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Fourth-order self-energy contribution to the Lamb shift

S. Mallampalli and J. Sapirstein
Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556

~Received 2 October 1997!

Two-loop self-energy contributions to the fourth-order Lamb shift of ground-state hydrogenic ions are
treated to all orders inZa by using exact Dirac-Coulomb propagators. A rearrangement of the calculation into
four ultraviolet finite parts, theM , P, F, and perturbed orbital~PO! terms, is made. Reference-state singu-
larities present in theM and P terms are shown to cancel. The most computationally intensive part of the
calculation, theM term, is evaluated for hydrogenlike uranium and bismuth, theF term is evaluated for a range
of Z values, but theP term is left for a future calculation. For hydrogenlike uranium, previous calculations of
the PO term give20.971 eV: the contributions from theM andF terms calculated here sum to20.325 eV.
@S1050-2947~98!00303-5#

PACS number~s!: 12.20.2m
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INTRODUCTION

In a recent paper@1# we calculated the contribution of th
two-loop vacuum polarization diagram of Fig. 1 for th
ground state of hydrogenic ions using a method that tre
the electron propagator in the presence of a point nucleu
chargeZ, the Dirac-Coulomb propagator, exactly. One n
table feature of the calculation was the strongZ dependence
exhibited: While at lowZ the first terms of the power serie
expansion inZa approximated the complete calculation,
high Z the answer was quite different. For example, if o
setsZ592 in the power series@2#

E4VP~Za!5@0.014 39220.023 208~Za!#~Za!4 a.u.
~1!

20.000 242 a.u. results, while the exact answer is 0.004
a.u., an order of magnitude larger and of opposite sign.

In this paper we wish to extend our previous calculat
to include the two-loop self-energy diagrams of Fig. 2. F
ures 2~a! and 2~b! will be referred to in the following as the
nestedandoverlappingdiagrams respectively, following th
notation of Ref.@3#. The reducible diagram shown in Fig
2~c! gives rise to two terms that do not have a conventio
diagrammatic representation, one of which we will refer to
the perturbed orbital~or PO term! and the other thederiva-
tive term. The perturbed orbital term, which has been trea
in Ref. @4#, is separately gauge invariant when covaria
gauges are used~Feynman gauge is used in this calculatio!,
as is the sum of the nested diagram, overlapping diagr
and derivative term. We treat only the latter set in the pres
paper.

As with the two-loop vacuum polarization diagram, th
first two terms in the power series of the fourth-order se
energy are known@5,6# to be

FIG. 1. Fourth-order vacuum polarization diagram.
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E4SE~Za!5@0.142 78722.15~5!~Za!#~Za!4 a.u. ~2!

The remarkably large coefficient of the second term not o
indicates the need for an evaluation to all orders ofZa at
high Z, but also makes such a treatment desirable even
low Z.

While experiments that measure the ground-state La
shift in hydrogenlike uranium have reached the 16-eV le
@7#, far higher accuracies have been reached in the m
easily measured spectra of highly charged many-elec
ions. Particularly precise measurements have been mad
the 2s1/2-2p1/2 transition energy in lithiumlike uranium@9#
and the 2s1/2-2p3/2 transition energy in lithiumlike bismuth
@10#, the latter having been determined with an accuracy
0.04 eV. AssumingZ4/n3 scaling, this would correspond t
an accuracy of 0.48 eV in ground-state uranium. While
Lamb shift in a many-electron ion differs from the hydr
genic Lamb shift because of screening effects, the effec
relatively small, amounting to only a few percent, and can
neglected for the two-loop Lamb shift. However, the scre
ing effect on the one-loop Lamb shift needs to be calcula
along with two-photon exchange diagrams before the tw
loop Lamb shift can be unambiguously isolated.

The lithiumlike bismuth experiment, when compared w
the most complete calculation to date, that of Blundell@8#,
differs by 0.11 eV. The calculation takes account of the b
of the screening effect, but leaves out two-photon excha
diagrams and keeps only the leading term of the two-lo
Lamb shift. Unless the higher-order corrections to the tw
loop Lamb shift cancel with the two-photon exchange term
this indicates that the general size of the effects is on
order of a tenth of an eV. In this paper we will calcula
several, though not all, contributions to the two-loop se
energy diagrams for the ground state. The size atZ583 and
Z592 is generally of the order of 1 eV, which would scale
0.125 eV for the 2s state, consistent with the above es
mates. There is of course no substitute for a direct calc
tion of the two-loop Lamb shift, the subject of this paper.

A central issue in the exact evaluation of two-loop d
grams in the bound-state problem is the treatment of ren
malization. In the one-loop case, the first calculations@11,12#
subtracted a free Dirac propagator from the Dirac-Coulo
propagator, which allowed the isolation of the self-mass
1548 © 1998 The American Physical Society
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57 1549FOURTH-ORDER SELF-ENERGY CONTRIBUTION TO . . .
finity, although great care had to be taken with other ult
violet infinities not explicitly removed by this process, whic
however cancel because of the Ward identity. Mohr@13# and
later Blundell and Snyderman@14# and Chenget al. @15#
carried out additional subtractions that allowed complet
finite expressions to be dealt with. We note also the work
Lindgrenet al. @16#, which is known as partial wave reno
malization. However, the situation is considerably mo
complicated when two loops are present. The source of
complication is subdivergences that lead to more severe
traviolet divergences. When Pauli-Villars regularization
used, this leads to terms proportional to ln2(L/m), and when
dimensional regularization is used to terms proportiona
1/e2. One scheme to treat renormalization that works in
framework of partial wave renormalization has been p
sented in Ref.@17#; however, in this paper we have adopt
a different approach based, as in the one-loop case, on
tracting diagrams with some Dirac-Coulomb propagators
placed with free propagators, which we refer to as ze
potential ~0P! terms, or free propagators followed by a
interaction with the nuclear Coulomb field followed by a
other free propagator, which we will refer to as 1P terms

In the present paper we will present a treatment of
two-loop self-energy diagrams that divides into three pa
In the first part we deal with the unrenormalized diagram
but make them ultraviolet finite by carrying out the kind
subtractions just described: we will refer to the unrenorm
ized diagrams together with the subtractions that make th
finite as theM term. This part of the calculation involves
double integral over Wick rotated photon energies and
carry it out in this paper for the experimentally interesti
cases ofZ592 andZ583. A complication in the evaluation
of theM term is the presence of reference-state singularit
which arise when intermediate states in the spectral dec
position of the electron propagators coincide with the
lence state. We present a method of regularizing these
gularities and show the mechanism for their cancellation

In the next step of the calculation, the subtraction ter
are Fourier transformed into momentum space. Some
them involve only free-electron propagators and can
evaluated with standard Feynman parameter techniq
However, other subtraction terms involve Dirac-Coulom
propagators. These latter terms are made ultraviolet finite
introducing a separate set of subtractions in which the
maining Dirac-Coulomb propagators are again replaced w

FIG. 2. Fourth-order self-energy diagrams.
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0P or 1P terms. The resulting ultraviolet finite quantity w
denote as theP term and defer its evaluation for a subs
quent work, as it requires the development of new techniq
for the treatment of the Dirac-Coulomb propagator in m
mentum space. Finally, the separate set of subtractions in
duced to make theP term ultraviolet finite can also be evalu
ated with Feynman parameter techniques. We group toge
the terms involving only free-electron propagators into t
third part of the calculation, which we call theF term. This
part of the calculation, which is much less computationa
intensive than theM term, is carried out for a range ofZ
values.

The plan of the paper is the following. The basic formul
for the unrenormalized two-loop diagrams are given in Se
along with one-loop formulas needed in the analysis. T
subtraction scheme that defines theM term is described in
Sec. II and a discussion of reference-state singularitie
given in Sec. III. Numerical results for the ground-state
hydrogenic uranium and bismuth are given in Sec. IV. TheP
term is introduced in Sec. V, where the secondary subt
tion terms that make it finite are introduced. TheF terms are
evaluated in Sec. VI and although the calculation is still
complete because theP term has not been evaluated, th
present numerical status of the fourth-order self-energy
hydrogenlike uranium is discussed at the end of that sect
The issues that must be faced to complete the calculation
discussed in Sec. VII.

I. BASIC FORMULAS

A. One-loop self-energy and vertex functions

Before we evaluate the one-loop self-energy term, it
convenient for later use to define two one-loop operat
regularized by working inn542e dimensions. The first is
the one-loop self-energy operator with a free-electron pro
gator in the Feynman gauge

S~2:0P!~p!52 ie2E dnk

~2p!n

1

k21 id
gm

1

p” 2k”2m
gm. ~3!

We define the ultraviolet finite part of this to beSc
(2:0P)(p)

through

S~2:0P!~p!5dm~2!1B̃~2!~p” 2m!1Sc
~2:0P!~p!. ~4!

Here

dm~2!5
maC

2pe

32e

12e
~5!

and

B̃~2!52
aC

2pe
, ~6!

whereC5(4p)e/2G(11e/2). Note that we do not pull ou
the full wave function renormalization factor ofB(2), but
only the ultraviolet divergent part of it. The finite term
then
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Sc
~2:0P!~p!52

aC

2p~12e!
~p” 2m!

1
aC

4p F p2

m2 21G E
0

1

dxFm
42e

12e
2p” S 22e

12e
2xD G x2e/2

@x2~p2/m221!~12x!#11e/2
. ~7!
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Note that we keep the exacte dependence of this function, a
it is necessary for use in the two-loop Lamb shift.

The second operator is the vertex function

Lr
~2!~p2 ,p1!52 ie2E dnk

~2p!n

1

k21 id
gm

3
1

k”2p” 22m
gr

1

k”2p” 12m
gm. ~8!

We again define a finite part through

Lr
~2!~p2 ,p1!5 L̃ ~2!gr1Lcr

~2!~p2 ,p1!, ~9!

with

L̃ ~2!5
aC

2pe
~10!

and

Lcr
~2!~p2 ,p1!52

aC~42e!

8p
gr

1
aC~22e!2

4pe
grE

0

1

r drE
0

1

dxF 1

De/2
21G

2
aC

4p E
0

1

r drE
0

1

dx
Nr

D11e/2
. ~11!

Again, we remark thatL̃ (2) is only the 1/e part of the vertex
renormalization constant; however, the Ward identityB̃(2)

52 L̃ (2) is still satisfied. We have introduced the function

D5r2ev
22r2uxpW 11~12x!pW 2u21r~m22ev

2!1rxpW 1
2

1r~12x!pW 2
2, ~12!

whereev is the ground-state energy, and

Nr5gm$2rxp” 11@12r~12x!#p” 21m%gr@~12rx!p” 1

2r~12x!p” 21m#gm. ~13!

B. One-loop Lamb shift

When we analyze the two-loop Lamb shift, expressio
related to the one-loop Lamb shift frequently arise, so
review its treatment here. A novel feature is the need
evaluate the one-loop Lamb shift inn dimensions. While
when treated by itself the limitn→4 can be taken afte
renormalization, we will find in the two-loop calculation ce
s
e
o

tain terms in which the one-loop Lamb shift is multiplied b
1/e. Thus we must keep ordere terms in order not to miss a
finite contribution.

We begin by introducing the more general function

Smn
~2!~E![2 ie2E d3x d3yE dnk

~2p!n

eikW•~xW2yW !

k21 id

3 c̄m~xW !gmSF~xW ,yW ;E2k0!gmcn~yW !. ~14!

In terms of this function, the energy shift of a statev asso-
ciated with the one-loop self-energy isSvv

(2)(ev), which for
notational simplicity will be denotedS (2) in the following. It
is to be distinguished from the operatorS (2)(p) introduced
in Sec. I A. As will also be the case for the two-loop calc
lation, we adopt the approach of working with unrenorm
ized diagrams, carrying out renormalization by introduci
counterterms explicitly. Thus this diagram will contain th
self-mass infinity as well as canceling vertex and wave fu
tion infinities. To isolate these terms, we make the stand
expansion of the bound electron propagator in terms of
free electron propagatorSF

0 ,

SF~r ,r 8;E!5SF
0~r ,r 8;E!

1E d3x SF
0~r ,x;E!g0V~x!SF

0~x,r 8;E!

1E d3x d3y SF
0~r ,x;E!g0V~x!

3SF~x,y;E!g0V~y!SF
0~y,r 8;E!, ~15!

where for this calculationV(x) is taken to be the Coulomb
potential. Insertion of the first two terms on the right-ha
side in Eq.~14! gives the 0P and 1P terms and insertion
the last the many-potential~MP! term. The 0P and 1P term
can be obtained as the expectation values of the funct
introduced in Sec. I A. The 0P term is

S~2:0P!5dm~2!E d3p c̄ v~pW !cv~pW !

1B̃~2!E d3p c̄ v~pW !~p” 2m!cv~pW !1CSc
~2:0P! .

~16!

Here we have explicitly removed the constantC from the
definition of Sc

(2:0P) .
In the n→4 limit, a straightforward analysis@15# gives
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Sc,4
~2:0P!52

a

2pE d3p c̄ v~pW !~p” 2m!cv~pW !

1
a

2pE d3p F p2

m2 21G
3E

0

1

dx
c̄ v~pW !@2m2p” ~12x/2!#cv~pW !

x2~p2/m221!~12x!
. ~17!

Here the subscriptc,4 indicates thatn54; expressions with
the subscriptc by itself are understood to be evaluated inn
dimensions.

Similarly, we write

S~2:1P!5 L̃ ~2!E d3p c̄ v~pW !~p” 2m!cv~pW !1CSc
~2:1P!

~18!

where in the limitn→4

Sc,4
~2:1P!52

a

2pE d3p c̄ v~pW !~p” 2m!cv~pW !

1
Za2

8p3E
0

1

r drE
0

1

dxE d3p1d3p2

upW 12pW 2u2

N

D

1
Za2

4p3E
0

1

r drE
0

1

dxE d3p1d3p2

upW 12pW 2u2

3 c̄ v~pW 2!g0cv~pW 1!ln
D

m2 . ~19!

HereN[c̄v(p2)Nr50cv(p1), whereNr andD are given in
Sec. I A. The MP term is ultraviolet finite. After includin
the self-mass counterterm and noting the cancellation of
remaining divergences, we have the finite result, to ordee,

Sc
~2!5C@Sc,4

~2:0P!1Sc,4
~2:1P!1Sc

~2:M P!1eSc,e
~2:0P!1eSc,e

~2:1P!#.
~20!

The subscripte indicate the terms of ordere in a Taylor
expansion ofSc

(2:0P) andSc
(2:1P) .

For the one-loop Lamb shift, one can taken→4, and this
reduces to

Sc,4
~2!5Sc,4

~2:0P!1Sc,4
~2:1P!1Sc,4

~2:M P! . ~21!

However, as mentioned above, we will encounter in the
lowing expressions in which the exact one-loop Lamb shif
multiplied by 1/e. While we will show that terms that in
volve the many-potential term cancel exactly, terms invo
ing the zero- and one-potential terms cancel only then54
parts of these terms, leaving a finite contribution involvi
Sc,e

(2:0P) andSc,e
(2:1P) , which will be included in Sec. VI B.

C. Two-loop self-energy

The basic expressions for the two-loop Lamb shift we
given in Ref. @18#. The energy shift associated with th
nested diagram is given by
e

l-
s

-

e

S4N52e4E d3x1d3x2d3x3d3x4E dnk

~2p!n

dnl

~2p!n

3
eikW•~xW12xW4!

k21 id

ei lW•~xW22xW3!

l 21 id
c̄ v~xW1!gm

3SF~xW1 ,xW2 ;ev2k0!gnSF~xW2 ,xW3 ;ev2k02 l 0!gn

3SF~xW3 ,xW4 ;ev2k0!gmcv~xW4!. ~22!

It should be understood that this is always accompanied
the counterterm diagram

Sdm
4N5 ie2E d3x1d3x2d3x3E dnk

~2p!n

eikW•~xW12xW3!

k21 id

3 c̄ v~xW1!gmSF~xW1 ,xW2 ;ev2k0!dm~2!

3SF~xW2 ,xW3 ;ev2k0!gmcv~xW3!. ~23!

The overlapping diagram gives the energy shift

S4O52e4E d3x1d3x2d3x3d3x4E dnk

~2p!n

dnl

~2p!n

3
eikW•~xW12xW3!

k21 id

ei lW•~xW22xW4!

l 21 id
c̄ v~xW1!gm

3SF~xW1 ,xW2 ;ev2k0!gnSF~xW2 ,xW3 ;ev2k02 l 0!gm

3SF~xW3 ,xW4 ;ev2 l 0!gncv~xW4!. ~24!

The perturbed orbital contribution is given by

SPO5 (
nÞv

Svn~ev!Snv~ev!

ev2en
. ~25!

If a perturbed orbitalṽ is defined through

u ṽ &[ (
nÞv

un&Snv~ev!

ev2en
, ~26!

the perturbed orbital term is simplySv ṽ(ev). Finally, the
derivative term, which is again related to the one-loop se
energy, but in this case accounting for the shift in the ene
flowing through the electron propagator from the one-lo
Lamb shift, is given by

SD5Sc
~2!

]Svv
~2!~E!

]E
uE5ev

, ~27!

which more explicitly is

SD5 ie2Sc
~2!E d3x d3y d3wE dnk

~2p!n

eikW•~xW2yW !

k21 id

3 c̄ v~xW !gmSF~xW ,wW ;ev2k0!g0

3SF~wW ,yW ;ev2k0!gmcv~yW !. ~28!

Note that we have implicitly included the self-mass count
term diagram, so that the finite part of the self-energy m
tiplies the derivative.
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In this paper we are concerned with the sum of the nes
diagram, overlapping diagram, and derivative term,

S4SE[S4N1S4O1SD. ~29!

This accounts for all of the first term in the power ser
expansion given in Eq.~2! and some of the second term, wi
the remainder of the order (Za)5 a.u. contribution coming
from the PO term@4#. While in the present paper we ar
concerned only with the high-Z case, in future work at low
Z, a comparison with the known power series will both pr
vide a check of the calculation and allow the isolation of n
terms starting in order (Za)6 a.u.

We record for later use the momentum space form of
nested and overlapping diagrams

S4N52e4E d3p2d3q2d3q1d3p1E dnk

~2p!n

dnl

~2p!n

3
1

k21 id

1

l 21 id
c̄ v~pW 2!gmSF~pW 22kW ,qW 22kW ;ev2k0!

3gnSF~qW 22kW2 lW,qW 12kW2 lW;ev2k02 l 0!

3gnSF~qW 12kW ,pW 12kW ;ev2k0!gmcv~pW 1! ~30!

and

S4O52e4E d3p2d3q2d3q1d3p1E dnk

~2p!n

dnl

~2p!n

3
1

k21 id

1

l 21 id
c̄ v~pW 2!gmSF~pW 22kW ,qW 22kW ;ev2k0!

3gnSF~qW 22kW2 lW,qW 12kW2 lW;ev2k02 l 0!

3gmSF~qW 12 lW,pW 12 lW;ev2 l 0!gncv~pW 1!. ~31!

Were it not for the ultraviolet divergences present in the
expressions, their exact evaluation would be straightforw
using the partial wave decomposition of the electron a
photon propagators in coordinate space. Specifically, we
express the electron propagators as

SF~yW ,zW;E!5(
k,m

@u~y2z!wkm
E ~yW ! ūkm

E ~zW !

1u~z2y!ukm
E ~yW !w̄km

E ~zW !#, ~32!

wherewkm
E ,ukm

E are the solutions of the Dirac equation wi
~in general complex! energyE regular at infinity and the
origin, respectively~defined to include a Wronskian factor!,
which have the representation

ukm
E ~rW !5

1

r H ig0
k,E~r !xkm~ r̂ !

f 0
k,E~r !x2km~ r̂ !

J ~33!

and

wkm
E ~rW !5

1

r H ig`
k,E~r !xkm~ r̂ !

f `
k,E~r !x2km~ r̂ !

J . ~34!
d

-

e

e
rd
d
an

Here g0
k,E , f 0

k,E are the radial wave functions regular at th
origin, g`

k,E , f `
k,E the radial wave functions regular at infinity

and xkm spherical spinors. After putting this form into th
above equations along with the standard representation o
photon propagator in terms of spherical Bessel functions,
angle integrations can be carried out analytically along w
the summations over magnetic quantum numbers. The p
ence of theu functions requires a division of the radial inte
grations over the four variables into 24 regions, correspo
ing to the 24 orderings in relative magnitude of the
variables. For brevity, we show below only one orderi
uxW1u>uxW2u>uxW3u>uxW4u, which we refer to as region I, an
also give only the expression for the casem50,n50. We
define the function

Ri j ~x;Ei ,Ej ![gi~x!gj~x!1 f i~x! f j~x!, ~35!

where Ei is the energy associated with the Dirac equat
that gi , f i solve, and similarly forEj . Then the ordering
above, withm and n restricted to being timelike, gives th
integrals

S4N~I!5
a2

2p2 (
k1 ,k2 ,k3 ,l 1 ,l 2

k35k1 ~2l 111!~2l 211!

~2 j v11!~2 j k1
11!

3~21! l 11 l 21 j v1 j k2Cl 1
2 ~kvk1!Cl 2

2 ~k1k2!

3E
2`

`

k0dk0E
2`

`

l 0dl0E
0

`

dx1E
0

x1
dx2E

0

x2
dx3

3E
0

x3
dx4 j l 1

~k0x4!hl 1
~1!~k0x1! j l 2

~ l 0x3!hl 2
~1!~ l 0x2!

3Rv`1
~x1;ev,ev2k0!R01`2

~x2;ev2k0,ev2k02l 0!

3R02`3
~x3,ev2k02 l 0,ev2k0!R03v~x4;ev2k0,ev!

~36!

and

S4O~ I !52
a2

2p2 (
k1 ,k2 ,k3 ,l 1 ,l 2

~2l 111!~2l 211!

~2 j v11!

3~21! l 11 l 21 j v1 j k1
1 j k2

1 j k3Cl 1
~kvk1!

3Cl 1
~k2k3!Cl 2

~k1k2!Cl 2
~k3kv!

3H j k1 l 1 j v

j k3 l 2 j k2

J E
2`

`

k0dk0E
2`

`

l 0dl0E
0

`

dx1

3E
0

x1
dx2E

0

x2
dx3E

0

x3
dx4 j l 1

~k0x3!hl 1
~1!~k0x1!

3 j l 2
~ l 0x4!hl 2

~1!~ l 0x2!Rv`1
~x1 ;ev ,ev2k0!

3R01`2
~x2 ;ev2k0 ,ev2k02 l 0!

3R02`3
~x3 ;ev2k02 l 0 ,ev2 l 0!

3R03v~x4 ;ev2 l 0 ,ev!. ~37!

Here
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Cl~k ik j ![~21! j i11/2A~2 j i11!~2 j j11!

3H j i j j l

1

2
2

1

2
0J P~ l i ,l j ,l !, ~38!

whereP( l i ,l j ,l ) is a parity factor that vanishes unless t
sum l i1 l j1 l is even, in which case it is unity. Removal o
the restrictionm5n50 leads to additional terms, formula
for which can be found in Ref.@19#. All of these expressions
have ultraviolet infinities and we now describe a subtract
scheme to isolate and cancel these infinities.

II. SUBTRACTION SCHEME

A. Nested term

As with the one-loop self energy, our basic strategy
dealing with ultraviolet divergences is to introduce subtr
tions involving the free-electron propagator, which is f
simpler than the full Dirac-Coulomb propagator, but whi
has the same ultraviolet behavior. In the case of the ne
diagram, the subtraction scheme used here is to treat
interior electron propagator in the same fashion as in
one-loop self-energy, leaving, however, the outer elect
propagators unchanged. We thus define the nestedM term as

SM
N 52e4E d3x1d3x2d3x3d3x4

3E dnk

~2p!n

dnl

~2p!n

eikW•~xW12xW4!

k21 id

ei lW•~xW22xW3!

l 21 id

3 c̄ v~xW1!gmSF~xW1 ,xW2 ;ev2k0!

3gn@SF~xW2 ,xW3 ;ev2k02 l 0!2S0~xW2 ,xW3 ;ev2k02 l 0!

2S1~xW2 ,xW3 ;ev2k02 l 0!#

3gnSF~xW3 ,xW4 ;ev2k0!gmcv~xW4!

[S4N2SN12SN2. ~39!

Here

S1~xW,yW;e![2Ed3z S0~xW,zW;e!
Zag0

uzWu
S0~zW,yW;e!. ~40!
n

r
-
r

ed
he
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As with S4N, SN1 is understood to be accompanied by t
counterterm diagramSdm

4N . The diagrammatic expression o
this is shown in Fig. 3~a!. Standard power counting argu
ments show thatSM

4N is ultraviolet finite.

B. Overlap term

The subtractions necessary to render the overlapping
gram finite are somewhat more complicated than the ne
diagram. In this case, while it is possible to devise a subtr
tion in which only the center electron propagator is boun
the resulting expression would be difficult to analyze sinc
would involve ultraviolet-divergent subdiagrams in whic
one propagator was free and the other bound. Instead
first subtract terms in which the leftmost two or rightmo
two propagators are free. This oversubtracts the leading
vergence, in which all propagators are free, so we add
term back in. Since this subtraction scheme misses a di
gent term in which the middle propagator has an interacti
we finally subtract that term with the outer propagators fr
The overlappingM term has the explicit representatio

FIG. 3. Diagrammatic representation of the subtraction sche
that defines theM term.
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SM
O 52e4E d3x1d3x2d3x3d3x4E dnk

~2p!n

dnl

~2p!n

eikW•~xW12xW3!

k21 id

eiqW •~xW22xW4!

l 21 id
c̄ v~xW1!gm@SF~xW1 ,xW2 ;ev2k0!gn

3SF~xW2 ,xW3 ;ev2k02 l 0!gmSF~xW3 ,xW4 ;ev2 l 0!2SF~xW1 ,xW2 ;ev2k0!gnS0~xW2 ,xW3 ;ev2k02 l 0!gmS0~xW3 ,xW4 ;ev2 l 0!

2S0~xW1 ,xW2 ;ev2k0!gnS0~xW2 ,xW3 ;ev2k02 l 0!gmSF~xW3 ,xW4 ;ev2 l 0!1S0~xW1 ,xW2 ;ev2k0!gn

3S0~xW2 ,xW3 ;ev2k02 l 0!gmS0~xW3 ,xW4 ;ev2 l 0!2S0~xW1 ,xW2 ;ev2k0!gnS1~xW2 ,xW3 ;ev2k02 l 0!gm

3S0~xW3 ,xW4 ;ev2 l 0!#gncv~xW4!

[S4O2SO12SO21SO32SO4. ~41!
ub

e
re

y
er
am
it

ri

ta
ct

the
en-

s

om-

tum
m
e

Again, power counting arguments show the overlappingM
term is ultraviolet finite. The diagrams representing the s
traction are shown in Fig. 3~b!.

C. Derivative term

We now turn to an analysis ofSD. We note that this same
expression is encountered when considering the effect of
ternal potentials on radiative corrections, recently conside
in Ref. @19#. The ultraviolet divergence of this term will pla
an important role in combination with the nested and ov
lapping diagrams. To isolate it we subtract from the diagr
a similar term with both electron propagators replaced w
free propagators. The derivativeM term SM

D is given by

SM
D 5 ie2Sc,4

~2!E d3x d3y d3w

3E dnk

~2p!n

eikW•~xW2yW !

k21 id
c̄ v~xW !gm@SF~xW ,wW ;ev2k0!

3g0SF~wW ,yW ;ev2k0!2S0~xW ,wW ;ev2k0!

3g0S0~wW ,yW ;ev2k0!#gmcv~yW !

[S4D2SD1. ~42!

This is represented diagrammatically in Fig. 3~c!. We have
replacedSc

(2) with its n→4 limit since it multiplies an ultra-
violet finite expression. TheM term is then

SM5SM
N 1SM

O 1SM
D . ~43!

While ultraviolet finite, it contains reference-state singula
ties, which we now discuss.

III. REFERENCE-STATE SINGULARITIES

Reference-state singularities can occur in bound-s
QED calculations when the intermediate states in the spe
-

x-
d

-

h

-

te
ral

decomposition of the electron propagators coincide with
valence state. We regulate them by altering the valence
ergy toev8[ev(12D) in the electron Green’s functions. Thi
regulator is described in Refs.@19,20#. As an example of a
reference-state singularity we consider the first term inSM

D .
Representing the electron propagators with spectral dec
positions, this term becomes

SD5 ie2Sc,4
~2!(

m
(

n
E d3x d3y d3w

3E dnk

~2p!n

eikW•~xW2yW !

k21 id

3
c̄ v~xW !gmcm~xW !c̄m~wW !g0cn~wW !c̄n~yW !gmcv~yW !

@ev82k02em~12 id!#@ev82k02en~12 id!#
.

~44!

Restricting the sum toem5ev , en5ev and takingn→4
gives

S ref
D 5 ie2Sc,4

~2!(
ma

(
mb

E d3x d3y d3wE d4k

~2p!4

eikW•~xW2yW !

k21 id

3
c̄ v~xW !gmca~xW !c̄a~wW !g0cb~wW !c̄b~yW !gmcv~yW !

@ev82k02ev1 id#2
,

~45!

wherea represents a valence state with magnetic quan
numberma and b a valence state with magnetic quantu
numbermb . Thed3w integration can be carried out to giv

S ref
D 5 ie2Sc,4

~2!(
ma

E d3x d3yE d4k

~2p!4

3
eikW•~xW2yW !

k21 id

c̄ v~xW !gmca~xW !c̄a~yW !gmcv~yW !

@ev82k02ev1 id#2
. ~46!



a
f.
m

or
ic

a
u
al

e
th

tro
e
er

-

c

nd
pl
ve

l t
g

y,
o

the
re

n-

in-
d

re-
nd

the
ll
fter
es,
-

mi-
de
the
he
to
ole
rm.
t a
e is

d a

ing
ply

the
ude
n
mb
all
at

n

-

57 1555FOURTH-ORDER SELF-ENERGY CONTRIBUTION TO . . .
Without the regulator this would appear to lead to a line
divergence atk050. As discussed in more detail in Re
@19#, the term would actually vanish by Cauchy’s theore
were it not for thek0 dependence of the photon propagat
That dependence leads to a logarithmic singularity, wh
can be shown to be

S ref
D ~singular!52

a

p
lnD Sc,4

~2! . ~47!

While we will show that this singularity cancels against
term from the nested diagram, we choose here to carry o
numerical fit. Specifically, by using successively smaller v
ues ofD, a fit to the form

SM
D 5

a

p
Sc,4

~2!@2 lnD1A1BD# ~48!

allows an accurate determination of the constantA.
We now show that this reference-state singularity canc

with another reference-state singularity associated with
nested term. To do this, we treat the first and last elec
propagators in Eqs.~22! and~23! in the same way as with th
derivative term, in addition changing the energy in the int
mediate propagator toev8 , which gives the expression

S ref
4N52 ie2 (

ma ,mb

E d3x1d3x4E d4k

~2p!n

eikW•~xW12xW4!

k21 id

3
c̄ v~xW1!gmca~xW1!Sab

~2!~ev82k0!c̄b~xW4!gmcv~xW4!

@ev82k02ev1 id#2
,

~49!

where we have used Eq.~14!. Note that the self-mass coun
terterm is understood to be subtracted fromSab

(2) . In the limit
k0→0,D→0, we can replaceSab

(2)(ev82k0) with Sc,4
(2)dmamb

and the integrands of the derivative term and nested term
be seen to cancel.

If we were including only the unsubtracted derivative a
nested diagrams, the above argument shows the com
cancellation of the reference-state singularities. Howe
our subtraction scheme is equivalent to replacingSwx

(2)(ev8
2k0) with Swx

(2:M P)(ev82k0) in Eq. ~49!. For this reason the
M terms have a reference-state singularity proportiona
Sc,4

(2:0P)1Sc,4
(2:1P) that will be canceled by a correspondin

singularity in theP term. The occurrence of this singularit
which will be shown below, provides one of the checks
the calculation.
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IV. NUMERICAL EVALUATION OF THE M TERMS

At this point the ultraviolet finite expressions for theM
terms are ready for numerical evaluation. We begin with
derivative term. Its angular reduction, details of which a
given in Ref.@19#, involves a single sum over a photon a
gular momentuml . We carry out the sum up tol 512, at
which point the behavior is almost exactly 1/l 3, which allows
the sum to infinity to be carried out. The reference-state s
gularity occurs only forl 50 and is treated as describe
above. The final result for this term is

SM
D 52

a

p
Sc,4

~2! lnD1H 20.033 95 a.u., Z583

20.043 98 a.u., Z592.
~50!

We next consider the overlappingM term, which does not
have any reference-state singularities. However, we still
tain the regulator. The reason for this is to avoid poles a
cuts in the complex energy plane when we Wick rotate
variablesk0 andl 0 to the imaginary axis. It is useful to reca
the situation with the one-loop self-energy. In this case, a
performing subtractions to eliminate ultraviolet divergenc
one Wick rotatesk0→ ivk . However, the spectral decompo
sition of the electron propagator has a term with a deno
nator 1/(2k01 id). In this case a semicircle must be ma
around this pole, which gives rise to a contribution called
pole term, which plays an important numerical role in t
Lamb shift. However, the regulator we have introduced
make the reference-state singularities finite moves this p
into the second quadrant, which eliminates the pole te
However, the price of this simplification is the need to pu
larger number of integration points near the origin, as ther
now additional structure at smallvk . Also, the calculation
must be done for at least two values of the regulator an
linear fit performed to obtain the intercept.

The same considerations simplify both the overlapp
and nested diagrams. By using the regulator, we can sim
Wick rotate bothk0→ ivk and l 0→ iv l . Without the regula-
tor, several extra terms analogous to the pole term of
one-loop self-energy would be present. Because we incl
it, however, only the Wick rotated part of the calculatio
need be considered. However, as with the one-loop La
shift, care must be taken to include sufficient points at sm
vk and v l to accurately account for the structure in th
region.

While in the one-loop Lamb shift the integral fromvk5
2` to 0 can be combined with the integral fromvk

50 to `, in the two-loop Lamb shift the four regions ca
be reduced to only two. Specifically, thevk5
2`, . . . ,0,v l52`, . . . ,0 region combines with thevk

50, . . . ,̀ ,v l50, . . . ,̀ region and the vk5
2`, . . . ,0,v l50, . . . ,̀ region combines with thevk
50, . . . ,̀ ,v l52`, . . . ,0 region. For the overlapping dia
gram, there then results for regionI , with x1.x2.x3.x4,
and again showing only them5n50 contribution,
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S4O~ I !52
a2

2p2 (
k123,l 12

~2l 111!~2l 211!

~2 j v11!
~21! l 11 l 21 j v1 j k1

1 j k2
1 j k3Cl 1

~kvk1!Cl 1
~k2k3!Cl 2

~k1k2!Cl 2
~k3kv!

3H j k1 l 1 j v

j k3 l 2 j k2

J E
0

`

vkdvkE
0

`

v ldv lE
0

`

dx1E
0

x1
dx2E

0

x2
dx3E

0

x3
dx4i l 1

~vkx3!kl 1
~vkx1!i l 2

~v lx4!kl 2
~v lx2!

3@Rv`1
~x1 ;0,vk!R01`2

~x2 ;vk ,vk1v l !R02`3
~x3 ;vk1v l ,v l !R03v~x4 ;v l ,0!1Rv`1

~x1 ;0,vk!

3R01`2
~x2 ;vk ,vk2v l !R02`3

~x3 ;vk2v l ,2v l !R03v~x4 ;2v l ,0!#, ~51!
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where we adopt a shorthand notationRab(x;va ,vb)
[Rab(x;ev2 iva ,ev2 ivb). Removal of the constraintm
5n50 leads to 15 additional terms in which pairs ofR
functions are replaced by pairs of functions denotedP, Q,
andV, further details of which can be found in Ref.@19#. The
frequency integrations were carried out using Gauss
quadrature methods. A significant complication is the f
that there is a great deal of structure in the integrand, un
the case of the one-loop Lamb shift. In order to get adequ
accuracy it was found that 28 points were needed for thevk
integration and 23 points for thev l integration.

The integration of the photon frequencies still leaves fi
summations over angular momentum quantum number
the two-photon and three-electron propagators to be d
Angular momentum analysis leads to selection rules
make only two angular momentum quantum numbers in
pendent. We choose to keep the photon angular momen
the independent variables. Thus each overlapping diag
turns into a table of values for different values ofl 1 andl 2 of
the two photons.

For a givenl 1 and l 2, the range ofk values the electron
propagators can take increases very rapidly, leading t
large number of channels. Table I shows the number of
lowed channels for various values ofl 1 and l 2 for the over-
lapping diagrams. Whenever possible, symmetry consi
ations were used to reduce the number of channels.
compute a table forl 150 –5 andl 250 –10, the total numbe
of channels for a given overlapping diagram after accoun
for symmetry is 3669. It is this feature of the nested a
overlapping diagrams, along with the large number of poi

TABLE I. Number of allowed channels for different values ofl 1

and l 2 for the overlapping diagrams.

l 2 l 15 0 l 15 1 l 15 2 l 15 3 l 15 4 l 15 5

0 1 4 4 4 4 4
1 4 36 36 40 40 40
2 4 36 54 64 60 64
3 4 40 64 100 96 104
4 4 40 60 96 118 128
5 4 40 64 104 128 164
6 4 40 64 100 120 160
7 4 40 64 104 128 168
8 4 40 64 104 124 160
9 4 40 64 104 128 168
10 4 40 64 104 128 164
n
t
e
te

e
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at
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m

a
l-

r-
o

g
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s

required for accurate Gaussian integration, that makes
calculation extremely computation intensive. This is in sha
contrast to the one-loop self-energy where there is one c
trolling l and the number of channels is 2 for any givenl .

All possible channels are computed and summed for e
entry in the table. Even though we are dealing with unren
malized diagrams that are divergent, the calculation of
individual entries in the table is well defined and finite: T
divergences arise as nonconvergentl sums. Specifically, at
high l 1 or l 2, the entries in the table fall off as 1/l 1l 2, so that
the sum yields a log2 divergence. Such tables are construct
for the five overlapping diagrams involved in the subtracti
scheme. A subtracted table is then constructed forSM

O by
subtracting the individual entries inSO1, SO2, SO3, SO4,
andSO5 from S4O.

It was found that for a givenl 1, the l 2 behavior was con-
vergent, falling off as 1/l 2

3 for high l 2. Using its asymptotic
behavior, thel 2 summation could be easily performed and
was found that atl 154 and 5, the values were falling off a
1/l 1

3, which indicated that the final result converged. Inclu
ing an estimate of the contribution ofl 156, . . . ,̀ then
gives our result for the overlappingM term

SM
O 5H 20.0744~1! a.u., Z583

20.0903~1! a.u., Z592.
~52!

We now turn to the calculation of the nested diagram. T
regulator again allows us to perform a Wick rotation witho

TABLE II. Number of allowed channels for different values o
l 1 and l 2 for the nested diagrams.

l 2 l 15 0 l 15 1 l 15 2 l 15 3 l 15 4 l 15 5 l 15 6

0 1 4 4 4 4 4 4
1 4 20 24 24 24 24 24
2 4 22 32 36 36 36 36
3 4 24 40 52 56 56 56
4 4 24 38 52 64 68 68
5 4 24 40 56 72 84 88
6 4 24 40 54 68 84 96
7 4 24 40 56 72 88 104
8 4 24 40 56 70 84 100
9 4 24 40 56 72 88 104
10 4 24 40 56 72 86 100
11 4 24 40 56 72 88 104
12 4 24 40 56 72 88 102
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encountering any poles. As before, we simplify the integrand so that the photon frequencies are positive in their int
ranges. We then get for the regionx1.x2.x3.x4 with the restrictionm5n50,

S4N~ I !5
a2

2p2 (
k123,l 12

k35k1 ~2l 111!~2l 211!

~2 j v11!~2 j k1
11!

~21! l 11 l 21 j v1 j k2Cl 1
2 ~kvk1!Cl 2

2 ~k1k2!

3E
0

`

vkdvkE
0

`

v ldv lE
0

`

dx1E
0

x1
dx2E

0

x2
dx3E

0

x3
dx4 i l 1

~vkx4!

3kl 1
~vkx1! i l 2

~v lx3! kl 2
~v lx2! @Rv`1

~x1 ;0,vk!R01`2
~x2 ;vk ,vk1v l !R02`3

~x3 ;vk1v l ,vk!R03v~x4 ;vk,0!

1Rv`1
~x1 ;0,vk!R01`2

~x2 ;vk ,vk2v l !R02`3
~x3 ;vk2v l ,vk!R03v~x4 ;vk,0!#. ~53!

TABLE III. High- l 2 partial wave expansion whenl 152 for nested diagram atZ592 ~in a.u.!. Numbers in
square brackets denote inverse multiplicative powers of 10.

l 2 SN SN1 SN2 SM
N

9 0.4214019003@2# 0.4895559827@2# 20.6844077168@3# 0.2866892800@5#

10 0.3850268477@2# 0.4465280546@2# 20.6171875836@3# 0.2175514600@5#

11 0.3541911225@2# 0.4102364537@2# 20.5621386935@3# 0.1685381500@5#

12 0.3277512211@2# 0.3792394689@2# 20.5162072232@3# 0.1324745200@5#

13 0.3048483893@2# 0.3524717818@2# 20.4772935905@3# 0.1059665500@5#

14 0.2848282235@2# 0.3291313152@2# 20.4438875358@3# 0.8566188000@6#

15 0.2671849497@2# 0.3086038978@2# 20.4148971474@3# 0.7076664000@6#
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A simplifying feature of the nested diagram is a symme
that makes only 10 of the 24 regions of coordinate integ
tion independent. The integration over the frequency of
inner photon was performed first, followed by the integrati
over the frequency of the outer photon. It was found that
Gaussian points were sufficient for the outer photon f
quency integration and 23 for the inner photon frequen
integration. As before, angular momentum analysis redu
five summations to two independent variables, which w
chosen to be the photon angular momentum variablesl 1 and
l 2. Thus each nested diagram turns into a table of values
different values ofl 1 and l 2 of the two photons.

A large number of channels are allowed for moderat
high l . Table II shows the number of allowed channels
various values ofl 1 and l 2 for the nested diagram. Th
nested diagram lacks the symmetry of the overlapping
gram, and it is necessary to compute the entire table ins
of the upper diagonal half. To compute a table forl 150 –5
and l 250 –15, the total number of channels for a given d
gram is 3891.

Table III shows the construction of tables for differe
nested diagrams atZ592 for l 152. A subtracted table is the
constructed forSM

N by subtracting the individual entries i
SN1 andSN2 from SN as

SM
N ~ l 1 ,l 2!5SN~ l 1 ,l 2!2SN1~ l 1 ,l 2!2SN2~ l 1 ,l 2!. ~54!

It was found that for a givenl 1, the l 2 behavior was con-
vergent. The values atl 2511 andl 2512 were fitted to the
polynomiala/ l 2

31b/ l 2
4, which was then used to carry out th

summation from l 2513 to `. Fits using the values
-
e

0
-
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es
e

or
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-
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l 2513–15 were also carried out and it was found that
extrapolation was stable to three significant digits. Hav
performed thel 2 summation, it was found that atl 154 and
5, the values were falling off as at least 1/l 1

2, which indicated
that the final result converged. Channels involving Dira
Coulomb propagators with angular momentumk521 were
calculated using theD regulator for at least two values ofD
and fitted to the form (a/p)Sc,4

(2:M P)lnD1A1BD. We find

SM
N 5

a

p
Sc,4

~2:M P! lnD1H 0.0857~1! a.u., Z583

0.0961~1! a.u., Z592.
~55!

At this point we discuss the amount of computation
quired and resources used. It took about 13 min to comp
one channel of the overlapping and 12 min for the nes
diagram on a single node of an IBM SP2 and a SUN Ultra
PARC 1 workstation. Diagrams with a single potential inte
action involve more than 24 coordinate regions and to
twice the amount of computation as diagrams without a
potential interaction. Thus the overlapping subtracti
scheme involves the computational equivalent of six overl
ping diagrams and the nested subtraction scheme invo
four. Thus the total time required to perform the overlappi
subtraction scheme for one value ofZ is ~13 min per chan-
nel! 3 ~3669 channels per overlapping diagram! 3 ~6 over-
lapping diagrams! 5 4770 h. The total time required for th
nested subtraction scheme for one value ofZ is ~11 min per
channel! 3 ~3891 channels per nested diagram! 3 ~4 nested
diagrams! 5 2853 h. Thus the entire calculation requir
7323 h of computation for a given value ofZ. This very large
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amount of computation was performed on a Parallel Operating Environment in an IBM SP2 cluster consisting of 14 no
a local area multicomputer~LAM ! -based parallel environment on a SUN UltraSPARC 1 cluster consisting of about 170
at University of Notre Dame.

V. SUBTRACTION TERMS

We have introduced seven subtraction terms in order to render the unrenormalized nested, overlapping, and deriva
ultraviolet finite. The Fourier-transformed forms of the nested subtraction terms are

SN152e4E d3p2d3qd3p1E dnk

~2p!n

dnl

~2p!n

1

k21 id

1

l 21 id
c̄ v~pW 2!gmSF~pW 22kW ,qW 2kW ;ev2k0!gn

1

q” 2k”2 l”2m
gn

3SF~qW 2kW ,pW 12kW ;ev2k0!gmcv~pW 1! ~56!

and

SN25e4
Za

2p2E d3p2d3q2d3q1d3p1

uqW 22qW 1u2 E dnk

~2p!n

dnl

~2p!n

1

k21 id

1

l 21 id
c̄ v~pW 2!gmSF~pW 22kW ,qW 22kW ;ev

2k0!gn
1

q” 22k”2 l”2m
g0

1

q” 12k”2 l”2m
gnSF~qW 12kW ,pW 12kW ;ev2k0!gmcv~pW 1!. ~57!

Similarly, the overlapping subtraction terms are

SO152e4E d3p2d3p1E dnk

~2p!n

dnl

~2p!n

1

k21 id

1

l 21 id
c̄ v~pW 2!gmSF~pW 22kW ,pW 12kW ;ev2k0!

3gn
1

p” 12k”2 l”2m
gm

1

p” 12 l”2m
gncv~pW 1!, ~58!

SO252e4E d3p2d3p1E dnk

~2p!n

dnl

~2p!n

1

k21 id

1

l 21 id
c̄ v~pW 2!gm

1

p” 22k”2m
gn

1

p” 22k”2 l”2m
gmSF~pW 22kW ,pW 12kW ;ev2k0!

3gncv~pW 1!, ~59!

SO352e4E d3pE dnk

~2p!n

dnl

~2p!n

1

k21 id

1

l 21 id
c̄ v~pW !gm

1

p” 2k”2m
gn

1

p” 2k”2 l”2m
gm

1

p” 2 l”2m
gncv~pW !, ~60!

and

SO458a2~Za!E d3p2d3p1

upW 22pW 1u2E dnk

~2p!nE dnl

~2p!n

1

k21 id

1

l 21 id
c̄ v~pW 2!gm

1

p” 22k”2m
gn

1

p” 22k”2 l”2m

3g0

1

p” 12k”2 l”2m
gm

1

p” 12 ł”2m
gncv~pW 1!. ~61!

Finally, the derivative subtraction term is

SD15 ie2Sc
~2!E d3p E dnl

~2p!n

1

l 21 id
c̄ v~pW !gm

1

p” 2 l”2m
g0

1

p” 2 l”2m
gmcv~pW !. ~62!

BecauseSO1 is equal toSO2, we will account for the latter term by doubling the former in the following. We note that in
of the subtraction terms thednl integration can be carried out with Feynman parameter techniques, leading to the fun
defined in Sec. I A. Thus these diagrams can be thought of as generalizations of the one-loop Lamb shift. We first con
subtraction terms that contain Dirac-Coulomb propagators,SN1, SN2, and 2SO1. After carrying out thednl integration, they
can be split into two parts, one of which involves the constantsB̃(2) and L̃ (2) and the other the functionsSc

2:0P(q2k) and
Lcr

(2)(p22k,p12k). The former parts can be grouped together into a single term and we can write
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SN11SN21SO11SO25 L̃ ~2!@dm~2!1Sc
~2!#2 ie2E d3p2d3qd3p1E dnk

~2p!n

1

k21 id
c̄ v~pW 2!gmSF~pW 22kW ,qW 2kW ;ev2k0!

3Sc
2:0P~q2k!SF~qW 2kW ,pW 12kW ;ev2k0!gmcv~pW 1!

1 ie2
Za

2p2E d3p2d3q2d3q1d3p1

uqW 22qW 1u2
E dnk

~2p!n

1

k21 id
c̄ v~pW 2!gmSF~pW 22kW ,qW 22kW ;ev2k0!

3Lc0
~2!~q22k,q12k!SF~qW 12kW ,pW 12kW ;ev2k0!gmcv~pW 1!

22ie2E d3p2d3p1E dnk

~2p!n

1

k21 id
c̄ v~pW 2!

3gmSF~pW 22kW ,pW 12kW ;ev2k0!Lcm
~2!~p12k,p1!cv~pW 1!. ~63!

The first term was obtained by using the equation for the Dirac-Coulomb propagator together with the Ward identityB̃(2)5

2 L̃ (2). Note thatL̃ (2) multiplies the unrenormalized one-loop Lamb shift: Thedm(2) part of this forms part of the two-loop
mass renormalization countertermdm(4).

While Sc
2:0P(q2k) and Lcr

(2)(p22k,p12k) are finite quantities, they lead to 1/e2 and 1/e divergences when thednk
integration is carried out. However, these divergences are associated with the 0P and 1P parts of the Dirac-Coulom
gators. Thus we can define an ultraviolet finite expression, theP term, asSP5SP

N11SP
N212SP

O1 , with

SP
N1[2 ie2E d3p2d3qd3p1E dnk

~2p!n

1

k21 id
c̄ v~pW 2!gm@SF~pW 22kW ,qW 2kW ;ev2k0!Sc,4

2:0P~q2k!SF~qW 2kW ,pW 12kW ;ev2k0!

2S0~pW 22kW ,qW 2kW ;ev2k0!Sc,4
2:0P~q2k!S0~qW 2kW ,pW 12kW ;ev2k0!2S0~pW 22kW ,qW 2kW ;ev2k0!Sc,4

2:0P~q2k!

3S1~qW 2kW ,pW 12kW ;ev2k0!2S1~pW 22kW ,qW 2kW ;ev2k0!Sc,4
2:0P~q2k!S0~qW 2kW ,pW 12kW ;ev2k0!#gmcv~pW 1!, ~64!

SP
N2[ ie2

Za

2p2E d3p2d3q2d3q1d3p1

uqW 22qW 1u2
E dnk

~2p!n

1

k21 id
c̄ v~pW 2!gm@SF~pW 22kW ,qW 22kW ;ev2k0!Lc40

~2! ~q22k,q12k!

3SF~qW 12kW ,pW 12kW ;ev2k0!2S0~pW 22kW ,qW 22kW ;ev2k0!Lc40
~2! ~q22k,q12k!S0~qW 12kW ,pW 12kW ;ev2k0!#gmcv~pW 1!,

~65!

and

2SP
O1[22ie2E d3p2d3p1E dnk

~2p!n

1

k21 id
c̄ v~pW 2!gm@SF~pW 22kW ,pW 12kW ;ev2k0!2S0~pW 22kW ,pW 12kW ;ev2k0!

2S1~pW 22kW ,pW 12kW ;ev2k0!#Lc4m
~2! ~p12k,p1!cv~pW 1!. ~66!

The diagrammatic version of these equations is given in Fig. 4. The subtractions we have introduced force there to b
two interactions with the external potential present, which makes the above terms ultraviolet finite. While finite, they
the Dirac-Coulomb propagator in momentum space. We will discuss an approach to the calculation of theP terms in the
conclusion, but do not analyze them further here.

At this point we can define the third part of the calculation,SF , defined throughS4SE5SM1SP1SF . Putting together
Eqs.~29!, ~39!, ~41!–~43!, and~63!–~66!, we have

SF5 L̃ ~2!CSc
~2:M P!1SO31SO41SD11SN:0P12SN:side1SN: ladder12SO:corner. ~67!

We have introduced here four new termsSN:0P,SN:side,SN: ladder, and SO:corner, which are represented in Figs. 5~a!–5~d!,
respectively. The names ‘‘side,’’ ‘‘ladder,’’ and ‘‘corner’’ are chosen to follow the notation of Ref.@5#. We note that in the
first two diagrams the self-mass counterterm is understood to be included. Along withSO3 andSO4, which are given in Figs.
5~e! and 5~f!, they represent all bare nested and overlapping Feynman diagrams with zero or one external interactio
diagrams are related to the subtractions that define theP term by replacing eitherSc

(2)(p) by S (2)(p)2B̃(2)(p” 2m) or

Lcr
(2)(p1 ,p2) by Lr(p1 ,p2)2 L̃ (2)gr . The expressions for these last terms are

S4N:0P5216p2a2E d3pE dnk

~2p!nE dnl

~2p!nc̄ v~pW !gm

1

p” 2k”2m
gn

1

p” 2k”2 l”2m
gn

1

p” 2k”2m
gmcv~pW !, ~68!
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FIG. 4. Diagrammatic representation of the subtraction sche
that defines theP term.
me

FIG. 5. Diagrams contributing to theF term.
one-loop

merical

se
nd
Sside58a2~Za!E d3p2d3p1

upW 22pW 1u2E dnk

~2p!nE dnl

~2p!n

1

k2

1

l 2c̄ v~pW 2!gm

1

p” 22k”2m
gn

1

p” 22k”2 l”2m
gn

1

p” 22k”2m

3g0

1

p” 12k”2m
gmcv~pW 1!, ~69!

S ladder58a2~Za!E d3p2d3p1

upW 22pW 1u2E dnk

~2p!nE dnl

~2p!n

1

k2

1

l 2c̄ v~pW 2!gm

1

p” 22k”2m
gn

1

p” 22k”2 l”2m
g0

1

p” 12k”2 l”2m

3gn
1

p” 12k”2m
gmcv~pW 1!, ~70!

and

Scorner58a2~Za!E d3p2d3p1

upW 22pW 1u2E dnk

~2p!nE dnl

~2p!n

1

k2

1

l 2c̄ v~pW 2!gm

1

p” 22k”2m
gn

1

p” 22k”2 l”2m

3gm
1

p” 22 l”2m
g0

1

p” 12 l”2m
gncv~pW 1!. ~71!

We will now show thatSF contains a self-mass term, but that the other divergences cancel, as was the case for the
self-energy.

VI. EVALUATION OF F TERMS

The evaluation of theF terms can be carried out using standard Feynman parameter techniques coupled with the nu
integration programVEGAS @21#. Our strategy is to first isolate the fourth-order self-mass term by settingp” 5m,p25m2. We
will show that this term is in agreement with a Yennie gauge calculation by Adkins and Zhang@22#. After this term is removed
by the fourth-order self-energy counterterm, divergences of order 1/e2 and 1/e remain in individual diagrams. Some of the
divergences are proportional top” 2m, but others multiply nontrivial functions ofp. These can be identified with the 0P a
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1P parts of the one-loop Lamb shift and will combine with the first term of Eq.~67!. After this combination, an ultraviole
finite expression for theF term results.

A. All-free diagrams

An analysis of the nested all-free diagram gives

S4N:0P5dm~4N!E d3p c̄ v~pW !cv~pW !1B̃4NE d3p c̄ v~pW !~p” 2m!cv~pW !2
aD

2pe
Sc,4

~2:0P!1Sc,4
4N:0P , ~72!

where

dm~4N!52
ma2

p2 F15D

8e2 1
55D

32e
2

27

32
z~2!1

197

128G , ~73!

B̃4N5
a2

p2F D

8e2 1
D

32e G , ~74!

and

D5~4p!eG~11e!. ~75!

Sc,4
4N:0P is tabulated in the second column of Table IV.
The overlapping all-free diagram is given by

SO35dm~4O!E d3p c̄ v~pW !cv~pW !1B̃~4O!E d3p c̄ v~pW !~p” 2m!cv~pW !1
aD

pe
Sc,4

~2:0P!1Sc,4
O3 , ~76!

where

dm~4O!5
ma2

p2 F 3D

4e2 1
5D

16e
20.375 635~9!G ~77!

and

B̃~4O!52
a2

p2F D

4e2 2
D

16e G . ~78!

Sc,4
O3 is tabulated in the third column of Table IV. Putting together the fourth-order self-mass from the nested and over

diagrams gives

dm~4!5
ma2

p2 F2
9D

8e2 2
45D

32e
20.526 78~1!G . ~79!

The constant has been evaluated by Adkins and Zhang@22# to be 3/4z(3)23z(2)ln2169/32z(2)2199/128, consistent with
our numerical determination. We note that although the analytic calculation was carried out in Yennie gauge, the ag
follows from the gauge invariance of the self-mass. However, the constantsB̃(4N) andB̃(4O) are gauge variant, and differ from
the Yennie gauge calculation. The self-mass term is removed by the fourth-order mass renormalization counterterm

TABLE IV. Finite parts ofF terms~in a.u.!.

Z Sc,4
4N:0P Sc,4

O3 Sc,4
D Sc,4

O4 Sc,4
corner Sc,4

ladder Sc,4
side Total

10 20.00346 0.00520 0.00152 20.00121 20.00169 0.00051 0.00193 0.00280
25 20.00836 0.01279 0.00643 20.00367 20.00160 0.00111 0.00162 0.00832
50 20.00897 0.02055 0.01692 20.00866 20.00002 0.00219 20.00402 0.01799
75 20.00125 0.02695 0.02781 20.01917 20.00358 0.00115 20.00669 0.02522
83 0.00215 0.03016 0.03154 20.02545 20.00787 20.00007 20.00405 0.02641
92 0.00565 0.03611 0.03641 20.03594 20.01727 20.00273 0.00400 0.02623
100 0.00715 0.04604 0.04215 20.05027 20.03360 20.00762 0.01984 0.02369
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B. Derivative term

The derivative term is related to the one-loop vertex function introduced in Sec. I A through

SD152Sc
~2!E d3p c̄ v~pW !L0

~2!~p,p!cv~pW !. ~80!

Using Eq.~9! then leads to

SD152 L̃ ~2!Sc
~2!1Sc,4

D1 , ~81!

with

Sc,4
D15

a

2p
Sc,4

~2!1
a

2p
Sc,4

~2!E d3p c̄ v~pW !g0cv~pW !E
0

1

r dr ln@r2r~12r!p2/m2#

1
a

4p
Sc,4

~2!E d3pE
0

1

r dr
c̄ v~pW !gm@~12r!p” 1m#g0@~12r!p” 1m#gmcv~pW !

m2r2r~12r!p2
. ~82!
r
i
.

am

.
u V.

to
n

n-
the
Inserting Eq.~20! into the first term in Eq.~81! gives

2 L̃ ~2!Sc
~2!52

aC2

2pe
~Sc,4

~2:0P!1Sc,4
~2:1P!1Sc

~2:M P!1eSc,e
~2:0P!

1eSc,e
~2:1P!!52

aD

2pe
~Sc,4

~2:0P!1Sc,4
~2:1P!

1Sc
~2:M P!!2

a

2p
~Sc,e

~2:0P!1Sc,e
~2:1P!!. ~83!

Note that bothL̃ (2) andSc
(2) involve a factor ofC. Since to

ordere, C25D, the above expression involvesD where we
have specified thatSc,e

2:0P and Sc,e
2:1P do not involve Taylor

expanding the constantC. We hold the first bracket for late
combination with other terms and the finite remainder
added toSc,4

D1 and tabulated in the fourth column of Table IV

C. One-potential diagrams

We begin with the least divergent one-potential diagr
SO4. We define the finite residue through

SO45 L̃O4E d3p c̄ v~pW !~p” 2m!cv~pW !1Sc,4
O4 , ~84!

where

L̃O452
a2D

4p2e
. ~85!

The finite term is tabulated in the fifth column of Table IV
Turning to the corner diagram, we define its finite resid

through

2Scorner5 L̃ cornerE d3p c̄ v~pW !~p” 2m!cv~pW !

1
aD

pe
Sc,4

~2:1P!1Sc,4
corner, ~86!

where
s

e

L̃ corner5
a2D

p2 S 1

4e2 1
3

16e D . ~87!

Sc,4
corner is tabulated in the sixth column of Table IV.
The ladder diagram is

S ladder5 L̃ ladderE d3p c̄ v~pW !~p” 2m!cv~pW !

1
aD

2pe
Sc,4

~2:1P!1Sc,4
ladder, ~88!

where

L̃ ladder5
a2D

p2 S 1

8e2 1
5

32e D . ~89!

Sc,4
ladder is tabulated in the seventh column of Table I.
Finally, the expression for the side diagram is

2Sside5 L̃ sideE d3p c̄ v~pW !~p” 2m!cv~pW !

2
aD

pe
Sc,4

2:1P1Sc,4
side, ~90!

where

L̃ side5
a2D

p2 S 2
1

4e2 2
3

16e D . ~91!

The finite term is tabulated in the eighth column of Table I
We can now group together all the terms contributing

the F term. The finite terms are summed in the last colum
of Table IV. The derivative term plays a central role in ca
celing the remaining divergences. Specifically, we have
divergent part of the derivative term from Eq.~83! as

Sdivergent
D1 52

aD

2pe
@Sc,4

~2:0P!1Sc,4
~2:1P!1Sc

~2:M P!#. ~92!
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The first term can be seen to exactly cancel similar div
gences in Eqs.~72! and~76! and the second the divergenc
from Eqs.~84!, ~86!, ~88!, and~90!. The many-potential term
then cancels with the first term in the definition ofSF given
in Eq. ~67!. We also note that the Ward identities for th
nested and overlap diagrams are satisfied through

B̃4N52@ L̃ ladder1 L̃ side#, ~93!

B̃4O52@ L̃O41 L̃ corner#. ~94!

At this point all ultraviolet divergences have been r
moved, either by cancellation between various terms
through mass renormalization. We note that we have d
only with unrenormalized graphs in this treatment. It is a
possible to work with renormalized graphs throughout; ho
ever, it is simple to show that the wave-function renorm
ization and vertex renormalization counterterm graphs ca
separately, so the end result would remain unchanged.

The F term does not demonstrate aZ4 scaling at highZ
and is in fact relatively constant between 50 and 100. Ho
ever, such scaling is not to be expected, given the beha
of Eq. ~2!, except at very lowZ. As alluded to in the Intro-
duction, the value of theF term at Z592 is about 1 eV,
specifically 0.714 eV. However, because we have not ev
ated theP term, the calculation is incomplete and we cann
make predictions for experiment. However, the finite parts
the M term ~the reference-state singularity will cancel wi
the P term! sum to21.039 eV atZ592, so if the finite part
of the P term happens to be small, after adding th
20.971 eV PO contribution@4#, the fourth-order self-energy
shift would be21.296 eV. While a shift of this size would
be difficult to detect in hydrogenlike uranium, it may b
measurable in the spectra of many-electron ions, though
discussed in the Introduction, additional QED diagrams w
have to be calculated.

VII. DISCUSSION

A major feature of exact calculations of the Lamb shift
the differing roles of coordinate space and momentum sp
If the calculation were ultraviolet finite, coordinate spa
would be favored, as the behavior of the Dirac-Coulom
Green’s function is well known both analytically and n
merically in coordinate space. However, divergences
most easily treated with covariant methods in moment
space. In the case of the one-loop self-energy, this is il
trated by the fact that subtractions involving free-electr
propagators are made in coordinate space, leading to a
vergent term represented by a partial wave expansion, w
the subtractions themselves are analyzed by Fourier tr
forming to momentum space, where the self-mass infinity
easily removed and divergences related to wave function
vertex renormalization shown to cancel.

The situation is somewhat more complex in the two-lo
case. One of our principal results is that subtractions can
devised in coordinate space that lead to the same kin
convergent partial wave expansions as in the one-loop c
r-
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although the amount of computer time required for an ac
rate evaluation is much greater. However, the subtrac
terms, when Fourier transformed to momentum space, of
cessity involve not only free propagators, but also Dira
Coulomb propagators. While we have been able to introd
additional subtractions that make the expressions involv
these propagators ultraviolet finite, the numerical analysis
the resultingP terms has not been carried out. The reason
this is the fact that the Dirac-Coulomb propagator is gen
ally treated in coordinate space and less is known about
momentum space. This is in contrast to the situation with
nonrelativistic propagator, which is known in both coord
nate and momentum space@23#. One possible approach is t
Fourier transform theP term back into coordinate space
However, we are presently exploring another approach us
the spectral decomposition of the electron propagator. W
Green’s-functions techniques have a number of advanta
we note that the work of Blundell and Snyderman@14# in-
volved the isolation of the many-potential term, which w
then evaluated using basis sets based onB splines. We are
presently developing a relativistic basis set, again based oB
splines, but in this case in momentum space. With suc
basis set, the integrals involved in theP terms could be
treated entirely in momentum space.

Once theP terms are evaluated it will be possible
systematically study theZ dependence of the two-loop sel
energy. While we have discussed in the Introduction the
portance of such a study for highly charged ions such
lithiumlike bismuth, there is another important application
low Z. That is the determination through fitting procedur
of the higher-order terms in Eq.~2!. In a recent calculation of
one-loop radiative corrections to hyperfine splitting@24#, it
was shown that by calculating radiative corrections to
orders inZa for a range ofZ the first coefficients of the
series expansion could be verified and at the same time
higher-order terms in the series obtained. An important g
of the present calculation is the extension to lower values
Z. Given the large coefficient of the orderZa term in Eq.
~2!, it is quite possible that the next term, and conceiva
even higher-order terms, could enter at the level of exp
mental interest even atZ51 or Z52. By carrying out cal-
culations such as that described in this paper that are val
all orders in Za, the questions of how important thes
higher-order terms are and what their implications are
QED tests at lowZ can be answered.
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