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Fourth-order self-energy contribution to the Lamb shift
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Two-loop self-energy contributions to the fourth-order Lamb shift of ground-state hydrogenic ions are
treated to all orders i@« by using exact Dirac-Coulomb propagators. A rearrangement of the calculation into
four ultraviolet finite parts, théV, P, F, and perturbed orbitalPO) terms, is made. Reference-state singu-
larities present in thé and P terms are shown to cancel. The most computationally intensive part of the
calculation, theM term, is evaluated for hydrogenlike uranium and bismuthRterm is evaluated for a range
of Z values, but thd® term is left for a future calculation. For hydrogenlike uranium, previous calculations of
the PO term give-0.971 eV: the contributions from thd andF terms calculated here sum t00.325 eV.
[S1050-294{@8)00303-5

PACS numbdps): 12.20—m
INTRODUCTION E*S§Za)=[0.142 787 2.155)(Za)](Za)* a.u. (2)

In a recent papdrl] we calculated the contribution of the The remarkably large coefficient of the second term not only
two-loop vacuum polarization diagram of Fig. 1 for the indicates the need for an evaluation to all order<Zef at
ground state of hydrogenic ions using a method that treatsigh Z, but also makes such a treatment desirable even for
the electron propagator in the presence of a point nucleus ¢éw Z.
chargeZ, the Dirac-Coulomb propagator, exactly. One no- While experiments that measure the ground-state Lamb
table feature of the calculation was the strahdependence shift in hydrogenlike uranium have reached the 16-eV level
exhibited: While at lowZ the first terms of the power series [7], far higher accuracies have been reached in the more
expansion inZa approximated the complete calculation, at easily measured spectra of highly charged many-electron
high Z the answer was quite different. For example, if oneions. Particularly precise measurements have been made of

setsZ=92 in the power serief?] the 2s,,,-2p,, transition energy in lithiumlike uraniurf]
and the 34,,-2pg, transition energy in lithiumlike bismuth
E*VP(Za)=[0.014 392-0.023 208Z«a)](Za)* a.u. [10], the latter having been determined with an accuracy of

(1) 0.04 eV. Assumin@*/n® scaling, this would correspond to
) ] an accuracy of 0.48 eV in ground-state uranium. While the

—0.000 242 a.u. result-s, while the exact answer]s 0004 gggamb shift in a many_e|ectr0n ion differs from the hydro_
a.u., an order of magnitude larger and of opposite sign.  genic Lamb shift because of screening effects, the effect is

In this paper we wish to extend our previous calculationre|atively small, amounting to only a few percent, and can be
to include the two-loop self-energy diagrams of Fig. 2. Fig-neglected for the two-loop Lamb shift. However, the screen-
ures Za) and 2b) will be referred to in the following as the ng effect on the one-loop Lamb shift needs to be calculated
nestedandoverlappingdiagrams respectively, following the zjong with two-photon exchange diagrams before the two-
notation of Ref.[3]. The reducible diagram shown in Fig. loop Lamb shift can be unambiguously isolated.

2(c) gives rise to two terms that do not have a conventional The Jithiumlike bismuth experiment, when compared with
diagrammatic representation, one of which we will refer to aghe most complete calculation to date, that of Blund8]|

the perturbed orbital(or PO term and the other theleriva-  gjffers by 0.11 eV. The calculation takes account of the bulk
tive term. The perturbed orbital term, which has been treategf the screening effect, but leaves out two-photon exchange
in Ref. [4], is separately gauge invariant when covariantgjagrams and keeps only the leading term of the two-loop
gauges are usgreynman gauge is used in this calculalion | amb shift. Unless the higher-order corrections to the two-
as is the sum of the nested diagram, overlapping diagrangop Lamb shift cancel with the two-photon exchange terms,
and derivative term. We treat only the latter set in the presentjs indicates that the general size of the effects is on the
paper. o . order of a tenth of an eV. In this paper we will calculate

As with the two-loop vacuum polarization diagram, the seyeral, though not all, contributions to the two-loop self-
first two terms in the power series of the fourth-order self-energy diagrams for the ground state. The siz&-a83 and
energy are knowi5,6] to be Z=92 is generally of the order of 1 eV, which would scale to
0.125 eV for the 2 state, consistent with the above esti-
mates. There is of course no substitute for a direct calcula-
tion of the two-loop Lamb shift, the subject of this paper.

A central issue in the exact evaluation of two-loop dia-
grams in the bound-state problem is the treatment of renor-
malization. In the one-loop case, the first calculatigtis 12]
subtracted a free Dirac propagator from the Dirac-Coulomb
FIG. 1. Fourth-order vacuum polarization diagram. propagator, which allowed the isolation of the self-mass in-
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OP or 1P terms. The resulting ultraviolet finite quantity we
denote as thé> term and defer its evaluation for a subse-
M + < quent work, as it requires the development of new techniques
/N

for the treatment of the Dirac-Coulomb propagator in mo-
mentum space. Finally, the separate set of subtractions intro-
(a) duced to make the term ultraviolet finite can also be evalu-
ated with Feynman parameter techniques. We group together
the terms involving only free-electron propagators into the
third part of the calculation, which we call thte term. This
W g'wl’g M part of the calculation, which is much less computationally

intensive than theV term, is carried out for a range &

values.
(b) (©) The plan of the paper is the following. The basic formulas
for the unrenormalized two-loop diagrams are given in Sec. |
FIG. 2. Fourth-order self-energy diagrams. along with one-loop formulas needed in the analysis. The

subtraction scheme that defines teterm is described in

finity, although great care had to be taken with other u|»[ra_8'ec. I and a discussion of reference-state singularities is
violet infinities not explicitly removed by this process, which given in Sec. lll. Numerical results for the ground-state of
however cancel because of the Ward identity. M8 and ~ hydrogenic uranium and bismuth are given in Sec. IV. Phe
later Blundell and Snydermafi4] and Chenget al. [15] term is introduced in Sec. V, where the secondary subtrac-
carried out additional subtractions that allowed completelytion terms that make it finite are introduced. Theerms are
finite expressions to be dealt with. We note also the work ofVvaluated in Sec. VI and although the calculation is still in-
Lindgrenet al. [16], which is known as partial wave renor- complete because th term has not been evaluated, the
malization. However, the situation is considerably morePresent numerical status of the fourth-order self-energy for
Comp"cated when two |00ps are present. The source of thaydrogen”ke uranium is discussed at the end of that section.
Comp"cation is Subdivergences that lead to more severe ui[.he issues. that must be faced to Complete the calculation are
traviolet divergences. When Pauli-Villars regularization isdiscussed in Sec. VII.
used, this leads to terms proportional t8(A/m), and when
dimensional regularization is used to terms proportional to |. BASIC FORMULAS
1/e?. One scheme to treat renormalization that works in the
framework of partial wave renormalization has been pre-
sented in Ref[17]; however, in this paper we have adopted Before we evaluate the one-loop self-energy term, it is
a different approach based, as in the one-loop case, on subenvenient for later use to define two one-loop operators
tracting diagrams with some Dirac-Coulomb propagators reregularized by working im=4— e dimensions. The first is
placed with free propagators, which we refer to as zerothe one-loop self-energy operator with a free-electron propa-
potential (OP) terms, or free propagators followed by an gator in the Feynman gauge
interaction with the nuclear Coulomb field followed by an-
other free propagator, which we will refer to as 1P terms. (2:0P) ., d"k 1

In the present paper we will present a treatment of the = (P)=—ie (2m)" K2+is '» 7. (9

i o X p—k—m

two-loop self-energy diagrams that divides into three parts.
In the first part we deal with the unrenormalized diagrams i i o ) :
but make trrl)em ultraviolet finite by carrying out the ki%d of We define the ultraviolet finite part of this to B&”°")(p)
subtractions just described: we will refer to the unrenormalthrough
ized diagrams together with the subtractions that make them _
finite as theM term. This part of the calculation involves a 3P (p)=sm@+B@(p-m)+3F%(p). (@)
double integral over Wick rotated photon energies and we
carry it out in this paper for the experimentally interestingHere
cases oZ=92 andZ=83. A complication in the evaluation

A. One-loop self-energy and vertex functions

of theM term is the presence of reference-state singularities, maC 3—¢
which arise when intermediate states in the spectral decom- 2me 1—e
position of the electron propagators coincide with the va-
lence state. We present a method of regularizing these sir()a-
" : . . nd

gularities and show the mechanism for their cancellation.

In the next step of the calculation, the subtraction terms c
are Fourier transformed into momentum space. Some of §<2>:_a_1 (6)
them involve only free-electron propagators and can be 2me

evaluated with standard Feynman parameter techniques.

However, other subtraction terms involve Dirac-CoulombwhereC=(4m)’I'(1+ €/2). Note that we do not pull out
propagators. These latter terms are made ultraviolet finite bthe full wave function renormalization factor &), but
introducing a separate set of subtractions in which the reenly the ultraviolet divergent part of it. The finite term is
maining Dirac-Coulomb propagators are again replaced witlthen
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(2:0P) —

L acC p2 L fld 4—e [2—€ x~ <2 ;

EW 0 Xml_E p 1-€ X [X_(p2/m2_1)(1_x)]1+5/2' ()

Note that we keep the exaetdependence of this function, as tain terms in which the one-loop Lamb shift is multiplied by

it is necessary for use in the two-loop Lamb shift.
The second operator is the vertex function

AP (pa.py)=—ie? Lkn—zl—v
2m)" K2+is '
1 1
“pemPkepm”
We again define a finite part through
Af)(pbpl):E(Z)'yp"_Ag;)(pZapl): ©)
with
L(Z)_Z:e (10
and
A(z)(pz P1)=— %%
+My flp dpfldX ! —11
4me ?Jo o | A€2
aC (1 1
_EfopdpjodxA“f’z' (11

Again, we remark thak @ is only the 1£ part of the vertex
renormalization constant; however, the Ward idenfif’

=L@ js still satisfied. We have introduced the functions

A=p?€;— p?|xpy+ (1= X) P,/ 2+ p(MP— €5) + pxp; 2
+p(1=x)p; % (12
wheree, is the ground-state energy, and
=y, —pxpr+[1—p(1=x)]po+m}y,[(1—pX)p;
—p(1=x)po+m]y*. (13

B. One-loop Lamb shift

When we analyze the two-loop Lamb shift, expressions
related to the one-loop Lamb shift frequently arise, so we

1/e. Thus we must keep orderterms in order not to miss a
finite contribution.
We begin by introducing the more general function

. . dnk eil<’<(>zf);)
e x| o s

X Pm(X) ¥, Se(X, Y E—Ko) v in(y).  (14)

In terms of this function, the energy shift of a statesso-
ciated with the one-loop self-energy ¥{2)(e,), which for
notational simplicity will be denoted (%) in the following. It

is to be distinguished from the operaf®f?)(p) introduced

in Sec. | A. As will also be the case for the two-loop calcu-
lation, we adopt the approach of working with unrenormal-
ized diagrams, carrying out renormalization by introducing
counterterms explicitly. Thus this diagram will contain the
self-mass infinity as well as canceling vertex and wave func-
tion infinities. To isolate these terms, we make the standard
expansion of the bound electron propagator in terms of the
free electron propagatcﬁ‘é,

Se(r.r';E)=S(r,r';E)

+f a3 SH(r,X;E) yoV(X)SE(X,1";E)

+J dx dBy Sr,x;E) yoV(X)

X Se(X,Y;E) yoV(Y)SR(y,r';E), (15

where for this calculatiorV(x) is taken to be the Coulomb
potential. Insertion of the first two terms on the right-hand
side in Eq.(14) gives the OP and 1P terms and insertion of
the last the many-potenti@P) term. The OP and 1P terms
can be obtained as the expectation values of the functions
introduced in Sec. | A. The OP term is

3 (2:0P) _ 5m<2>J d°p ¥,(P) ¥, (p)

+B®@ f d3p ¢, (p)(Pp—mM) g, (p)+CZ 2P,
(16)

review its treatment here. A novel feature is the need to

evaluate the one-loop Lamb shift im dimensions. While

Here we have explicitly removed the const&htfrom the

when treated by itself the limih—4 can be taken after definition ofE(2 o)

renormalization, we will find in the two-loop calculation cer-

In then—4 I|m|t a straightforward analysigl5] gives
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G- J d°p ¥, (P)(B—m) s, (P) 3= f 000504 %%
o°p Pzz—l} e
m K2+is  1?2+i6
xf Y, (p)[2m—p (1- XI2)14(P) a X Se(Xq,Xz; €,—Ko) ¥"Se(Xz X33 €,—Ko—10) 7,
0 x—(p?/m?=1)(1-x) X S(X3,X4: €= Ko) ¥ty (Xa).- (22)

Here the subscript,4 indicates thah=4; expressions with It should be understood that this is always accompanied by
the subscript by itself are understood to be evaluatedhin the counterterm diagram
dimensions. G
Similarly, we write d'k e taTXs
Y Si=ie? f d3x,d%x,d%x4

2m" K2+is
(2:1P) _T7(2) 37 1 (R _ > (2:1P) . .
20T [ 6 G(5) (8- m () + O34 X B (X0) YSe(Xs K1, — ko) P
(18 - -
XSF(XZvXS;Eu_kO)’)’,U,lpU()%)- (23)
where in the fimitn—4 The overlapping diagram gives the energy shift
<2:1P>:_1J 30 7 (6 (h— - dk d"l
EC’4 2 d P ¢U(p)(p m)wv(p) 240:_64_[ d3X1d3X2d3X3d3X4 (2 ) (27T)n
d®p,d®p; N K- (kg —Xg) il (o~ %g)
J oo [ o] T Gy
[Pyl & K2+is  12+is
3 3 N N
Za f p dpf fﬁ Pd F|)2 X Sp(X1,X21€,~Ko) ¥"Se(X2,X3; €, —Ko—10) ¥,
P1—P - - -
s X Se(Xa Xas €, 10) Vutho(Xa). (24)
X ,(p2) Yolﬂu(pl)'n 2 (19 The perturbed orbital contribution is given by
- v (ev)2 v(eu)
HereN=¢,(p2)N,-o#,(p1), whereN, andA are given in S po= ; % (25)
n#v v n

Sec. | A. The MP term is ultraviolet finite. After including
the self-mass counterterm and noting the cancellation of thﬁ turbed orbital is defined th h
remaining divergences, we have the finite result, to oegjer a perturbed orbitab 1S defined throug

2(2 C[E(Z 0P)+2(2 lP)+2(2 MP)+ 2(2 OP)+ 2(2 lP)] |’{)’>E 2 M, (26)

(20) n#v €, €p

the perturbed orbital term is simply,,;(e,). Finally, the
derivative term, which is again related to the one-loop self-
energy, but in this case accounting for the shift in the energy
flowing through the electron propagator from the one-loop
Lamb shift, is given by

22?322(2 OP)+2(2 1P)+2(2 MP) (21) 2(2 ( )

EDZE JE |E:EU’ (27)

The subscripte indicate the terms of orde¢ in a Taylor
expansion of8 (#'%) and 3 (#17)

For the one-loop Lamb shift, one can take-4, and this
reduces to

However, as mentioned above, we will encounter in the fol-
lowing expressions in which the exact one-loop Lamb shift isyhich more explicitly is
multiplied by 1k. While we will show that terms that in-

volve the many-potential term cancel exactly, terms involv- d'k el -y
ing the zero- and one-potential terms cancel only rike4 EDzieZE(f)f d3x d® d3wf 2 iy
parts of these terms, leaving a finite contribution involving k“+io
(2:0P) (2:1P) ; ; ; . — - -
3¢5 and2 7, which will be included in Sec. VI B. X Py (X) 7, S (X, W; €,— Ko) o
C. Two-loop self-energy X Se(W,Y; €, = Ko) Y9, (¥). (28)

The basic expressions for the two-loop Lamb shift wereNote that we have implicitly included the self-mass counter-
given in Ref.[18]. The energy shift associated with the term diagram, so that the finite part of the self-energy mul-
nested diagram is given by tiplies the derivative.
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In this paper we are concerned with the sum of the nestetiere g&'=,f5F are the radial wave functions regular at the

diagram, overlapping diagram, and derivative term, origin, &, f“E the radial wave functions regular at infinity,
and y,.,, spherical spinors. After putting this form into the
4SE_ 5 4N 40 D KH . . .
ST RIS (29 above equations along with the standard representation of the

. , , _photon propagator in terms of spherical Bessel functions, the
This accounts fo_r all of the first term in the power S€r€Sangle integrations can be carried out analytically along with
expansion given in Eq2) and Some of the second term, with the symmations over magnetic quantum numbers. The pres-
the remainder of the ordeZ)” a.u. contribution coming  ence of they functions requires a division of the radial inte-
from the PO term(4]. While in the present paper we are grations over the four variables into 24 regions, correspond-
concerned only with the higB-case, in future work at low ing to the 24 orderings in relative magnitude of these

Z, a comparison with the known power series will both pro-y,5riables. For brevity, we show below only one ordering

vide a check of the calculation and allow the isolation of new, > - - - . .
e ps [X1|=|Xo|=|X3|=|X4|, which we refer to as region |, and
terms starting in ordera)® a.u.

We record for later use the momentum space form of thea'So give only the expression for the case0,»=0. We

. . define the function
nested and overlapping diagrams

dk  dn Rij (X Ej ,Ej)=gi(x)g;(x) + f;(x) f;(x), (39
3= —e f d°pod°a,d°a,d%p; | ——w 5w
(2m)" (2m) whereE; is the energy associated with the Dirac equation
1 1 . L that g;,f; solve, and similarly forE;. Then the ordering
xm mwu(pz)y”sp(pz—k-%—kifv—ko) fal:t)ove,lwith,u and v restricted to being timelike, gives the
integrals

X y'Se(qy—Kk—T,01—k—T;€,—ko—1o) o
a? 3T (21,+1)(21,+1)

X v,5:(q;—K,p,—K; €, — k D 30 I™Nh=-— : :
Y F(ql P1 € O)’}/,ul/,v(pl) ( ) ( ) 2772K1,K2,K3,|1,|2 (2Jv+1)(21 Kl+ 1)
and —)l1tlatiyti,c2 2
X(=1) v Gl (K, k1) C(K1K2)
dk d" © © % X X
24O=—e4f d3pzd3qzd3q1d3pljww xf_wkodkof_wlodlofo dxlfoldxzfozdxg
K r i (By) Y Sy K.~ Ky &
k2+i5I2+i51’ll”(p2)y F(P2— k2= ki€, ko) Xfo dx4j|1(k0x4)h,<11)(k0x1)j|2(I0x3)h|(21)(lox2)
< SF(qf_k:J 'qi_k_ ! ;Gv_kojIO) X Ry, (X1;€,,€,—Ko)Ro, e, (X2; €, Ko, €,—Ko—10)
X v, Se(qr—1,p1—1;e,— o)y, 1b, . (31
7uSel =Py o) ¥¥(P) X Ro,00,(X3,€, ~Ko—l0,€,—Ko)Ro,, (X4; €, Ko, €,)
Were it not for the ultraviolet divergences present in these (36)

expressions, their exact evaluation would be straightforward
using the partial wave decomposition of the electron andnd
photon propagators in coordinate space. Specifically, we can

express the electron propagators as 540 a? (21,+1)(21,+1)
N=—=— .
. R R ( ) 2772K1,K2,K3,|1,|2 (2]v+1)
SH(Y.ZE)=2 [0(y—2WE,(Y) UL, (2) X (= 1)1 0 T Gy (i, k)
Ky
+6(z—y)UE, (NWE (2], (32) X Cy (Kkak3)Cy(k1K2)Cy (K3K,)
j K I i ® ] ©
wherew, ,u, are the solutions of the Dirac equation with v J Lot _J” j kodkof |od|of dx,
(in general complexenergyE regular at infinity and the Jeg 1o Juy) J— —o 0

origin, respectivelydefined to include a Wronskian facjor % %5 X5
which have the representation xf dxzj dng dx, jll(kOXB)hl(ll)(koxl)
0 0 0

- K, E " .
@ :%{ 9 (r)X”‘(i)} - %1, (10X (1 6X) Ry, (X1 €, 1€, — ko)
1:0' (r)X*K/.L(r) XRolwz(XZ;Ev_kO1ev_k0_|0)
and X Ro,,(X3:€,~Ko— 10,6, o)
e o 1[1gEE (D) *RogOaies~lo ) 7
W (1 AP . (- (39
f2(r) X —weu(r) Here
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Ci(kir))=(—DITY2(2j;+1)(2j;+1) % %
o N Sy - F

1 (i 15,0, (38

(@ E(
wherell(l;,1;,l) is a parity factor that vanishes unless the o
suml;+1;+1 is even, in which case it is unity. Removal of EM = W - %

the restrictionu=v=0 leads to additional terms, formulas
for which can be found in Ref19]. All of these expressions

have ultraviolet infinities and we now describe a subtraction

scheme to isolate and cancel these infinities. _ m + :%Z

II. SUBTRACTION SCHEME -

A. Nested term (b)

As with the one-loop self energy, our basic strategy for
dealing with ultraviolet divergences is to introduce subtrac- D (2) M
tions involving the free-electron propagator, which is far ZM = z:c,4
simpler than the full Dirac-Coulomb propagator, but which YO
has the same ultraviolet behavior. In the case of the nestec
diagram, the subtraction scheme used here is to treat the
interior electron propagator in the same fashion as in the _ 2(2) )&(
one-loop self-energy, leaving, however, the outer electron ¢4 0
propagators unchanged. We thus define the nédtéerm as (c) Y

FIG. 3. Diagrammatic representation of the subtraction scheme
ERIA — _e4f d3x1d3x2d3x3d3x4 that defines thé/ term.

As with 34N 3N1 s understood to be accompanied by the
counterterm diagrarﬁlfsm. The diagrammatic expression of
- this is shown in Fig. @&). Standard power counting argu-
X i, (X1) Y*Se(Xq X2 €, — Ko) ments show thak s is ultraviolet finite.

d"k dn eilz-(il—>24) eif-(§2—>23)
X
f(Zw)”(Zw)” K2+is  12+is

X yV[SF()ZZ1)_()3;Ev_kO_IO)_SO()221)Z3;Ev_kO_IO)

L. B. Overlap term
~Si(x2Xg5€, ko~ lo)] The subtractions necessary to render the overlapping dia-
gram finite are somewhat more complicated than the nested

X y,,SF(fg ,>24 1€,—Ko) yﬂwv(@) diagram. In this case, while it is possible to devise a subtrac-
tion in which only the center electron propagator is bound,
=3 AN_yNI_yN2 (39) the resulting expression would be difficult to analyze since it

would involve ultraviolet-divergent subdiagrams in which
one propagator was free and the other bound. Instead, we
first subtract terms in which the leftmost two or rightmost
two propagators are free. This oversubtracts the leading di-
Here vergence, in which all propagators are free, so we add that
term back in. Since this subtraction scheme misses a diver-
gent term in which the middle propagator has an interaction,
_ 53(2,37; e). (40) We finally subtract that term with the outer propagators free.
|Z The overlappingM term has the explicit representation

Zayy

SEyo=— f 2 SKze)
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d"k dn| |k (xl x3) elq (xz x4)

2m" 2m)" K2+is  12+i6

Eﬁ)/l: _e4J' d3X1d3X2d3X3d3X4 wv(xl) ‘Y/J,[SF(XI 1X2! kO) ‘yV

X Se(Xp,X3:€,— ko= l0) ¥Se (X3, Xa1 €, ) = Se(X1  X21 €, Ko) ¥'So(X2.,X3; €, — Ko —10) ¥*So( X3, X4 €, | o)
—So(X1 X256, Ko) ¥'So(X2, X33 €,— ko=l 0) ¥*Se(X3, X3 €,— 1 0) + So( Xy Xz €,— Ko) ¥
X So(Xz. X3 €, ~ Ko~ 10) ¥*So(Xs X1 €,~10) = SolXa X2 €, ~ Ko) ¥ S1(Xz X1 €, ~ ko= l0) 7"
X So(Xg Xa1 €~ 10) 1 ¥uthu(Xa)
—y40_yOl_y02, y03_y04 (41)

Again, power counting arguments show the overlapgihg decomposition of the electron propagators coincide with the
term is ultraviolet finite. The diagrams representing the subvalence state. We regulate them by altering the valence en-
traction are shown in Fig.(B). ergy toe, =¢,(1—A) in the electron Green’s functions. This
regulator is described in Refgl9,2(0. As an example of a
reference-state singularity we consider the first terrﬁl}ﬂn.
C. Derivative term Representing the electron propagators with spectral decom-

We now turn to an analysis &P. We note that this same POSitions, this term becomes

expression is encountered when considering the effect of ex-

ternal potentials on radiative corrections, recently considered

in Ref.[19]. The ultraviolet divergence of this term will play D_in2v(2) f 3y 3y 43
an important role in combination with the nested and over- 2o=ie 2“% ; d'x dy d'w
lapping diagrams. To isolate it we subtract from the diagram .

a similar term with both electron propagators replaced with dk ety

free propagators. The derivatié termEﬂ is given by 2m" k2+is

P00 ¥, ¥m(X) (W) Yot W) thn(Y) ¥* 1, (Y)
D_:,2%(2) 3 3 3 X ’ : ’ : )
Su=ie EC,4J' d°x d°y d°w [e,—ko—€m(1—i0)][€,—Ko—€n(1—i)]
d"k ik (x y) (44)
Xf (27T)n k2 wv( )’V,U.[SF(X W € )
Restricting the sum tce,=¢,, €,=¢, and takingn—4

X ¥oSr(W,Y; €,— ko)_So(i,VY/;EU_ Ko) gives
X Y0So(W,Y; €, ~ ko) 1714, (Y)
4 ik-(x—y)
=340 _3b1 (42) a2 (2 3y B3y 3 d’k €
=ie 2 dx Py d°w | ——5 —
% % y 2m* K+is
This is represented diagrammatically in Figc)3 We have z,/;v(x) yﬂnga(x) l//a(W)’yol/lb(W) z,/;b(y) y’“z//v(y)
replaceds (?) with its n—4 limit since it multiplies an ultra- (e —Ko—e, 110
violet finite expression. Th& term is then
(49

Su=3SN+30+3D. (43)
wherea represents a valence state with magnetic quantum
numberm, and b a valence state with magnetic quantum
While ultraviolet finite, it contains reference-state singulari-numberm,. Thed*w integration can be carried out to give
ties, which we now discuss.

d*k

Sp—ie’s (2)2 fd3x d3yf @t

&K 0 Y (), (X)) ¥ (V)
Reference-state singularities can occur in bound-state X—— Yol y‘fl/ja( l/la(y_yzl// y .
QED calculations when the intermediate states in the spectral k°+id [e,—ko—€,+i17]

Ill. REFERENCE-STATE SINGULARITIES

(46)
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Without the regulator this would appear to lead to a linear V. NUMERICAL EVALUATION OF THE M TERMS
divergence ak,=0. As discussed in more detail in Ref. . . . - .
[19], the term would actually vanish by Cauchy’s theoremt At this p0|r(1jt t?e uItrawc_)Ietl f|n|t? e;;pre.wor;)s fpr tlh.fh th
were it not for thek, dependence of the photon propagator. erms are ready for numerical €évaluation. We begin wi N

That dependence leads to a logarithmic singularity, whicifierivative term. Its angular reduction, details of which are
can be shown to be given in Ref.[19], involves a single sum over a photon an-

gular momentum. We carry out the sum up tb=12, at
which point the behavior is almost exactly % /which allows

the sum to infinity to be carried out. The reference-state sin-
gularity occurs only forl=0 and is treated as described

D/ ai __“ (2)
2 re(singulay = WInA Zca- (47 above. The final result for this term is

While we will show that this singularity cancels against a
term from the nested diagram, we choose here to carry out a
numerical fit. Specifically, by using successively smaller val-
ues ofA, a fit to the form

EEA:—EE(Z‘{ A+ —0.03395 a.u., Z=83 (50
T & —0.04398 a.u., Z=92.

We next consider the overlappifhg term, which does not
have any reference-state singularities. However, we still re-
tain the regulator. The reason for this is to avoid poles and
cuts in the complex energy plane when we Wick rotate the
variablesk, andl to the imaginary axis. It is useful to recall
o the situation with the one-loop self-energy. In this case, after
allows an accurate determination of the cons#nt performing subtractions to eliminate ultraviolet divergences,

We now show that this reference-state singularity cancelg o wick rotates,— i wy . However, the spectral decompo-
with another reference-state singularity associated with thgiiion of the electron propagator has a term with a denomi-
nested term. To do this, we treat the first and Iast.electrorﬁator 1/(—ky+i3). In this case a semicircle must be made
propagators in E'q$22) 'a'nd(23) In t'he same way as with 'the around this pole, which gives rise to a contribution called the
derivative term, in addition changing the energy in the |nter-pole term, which plays an important numerical role in the

. , ; ? :
mediate propagator te, , which gives the expression Lamb shift. However, the regulator we have introduced to
make the reference-state singularities finite moves this pole

into the second quadrant, which eliminates the pole term.

dk ek (x1—xg) However, the price of this simplification is the need to put a

Efe'\f‘= —ie? Z d3x1d3x4f ST larger number of integration points near the origin, as there is

Ma»Mp (2m)" K+is now additional structure at smadl, . Also, the calculation

. Do (R0) Y ra(X0) S B €] — Ko) Ta(Xa) ¥t (Xe) must be done for at least two values of the regulator and a

50252 InA+A+BA] (48)
M ar c4

linear fit performed to obtain the intercept.
[e)—ko—€,+i6]? The same considerations simplify both the overlapping
and nested diagrams. By using the regulator, we can simply
(49 . . : X
Wick rotate bothky—iw, andly—iw,. Without the regula-
tor, several extra terms analogous to the pole term of the
one-loop self-energy would be present. Because we include
where we have used E(l4). Note that the self-mass coun- it, however, only the Wick rotated part of the calculation
terterm is understood to be subtracted fraif}) . In the limit  need be considered. However, as with the one-loop Lamb
ko—0,A—0, we can replac& (e, —ko) with 3)5y m  shift, care must be taken to include sufficient points at small
and the integrands of the derivative term and nested term canx and ; to accurately account for the structure in that
be seen to cancel. region.

If we were including only the unsubtracted derivative and  While in the one-loop Lamb shift the integral from),=
nested diagrams, the above argument shows the completex to 0 can be combined with the integral froma,
cancellation of the reference-state singularities. However=0 to «, in the two-loop Lamb shift the four regions can
our subtraction scheme is equivalent to replacﬁﬁ}(e[} be reduced to only two. Specifically, thew,=

—kg) with E\(,\,ZQMP)(e;—kO) in Eq. (49). For this reason the —oo, ... ,0w=—%,...,0 region combines with thew,
M terms have a reference-state singularity proportional t6=0, ... ®,0=0,...® region and the .=
52+ 311P) that will be canceled by a corresponding —<, ... ,00,=0, ...~ region combines with thew,
singularity in theP term. The occurrence of this singularity, =0, ... »,0;=—%, ... ,0region. For the overlapping dia-

which will be shown below, provides one of the checks ofgram, there then results for regidn with X;>X,>X3>Xy,
the calculation. and again showing only the=v=0 contribution,
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(21,+1)(21,+1) o
(2]U+1) (_l)|1+|2+JU+JK1+JK2+JK3C|1(KUK1)C|1(K2K3)C|2(K1K2)C|2(K3KU)

2
S0()==5 3

123112
j’<1 I1 jv *© e *® X1 X2 X3 . .
X9 . . f wkdwkf w|dw|f dxlf dXZI ngf dX4I|l(ka3)k|1(ka1)l|2(w|x4)k|2(w|X2)
Jeg 1o iy Jo 0 0 0 0 0
X[Ryes, (X1:0,01) Ro 0, (X2} 0k , 0k + @) Ro o (X35 0k + @, )R, (X4 @1,0) + Ryee (X150,00)

XRo,,(X2; 0k , 0= @) Ro 0 (X3; 0k~ @), — 0)) R, (X4; — @1,0) ], (51

where we adopt a shorthand notatioR,,(X;w,,®p)
=R,p(X;€,—iw,,€6,—iwp). Removal of the constraing
=p=0 leads to 15 additional terms in which pairs &f
functions are replaced by pairs of functions dendedQ,  trolling | and the number of channels is 2 for any given
andV, further details of which can be found in RE19]. The All possible channels are computed and summed for each
frequency integrations were carried out using Gaussiaentry in the table. Even though we are dealing with unrenor-
guadrature methods. A significant complication is the factmalized diagrams that are divergent, the calculation of the
that there is a great deal of structure in the integrand, unlikéndividual entries in the table is well defined and finite: The
the case of the one-loop Lamb shift. In order to get adequatdivergences arise as nonconvergersums. Specifically, at
accuracy it was found that 28 points were needed forathe highl; or|,, the entries in the table fall off asli/,, so that
integration and 23 points for the, integration. the sum yields a logdivergence. Such tables are constructed
The integration of the photon frequencies still leaves fivefor the five overlapping diagrams involved in the subtraction
summations over angular momentum quantum numbers afcheme. A subtracted table is then constructedﬁfﬁr by
the two-photon and three-electron propagators to be dongubtracting the individual entries B°*, 32, 3,03 304
Angular momentum analysis leads to selection rules thaand3°® from 3,4°.
make only two angular momentum quantum numbers inde- It was found that for a givehy, thel, behavior was con-
pendent. We choose to keep the photon angular momenta @érgent, falling off as 12 for high |,. Using its asymptotic
the independent variables. Thus each overlapping diagramehavior, thd, summation could be easily performed and it
turns into a table of values for different values| thdlz of was found that at1:4 and 5, the values were fa|||ng off as
the two photons. 113, which indicated that the final result converged. Includ-

required for accurate Gaussian integration, that makes this
calculation extremely computation intensive. This is in sharp
contrast to the one-loop self-energy where there is one con-

For a givenl, andl,, the range of« values the electron ing an estimate of the contribution 0f=6, ... » then
propagators can take increases very rapidly, leading to gives our result for the overlappirg term
large number of channels. Table | shows the number of al-
lowed channels for various values lgfandl, for the over- —0.07441) a.u.,, Z=83
lapping diagrams. Whenever possible, symmetry consider- = (52

M_ -_ =
ations were used to reduce the number of channels. To 0.09031) au., Z=92.

compute a table for, =0-5 and,=0-10, the total number  \ye now turn to the calculation of the nested diagram. The

of channels for a given overlapping diagram after accountingeqjator again allows us to perform a Wick rotation without
for symmetry is 3669. It is this feature of the nested and

overlapping diagrams, along with the large number of points TABLE II. Number of allowed channels for different values of
I, andl, for the nested diagrams.

TABLE I. Number of allowed channels for different valuesl pf

and|, for the overlapping diagrams. l, 11=0 I1=1 11,=2 11=3 I;=4 1;=5 1;=6
o h=0 hh=1 h=2 h=3 h=4 NL=° 2 z11 240 ;4 ;4 34 ;14 ;4
0 1 4 4 4 4 4 2 4 22 32 36 36 36 36
1 4 36 36 40 40 40 3 4 24 40 52 56 56 56
2 4 36 54 64 60 64 4 4 24 38 52 64 68 68
3 4 40 64 100 96 104 5 4 24 40 56 72 84 88
4 4 40 60 96 118 128 6 4 24 40 54 68 84 96
5 4 40 64 104 128 164 7 4 24 40 56 72 88 104
6 4 40 64 100 120 160 8 4 24 40 56 70 84 100
7 4 40 64 104 128 168 9 4 24 40 56 72 88 104
8 4 40 64 104 124 160 10 4 24 40 56 72 86 100
9 4 40 64 104 128 168 11 4 24 40 56 72 88 104
10 4 40 64 104 128 164 12 4 24 40 56 72 88 102




TABLE Ill. High-1, partial wave expansion whép=2 for nested diagram &=92 (in a.u). Numbers in
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square brackets denote inverse multiplicative powers of 10.

| 5 s N S N1 s N2 s l,\\‘/I

9 0.42140190012] 0.489555982[2] —0.6844077168] 0.286689280(5]
10 0.3850268472] 0.44652805412] —0.61718758363] 0.217551460(]
11 0.354191127%] 0.4102364532] —0.5621386933] 0.168538150(5]
12 0.3277512212] 0.3792394682] —0.5162072233] 0.132474520(5]
13 0.3048483892] 0.3524717812] —0.4772935903] 0.105966550(5]
14 0.2848282233] 0.3291313152] —0.4438875358] 0.856618800(®]
15 0.2671849497] 0.308603897[2] —0.4148971478] 0.707666400(®]

1557

encountering any poles. As before, we simplify the integrand so that the photon frequencies are positive in their integration
ranges. We then get for the regiap>x,>x3>Xx, with the restrictionu=r=0,

a? T (214 1)(21,+1)
2772K123,|12 (2Jv+ 1)(2J K1+ 1)

*® ®© «® X1 X2 X3
XJ wkdwkf w|dw|f dxlf dXzf dXSJ dX4 i|1(ka4)
0 0 0 0 0 0

XK (oXq) 1 (01X3) K (@0X2) [Rye (X1;0,01) Ro, e, (X2; @k, 0kt 1) Ro 0 (X3 00k + @1, @4) Ry (X4 04,0)

24N(|):

(—1)tH12" I eCP (i, k0) CF (K1K2)

TRy, (X1:0,01) Ro 0, (X2; @k, 0~ @) Ro 0 (X33 00— @, 0) Ry (X4 04,0) . (53

A simplifying feature of the nested diagram is a symmetryl,=13-15 were also carried out and it was found that the
that makes only 10 of the 24 regions of coordinate integraextrapolation was stable to three significant digits. Having
tion independent. The integration over the frequency of theperformed thd, summation, it was found that &=4 and
inner photon was performed first, followed by the integrations, the values were falling off as at Ieastfl,which indicated
over the frequency of the outer photon. It was found that 3Ghat the final result converged. Channels involving Dirac-
Gaussian points were sufficient for the outer photon freCoulomb propagators with angular momentum —1 were
quency integration and 23 for the inner photon frequencycalculated using thé regulator for at least two values af

integration. As before, angular momentum analysis reducegn fitted to the form &/ m)2EMPInA + A+ BA. We find
five summations to two independent variables, which were '

chosen to be the photon angular momentum varidhlesd
I,. Thus each nested diagram turns into a table of values for
different values of ; andl, of the two photons.

A large number of channels are allowed for moderately

high I. Table Il shows the number of allowed channels for At this point we discuss the amount of computation re-

various values ofl, and |, for the nested diagram. The uired and resources used. It took about 13 min to compute
nested diagram lacks the symmetry of the overlapping diad - ; P
o : . ope channel of the overlapping and 12 min for the nested
gram, and it is necessary to compute the entire table instea inal de of an IBM SP2 and a SUN UltraS-
of the upper diagonal half. To compute a table fpr0-5 lagram on a single hode ot an 15 - and a o
andl = 0—15, the total number of channels for a given dia-PA.RC 1 workstation. Diagrams with a single potentlal inter-
ram is 3891 ac.t|on involve more than 24 _coordlna_te reglons.and took
’ Table Il shows the construction of tables for different twice t.he amount_of computation as dlagre}ms without any
nested diagrams at=92 forl,=2. A subtracted table is then potent|al. interaction.  Thus f[he over'lappmg sgbtrachon
constructed forE,\N,I by subtracting the individual entries in sghem_e involves the computational equn_/alent of six o_verlap-
N1 N2 ¥ ping diagrams and the nested subtraction scheme involves
27 andx™ from X7 as four. Thus the total time required to perform the overlapping
subtraction scheme for one value ofis (13 min per chan-
nel) X (3669 channels per overlapping diaghar (6 over-
lapping diagrams= 4770 h. The total time required for the
It was found that for a givehy, thel, behavior was con- nested subtraction scheme for one valu& aé (11 min per
vergent. The values ay=11 andl,=12 were fitted to the channel X (3891 channels per nested diagjax (4 nested
polynomiala/l3+b/I3, which was then used to carry out the diagram$ = 2853 h. Thus the entire calculation requires
summation froml,=13 to . Fits using the values 7323 h of computation for a given value 8f This very large

0.08571) a.u., Z=83

N_¥o@2Mp) InA
—— +
=g ea A0 00611) au, z-92.

(59

ERIA('1a|2):2N(|1,|2)_2N1(|1a|2)_2N2(|1:|2)- (54)
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amount of computation was performed on a Parallel Operating Environment in an IBM SP2 cluster consisting of 14 nodes and
a local area multicomputét AM ) -based parallel environment on a SUN UltraSPARC 1 cluster consisting of about 170 nodes
at University of Notre Dame.

V. SUBTRACTION TERMS

We have introduced seven subtraction terms in order to render the unrenormalized nested, overlapping, and derivative terms
ultraviolet finite. The Fourier-transformed forms of the nested subtraction terms are

ENl_ 4f d3 d3 d3 f d"k d"l 1 1 — - “s ~ |Z_’ |Z k v 1
=—¢€ p2 q pl (27T)n (27T)n k2+|5 |2+|5wv(p2)y F(pZ 1q €y 0)’)/ myv
X Se(A=K,p1—K; €, — ko) Y./, (P1) (56)
and
d®p,d3q,d3q,d3p; [ d"k  d"I 1 1
N2 _ 4
2 2’7T f |q2_q1| (277_) (277)” k2+|5| +|5l//v(p2)7 SF(pZ k q2 k €
ko) 7" - - Se(dy—K,P1—K; €, — ko) ¥, (P1) (57)
_ v - K, - ;Ez)_ v .
0)Y qz_k_r_m70ql_k_y_m7 F(d1 P1 0 y,u, P1

Similarly, the overlapping subtraction terms are

301= 4f d3p,d® d’k _dl ! ! S K,pi—k;e,—k
=-—e€ pP2a°py 2a) 27" Ktis |2+|5¢u(p2)7 - (p2—K,p1—K; €,— ko)
, 1 1 -
Xy pl_k_y_m’Y,upl_y_m7v¢v(pl)a (58)
sor_ _ 4Jd3 P d'k d"l 1 1 1 K ke —k
=—€ pP20a~p1 (277) (2’77)” k2+|5| +|5%(p2)7 p k m p —Kk—1— m’)/,u,SF(pZ pl € 0)
X vau(ﬁl)! (59)
30%=—¢ fd?’pf ! ! ,(p) y* ! ! y - Y., (P), (60)
(2m)" (277)”k2+|5I2+|5 v p—k—m” p K—f—m #p—f—m’v"
and
S04 go2(7a Jd32d3p1fdk d"l 1 1 1 1
alza) | =75 | @ar) @y o T P Vg, Y B R T
1 1 b
X'yolbl_k_r_m‘y'upl_}(_m’y wv(pl) (61)
Finally, the derivative subtraction term is
] d"l 1 — . 1 1 -
EDlzlezz(CZ)J’ dap fWmlpv(p)‘y#p_’_m‘yolb_y_m‘y#djv(p) (62)

Because2 °! is equal to3 92, we will account for the latter term by doubling the former in the following. We note that in all
of the subtraction terms thd"l integration can be carried out with Feynman parameter techniques, leading to the functions
defined in Sec. | A. Thus these diagrams can be thought of as generalizations of the one-loop Lamb shift. We first consider the
subtraction terms that contain Dirac-Coulomb propagaits, SN2, and 2. °1. After carrying out thed"l integration, they
can be split into two parts, one of which involves the const&t andL(® and the other the functiors2:°°(q—k) and

(2)(p2 k,p;—Kk). The former parts can be grouped together into a single term and we can write
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— ) d"k 1 — . . e e -
2Nl+ZNZ_*—EO]‘—F202:I-(Z)l:(()‘rn(Z)_l—E(CZ)]_IeZJ d3p2d3qd3le (2’77)” k2+i5¢v(p2)’yMSF(p2_kaq_k;ev_kO)

X3 2P(q—K)Se(q—K,p1—K; €,— ko) ¥, 1, (P1)
d3p,d3q,d®q,d®p; [ d"k

o La
tlets 3 1Go— il 2" k2+|5¢v(p2)7 Se(p2—K,q,—k; €,— ko)
XA(O(Q2 k,(h_k)SF(al_E,F;l_E?Ev_ko)?’#l//v(ﬁl)

—2ie2f d®p,d3p fd—nkia(ﬁ)
2 1 (27T)n k2+i5 v\M2

X y*Se(pa—K,p1—K; €, — ko)/\(ci)( P1—K,P1) ¥, (Pa). (63

The first term was obtained by using the equation for the Dirac-Coulomb propagator together with the Ward B§@ntity
—L®. Note thatL® multiplies the unrenormalized one-loop Lamb shift: Téra(®) part of this forms part of the two-loop
mass renormalization countertedm(®.

While Egiop(q—k) and Ag))(pz—k,pl—k) are finite quantities, they lead toef/and 1k divergences when thd"k
integration is carried out. However, these divergences are associated with the OP and 1P parts of the Dirac-Coulomb propa-
gators. Thus we can define an ultraviolet finite expressionPtherm, ass p=3N+ 3N+ 2591 "with

_ dk 1 — . IO,
Ipi=—ie? f d*p,d*qd’p, f @ @5 (P Y Se(Po kK&, —ko) X227 (A= K Se(G—K.P1—Ki €, ko)

—So(p2—k,a—K; €, ko) S22 (a—K)So(d— K, p1—K; €, — ko) — So(P2— k.G —K; €, — ko) 227 (q—k)
xsl<ci—E,ﬁl—E;ev—ko>—sl<52—12,a—|2; —ko)SZP(q—K)So(q—K,p1—K; €,— ko) 17,10, (P1), (64)
d3pzd3qzd3q1d3p -
ENZ_I 2 zf q1| f(zw)n kz+|5l/fu(p2)7 [SF( —k,q,— ko)Ac4o(Q2 k,g;—k)
XSF(al_E,pl_kifv_ko)_so(pz_k,%_k;fu_ko)Agl)o(%_kﬂl_k)so(al_lzvf)l_lz?Ev_ko)]%;%(ﬁl),
(65)
and
o1 a2 3hn 43 d" 1 —- S A k- > 2
22p =216 | dpalpy | (5w 5 %e(P2) Y [Se(P2 =K, pa— ki€, ko) = Solpz—kipr—Ki €, —ko)
—S1(p2—K,p1—k; €, — ko) JAZ, (P1—K,p1) #,(P1)- (66)

The diagrammatic version of these equations is given in Fig. 4. The subtractions we have introduced force there to be at least
two interactions with the external potential present, which makes the above terms ultraviolet finite. While finite, they involve
the Dirac-Coulomb propagator in momentum space. We will discuss an approach to the calculatior® dkthes in the
conclusion, but do not analyze them further here.

At this point we can define the third part of the calculati@,, defined througl®4SE=3,,+ 3+ 3. Putting together
Egs.(29), (39), (41)—(43), and(63)—(66), we have

EFZE(Z)CZ(CZ:MP)+203+204+2D1+EN:OP‘F 22”35ide+ 2N:Iadder+ Zzo:corner_ (67)

We have introduced here four new terB8 0P 3 N:side s N:ladder g 5 O:comer \yhich are represented in Figs(ab-5(d),
respectively. The names “side,” “ladder,” and “corner” are chosen to follow the notation of Rgf.We note that in the

first two diagrams the self-mass counterterm is understood to be included. Along #itand3 ©#, which are given in Figs.

5(e) and 5f), they represent all bare nested and overlapping Feynman diagrams with zero or one external interaction. These

diagrams are related to the subtractions that definePthterm by replacing eithek P(p) by 3®(p)—B®@(p—m) or
Agi)(pl,pz) by Ap(pl,pz)—f(z)yp. The expressions for these last terms are

d"k "l — . 1 1
E4NOP__16’77'2 Zf dSPJ (277)” (277)”1’//”(p)7"p k— m‘}’v’é k—Jf— m p k my l//v(p) (68)
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PN

(a) (b)
() (d)
%=L -
: N, O A
- (e) ()
© " Aca

FIG. 5. Diagrams contributing to the term.

FIG. 4. Diagrammatic representation of the subtraction scheme
that defines thé term.

s side_go2(7 Jd3p2d3plf d"k a1 1— . 1 1 L1
=8a ( a’) |52_51|2 (27T)n (27T)n k2 |2¢v(p2)yp¢2_k_myvpz_k_y_my pz_k_m
1 -
X Yo k—m Y*,(P1), (69)
d3p,d3p, [ d"k dl 11— . 1 1 1
ladder— 2 —
B 7. —D. |2 2 2 v 27— —m”z———m 1—K—=I—m
1 -
X’yypl_k_m’yﬂlpv(pl)a (70)
and
d®p,d®p, [ d"k a1 1— . 1 1
corner— 2 R
2 =8« (Za’)f |52—51|2f (2’77)” (277)” k2 IZIsz(pZ)’)/,u. pz_k_m‘yv pz_k_y_m
1 1 L, =
X‘y#pz_y_m’yolbl_y_m'y lpv(pl) (71)

We will now show thats, ¢ contains a self-mass term, but that the other divergences cancel, as was the case for the one-loop
self-energy.

VI. EVALUATION OF F TERMS

The evaluation of th& terms can be carried out using standard Feynman parameter techniques coupled with the numerical
integration progranveGas [21]. Our strategy is to first isolate the fourth-order self-mass term by sgitingn, p?>=m?. We
will show that this term is in agreement with a Yennie gauge calculation by Adkins and Zh2hdfter this term is removed
by the fourth-order self-energy counterterm, divergences of or@érabid 1k remain in individual diagrams. Some of these
divergences are proportional fo- m, but others multiply nontrivial functions gf. These can be identified with the OP and
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TABLE IV. Finite parts ofF terms(in a.u).

7z E4N oP 202 ED4 203 co4rner zladder Eade Total

c, c, c, c,
10 —0.00346 0.00520 0.00152 —0.00121 -—0.00169 0.00051 0.00193 0.00280
25 —0.00836 0.01279 0.00643 —0.00367 —0.00160 0.00111 0.00162 0.00832

50 —0.00897 0.02055 0.01692 —0.00866 —0.00002 0.00219 —0.00402 0.01799
75 —0.00125 0.02695 0.02781 —0.01917 —0.00358 0.00115 —0.00669 0.02522
83 0.00215 0.03016 0.03154 —0.02545 —0.00787 —0.00007 —0.00405 0.02641
92 0.00565 0.03611 0.03641 —0.03594 —0.01727 —0.00273 0.00400 0.02623
100 0.00715 0.04604 0.04215 —0.05027 —0.03360 —0.00762 0.01984 0.02369

1P parts of the one-loop Lamb shift and will combine with the first term of (E@). After this combination, an ultraviolet
finite expression for th& term results.

A. All-free diagrams

An analysis of the nested all-free diagram gives

_ . .- - . N aD
LANOP= om( ) f dp 4, (p)¢o(p) + B f & ¢, (P) (=M, (p) = 5 —3&HT + 3, (72)
where
SrmAN) — 15D+55D 27 ) +197 3
m 78 " 32e ~ 324P T 128 73
"EE“N—aZ Do+ 74
~ 782 32 74
and
D=(4m)T'(1+e€). (75)
3¢ OF is tabulated in the second column of Table IV.
The overlapping all-free diagram is given by
. . = — . .. aD .
30%= om(*0) f d®p 4, (p) 4, (p) + B f d®p g, (P)(B—M)ys, (p)+ —SE™ + 307, (76)
where
3D
5m<4°>=;'§ +1g. —0.375 63!69)} 77
and
~ o’ D D
(o _ | = =
B m|4€®>  16e (78

283 is tabulated in the third column of Table IV. Putting together the fourth-order self-mass from the nested and overlapping
diagrams gives

9D

45D
— g2 35 0-526 781) . (79

mCt’
5m(4)— —
v

The constant has been evaluated by Adkins and Zh22to be 3/4(3)—3¢(2)In2+69/32(2)—199/128, consistent with
our numerical determination. We note that although the analytic calculation was carried out in Yennie gauge, the agreement

follows from the gauge invariance of the self-mass. However, the con&&htsandB(“® are gauge variant, and differ from
the Yennie gauge calculation. The self-mass term is removed by the fourth-order mass renormalization counterterm.
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B. Derivative term

The derivative term is related to the one-loop vertex function introduced in Sec. | A through

3Pi=-3 f d*p ¢, ()AL (P, P) ¥, (P). (80)
Using Eq.(9) then leads to
EDl__L(ZE +2c41 (81
with
o
25,1:522,235 (2)f d%p ¢,(p)y t//v(p)f p dpIn[p—p(1—p)p?/m?]
Y 1 g (P)Y(1—p)p+m]y[(1—p)p+m (P
+_zﬁf dgpf ) dpw (P)»*[( p)lb2 17 I( pz)rﬁ 17,40(P) ©2
0 mp—p(1-p)p
|
Inserting Eq.(20) into the first term in Eq(81) gives _ a’D/ 1 3
[_corner— _2_+ — . (87)
w2 \ de 16¢
_"L"(Z)EE:Z): (2(2 0oP) 22241P)+2£:2:MP)+62£:2:0P)
' ' ca"is tabulated in the sixth column of Table IV.
The ladder diagram is
+ EE((:Z:UD))_ _ (2(2 0P)+2§:241P)
3 lodder="Tladder) g3p () (B—m) ¢, (P)
+3(@MP)) (2(2 OP)+2(2 11P)) (83)
_ 2(2 lP)+EEgder, (88)
Note that bothl ) and3(?) involve a factor ofC. Since to
ordere, C2=D, the above expression involv&s where we where
have specified thak2'% and 222" do not involve Taylor
expanding the consta@. We hold the first bracket for later ~1add a?D/ 1 5
combination with other terms and the finite remainder is Ladde= (85 @) (89)
added taS 2 and tabulated in the fourth column of Table IV.
E'adderls tabulated in the seventh column of Table I.
C. One-potential diagrams Finally, the expression for the side diagram is
We begin with the least divergent one-potential diagram
o4 . - ) o — . -
37%. We define the finite residue through 25 side=Tside | g3p U (B)(p—m) i, (P)
304 L°4fd3 ; m),(p)+39%, (84 .
P, (P)(B—m)h,(P)+324, (89 221P+2§{§’f, (0
where
) where
~o4_ @ D 85
LT e ®5 ceae @D( 13 01
T 4€2 16¢)

The finite term is tabulated in the fifth column of Table IV.

Turning to the corner diagram, we define its finite residueryg finjte term is tabulated in the eighth column of Table IV.
through We can now group together all the terms contributing to
- the F term. The finite terms are summed in the last column

23 comer~Tcomer [ g3n 4 (p)(—m) i, (p) of Table IV. The derivative term plays a central role in can-
celing the remaining divergences. Specifically, we have the

aD ‘ divergent part of the derivative term from E®3) as
+ ;Eéill’)_l_zgg{ner' (86)

where EdlvergenF 2 [E G OP)"'EE;VZAlP)‘FES:ZZMP)]. (92)
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The first term can be seen to exactly cancel similar diveralthough the amount of computer time required for an accu-
gences in Eq9.72) and(76) and the second the divergencesrate evaluation is much greater. However, the subtraction
from Eqgs.(84), (86), (88), and(90). The many-potential term terms, when Fourier transformed to momentum space, of ne-
then cancels with the first term in the definitiondf given  cessity involve not only free propagators, but also Dirac-

in Eqg. (67). We also note that the Ward identities for the Coulomb propagators. While we have been able to introduce

nested and overlap diagrams are satisfied through additional subtractions that make the expressions involving
these propagators ultraviolet finite, the numerical analysis of

B#N= —[[ladder; T side} (93)  the resulting® terms has not been carried out. The reason for

this is the fact that the Dirac-Coulomb propagator is gener-

B40=—[LO4 T comer), (94)  ally treated in coordinate space and less is known about it in

momentum space. This is in contrast to the situation with the

At this point all ultraviolet divergences have been re-nonrelativistic propagator, which is known in both coordi-
moved, either by cancellation between various terms Opate and momentum spak28]. One possible approach is to
through mass renormalization. We note that we have dealtourier transform theP term back into coordinate space.
only with unrenormalized graphs in this treatment. It is alSOHowever, we are presently exploring another approach using
possible to work with renormalized graphs throughout; how-the spectral decomposition of the electron propagator. While
ever, it is simple to show that the wave-function renormal-Green’s-functions techniques have a number of advantages,
ization and vertex renormalization counterterm graphs cancgle note that the work of Blundell and Snydermfa] in-
separately, so the end result would remain unchanged.  yolved the isolation of the many-potential term, which was

The F term does not demonstrateZ4 scaling at highZ  then evaluated using basis sets based®aplines. We are
and is in fact relatively constant between 50 and 100. Howpresently developing a relativistic basis set, again basel on
ever, such scaling is not to be expected, given the behavigjplines, but in this case in momentum space. With such a

of Eq. (2), except at very lowZ. As alluded to in the Intro-  pasis set, the integrals involved in the terms could be
duction, the value of thé term atZ=92 is about 1 eV, treated entire|y in momentum space.

specifically 0.714 eV. However, because we have not evalu- QOnce theP terms are evaluated it will be possible to

ated theP term, the calculation is incomplete and we cannotsystematically study th& dependence of the two-loop self-
make predictions for experiment. However, the finite parts ofenergy. While we have discussed in the Introduction the im-
the M term (the reference-state singularity will cancel with portance of such a Study for h|gh|y Charged ions such as
the P term) sum to—1.039 eV atZz=92, so if the finite part |ithjumlike bismuth, there is another important application at
of the P term happens to be small, after adding the |ow z. That is the determination through fitting procedures
—0.971 eV PO contributiop4], the fourth-order self-energy of the higher-order terms in E(R). In a recent calculation of
shift would be—1.296 eV. While a shift of this size would one-loop radiative corrections to hyperfine splittif], it
be difficult to detect in hydrogenlike uranium, it may be was shown that by calculating radiative corrections to all
measurable in the spectra of many-electron ions, though, asiders inZa for a range ofZ the first coefficients of the
discussed in the Introduction, additional QED diagrams willseries expansion could be verified and at the same time all
have to be calculated. higher-order terms in the series obtained. An important goal
of the present calculation is the extension to lower values of
Z. Given the large coefficient of the ord&w term in Eq.
VII. DISCUSSION (2), it is quite possible that the next term, and conceivably

A major feature of exact calculations of the Lamb shift is even higher-order terms, could enter at the level of experi-

the differing roles of coordinate space and momentum spacé")ent.al interest even ai=1 or Z:. 2. By carrying out cal-_
If the calculation were ultraviolet finite, coordinate Spaceculatlons such as that described in this paper that are valid to

would be favored, as the behavior of the Dirac-Coulomb@ Orders inZa, the questions of how important these
y higher-order terms are and what their implications are for

Green's function is well known both analytically and nu-
merically in coordinate space. However, divergences arQED tests at lowz can be answered.
most easily treated with covariant methods in momentum
space. In the case of the one-loop self-energy, this is illus-
trated by the fact that subtractions involving free-electron
propagators are made in coordinate space, leading to a con- This work was supported in part by NSF Grant No. PHY-
vergent term represented by a partial wave expansion, whil@5-13179. Particular thanks are due to S. A. Blundell for the
the subtractions themselves are analyzed by Fourier tran@troduction of the method of regulating reference state sin-
forming to momentum space, where the self-mass infinity igularities, K. T. Cheng, who played a principal role in de-
easily removed and divergences related to wave function angeloping a great deal of the numerical techniques used in the
vertex renormalization shown to cancel. calculation, and P. Beiersdorfer and A. E. Livingston for
The situation is somewhat more complex in the two-loopconversations about the experimental situation. In addition,
case. One of our principal results is that subtractions can bae gratefully acknowledge the computational resources pro-
devised in coordinate space that lead to the same kind ofided by the Office of Information Technologies at Notre
convergent partial wave expansions as in the one-loop casBame, made available by a grant from IBM.
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