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Quantum stochastic motion in complex space
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We show that a quantum system may be associated with a backward stochastic process in complex con-
figuration space when the so-called weak value of the position operator is interpreted as a conditional expec-
tation value. The quantum-mechanical expectation values of the position, momentum, angular momentum, and
energy are shown to be the weighted averages of the corresponding quantities for the stochastic process.
Moreover, the stochastic trajectory is shown to reduce to the correct classical trajectory in the limit where the
de Broglie wavelength vanishds$1050-294{@8)03003-0
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[. INTRODUCTION quantities for the stochastic process. The position-

momentum uncertainty relation can be interpreted as the

Since the establishment of a correspondence between tifgoduct of the mean-square deviations of the position and
Schralinger equation and a stochastic process in real conmomentum of the stochastic process. This stochastic inter-
figuration spacd1,2], many efforts have been made to de- pretation is extend(_ad to the reIat|V|st_|c single-particle system
velop a full stochastic interpretation of quantum mechanicSalisfying the Kiein-Gordon equation. The extension is

based or{1]. While the uncertainty relatiof3—5] and the achieved by rewriting the Klein-Gordon equation as a
interference phenomen,7] can be properly interpreted stationary-state Schadinger equation in a four-dimensional

within Nelson’s theory, there is a fundamental problem With.EUCI'dean space. The. fl'uctuanon in time is shown to vanish
0 the nonrelativistic limit.

[1]. The problem arises when there are nodal surfaces in th . . .
amplitude of the wave function. The particle cannot move The contents of this article are organized as follows. In

across the nodal surface. This means that the spaces se@ae—c' Il the weak measurement theory and the idea that views

rated by the nodal surfaces are mutually exclusive region g_weak value as th_e conditional expectation valug in prob-
for the particle. Accordingly, the different parts of the wave ability theory are reviewed. The conditional probability den-

function separated by the nodal surfaces should evolve ind%'ty' corresponding to a weak position measurement on a

pendently. However, in general, this is not true. uantgm sygtem presellected in a stat)e_and postselected in
Recently, a stochastic approach that is free from the gif@ Position eigenstate, is shown to satisfy the Fokker-Planck

ficulty of [1] has been proposd@]. It is based on the idea equation with an imaginary diffusion coefficient=i#/2m,

[9] that views the so-called weak value in the weak measurewherem is the mass of the particle. In Sec. Il a stochastic

ment theory[10,11 as a conditional expectation value. mte_rpretation of quantum m_echanics is_: introduced by asso-
(Hereafter, we shall refer to the weak value of the wealC'ating a backw_ard stochastic process in a complex configu-
measurement of a quantity as the weak value of that quarf@tion space with a quantum system. The correspondence

tity.) This view allows one to calculate from a backward PEtWeen the stochastic process and the underlying quantum

stochastic differential equation in a complex configurationsfyStern is established by showing that the backward stochas-

space the motion of a particle corresponding to an ensembi¥ d|fferent|al equation is equwglent to the Eokker-PIanck

of physical systems prepared in a stiat® (preselected state equation. The q“?’?t“m'meChaWCﬁ" expectation valu_e of a
and conditioned to be in a position eigenstate at a later tim&!nction Offtt?].e F;OS't't(.m (}pe;ﬁtortls shhovt\{n fo be thelwes|ghtelt\j/
(postselected stateThe final condition for the differential average o ¢ IS Tunc |o|n orthe s ?C as |cdprocess. rf]theC.t

equation is the position eigenvalue of the postselected statg1e momentum, anguar momentum, and energy of the sto-
The solution of this equation is referred to weak trajec- chasyc process are defined in analogously to classical me-
tory. The problem of1] is evaded by the fact that, in com- chanics. Their weighted averages are shown to be equal to

plex space, the nodal surfaces of the wave function in rea'® duantum-mechanical expectation values of the corre-

space may be circumvented. The conditional expectatioﬁpondmg operators. The uncertainty relation follows auto-

value of the weak trajectories is the weak value of the posi-m""tic‘?"IIy by interpreting it as the product of the mean-square

tion operator. The real part of the weak trajectory is inter-devIatlons of the position and r.no.mentum O.f the stochastlp
preted as the trajectory of a particle in real configurationprocess'_ In Sec. V the_stochastlc Interpretation _de_veloped n
space. This interpretation is justified by the reduction of thghe previous sections is extended to the rel_at|V|st|c case. In
weak trajectories to their classical counterparts in the limi ec. Vi further pqssuble developments of this stochasfic in-
where the de Broglie wavelength of the particle vanishes. terpretation are discussed.

Here we would like to investigate in more detail the re-
cently proposed theory3]. We shall proceed further to show
that the quantum mechanical expectation values of the posi-
tion, momentum, angular momentum, and energy can be in- In guantum mechanics, a precision measurement of an
terpreted as the weighted averages of the correspondinmbservableA of a system is followed by the collapse of the

Il. WEAK VALUE AND WEAK CONDITIONAL
PROBABILITY
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system, caused by interaction between it and the measurirince ( 4| Proj(A)|#) is the probability thatA has valueA
apparatus, from its initial state to an eigenstateAoivhose  when|A) is an eigenstate %, Eq.(3) yields the conditional
eigenvalue is the measured valde]. A complete collapse expectation value oA,

may, however, be avoided at the cost of losing precision.
Aharonov, Albert, and Vaidmaf10,11 explicitly took a
time-dependent interactidd(t) between the system and the
apparatug12] into account and used the uncertainty prin-

ciple as applied to the momentum and position of thewhere the sum extends over all the eigenvalueg\ offhe

“pointer” of the apparatus to show that, by sacrificing the quantum-mechanical expectation valuefofs the weighted
accuracy of the measurement, the system can be made t0 Bgerage of its weak value,

disturbed as little, or weakly, as possible in a measurement.

They argued that in such a weak measurement of, Aagn

accurate and meaningful result, called a weak valué\fds (A)=2 [(B|A)XAyweak 5
nevertheless obtained when an ensemble average is taken. B

The uncertainty in each individual weak measurement will of ..  — I
course be large. Specifically, for an ensemble of physicapNCeP(A[B) is in general complex when the two operators
systems preselected at the st at timet=0 and postse- A and B do not commute, we shall refer to it as theak

lected in the statkB) at a later timei;, the weak value foA conditional probabilityto distinguish it from a real-valued

in weak measurement made at timeat O<t<t;, is probability. - _
Now consider the position measurement on a physical

<B|exp(—if:’H(t) dt)A exp(—i[HH(t) dt)| ) system preselected in the stdte) att=0, whereA is the
o : position operatox and the postselected stai) att=t; is
(Blexp(~i/gH(1) dv)[y) o) |x;). For simplicity we shall consider a single-particle sys-
tem, although the following argument also applies to a
This weak value is a complex gquantity, whose real andmany-particle system. From E@3) the weak conditional
imaginary parts correspond to the mean shifts in the positiotransition probability density corresponding to a position
and momentum of the pointer, respectively. In what followsmeasurement d@¢=t=0 is
we shall apply the weak measurement theory to make mea-
surements, always understood to be weak, in which the ini- — K(X5,t5:%,t) (X, 1)
tial state is sufficiently undisturbed to retain its identity. POt te) = (X ) , ©®
It was pointed out by Steinber@] that the weak value ’
can be interpreted as a conditional expectation value in prolyhere K(x;,t;;x,t) is the quantum propagator. Note that
ability theory. Since this notion is crucial to the main themegijven a quantum distribution at, this probability density
of this work, we briefly discuss it. In probability theory, the yie|gs a distribution at and that the two relations
conditional probability thaA has valueA givenB has value
B is

(=3 AP(AIB)=(A)""2% @

<A>weakE

lim P(x,tX¢,tr) = 8(x—x¢), | dx P(x,t|xs,tp)=1
P(A|B)=P(A andB)/P(B). @ Jim Pty 1) = 60— f X P(x,tx¢.t)

In quantum mechanics, the probability that a physical system e satisfied. Writing the wave functiaf(x,t) as
initially in the state|) found subsequently in the stdt@)

is (¢|Proj(B)|¢), where W) = Vp(x, D) ekt )

ProjB)=exp(ifHdU/7)[B)(B| exp(—ifHdU/A) and making use of the Schiimger equation for a particle

is the projection operator. That is, to get the quantum equivawith chargee and massm in a vector potentialA, it is
lence(|Proj(B)|#) of the probabilityP(B), the projection  straightforward to show by direct substitution that the weak
operator Proj) takes the place of the conditidhin prob-  conditional probability density satisfies the backward
ability theory. Similarly, the conditiosA andB is to be re-  Fokker-Planck equation

placed by the time-ordered product P®jProj(A). The
quantum equivalence &(A|B), denoted byP(A|B), which
is viewed by Steinberf9] as the conditional probability of
the measuremer yielding the valueA on an ensemble of L
physical systems initially prepared in the stagé and con- + vV2P(x,t|x{,t;) =0, (8)
strained to be in the stat®) at a later time, is therefore

%P_(X,ﬂXf ,tf) + 6 . [U 7(X1t)P_(X1t|Xf ’tf)]

where v=i%/2m is an imaginary diffusion coefficient and

P_(A|B) v_ is a backward drift velocity given by
_ (| Proj(B)Proj(A)| ) L . P
= <‘/f|Pr0J(B)|l/f> U*(X’t):EVS(X,'[)_m—CE\(X,I)—ZV fozi( t!)),

Blexp(—if,"H(t) dt)|A)(Alexp(—i[iH(t) dt
:< [expCifH® )l_ 25 [expC 1/ aH(b) )|¢>_ wherec is the velocity of light. We note that in E@8) both
(Blexp(=ifgH(t) dt)[y) v_(x,t) andP(x,t|x;,t;) are complex functions akal vari-
3 ables.
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The weak value ok is in general complex and is a func-  We now discuss the physical meaning of the limit-0.
tion of time. It traces out a path, which ends at the paint ~ Sincev=i#/2m, the conditions/m—0 necessarily implies

for t<t; in a complex space. This path can be calculatedhat%/mis small compared to a certain characteristic quan-
from v (x,t) andP_(x,t|xf t;), namely, tity of the system of the same dimension, namely,

(lengthf/time). A natural candidate for this characteristic
. d _ quantity islv, wherel is a characteristic length of the system
a<x>weak=a dx x POX,t|xg,t¢) to be specified later and is the velocity of the particle. The
limiting condition is thereforefi/mlv—0, or \y/271—0,
J— where)q is the de Broglie wavelength of the particle. Since
:f dx XEP(X'”Xf ) in this limit v _(x,t) has to reduce to the classical velocity of
the particle such that the correct classical trajectory can be
obtained, it follows that the imaginary part af_(x,t)
has to wvanish in the limit Ag¢/2r1—0, namely,
Alim)(Vyp/ <p or, equivalently, \y(V+p/ <1.
ACCOfd'”Q to the yveak measurement thebm’lﬂj the real Sl'hat )i(s, i\?tr\l/g)limit)\dIZWIﬂO the ar)rlwplit(:J(de\/E)f \t/fét)a wave
part_ of this path is thg ensemble-averaged trajector.y of the nction does not vary appreciably in the space of one de
particles preselected in the sta) and postselected in the Broglie wavelengthWe refer to this as the classical limit.
_state|xf>. Differentiating Eq(10) with respect td and mak-  nder this condition the wave nature of the particle becomes
ing use of the Schudinger equation, we have negligible. Apparently, the characteristic lengthis the
2 length over which the amplitude of the wave function
N - . e — : .
m_z<x>wealg J dx ( —VV+eE+-v_ changes significantly. We want to emphasize the importance
dt c of the condition specified above because the condititm
o —0 does not necessarily lead to the vanishing of the imagi-
P(x,t|x¢,t5), (12 nary part ofv _(x,t) due to the dependence p{x,t) on
f/m. A complex final condition for Eq(13) would lead to a
. _ . > - complex solutionk,(t) whose real part alone will not satisfy
whereV is the non-electrom_agnenc potentla_l aBdand B. the classical equation of motion for nonlinear system.
are the electric and magnetic fields, respectively. For linear
systems, the real aAnd |mag|'na'ry parts of [—;m) decouple Il STOCHASTIC INTERPRETATION
and the real part ofx)"®2 satisfies the classical equation of OF QUANTUM MECHANICS
motion with thefinal conditions

= f dx v_(X,H)P(X,t|X¢,tp). (10)

> e-
XB—VEVXB

d Equation (8) is reminiscent of the backward stochastic

Re(x)ﬁeak:xf, aRe(x}}’ZeaK: Rev_ (X .ty), differential equation

d* &(t)=v_(&t)dt+d*W(t), (14
where R¢) is the real part of (). The ensemble-averaged ] . N
motion of the particle follows a classical path. For nonlinearconstrained by thefinal condition &(tf)=x;, where
system, the ensemble-averaged motion of the particle in gel" £(t) = &(t) — £(t—dt) and d* W(t) =W(t) —W(t—dt) is
eral does not follow the classical path. Neverthless, the clag@ Brownian-type displacement with the same diffusion coef-
sical path can be obtained in the limit~0 (the physical ficient» used in Eq(8). Equationg8) and(14) are identical
meaning of this limit will be discussed lajeffo see this, we for realv [13] (negativer corresponds to a forward process
note that in this limit all the quantities become real and theln the present case, with being purely imaginary, the two
Fokker-Planck equation reduces to the Liouville equationgquations are defined in different configuration spaces. Equa-
whose solution is a delta functidii3]. Let us denote this tion (8) is defined in a real configuration space, while Eq.

delta function ass(x—x.(t)); then (14) is defined in a complex configuration space. However,
we assert that as far as the weak value of the position opera-
(§(>Weak_>xc(t), tor is concerned, Eq14) is equivalent to Eq(8), provided

that v_ is an analytic function in complex configuration
1. e . space. Specifically, the weak value ©F equals the condi-
V- (X)) = ve(Xe 1) = - VS(Xe ) = A (Xe ), (12 tional expectation value af"(t) for all non-negative integers
n [14]. Before showing that they are equivalent let us first
and Eq.(11) reduces to the classical equation of motion of aShow that the stochastic trajectory of E#4) reduces to the
charged particle, classical trajectory in the classical limit.
An application of the Ito calculugl3] on the conditional
d?x, expectation value of Eq14) yields

m— ===
dt®

VV+eE+ —p XEB, (13)
¢ d2E(£(1))=dE(v_(£&,t))dt

with the final conditions dv _

=Bl

PR SENLL EN P
v--Vu_ -5 v_|(dt)~.

1. e .
Xc(t) =X¢, Uc(tf)zavs(xfitf)_RA(Xfatf)- (15)
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Substituting Eq.(9) into Eqg. (15 and making use of the does the real and imaginary parts B{£"). Since E(&")

Schralinger equation, we have after some manipulation  equals the weak value of the operatdt we refer to the
PEE) . ir e splution of Eq.(14) as theweak trajectorypf a particle ini-
. —E| —VV+eB+-p XB— — —VxB tially prepared in the staties) and constrained to be at at
dt c 2mc ’ timet;. According to the weak measurement thef9,11],
(16)  the real part of the conditional expectation value of the weak
. . trajectory is the ensemble-averaged trajectory of the particle
whereV, E, andB are defined in Eq(11). Since|d*W| in real configuration space. We note that this ensemble-
«yh/m, in the classical limit, the stochastic motion reduceaveraged trajectory of the particle is the ensemble average of
to a deterministic motiony _ reduces ta ., all the different  the real part of the weak trajectory. Also, as shown before,
&(t) in the ensemble reduces to a single trajectory in reathe real part of every single weak trajectory in the ensemble
configuration space, and E(L6) reduces to Eq(13) with reduces to the same classical trajectory in the classical limit.
the same final conditions. This shows that the real part ofn view of these physical meanings for the real part of the
every single weak trajectory in the ensemble reduces to theveak trajectory, we therefore interpret the real part of a
same classical trajectory, while the imaginary part of thesingleweak trajectory derived from E@l4) as the trajectory
weak trajectory vanishes in the classical limit. of a single particle in real configuration space feeO<t; .
We now return to the assertion that Efid) is equivalent The quantum-mechanical expectation valuef ¢X,t) at
to Eq. (8). The task is to show that the conditional expecta-the timet<t; can be interpreted as the weighted average of
tion value E(¢") equals(x"y"®2 for all non-negative inte- f(z,t) for the backward stochastic process that has the final
gers n. In [8] this equality is shown for the cases that spatial distributiono(X;,t), wherep(x,t) is the spatial dis-
v _(x,t) is an analytic function ok. Here we give a general tribution of the quantum system. To see this, let us denote
argument independent of the analytic property ofx,t) on  the spatial distribution of the stochastic process in the com-
x. Our argument is based on the theorem of Poincira  plex space a®(z,t). Theng(z,t;)=p(x;,t;) and fort<t;
differential equation depends holomorphically on a param-
eter and the boundary conditions are independent of that pa-
rameter, then the solutions of the equation are holomorphic Q(Z’t)=f dx; P(z,t|xy,tr)p(Xs ). (18
functions of the parameter. Taking the diffusion coefficient
as a parameter, the theorem of Poincasserts tAhat the so- ysing Egs.(5), (17), and(18), the quantum-mechanical ex-
lution of Eq.(8) is an analytic function of. Thus(x'?)‘”ea'ﬁs pectation value of (x,t) att<t; is
an analytic function ob. In Eq.(14) |d* W||\2v|; it seems
that this equation has a branch cut in the compleplane. . ~
However, a branch cut in the complexplane only results in (f(x,1))= f dxe (FOx,1))"*%p(xy ,tr)
an overall sign change ali W. For a Gaussian-type random

noise, an overall sign change does not result in any differ-

ence to the solution. The solution of Ed.4) is an analytic = dx; dz f(z,)P(zt|x¢ . tr) (Xt ty)
function of v and so isE(&"). As pointed out above, E@l4)

is equivalent to EQq.(8) for real v. This means that :f dz f(zt)e(z.t) (19
E(&")=(x""e% for real v. The fact that both are analytic ’ ’

functions of v ensures that they are equal for all This

establishes the equivalence between KEfé) and(8). Spe- IV. MOMENTUM, ANGULAR MOMENTUM, ENERGY,
cifically, if f is an analytic function of space, thentatt; the AND UNCERTAINTY RELATION
weak value off(X,t) equals the conditional expectation
value of f(£,t) over all the weak trajectories constrained to
be at the final poink; at the timet;. That is, att<t;

We have seen in the preceding section that, as far as the
function of the position operator is concerned, the backward
stochastic process E(l4) is equivalent to the quantum sys-

. . tem. We now show that this equivalence can be extended to
(f(x,t))Wea":J dx f(x,t)P(x,t|x;,ts) the momentum, angular momentum, and energy and the un-

certainty relation holds for the stochastic process. To do this,

we have to find sensible definitions of these quantities for the
:f dz f(z,t)P(z,t|xs,ty), (17)  stochastic process. Also, since the stochastic process is de-

fined in the configuration space, it is necessary to relate the

whereP(z,t|x¢,t;) is the conditional probability density for Operators of these quantities to the position operator. For
the backward stochastic process of Etd) in the complex simplicity we shall consider the case that the vector potential
spacez. A is zero. From Eq(1) the weak values of the momentum,
This equivalence enables us to associate a backward stangular momentum, and energy can be expressed in terms of
chastic process in complex configuration space to an erthe weak values of functions of position operator
semble of quantum systems preselected in a $iateand
postselected in a position eigenstate. As both the real and . weak__ — o weak
imaginary parts of(x")"¢2k have well-defined physical {p) _f dx Mo (X, POX e, ) = (mo - (%, )"
meanings based on the weak measurement tH&6r{ 1], so (20
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(xx py"eaks J dx [ XX mu_(x,1)]P(X,t|X¢,t;) AE=E(t)— &(t—At)

t—At
=(XXmo_(X,t))veak (21 = —ft dr v_(&(r),r)+W(t)—W(t—At).
(28)
<ﬁ2>wea&f dx [m?v2 (x,t) Substituting Eq(27) into the integral of Eq(28), expanding
R o v _ with respect to the poirg(t) to the orderAt, and making
—iAamV-v_(x,1)]P(X,t|X¢,t,) use of the Ito calculufl3], Eq. (28) can be expressed as

=(M22 (X,t)—iAm(V-v_)(x,))"e3K (22) -

. t
Afk:Uk(f,t)At_V‘(Uth dr [W(t)—W(r)]

Cr\weak_ 1 2 % <
(HYee= | dx |5 mus(x,) = = Vo (X1) +AW,. (29)

_ 1 . This leads to the resuftl]
+V(x,0) [Pxtxp 1) = 5muZ (x.1)

it - - . weak lim E
- 7(V~U,)(X,t)+V(x,t) . (23 At—0

A¢ 2)_ 5 i 3%
At —U_(f,t)—Ev'v_(f,t)'f—::rl]olm.

(30

The next step is to find the counterparts of the above quariFhe singular term in Eq(30) is a constant that is the same
tities for the stochastic process. We base our consideratioior all weak trajectories. It can be removed from the energy
on classical mechanics. For deterministic motion, the velocby a proper choice of the zero point for the energy. This
ity of a particle at a point on its trajectory is defined as suggests that the kinetic energy can be defined as

_AX p2 1, ifi-
v(X,t) AllToAt' 2m_2mU* ZV-v,,
where x(t) is the trajectory of the particle. For stochastic or equivalently
motion, the above definition cannot be directly applied to a .
single weak trajectory due to the existence of the random P2(£,t)=m22 (&) —ihmV-v_(&1), (31
term. Nevertheless, an ensemble-averaged velocity at every
point of the weak trajectory can be defined. Using Bdf) 1 i -
the ensemble-averaged velocity entering the p@imt the E(&)=-mu2 (&) — = V-u_(ED)+V(EL). (32
timet is 2 2
With the above definitions of momentum, angular momen-
lim E(ﬁ) —v_(&1) (24) tum, and energy for the stochastic process, it follows from
At e Eqg. (17) that the conditional expectation values of these
quantities for the stochastic process are the weak values of
e corresponding quantities for the quantum mechanics.
imilarly, by Eq.(19), the weighted averages of these quan-
tities for the stochastic process with the final spatial distribu-
tion p(x¢,t;) are the quantum-mechanical expectation values

At—0

This suggests that the momentum and angular momentum
a point¢ on a weak trajectory can be defined as

p(&,)=mo_(&1), (29) of the corresponding quantities. It also follows from EP)
that the product of the mean-square deviations of position
1(&,1)=EXPp(&). (26)  and momentum for the stochastic process is the position-

momentum uncertainty relation of quantum mechanics.
The kinetic energy at every point on a weak trajectory can be
defined in an analogous w4¥]. Noting that it involves the V. RELATIVISTIC CASE

square ofA¢ and AW?xAt, the contribution from the ran- We h that a backward stochasti b
dom term has to be treated properly. An integration of Eq. € have seen that a backward stochaslic process can be
(14) yields associated with a nonrelativistic quantum system. It is pos-

sible to extend this stochastic interpretation to a single-
particle quantum system satisfying the Klein-Gordon equa-
t—At . . . .
§(t—At)=§(t)+f dr v_(&(r),r)+W(t—At)—W(t). tion. The key to the extension is to note that the Klein-
t Gordan equation can be written as a stationary-state
27 Schralinger equation in a four-dimensional Euclidean space
[15]. The transformation between the Minkowski space and
This means that the Euclidean space is
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(x1,x2,x3,xH=(x,y,z,ict), (N/2m1)(v/c)—0. The fluctuation in time vanishes in the
nonrelativistic ~ limit. In the relativistic  case
(Ne/27) (v/c)=N\ /27l and the fluctuation in time is impor-
tant when the size of the system is of the order of a Compton
wavelength. This time fluctuation may be related to the
vacuum fluctuation(virtual particle-antiparticle production
énd annihilation In the classical limit the random term van-
ishes and the time component of E§3) becomes

iE
(pl.pz,ps,p4)=(px,py,pz,; :

With these transformations, a time operataf')(is intro-
duced analogously to the position operator. The conjugat
four-momentum operators are

N _Ei =1234 dtzidT.
plu_l (9XM, /-L_ 1&gyt mC2
Writing the Klein-Gordan equation as Since E=mc®/\1—(v/c)” we havedt=dr/\1-(v/c)®.
This shows thatr is the proper time of the particle.
1/. e ~
JR— M AM — = =
2m P CA P CA“) v 2 ¥ VI. SUMMARY AND DISCUSSION
wherea“=a,, in four-dimensional Euclidean space, the so- We have proposed a stochastic interpretation of quantum
lution ¢ can be viewed as one of the stationary-state soluMechanics in which a quantum system is associated with a
tions of the four-dimensional Schdimger equation backward stochastic process in complex configuration space.
The equivalence between the stochastic process and the
oV R (k. e \? guantum mechanics is established through the following re-
= om 7Y e sults.(i) For the stochastic trajectories in the complex space,
which we call weak trajectories, constrained to be at the final
with positionx; at timet;, we showed that the conditional expec-
tation values of their moments are equal to the weak values
W(x,7) =" (M120) 7). of moments of the position operator of the quantum system.

This leads to the equalityl7) between the weak value of a
Here 7 plays the role of time. We shall see that in the clas-fynction of the position operatdi(x,t) and the conditional
sical limit 7 is the proper time of the particle. Writings as expectation value of(z,t) for the stochastic proces$i)
Using Egs.(5) and(17), for t<t;, the quantum-mechanical

p(x)eiS(x)/ﬁ, _ A '
expectation value of(x,t) is shown to be the weighted av-
¥ can be expressed in the same form as &j. erage off(z,t) for the stochastic process that has the spatial
distribution p(x;,t;) at t=t;, where p(x,t) is the spatial
W(x,7)= p(x)ei[m027/2+8(><)]/ﬁ_ distribution of the quantum system. This equality is ex-

pressed in Eq(19). (iii) The weak values and expectation
All the formulations and interpretations developed in the prevalues of the momentum, angular momentum, and energy for
vious sections follow immediately. the quantum system are shown to be the conditional expec-
To see the physical meaning of the parametdet us  tation values and weighted averages of the corresponding
consider the free particle case. The wave function of thigjuantities, respectively, for the stochastic process. The
state is position-momentum uncertainty relation follows automati-
cally with the interpretation that it is the product of the
\If(x,q-)ze“mCz/Zﬁ) el (Puxih), mean-square deviations of position and momentum for the
stochastic process.
The backward stochastic process corresponding to an en- The real part of the weak trajectory is interpreted as the
semble of physical systems preselected in this state and postajectory of a particle in real configuration space. This in-
selected in the four-position eigenstaterais terpretation is justified, on the one hand, by the equali®
between the position operator and the weak trajectory and,
on the other hand, by the reduction obimgle weak trajec-
tory to the correct classical trajectory in the classical limit.
Finally, the stochastic interpretation is extended to the rela-
constrained by the final conditioB (7¢)=X;. The random tivistic single-particle system satisfying the Klein-Gordon
term of the spatial component vanishes in the classical limitequation by treating the Klein-Gordon equation as a
as discussed in Sec. Il. What about the random term of thstationary-state Schdinger equation in four-dimensional
time component? Noting that,=ict and |d* W,|« yA/m, Euclidean space. The fluctuation in time is shown to vanish
the fluctuation in time vanishes in the Ilimit in the nonrelativistic limit.
himc=\/2mwc—0, where\. is the Compton wavelength A question needs to be answered: Why is it the backward
of the particle. The dimension of./c indicates that the instead of the forward stochastic process that corresponds to
limiting condition is satisfied if it is small compared to the the quantum system considered? The reason that it is the
guantity /v, wherel is the size of the system andis the  backward process is because the weak value depends not
velocity of the particle. The limiting condition is therefore only on the preselected state but also on the postselected

d*EM(T)=%dT+d*wﬂ, (33
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state. One has to go backward in time from the postselectiothe shortcoming of the previous thedr¥] as discussed in
to determine the weak value of a physical quantity. AnotheiSec. I. It opens up the possibility of a full stochastic inter-
guestion is whether our interpretation could be extended tpretation of quantum mechanics. One could proceed further
the weak values and expectation values of the other obserte develop a theory of stochastic mechanics in complex
ables in addition to the operators discussed in Secs. Il andpace in an analogous way fd]. This would involve the
IV. The answer is yes because all the measurements of thmnsideration of a stochastic process in complex space satis-
physical observables are essentially position measuremenfying a certain dynamical law. The drift velocity of this sto-
One could in principle relate the operator of an observable teahastic process will be determined by this dynamical law.
a corresponding function of position operator as done in SedVith a properly chosen dynamics the quantum mechanics
IV for the momentum, angular momentum, and energy opwould be the real-space manifestation of the stochastic me-
erators. chanics in complex space. Work along this line is currently
The stochastic interpretation presented here does not hauader way.
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