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Quantum stochastic motion in complex space

M. S. Wang
Department of Physics and Center for Complex Systems, National Central University, Chungli, Taiwan 320, Republic of Ch

~Received 15 September 1997!

We show that a quantum system may be associated with a backward stochastic process in complex con-
figuration space when the so-called weak value of the position operator is interpreted as a conditional expec-
tation value. The quantum-mechanical expectation values of the position, momentum, angular momentum, and
energy are shown to be the weighted averages of the corresponding quantities for the stochastic process.
Moreover, the stochastic trajectory is shown to reduce to the correct classical trajectory in the limit where the
de Broglie wavelength vanishes.@S1050-2947~98!03003-0#

PACS number~s!: 03.65.Bz, 02.50.Ga, 02.50.Cw, 02.50.Ey
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I. INTRODUCTION

Since the establishment of a correspondence between
Schrödinger equation and a stochastic process in real c
figuration space@1,2#, many efforts have been made to d
velop a full stochastic interpretation of quantum mechan
based on@1#. While the uncertainty relation@3–5# and the
interference phenomena@6,7# can be properly interprete
within Nelson’s theory, there is a fundamental problem w
@1#. The problem arises when there are nodal surfaces in
amplitude of the wave function. The particle cannot mo
across the nodal surface. This means that the spaces
rated by the nodal surfaces are mutually exclusive regi
for the particle. Accordingly, the different parts of the wa
function separated by the nodal surfaces should evolve in
pendently. However, in general, this is not true.

Recently, a stochastic approach that is free from the
ficulty of @1# has been proposed@8#. It is based on the idea
@9# that views the so-called weak value in the weak meas
ment theory @10,11# as a conditional expectation valu
~Hereafter, we shall refer to the weak value of the we
measurement of a quantity as the weak value of that qu
tity.! This view allows one to calculate from a backwa
stochastic differential equation in a complex configurat
space the motion of a particle corresponding to an ensem
of physical systems prepared in a stateuc& ~preselected state!
and conditioned to be in a position eigenstate at a later t
~postselected state!. The final condition for the differential
equation is the position eigenvalue of the postselected s
The solution of this equation is referred to asweak trajec-
tory. The problem of@1# is evaded by the fact that, in com
plex space, the nodal surfaces of the wave function in
space may be circumvented. The conditional expecta
value of the weak trajectories is the weak value of the po
tion operator. The real part of the weak trajectory is int
preted as the trajectory of a particle in real configurat
space. This interpretation is justified by the reduction of
weak trajectories to their classical counterparts in the li
where the de Broglie wavelength of the particle vanishes

Here we would like to investigate in more detail the r
cently proposed theory@8#. We shall proceed further to show
that the quantum mechanical expectation values of the p
tion, momentum, angular momentum, and energy can be
terpreted as the weighted averages of the correspon
571050-2947/98/57~3!/1565~7!/$15.00
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quantities for the stochastic process. The positio
momentum uncertainty relation can be interpreted as
product of the mean-square deviations of the position
momentum of the stochastic process. This stochastic in
pretation is extended to the relativistic single-particle syst
satisfying the Klein-Gordon equation. The extension
achieved by rewriting the Klein-Gordon equation as
stationary-state Schro¨dinger equation in a four-dimensiona
Euclidean space. The fluctuation in time is shown to van
in the nonrelativistic limit.

The contents of this article are organized as follows.
Sec. II the weak measurement theory and the idea that vi
the weak value as the conditional expectation value in pr
ability theory are reviewed. The conditional probability de
sity, corresponding to a weak position measurement o
quantum system preselected in a stateuc& and postselected in
a position eigenstate, is shown to satisfy the Fokker-Pla
equation with an imaginary diffusion coefficientn5 i\/2m,
wherem is the mass of the particle. In Sec. III a stochas
interpretation of quantum mechanics is introduced by as
ciating a backward stochastic process in a complex confi
ration space with a quantum system. The corresponde
between the stochastic process and the underlying quan
system is established by showing that the backward stoc
tic differential equation is equivalent to the Fokker-Plan
equation. The quantum-mechanical expectation value o
function of the position operator is shown to be the weigh
average of this function for the stochastic process. In Sec
the momentum, angular momentum, and energy of the
chastic process are defined in analogously to classical
chanics. Their weighted averages are shown to be equa
the quantum-mechanical expectation values of the co
sponding operators. The uncertainty relation follows au
matically by interpreting it as the product of the mean-squ
deviations of the position and momentum of the stocha
process. In Sec. V the stochastic interpretation develope
the previous sections is extended to the relativistic case
Sec. VI further possible developments of this stochastic
terpretation are discussed.

II. WEAK VALUE AND WEAK CONDITIONAL
PROBABILITY

In quantum mechanics, a precision measurement of
observableA of a system is followed by the collapse of th
1565 © 1998 The American Physical Society
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1566 57M. S. WANG
system, caused by interaction between it and the measu
apparatus, from its initial state to an eigenstate ofA whose
eigenvalue is the measured value@12#. A complete collapse
may, however, be avoided at the cost of losing precisi
Aharonov, Albert, and Vaidman@10,11# explicitly took a
time-dependent interactionH(t) between the system and th
apparatus@12# into account and used the uncertainty pr
ciple as applied to the momentum and position of
‘‘pointer’’ of the apparatus to show that, by sacrificing th
accuracy of the measurement, the system can be made
disturbed as little, or weakly, as possible in a measurem
They argued that in such a weak measurement of, say,A, an
accurate and meaningful result, called a weak value forA, is
nevertheless obtained when an ensemble average is ta
The uncertainty in each individual weak measurement wil
course be large. Specifically, for an ensemble of phys
systems preselected at the stateuc& at time t50 and postse-
lected in the stateuB& at a later timet f , the weak value forA
in weak measurement made at timet, at 0<t<t f , is

^A&weak[
^Buexp(2 i * t

t fH~ t ! dt)A exp(2 i *0
t H~ t ! dt)uc&

^Buexp~2 i *0
t fH~ t ! dt!uc&

.

~1!

This weak value is a complex quantity, whose real a
imaginary parts correspond to the mean shifts in the posi
and momentum of the pointer, respectively. In what follo
we shall apply the weak measurement theory to make m
surements, always understood to be weak, in which the
tial state is sufficiently undisturbed to retain its identity.

It was pointed out by Steinberg@9# that the weak value
can be interpreted as a conditional expectation value in p
ability theory. Since this notion is crucial to the main them
of this work, we briefly discuss it. In probability theory, th
conditional probability thatA has valueA givenB has value
B is

P~AuB![P~A andB!/P~B!. ~2!

In quantum mechanics, the probability that a physical sys
initially in the stateuc& found subsequently in the stateuB&
is ^cuProj(B)uc&, where

Proj~B!5exp~ i *Hdt/\!uB&^Bu exp~2 i *Hdt/\!

is the projection operator. That is, to get the quantum equ
lence^cuProj(B)uc& of the probabilityP(B), the projection
operator Proj(B) takes the place of the conditionB in prob-
ability theory. Similarly, the conditionA andB is to be re-
placed by the time-ordered product Proj(B)Proj(A). The
quantum equivalence ofP(AuB), denoted byP̄(AuB), which
is viewed by Steinberg@9# as the conditional probability o
the measurementA yielding the valueA on an ensemble o
physical systems initially prepared in the stateuc& and con-
strained to be in the stateuB& at a later time, is therefore

P̄~AuB!

[
^cuProj~B!Proj~A!uc&

^cuProj~B!uc&

5
^Buexp(2 i * t

t fH~ t ! dt)uA&^Auexp(2 i *0
t H~ t ! dt)uc&

^Buexp(2 i *0
t fH~ t ! dt)uc&

.

~3!
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Since ^cuProj(A)uc& is the probability thatA has valueA
whenuA& is an eigenstate ofA, Eq. ~3! yields the conditional
expectation value ofA,

^A&B[(
A

AP̄~AuB!5^A&weak, ~4!

where the sum extends over all the eigenvalues ofA. The
quantum-mechanical expectation value ofA is the weighted
average of its weak value,

^A&5(
B

z^BuA& z2^A&weak. ~5!

SinceP̄(AuB) is in general complex when the two operato
A and B do not commute, we shall refer to it as theweak
conditional probability to distinguish it from a real-valued
probability.

Now consider the position measurement on a phys
system preselected in the stateuc& at t50, whereA is the
position operatorx̂ and the postselected stateuB& at t5t f is
uxf&. For simplicity we shall consider a single-particle sy
tem, although the following argument also applies to
many-particle system. From Eq.~3! the weak conditional
transition probability density corresponding to a positi
measurement att f>t>0 is

P̄~x,tuxf ,t f !5
K~xf ,t f ;x,t !c~x,t !

c~xf ,t f !
, ~6!

where K(xf ,t f ;x,t) is the quantum propagator. Note th
given a quantum distribution att f , this probability density
yields a distribution att and that the two relations

lim
t→t f

P̄~x,tuxf ,t f !5d~x2xf !, E dx P̄~x,tuxf ,t f !51

are satisfied. Writing the wave functionc(x,t) as

c~x,t !5Ar~x,t !eiS~x,t !/\ ~7!

and making use of the Schro¨dinger equation for a particle
with chargee and massm in a vector potentialAW , it is
straightforward to show by direct substitution that the we
conditional probability density satisfies the backwa
Fokker-Planck equation

]

]t
P̄~x,tuxf ,t f !1¹W •@v2~x,t ! P̄~x,tuxf ,t f !#

1n¹2P̄~x,tuxf ,t f !50, ~8!

where n5 i\/2m is an imaginary diffusion coefficient an
v2 is a backward drift velocity given by

v2~x,t !5
1

m
¹W S~x,t !2

e

mc
AW ~x,t !22n

¹W Ar~x,t !

Ar~x,t !
, ~9!

wherec is the velocity of light. We note that in Eq.~8! both

v2(x,t) andP̄(x,tuxf ,t f) are complex functions ofreal vari-
ables.
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57 1567QUANTUM STOCHASTIC MOTION IN COMPLEX SPACE
The weak value ofx̂ is in general complex and is a func
tion of time. It traces out a path, which ends at the pointxf ,
for t<t f in a complex space. This path can be calcula
from v2(x,t) and P̄(x,tuxf ,t f), namely,

d

dt
^x̂&weak5

d

dtE dx x P̄~x,tuxf ,t f !

5E dx x
]

]t
P̄~x,tuxf ,t f !

5E dx v2~x,t ! P̄~x,tuxf ,t f !. ~10!

According to the weak measurement theory@10,11#, the real
part of this path is the ensemble-averaged trajectory of
particles preselected in the stateuc& and postselected in th
stateuxf&. Differentiating Eq.~10! with respect tot and mak-
ing use of the Schro¨dinger equation, we have

m
d2

dt2
^x̂&weak5E dx S 2¹W V1eEW 1

e

c
v2

3BW 2n
e

c
¹W 3BW D P̄~x,tuxf ,t f !, ~11!

whereV is the non-electromagnetic potential andEW and BW
are the electric and magnetic fields, respectively. For lin
systems, the real and imaginary parts of Eq.~11! decouple
and the real part of̂x̂&weak satisfies the classical equation
motion with thefinal conditions

Rê x̂& t f

weak5xf ,
d

dt
Rê x̂& t f

weak5Rev2~xf ,t f !,

where Re~ ! is the real part of ( ). The ensemble-averag
motion of the particle follows a classical path. For nonline
system, the ensemble-averaged motion of the particle in g
eral does not follow the classical path. Neverthless, the c
sical path can be obtained in the limitn→0 ~the physical
meaning of this limit will be discussed later!. To see this, we
note that in this limit all the quantities become real and
Fokker-Planck equation reduces to the Liouville equati
whose solution is a delta function@13#. Let us denote this
delta function asd„x2xc(t)…; then

^x̂&weak→xc~ t !,

v2~x,t !→vc~xc ,t !5
1

m
¹W S~xc ,t !2

e

mc
AW ~xc ,t !, ~12!

and Eq.~11! reduces to the classical equation of motion o
charged particle,

m
d2xc

dt2
52¹W V1eEW 1

e

c
vc3BW , ~13!

with the final conditions

xc~ t f !5xf , vc~ t f !5
1

m
¹W S~xf ,t f !2

e

mc
AW ~xf ,t f !.
d

e

r

d
r
n-
s-

e
,

We now discuss the physical meaning of the limitn→0.
Sincen5 i\/2m, the condition\/m→0 necessarily implies
that \/m is small compared to a certain characteristic qu
tity of the system of the same dimension, name
(length)2/time). A natural candidate for this characterist
quantity islv, wherel is a characteristic length of the syste
to be specified later andv is the velocity of the particle. The
limiting condition is therefore\/mlv→0, or ld/2p l→0,
whereld is the de Broglie wavelength of the particle. Sin
in this limit v2(x,t) has to reduce to the classical velocity
the particle such that the correct classical trajectory can
obtained, it follows that the imaginary part ofv2(x,t)
has to vanish in the limit ld/2p l→0, namely,
(\/m)(¹WAr/Ar)!v or, equivalently, ld(¹W Ar/Ar)!1.
That is, in the limitld/2p l→0 the amplitude of the wave
function does not vary appreciably in the space of one
Broglie wavelength. We refer to this as the classical limi
Under this condition the wave nature of the particle becom
negligible. Apparently, the characteristic lengthl is the
length over which the amplitude of the wave functio
changes significantly. We want to emphasize the importa
of the condition specified above because the condition\/m
→0 does not necessarily lead to the vanishing of the ima
nary part ofv2(x,t) due to the dependence ofr(x,t) on
\/m. A complex final condition for Eq.~13! would lead to a
complex solutionxc(t) whose real part alone will not satisf
the classical equation of motion for nonlinear system.

III. STOCHASTIC INTERPRETATION
OF QUANTUM MECHANICS

Equation ~8! is reminiscent of the backward stochas
differential equation

d* j~ t !5v2~j,t !dt1d* W~ t !, ~14!

constrained by thefinal condition j(t f)5xf , where
d* j(t)5j(t)2j(t2dt) and d* W(t)5W(t)2W(t2dt) is
a Brownian-type displacement with the same diffusion co
ficient n used in Eq.~8!. Equations~8! and~14! are identical
for realn @13# ~negativen corresponds to a forward process!.
In the present case, withn being purely imaginary, the two
equations are defined in different configuration spaces. Eq
tion ~8! is defined in a real configuration space, while E
~14! is defined in a complex configuration space. Howev
we assert that as far as the weak value of the position op
tor is concerned, Eq.~14! is equivalent to Eq.~8!, provided
that v2 is an analytic function in complex configuratio
space. Specifically, the weak value ofx̂n equals the condi-
tional expectation value ofjn(t) for all non-negative integers
n @14#. Before showing that they are equivalent let us fi
show that the stochastic trajectory of Eq.~14! reduces to the
classical trajectory in the classical limit.

An application of the Ito calculus@13# on the conditional
expectation value of Eq.~14! yields

d2E„j~ t !…5dE„v2~j,t !…dt

5ES ]v2

]t
1v2•¹W v22

i\

2m
¹2v2D ~dt!2.

~15!
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1568 57M. S. WANG
Substituting Eq.~9! into Eq. ~15! and making use of the
Schrödinger equation, we have after some manipulation

m
d2E„j~ t !…

dt2
5ES 2¹W V1eEW 1

e

c
v23BW 2

i\

2m

e

c
¹W 3BW D ,

~16!

where V, EW , and BW are defined in Eq.~11!. Since ud* Wu
}A\/m, in the classical limit, the stochastic motion redu
to a deterministic motion,v2 reduces tovc , all the different
j(t) in the ensemble reduces to a single trajectory in r
configuration space, and Eq.~16! reduces to Eq.~13! with
the same final conditions. This shows that the real par
every single weak trajectory in the ensemble reduces to
same classical trajectory, while the imaginary part of
weak trajectory vanishes in the classical limit.

We now return to the assertion that Eq.~14! is equivalent
to Eq. ~8!. The task is to show that the conditional expec
tion valueE(jn) equals^x̂n&weak for all non-negative inte-
gers n. In @8# this equality is shown for the cases th
v2(x,t) is an analytic function ofx. Here we give a genera
argument independent of the analytic property ofv2(x,t) on
x. Our argument is based on the theorem of Poincare´: If a
differential equation depends holomorphically on a para
eter and the boundary conditions are independent of that
rameter, then the solutions of the equation are holomorp
functions of the parameter. Taking the diffusion coefficienn
as a parameter, the theorem of Poincare´ asserts that the so
lution of Eq.~8! is an analytic function ofn. Thus^x̂n&weak is
an analytic function ofn. In Eq.~14! ud* Wu}uA2nu; it seems
that this equation has a branch cut in the complexn plane.
However, a branch cut in the complexn plane only results in
an overall sign change ond* W. For a Gaussian-type random
noise, an overall sign change does not result in any dif
ence to the solution. The solution of Eq.~14! is an analytic
function ofn and so isE(jn). As pointed out above, Eq.~14!
is equivalent to Eq.~8! for real n. This means that
E(jn)5^x̂n&weak for real n. The fact that both are analyti
functions of n ensures that they are equal for alln. This
establishes the equivalence between Eqs.~14! and ~8!. Spe-
cifically, if f is an analytic function of space, then att<t f the
weak value of f ( x̂,t) equals the conditional expectatio
value of f (j,t) over all the weak trajectories constrained
be at the final pointxf at the timet f . That is, att<t f

^ f ~ x̂,t !&weak5E dx f~x,t ! P̄~x,tuxf ,t f !

5E dz f~z,t !P~z,tuxf ,t f !, ~17!

whereP(z,tuxf ,t f) is the conditional probability density fo
the backward stochastic process of Eq.~14! in the complex
spacez.

This equivalence enables us to associate a backward
chastic process in complex configuration space to an
semble of quantum systems preselected in a stateuc& and
postselected in a position eigenstate. As both the real
imaginary parts of ^ x̂n&weak have well-defined physica
meanings based on the weak measurement theory@10,11#, so
l

f
he
e

-

-
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r-

to-
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does the real and imaginary parts ofE(jn). Since E(jn)
equals the weak value of the operatorx̂n we refer to the
solution of Eq.~14! as theweak trajectoryof a particle ini-
tially prepared in the stateuc& and constrained to be atxf at
time t f . According to the weak measurement theory@10,11#,
the real part of the conditional expectation value of the we
trajectory is the ensemble-averaged trajectory of the part
in real configuration space. We note that this ensemb
averaged trajectory of the particle is the ensemble averag
the real part of the weak trajectory. Also, as shown befo
the real part of every single weak trajectory in the ensem
reduces to the same classical trajectory in the classical li
In view of these physical meanings for the real part of t
weak trajectory, we therefore interpret the real part o
singleweak trajectory derived from Eq.~14! as the trajectory
of a single particle in real configuration space for 0<t<t f .

The quantum-mechanical expectation value off ( x̂,t) at
the timet<t f can be interpreted as the weighted average
f (z,t) for the backward stochastic process that has the fi
spatial distributionr(xf ,t f), wherer(x,t) is the spatial dis-
tribution of the quantum system. To see this, let us den
the spatial distribution of the stochastic process in the co
plex space as%(z,t). Then%(z,t f)5r(xf ,t f) and for t<t f

%~z,t !5E dxf P~z,tuxf ,t f !r~xf ,t f !. ~18!

Using Eqs.~5!, ~17!, and ~18!, the quantum-mechanical ex
pectation value off ( x̂,t) at t<t f is

^ f ~ x̂,t !&5E dxf ^ f ~ x̂,t !&weakr~xf ,t f !

5E E dxf dz f~z,t !P~z,tuxf ,t f !r~xf ,t f !

5E dz f~z,t !%~z,t !. ~19!

IV. MOMENTUM, ANGULAR MOMENTUM, ENERGY,
AND UNCERTAINTY RELATION

We have seen in the preceding section that, as far as
function of the position operator is concerned, the backw
stochastic process Eq.~14! is equivalent to the quantum sys
tem. We now show that this equivalence can be extende
the momentum, angular momentum, and energy and the
certainty relation holds for the stochastic process. To do t
we have to find sensible definitions of these quantities for
stochastic process. Also, since the stochastic process is
fined in the configuration space, it is necessary to relate
operators of these quantities to the position operator.
simplicity we shall consider the case that the vector poten
AW is zero. From Eq.~1! the weak values of the momentum
angular momentum, and energy can be expressed in term
the weak values of functions of position operator

^ p̂&weak5E dx mv2~x,t ! P̄~x,tuxf ,t f !5^mv2~ x̂,t !&weak,

~20!
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57 1569QUANTUM STOCHASTIC MOTION IN COMPLEX SPACE
^x̂3 p̂&weak5E dx @x3mv2~x,t !# P̄~x,tuxf ,t f !

5^x̂3mv2~ x̂,t !&weak, ~21!

^ p̂2&weak5E dx @m2v2
2 ~x,t !

2 i\m¹W •v2~x,t !# P̄~x,tuxf ,tx!

5^m2v2
2 ~ x̂,t !2 i\m~¹W •v2!~ x̂,t !&weak, ~22!

^Ĥ&weak5E dx F1

2
mv2

2 ~x,t !2
i\

2
¹W •v2~x,t !

1V~x,t !G P̄~x,tuxf ,t f !5 K 1

2
mv2

2 ~ x̂,t !

2
i\

2
~¹W •v2!~ x̂,t !1V~ x̂,t !L weak

. ~23!

The next step is to find the counterparts of the above qu
tities for the stochastic process. We base our considera
on classical mechanics. For deterministic motion, the ve
ity of a particle at a point on its trajectory is defined as

v~x,t !5 lim
Dt→0

Dx

Dt
,

where x(t) is the trajectory of the particle. For stochas
motion, the above definition cannot be directly applied to
single weak trajectory due to the existence of the rand
term. Nevertheless, an ensemble-averaged velocity at e
point of the weak trajectory can be defined. Using Eq.~14!
the ensemble-averaged velocity entering the pointj at the
time t is

lim
Dt→0

ES Dj

Dt D5v2~j,t !. ~24!

This suggests that the momentum and angular momentu
a pointj on a weak trajectory can be defined as

p~j,t !5mv2~j,t !, ~25!

l ~j,t !5j3p~j,t !. ~26!

The kinetic energy at every point on a weak trajectory can
defined in an analogous way@1#. Noting that it involves the
square ofDj and DW2}Dt, the contribution from the ran
dom term has to be treated properly. An integration of E
~14! yields

j~ t2Dt !5j~ t !1E
t

t2Dt

dr v2„j~r !,r …1W~ t2Dt !2W~ t !.

~27!

This means that
n-
on
-

a
m
ry

at

e

.

Dj5j~ t !2j~ t2Dt !

52E
t

t2Dt

dr v2„j~r !,r …1W~ t !2W~ t2Dt !.

~28!

Substituting Eq.~27! into the integral of Eq.~28!, expanding
v2 with respect to the pointj(t) to the orderDt, and making
use of the Ito calculus@13#, Eq. ~28! can be expressed as

Djk5v2k~j,t !Dt2¹W •S v2kE
t

t2Dt

dr @W~ t !2W~r !# D
1DWk . ~29!

This leads to the result@1#

lim
Dt→0

ES FDj

Dt G
2D5v2

2 ~j,t !2
i\

m
¹W •v2~j,t !1 lim

Dt→0
i

3\

2mDt
.

~30!

The singular term in Eq.~30! is a constant that is the sam
for all weak trajectories. It can be removed from the ene
by a proper choice of the zero point for the energy. T
suggests that the kinetic energy can be defined as

p2

2m
5

1

2
mv2

2 2
i\

2
¹W •v2 ,

or equivalently

p2~j,t !5m2v2
2 ~j,t !2 i\m¹W •v2~j,t !, ~31!

E~j,t !5
1

2
mv2

2 ~j,t !2
i\

2
¹W •v2~j,t !1V~j,t !. ~32!

With the above definitions of momentum, angular mome
tum, and energy for the stochastic process, it follows fr
Eq. ~17! that the conditional expectation values of the
quantities for the stochastic process are the weak value
the corresponding quantities for the quantum mechan
Similarly, by Eq.~19!, the weighted averages of these qua
tities for the stochastic process with the final spatial distrib
tion r(xf ,t f) are the quantum-mechanical expectation valu
of the corresponding quantities. It also follows from Eq.~19!
that the product of the mean-square deviations of posi
and momentum for the stochastic process is the posit
momentum uncertainty relation of quantum mechanics.

V. RELATIVISTIC CASE

We have seen that a backward stochastic process ca
associated with a nonrelativistic quantum system. It is p
sible to extend this stochastic interpretation to a sing
particle quantum system satisfying the Klein-Gordon eq
tion. The key to the extension is to note that the Kle
Gordan equation can be written as a stationary-s
Schrödinger equation in a four-dimensional Euclidean spa
@15#. The transformation between the Minkowski space a
the Euclidean space is
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~x1,x2,x3,x4!5~x,y,z,ict !,

~p1 ,p2 ,p3 ,p4!5S px ,py ,pz ,
iE

c D .

With these transformations, a time operator (x̂4) is intro-
duced analogously to the position operator. The conjug
four-momentum operators are

p̂m5
\

i

]

]xm , m51,2,3,4.

Writing the Klein-Gordan equation as

1

2mS p̂m2
e

c
AmD S p̂m2

e

c
AmDc52

mc2

2
c,

wheream5am in four-dimensional Euclidean space, the s
lution c can be viewed as one of the stationary-state so
tions of the four-dimensional Schro¨dinger equation

i\
]C

]t
5

\2

2mS \

i
¹W 2

e

c
AD 2

,

with

C~x,t!5e2 i ~mc2/2\! tc~x!.

Heret plays the role of time. We shall see that in the cla
sical limit t is the proper time of the particle. Writingc as

Ar~x!eiS~x!/\,

C can be expressed in the same form as Eq.~7!,

C~x,t!5Ar~x!ei [mc2t/2 1S~x!]/\.

All the formulations and interpretations developed in the p
vious sections follow immediately.

To see the physical meaning of the parametert let us
consider the free particle case. The wave function of t
state is

C~x,t!5ei ~mc2/2\! tei ~pmxm/\!.

The backward stochastic process corresponding to an
semble of physical systems preselected in this state and
selected in the four-position eigenstate att f is

d* Jm~t!5
pm

m
dt1d* Wm , ~33!

constrained by the final conditionJ(t f)5xf . The random
term of the spatial component vanishes in the classical lim
as discussed in Sec. II. What about the random term of
time component? Noting thatx45 ict and ud* W4u}A\/m,
the fluctuation in time vanishes in the lim
\/mc25lc/2pc→0, wherelc is the Compton wavelength
of the particle. The dimension oflc /c indicates that the
limiting condition is satisfied if it is small compared to th
quantity l /v, wherel is the size of the system andv is the
velocity of the particle. The limiting condition is therefor
te

-
-

-

-

is

n-
st-

it,
e

(lc/2p l )(v/c)→0. The fluctuation in time vanishes in th
nonrelativistic limit. In the relativistic case
(lc/2p l )(v/c)'lc/2p l and the fluctuation in time is impor
tant when the size of the system is of the order of a Comp
wavelength. This time fluctuation may be related to t
vacuum fluctuation~virtual particle-antiparticle production
and annihilation!. In the classical limit the random term van
ishes and the time component of Eq.~33! becomes

dt5
E

mc2 dt.

Since E5mc2/A12(v/c)2 we have dt5dt/A12(v/c)2.
This shows thatt is the proper time of the particle.

VI. SUMMARY AND DISCUSSION

We have proposed a stochastic interpretation of quan
mechanics in which a quantum system is associated wi
backward stochastic process in complex configuration sp
The equivalence between the stochastic process and
quantum mechanics is established through the following
sults.~i! For the stochastic trajectories in the complex spa
which we call weak trajectories, constrained to be at the fi
positionxf at timet f , we showed that the conditional expe
tation values of their moments are equal to the weak val
of moments of the position operator of the quantum syste
This leads to the equality~17! between the weak value of
function of the position operatorf ( x̂,t) and the conditional
expectation value off (z,t) for the stochastic process.~ii !
Using Eqs.~5! and ~17!, for t<t f , the quantum-mechanica
expectation value off ( x̂,t) is shown to be the weighted av
erage off (z,t) for the stochastic process that has the spa
distribution r(xf ,t f) at t5t f , where r(x,t) is the spatial
distribution of the quantum system. This equality is e
pressed in Eq.~19!. ~iii ! The weak values and expectatio
values of the momentum, angular momentum, and energy
the quantum system are shown to be the conditional exp
tation values and weighted averages of the correspon
quantities, respectively, for the stochastic process. T
position-momentum uncertainty relation follows automa
cally with the interpretation that it is the product of th
mean-square deviations of position and momentum for
stochastic process.

The real part of the weak trajectory is interpreted as
trajectory of a particle in real configuration space. This
terpretation is justified, on the one hand, by the equality~17!
between the position operator and the weak trajectory a
on the other hand, by the reduction of asingleweak trajec-
tory to the correct classical trajectory in the classical lim
Finally, the stochastic interpretation is extended to the re
tivistic single-particle system satisfying the Klein-Gordo
equation by treating the Klein-Gordon equation as
stationary-state Schro¨dinger equation in four-dimensiona
Euclidean space. The fluctuation in time is shown to van
in the nonrelativistic limit.

A question needs to be answered: Why is it the backw
instead of the forward stochastic process that correspond
the quantum system considered? The reason that it is
backward process is because the weak value depends
only on the preselected state but also on the postsele
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state. One has to go backward in time from the postselec
to determine the weak value of a physical quantity. Anot
question is whether our interpretation could be extended
the weak values and expectation values of the other obs
ables in addition to the operators discussed in Secs. III
IV. The answer is yes because all the measurements o
physical observables are essentially position measurem
One could in principle relate the operator of an observabl
a corresponding function of position operator as done in S
IV for the momentum, angular momentum, and energy
erators.

The stochastic interpretation presented here does not
et
n
r
to
rv-
d

he
ts.

to
c.
-

ve

the shortcoming of the previous theory@1# as discussed in
Sec. I. It opens up the possibility of a full stochastic inte
pretation of quantum mechanics. One could proceed fur
to develop a theory of stochastic mechanics in comp
space in an analogous way to@1#. This would involve the
consideration of a stochastic process in complex space s
fying a certain dynamical law. The drift velocity of this sto
chastic process will be determined by this dynamical la
With a properly chosen dynamics the quantum mechan
would be the real-space manifestation of the stochastic
chanics in complex space. Work along this line is curren
under way.
tt.
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