of the RG method for
quantum-mechanical problems, we shall now illustrate its
+eiwteBi)\ﬁNr/mez)ﬂT(o)]_ 2.7 application to the phenomenon of quantum parametric reso-

nance. Consider then the following Hamiltonian:
We have thus obtained an asymptotic expression for this

operator. On computingn—1|q(t)|n), we see that the en- H= ipz+ Emwg[AJrzq cofwot) X2, (3.1
ergy difference between levels comes out as 2m 2
E,—E,_;=fw[1+(3\in)/(4mw3) +O(N\2)], consistent , ,
with all previous computations of this quantity. whereA, g, andwg are constants. The evolution of any given

It has to be observed that our result is identical to the onState is computed by acting on it with the evolution operator
obtained by Bender and Bettenco(i#l], as is only to be U(t.to), which satisfies
expected, given the equivalence of the multiple-scale method JU
and the RG methods for a wide class of differential equa- i —(t,te) =H(H)U(t,to), (3.2
tions, to which the(classical Duffing equation belongs. On ot

the other hand, note the simplicity of our approach, where no . . .
a priori scale has to be assumed. with U(to’tQ).: |, the |den.t|ty operator.
In order to stress this latter point, let us consider the Let us divide the Hamiltonian into an unperturbed and a

second-order computation for this problem. The source terrff€rturbation part:
for g, is given by—(q3q1+ 0100+ qlqg), where we have 1 1
to consider the fullg; and not just the singular part. In this H=Hy+H,;= (2—P2+ gmngz)
source term there will be terms that will give rise to secu- m
larities of the forme=3'“!(t— 7) ande™“!(t— 7)2. These we
shall be able to ignore, because the renormalization to first + zmwé
order takes care of them. As a matter of fact, this is precisely
what the statement of perturbative renormalizability amountsrhe reason for this decomposition lies in our previous
to in our case: that no divergences of a different form arise "knowledge that resonance will definitely set inAifis equal
the process of renormalization, that is to say, that all diver;, 1/4, but this is not essential for the final results.
gent(seculay terms can be taken care of by renormalization  The evolution operator can be written as
of the termsBe ™'t and g'e'“!.

Another (simplg technicality in the problem at hand is U(t,tg)=e ' t"Ho/y (t,t,), (3.4
that, since we have checked thig, 8] is constant to order
A2, we can use the commutator in theand\? terms, thus in such a way that the interaction picture evolution operator
making the computation somewhat easier. obeys the following equation:

(A— %)+2qcos{w0t) X2]. 3.3
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. dy, da iwg 1
i ——(t,to) =H, (1)U, (t,to), (3.5 —+— (A—— (aaT+aTa)+q[a2+(aT)z]}a(7)=O,
at aT 2 4
(3.9
and in our case
H|=%mw§ (A—% +2q cog wot) [X? which, on being solved, provides us with an improved ex-
pression for the interaction picture evolution operator,
f g 1 _ Ul(t,0)=t_axp(—itH_eﬁ/ﬁ), \{vher_e Hei IS thg large time
=— (A— —| +2q cog wpt) [(e7 @0t~ 10)/2g asymptotic effective Hamiltonian read off directly from the
2 4 RG equation:
+ ei wo(t—to)IZa‘r)Zl (36)
The constant operators and a' are the annihilation and fiwg 1 Pt 2L t2
creation operators at ting. Her=—— (A— z/(@a +ata)+glat+(a)?]
We now perform the usual perturbative expansion for the
interaction picture evolution operator, restricting ourselves to 1 1 , 1 1 )
the Born formulalJ,=1— (i/#) f{ods H,(s). However, this =25, AT 77 a|P T gmawg| A- Z+q)X -
leads to secular terms, and in order to eliminate them, we (3.10
shall rather use this approximation close to the timer, by ’
using the initial conditiorlJ,(7,tg) = a(7), such that
it This is the first important result of our computation: we have
Ui(t,tg)=a(r)— %f ds H(s)a(7) resummed the effect of the variable frequency into an effec-
T tive large-time constant Hamiltonian. If it happens that, for
+ (higher order terms (3.7 small positiveq, 3 —q<A< 3+ q, this effective Hamiltonian
corresponds to an upside-down harmonic oscillator, thus
Retaining only the secular terms, we obtain marking the principal instability ban€to the order we have
w 1 computedl. _ _
U, (t,to) = a(r)— —O(t—r) (A— ~|(aa'+a'a) It now behooves us to compute the creation of particles
2 4 due to this instability. In order to do this, we shall first write

down the integral kernel that correspondslpin the posi-
a(T). (3.8 tion representationK(x,t;x’,t"), using standard results for

quadratic HamiltoniangL1]. Let y= wo\/q?— (A—1/4)? and
For the sake of simplicity, let us se=0, without any loss ¢=+(q—1/4+A)/(q+1/4—A). The integral kernel
of generality. We know thalt), cannot depend on the choice K(x,t;x’,0):=(x|U,(t,0)|x") is computed to béasymptoti-
of 7, and we are thus led to the RG equation to first order cally)

+ q (el wotoaz + e* i woto( aT) 2)

iMwge )1/2 L( —imwge
X

K(X't;xl’o):(mrh Sinh( 1) a7 sinh(y1) ¢

(x2+x’2)cosr(yt)—2xx’]>. (3.11)

It is now feasible to compute the asymptotic valuémfU (t,0)|0) through simple tabulated integrals, and we can calculate the
transition probability from the ground state to even states:

(21! 2¢ [ (1+¢?)? sin(y) )'

Po_a(t)= -

(11222 \J4p?+ (1+ ¢?)? sinff(yt) | 42+ (1+ ¢?)? sintl(yt) 312

It is easy to check that unitarity is preserved. An analogou8ogolyubov transformationgo identify the function giving
computation leads to the rate of particle production, particle creationand Krylov-Bogolyubov averagingo per-
form the asymptotic analygisThis coincidence comes as no
surprise given the first-order equivalence of Krylov-
Bogolyubov averaging to two-timin@ particular instance of
the multiple-scale methodor a wide class of differential
These results can be compared with the computations afquationg6], and the(again first-order equivalence of the
Shtanovet al.[12], and coincide completely for the specific multiple-scale and RG methods for many instances of equa-
case at hand. Shtanoet al. arrive at this result through tions.

2\2
Mt)= @sinrﬁ( 7). (3.13
4o
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IV. CONCLUSIONS Mathieu equation. However, it is possible within this method
We have performed several operator computations ito examine the whole forbidden or allowed band structure of
P P P 'Ehis model, following in the quantum context the study car-

quantum mechamcs using the RG methqd for globa ied out for the classical case by Goldenfeld and collabora-
asymptotic analysis. This method has the serious advantaq rs. As a matter of fact, for quadratic Hamiltonians the

?neg L:T:‘gr‘?‘er'tﬁir'zc?ut'ﬁ;:’ i?ngt:;?t tg?:rr?r?iuhagsor;zra; Sr;m'f(l)?i::whole instability analysis can be reduced to classical me-
. . qu _asymp hanics, i.e., to classical Mathietor similar) equations.
analysis. These ideas should be useful in a wide realm

= ! . hat we emphasize as novel in our results is the interpreta-
applications. In the special case of quantum parametric resQ:

nance we derive explicitly atasymptoti effective Hamil- on of instabilities as being due to effective large time
. S plicitly ymp : : upside-down harmonic oscillator Hamiltonians. Furthermore,
tonian, which is an upside-down harmonic oscillator when-

ever the system is in the instability region: the instabilityanalogo'JS analyses can be carried for nonquadratic Hamilto-

associated with the parametric resonance is turned into thaans, even time dependent, where the quantum-mechanical

unboundedness of the interaction Hamiltonian, thus demonc‘fharacter of the problem would show itself to its fullest.
strating the basic equivalen¢asymptotically of such dif-

ferent systems. Even so, unitarity is preserved throughout
our computation, and the asymptotic results we obtain are This work was supported in part by the European Com-
well behaved with respect to this fundamental property ofmission under the Human Capital and Mobility programme,
guantum mechanical evolution. We have performed arContract No. ERB-CHRX-CT94-0423, and by the CICYT

analysis of the first instability band only for the quantum under Project No. AEN-96-1668.
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