
PHYSICAL REVIEW A MARCH 1998VOLUME 57, NUMBER 3
Uniform semiclassical expansions for the direct part of Franck-Condon transitions

Bruno Hüpper and Bruno Eckhardt
Fachbereich Physik, Philipps Universita¨t Marburg, Renthof 6, 35032 Marburg, Germany

~Received 9 October 1997!

Semiclassical expansions for traces involving Green’s functions receive two contributions, one from the
periodic or recurrent orbits of the classical system and one from the phase space volume, i.e., the paths of
infinitesimal length. Quantitative calculations require the control of both terms. Here we discuss the contribu-
tion from paths of zero length with an emphasis on the application to Franck-Condon transitions. The expan-
sion in the energy representation is asymptotic and a critical parameter is identified. In the time domain, a
series expansion of the logarithm of the propagator gives very good results. The expansions are illustrated for
transitions onto a linear potential and onto a harmonic oscillator.@S1050-2947~98!09402-5#

PACS number~s!: 03.65.Sq, 33.80.Gj, 05.45.1b
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I. INTRODUCTION

Many quantum properties, including the density of sta
and Franck-Condon transition matrix elements, can be
pressed as a trace of the Green’s function times some op
tor @1,2#. Semiclassical expressions for such quantities
naturally divided up into two parts, one due to ‘‘paths of ze
length’’ and one due to the longer recurrent or periodic t
jectories of the associated classical system@3–6#. The nu-
merical and conceptual difficulties associated with the p
odic orbit part have received considerable attention in
literature ~see the contributions to Refs.@7,8# and review
@9#!. Zeta functions have helped to overcome many of th
problems, at least in certain, well-behaved situations@9–12#.
More recently, higher-order corrections to the domina
semiclassical contributions, in particular in the neighborho
of caustics and bifurcations, have been addressed@12–18#. In
applications to the photodissociation of molecules, one
an additional source of corrections connected to the fact
the operator is a projection on the initial state, and he
singular in the semiclassical limit. A way to deal with th
was proposed by Zobay and Alber@19#.

In mainly direct reactions the largest part of the cro
section comes, however, from the paths of zero length. T
leading-order term is also known as the Thomas-Fermi c
tribution for the case of smooth systems, or the Weyl te
for billiards. It measures the volume of the energy shell
units of Planck’s constant, raised to the power of the num
of degrees of freedom present@3,4#. It turns out that in many
situations one is too far away from this semiclassical lim
~typically one needs a higher density of states!, and so has to
go beyond this leading-order term. In billiards, the appro
mations to the density of states regularly contain the s
dominant contributions from the surface and corner corr
tions, and even in smooth systems the leading-order t
alone will not do. The expansion in decreasing powers
energy or wave number, however, can typically
asymptotic at best. Building on their previous developme
in the theory of asymptotic series, Berry and Howls@20#
illustrated the behavior of the expansion for the case of
liards: the series expansion indeed diverges, and the ra
divergence is determined by short real or imaginary orbits
the classical system.
571050-2947/98/57~3!/1536~12!/$15.00
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In view of this it is perhaps not surprising that in sem
classical calculations of photodissociation cross sections
also has to go beyond the leading-order terms, and that
encounters the same kind of divergences@2,21,11#. For prac-
tical applications the problems then are how to estimate
importance of the higher-order terms~without calculating
them, of course!, and how to improve on the series expa
sion. We will show here that the comparison to a simp
problem, namely, excitation onto a linear potential, sugge
a useful parameter. For the second problem we analyz
some detail the behavior of three different approximations
the background term, and identify the most useful one.
the sake of simplicity in notation, all our calculations will b
confined to one degree of freedom only. Generalizations
more degrees of freedom are straightforward. The main id
will be illustrated for transitions onto a linear potential an
onto a harmonic potential. Applications to photodissociat
of water will be given elsewhere@22#.

Various theoretical aspects of the classical and semic
sical limit of Franck-Condon transitions were discussed p
viously in the literature. Much of the history was reviewed
Ref. @23#, where an interesting alternative phase-space in
pretation for Franck-Condon transitions can also be fou
Applications to molecules can be found in Refs.@24,25#. Of
particular relevance for our discussion is a paper by He
@2#, which contains background information as well as a d
cussion of the first few correction terms; we summarize so
of his results in Sec. II A. Approximations in the time do
main ~which we take up in Sec. III! were discussed, e.g., i
Refs.@26–28#.

The outline of the paper is as follows. In Sec. II we d
cuss the Wigner and Grammaticos-Voros expansions in
energy representation. The behavior at large orders for a
ear potential is analyzed in Sec. III. In Sec. IV we stu
approximations in the time domain, which can then be c
nected to the energy domain by a Fourier transform~perhaps
to be evaluated numerically!. The quality of the approxima-
tions is illustrated for the harmonic oscillator in Sec.
Some conclusions are drawn in Sec. VI.

II. SEMICLASSICAL FRANCK-CONDON FACTORS

A. Wigner series

We consider transitions from an initial stateC i , typically
a Gaussian, to a manifold of final statesCE at energyE. The
1536 © 1998 The American Physical Society
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57 1537UNIFORM SEMICLASSICAL EXPANSIONS FOR THE . . .
system has one degree of freedom and the classical Ha
tonian on the upper potential energy surface is given by

H~p,q!5
p2

2m
1V~q!. ~1!

Quantum operators will be denoted with a caret, so that, e
the quantum Hamilton operator will beĤ. The Franck-
Condon factors we want to calculate are the squares of
transition elements@2,24,25#,

r~E!5 z^C i uCE& z2. ~2!

Using uCE&^CEu5d(E2Ĥ), whereĤ is the Hamilton op-
erator for the final electronic state, we can write the Fran
Condon factor as

r~E!5^C i ud~E2Ĥ !uC i& ~3!

5E
2`

1`

dx ^C i ux&^xud~E2Ĥ !uC i& ~4!

5 tr d~E2Ĥ !P̂, ~5!

which has the above-mentioned form as a trace ove
Green’s function,

d~E2Ĥ !52
1

p
Im lim

«→0
Ĝ~E1 i«! ~6!

52
1

p
Im lim

«→0

1

E2Ĥ1 i«
, «.0 ~7!

times the projectorP̂5uC i&^C i u onto the initial state. Tak-
ing the Wigner transform of this expression, one arrives
classical phase space traces over the Wigner transform
the operators involved@29#,

r~E!5
1

hE2`

1`

dpE
2`

1`

dq@d~E2Ĥ !#W~p,q!@P̂#W~p,q!,

~8!

where the Wigner transform of an operatorÂ is given by
@29,30#

@Â#W~p,q!5E dxe2 ixp/\K q1
x

2UÂUq2
x

2L . ~9!

It is interesting to note that under the trace the Wigner tra
form of the product of two operators maps into the prod
of the Wigner transforms. Generally, for a product of ope
tors, one has

@ÂB̂#W~p,q!5@Â#W~p,q!expH i\

2
LJ @B̂#W~p,q! ~10!

with the differential operator

L5¹T p¹Y q2¹T q¹Y p, ~11!
il-
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where the differentiations act to the left or to the right
indicated. If the Hamilton operator is simply replaced by t
classical Hamilton function, the leading-order term for t
density of states, the microcanonical measure on the en
shell,@d(E2Ĥ)#W;d(E2H), is obtained. The fact that th
formation of products and Wigner transforms does not co
mute is the source of quantum corrections which we wan
study.

A systematic procedure of calculating an expansion of
density of states in powers of\ was suggested long ago b
Wigner @30#, and applied to the Franck-Condon problem
Heller @2#. It uses the statistical operatorP̂5exp(2bĤ) and
its high-temperature expansion forb→0. The statistical op-
erator satisfies

2
]

]b
P̂5Ĥ P̂5 1

2 ~Ĥ P̂1 P̂Ĥ !. ~12!

The symmetrized version on the right-hand side is parti
larly well suited for the application of the Wigner transfo
mation, as it immediately shows that the quantum correcti
come in even powers of\ only. Using Eq.~10! for the prod-
uct of two operators, the equation for@ P̂#W becomes

2
]

]b
@ P̂#W5@Ĥ#WcosH \

2
LJ @ P̂#W . ~13!

The first few terms can be calculated by substitution of
ansatz

@ P̂#W5e2bH~11\2c21\4c41••• !. ~14!

Each coefficientcn is itself a polynomial inb. For later
reference we quotec2 for Hamiltonian~1! @2,30#,

c252b2f 21b3f 3 , ~15!

with

f 25
1

8m
V9, ~16!

f 35
1

24m
V821

1

24m2
V9p2, ~17!

where the primes denote derivatives with respect to posit
The statistical operator is the Laplace transform of

density of states, so to regain the quantity needed in
phase-space trace, we have to do an inverse Laplace t
form ~see Ref.@2# for more details!. The leading exponentia
then maps into thed function on the classical energy she
d(E2H), and the powers ofb map into derivatives of thed
function with respect to energy. The resulting expansion t
becomes



an

th
a

it
en
a

l
s

du
rt

te

an

s-
nc-

d
for-

ey

-
n
-

x-

1538 57BRUNO HÜPPER AND BRUNO ECKHARDT
@d~E2Ĥ !#W5d~E2H !2\2f 2

]2

]E2
d~E2H !

1\2f 3

]3

]E3
d~E2H !1\4 ... . ~18!

Heller @2# noted that instead of expanding in the form of
exponential times a power series inb, one could alterna-
tively expand as the exponential of a power series. For
terms given above this leads to an Airy function approxim
tion,

@d~E2Ĥ !#W5exp$2~H2E! f 2/3f 322\2f 2
3/27f 3

2%

3a Ai @a~H2E1\2f 2
2/ f 3!#, ~19!

with

a5~3\2f 3!21/3. ~20!

Up to and including terms of order\2 thed-function expan-
sion of the Airy function in Eq.~19! is equivalent to the
Wigner expansion~18!. We will come back to this Airy
function approximation below.

B. Grammaticos-Voros expansion

The Wigner method of Sec. II A is a bit tedious when
comes to calculating higher-order terms. A very conveni
algebraic method of expansion was developed by Gramm
cos and Voros@31#. The Dirac measure@d(E2Ĥ)#W is ex-
panded around the identity operatorÎ times the classica
Hamilton function,H(p,q)• Î . The resulting series contain
powers of the deviationsĤ2HÎ , which have an explicit\
dependence because of the Wigner equivalent of the pro
of two operators, Eq.~10!. To obtain this expansion, we sta
from the integral representation

d~E2Ĥ !5
1

2p\E2`

`

eiEt/\e2 iĤ t/\dt ~21!

5
1

2p\E2`

`

ei ~E2H !t/\e2@ i ~Ĥ2HÎ !#t/\dt ~22!

5
1

2p\E2`

`

ei ~E2H !t/\(
r 50

`
~2 i t !r

r !\ r
~Ĥ2HÎ !rdt.

~23!

Next, we take the Wigner transform on both sides and in
change summation and integration,

@d~E2Ĥ !#W5
1

2p\(
r 50

`
~21!r

r ! E
2`

`

dtS i t

\ D r

3ei ~E2H !t/\@~Ĥ2HÎ !r #W ~24!

5(
r 50

`
~21!r

r !
d~r !

„E2H~p,q!…Gr~p,q,\!.

~25!
e
-

t
ti-

ct

r-

The derivatives of thed function are with respect to the
energy@as in Eq.~18!# and the universal coefficientsGr are
the Wigner transforms of powers of the Hamiltonian,

Gr~p,q,\!5@„Ĥ2H~p,q! Î …r #W . ~26!

They are universal in that other functions of the Hamiltoni
can be obtained by integration over energy, e.g.,

@ f ~Ĥ !#W5E
2`

1`

dE f~E!d~E2Ĥ ! ~27!

5(
r 50

`
1

r !
f ~r !

„H~p,q!…Gr~p,q,\!, ~28!

and will contain the same coefficients. We will use this tran
formation for the statistical operator and the Green’s fu
tion below.

In principle, Gr could be calculated by straightforwar
expansions of the powers, and subsequent Wigner trans
mation. However, Grammaticos and Voros@31# gave a more
efficient algebraic technique, using Green’s functions. Th
considered transformation~28! with f (Ĥ)51/(Ĥ2z) and
thus found, for the Green’s function,

@Ĝ#W~p,q,\!5(
r 50

`

~21!r
Gr~p,q,\!

„H~p,q!2z…

r 11
. ~29!

Gr can be read off from an expansion of@Ĝ#W(p,q,\) in
inverse powers of (H2z)2r 21. The Green’s function satis
fies (Ĥ2z)Ĝ(z)5 Î . When we use the symmetrized versio
as in Eqs.~12! and ~13!, this becomes in the Wigner repre
sentation

@ Î #W515@~Ĥ2z!Ĝ~z!#W ~30!

5@~Ĥ2z!#WcosS \

2
L D @Ĝ#W~z!

5~H2z!@Ĝ#W1 (
n51

`

\2nH2n@Ĝ#W .

~31!

The expansion in powers of\ in the last line defines differ-
ential operatorsHn(p,q,¹p ,¹q). Forn52 and 4 and Hamil-
tonian ~1!, they are

H252
1

8S 1

m

]2

]q2
1

]2V~q!

]q2

]2

]p2D , ~32!

H45
1

384

]4V~q!

]q4

]4

]p4
. ~33!

The Wigner transform of the Green’s function can be e
panded in powers of\ as well,
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57 1539UNIFORM SEMICLASSICAL EXPANSIONS FOR THE . . .
@Ĝ#W~p,q,z,\!5 (
m50

`

\mGm~p,q,z!, ~34!

and comparison of like powers of\ in Eq. ~30! then gives
recursion relations for the coefficientsGm :

G0~p,q,z!5
1

H2z
, ~35!

G2n~p,q,z!52
1

H2zS (
k51

n

H2kG2~n2k!D . ~36!

Odd powers in\ vanish because of symmetrization@as in
Eqs.~12! and ~13!#.

Putting everything together one notes that by this met
the Green’s function becomes a double series, organize
powers of\ and in inverse powers of (H2z). Expression
~34! emphasizes the former, and Eq.~29! the latter, so thatGr
can be obtained from Eq.~36! by collecting contributions
with the same powers of (H2z)2r 21. The structure of the
expansion is such that there are always finitely many con
butions to the coefficientsGr @for an example, see the expa
sion for the harmonic oscillator in Eq.~94! below#. The first
few coefficients are

G051, ~37!

G150, ~38!

G252
\2

4m

]2V~q!

]q2
, ~39!

G352
\2

4mS ]V~q!

]q D 2

2
\2p2

4m2

]2V~q!

]q2
1

3\4

64m2

]4V~q!

]q4
.

~40!

On the basis of these expansions, we now investigate t
large-order behavior, first for the linear potential alrea
studied by Heller@2#.

III. LINEAR REPULSIVE POTENTIAL

A. Quantum case

The simplest model for a Franck-Condon transition ont
dissociating potential describes transitions from a Gaus
initial state,

^quC i&5
1

p1/4s1/2
e2~q2q0!2/2s2

, ~41!

onto a linear potential with the Hamilton operator,

Ĥ52
\2

2m
D2aq. ~42!

This model can be solved analytically, and can be used a
approximation for transitions in an arbitrary potential, ifa is
taken to be the slope of the upper potential-energy surfac
d
in

i-

eir
y

a
n

an

at

the maximum of the Gaussian initial state~which here is
centered atq050). Lengths q̃5q/l can conveniently be
measured in units of

l5~\2/2ma!1/3, ~43!

and energy in units ofal, i.e.,e5E/al. The eigenfunctions
for this potential are Airy functions, andl sets the scale for
the width of the oscillations near the turning point; the oth
oscillations in the wave function have shorter wave leng
The Franck-Condon matrix elements can also be calcula
exactly,

r~«!5
1

aAps
U E

2`

`

e2 q̃2s2/2Ai „2~ q̃1«!…d q̃U2

~44!

5
2sAp

al2
Ai2S 1

4
s242« Des26/62«s22

. ~45!

They depend on energy and on the ratio

s5l/s ~46!

of the length scale of the continuum wave function to t
width of the initial state. This parameter also contains\ and
thus indicates how ‘‘semiclassical’’ one is. For smalls, i.e.,
small \ or large s and a broad initial state, the transitio
integral will average over many of the oscillations of th
Airy function, and one can expect the leading classical te
to be reasonably accurate. However, for larges and narrow
Gaussians, the initial state will probe every fine detail of t
Airy function and the classical approximation will presum
ably not work well. We will come back to this point in Se
IV B. It is our aim now to show how these quantum expe
tations are reflected in the semiclassical expansion. As a
step we need to calculate the terms in series~25!.

B. Asymptotic expansions for a linear potential

For Hamiltonian~42!, with its linear potential, Eq.~31!
contains only a single differential operator,

H252 1
8 ~H2z!L252

1

8m

]2

]q2
,

and all higher operators vanish. Then the recursion relati
for the G2n reduce to

G2n52G0H2G2~n21! . ~47!

Since

G05
1

H2z
5

1

p2

2m
2aq2z

~48!

is linear inq, the action ofH2 on powers ofG0 is

H2G0
n52

1

8m
a2n~n11!G0

n12 . ~49!
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Together with the prefactor2G0 the coefficientsG2n be-
come

G2n5S a2

8mD n~3n!!

3nn!
G0

3n11 . ~50!

Comparing the expansion

@Ĝ#W5 (
n50

` S a2

8mD n

\2n
~3n!!

3nn!

1

~H2z!3n11
~51!

to the\ expansion of@Ĝ#W in Eq. ~29!, one can easily read
off the coefficientsGr . The asymptotic series~25! for the
Dirac phase-space measure then becomes

@d~E2Ĥ !#W5 (
n50

`
1

n! S a2\2

24m D n

d~3n!
„E2H~q,p!….

~52!

This may be compared to the exact form of@d(E
2Ĥ)#W computed from the exact propagator,

@d~E2Ĥ !#W5AiS E2
1

2m
p21aq

S a2\2

8m D 1/3 D 1

S a2\2

8m D 1/3

5
1

2pE2`

`

dz expH i ~E2H !z2 i
a2\2

24m
z3J ,

~53!

where z is a dimensionless integration variable. The s
quence ofd functions and their derivatives may be obtain
@2# by expanding the exponential with thez3 term in a power
series and interchanging integration and summation,

@d~E2Ĥ !#W5
1

2p (
n50

`
1

n! S a2\2

24m D nE
2`

`

dz~2 iz3!nei ~E2H !z

5 (
n50

`
1

n! S a2\2

24m D n

d~3n!~E2H !. ~54!

These formulas can now be used for the calculation of
Franck-Condon factors.

C. Asymptotic behavior

The Wigner transform of the initial Gaussian is a Gau
ian in phase space,

PW~q,p!52expH 2
~q2q0!2

s2
2

s2p2

\2 J , ~55!

which helps to limit the domain of integration in Eq.~8!
especially in cases of dissociation processes where the
sical phase space is unbounded in certain directions.
expansion for the density of states, Eq.~54!, then gives, for
the series expansion of the Franck-Condon factor,
-

e

-

as-
he

rasymp~«!5
2

pal (
n50

`
s3n

12nn!
I n~«,s!, ~56!

with the integrals

I n~«,s!5E
0

`

e2~x22«!2s22x2/s2
H3n„~x22«!s…dx. ~57!

Just like the exact quantum result, the expansion conta
only a single parameters5l/s. The behavior for different
values ofs at «50, i.e., for the maximum of the packet, is
indicated in Fig. 1. For smalls the terms decay rapidly and
up to highn, but eventually they start to grow and to diverge
rapidly: this is the behavior expected for an asymptotic s
ries. As s increases, the turnover to divergence comes f
smallern and fors near 1 all higher-order terms are large
than the first one. In Table I we list the index of the smalle
term as well as its size for several values ofs.

FIG. 1. Series expansion for Franck-Condon transitions onto
linear potential for a Gaussian initial state. Shown is the decad
logarithm of the relative error of the series including the firstn
terms taken at the energy corresponding to the center of the Gau
ian.

TABLE I. Asymptotics for the cross section of a Gaussian on
linear potential: We calculate the series up to its smallest term. T
number of terms included grows with decreasing expansion para
eter s. log10Dr(«50) is the logarithm of the relative error of the
series including the firstn terms taken at the energy correspondin
to the center of the Gaussian. For larges.1, the asymptotic series
is practically of no use.

s n log10Dr(«50)

1.8 0 0.03
1.6 1 20.16
1.4 1 20.59
1.2 1 21.38
1.0 1 21.68
0.8 5 22.50
0.63 21 24.51
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To estimate the rate of divergence of the series, one
substitute the generating function for the Hermite polynom
als and express integrals~57! for «50 as

I n~s!5
]3n

]t3nS E0

`

dx e2~x22«!2s22x2/s212t~x2«!s2t2D U
t50

.

~58!

This integral cannot be solved exactly. In the saddle-po
approximation for smalls, one finds just a single saddle~for
some« there are three!. The result is

I n~s!5
]3n

]t3nS Ap

2

s

A122ts3
e2t2D U

t50

. ~59!

Expanding in powers oft, one finally arrives at

I n~s!5
Ap

2
~3n!! (

2l 1r 53n

~21! l

l !
~2s3!r 11S 2 1

2

r
D , ~60!

clearly showing a leading-order behavior for smalls of the
form

I n~s!'5 ~21!3n/2
Ap

2

~3n!!

~3n/2!!
s, n even

~21!~3n11!/2
Ap

2

~3n!!

~~3n21!/2!!
s4, n odd.

~61!

Together with the other prefactors in Eq.~56!, a typical term
in the sum forn even is

~21!3n/2

Apal

~3n!!

12nn! ~3n/2!!
s3n11, ~62!

and similarly forn odd. With the help of Stirlings formula
one can estimate the size of this term to be of the or
@A6(n/12e)1/3s#3n. The terms start to grow once the squa
bracket becomes larger than 1, i.e., forn.nc

'(2e/A6) s23. This strongs dependence is in accord wit
the variations in Fig. 1.

The information gained from this analysis of the line
potential can be used in more general settings: for excitat
into some arbitrary potentialV(q), the parametera can be
estimated from the slope of the potential at the maximumq0
of the initial state,a52V8(q0). If the parameters thus
formed is small, the classical approximation will be go
~and the corrections small!, whereas some uniform approx
mation has to be tried, ifs is large.

IV. TIME-DOMAIN APPROXIMATIONS

A. Formal theory

Another approach to the calculation of the mean den
of states exploits the relationship between energy and t
domains. Since the mean parts are obtained by avera
over ~large! energy intervals, they correspond to short-tim
properties. This is the way the background is obtained
an
-

t

r

ns

y
e

ng

n

numerical calculations: the wave packet is propagated fo
time long enough so that the overlap with the initial wa
packet is minimal, but short enough so that no major part
returned, yet. This finite time window is then Fourier tran
formed to obtain the background term.

This can be mimicked in the semiclassical approximati
The Franck-Condon factors are related to Feynman’s pro
gator in phase space by

r~E!5
1

p\
ReE

0

`

dtE dq dp

h
eiEt/\@P̂#W~p,q!@K̂#W~p,q!,

~63!

where@K̂#W is the Wigner transform of the propagator

@K̂#W~p,q!5E dxe2 ixp/\K q1
x

2Ue2 iĤ t/\Uq2
x

2L .

~64!

In the standard semiclassical approximation the smooth
of the Franck-Condon factor is obtained by use of the sh
time propagator fromq2x/2 to q1x/2 for Eq. ~64!. In the
simplest approximation@e.g., Berry and Mount~1972!#, K̂ is
replaced by a propagator for a free particle in a const
potentialV(q),

K~q1x/2,q2x/2,t !5S m

2p i\t D
1/2

ei @~m/2t !x22V~q!t#/\.

~65!

The dominant part of the Franck-Condon factor as a funct
of the energy will come from that region in energy where t
turning point of the classical motion on the upper surface
near to the maximum of the initial state. The ultimate for
of this is the reflection principle, where the wave function
the upper surface is replaced by ad function so that the cross
section is obtained by ‘‘reflection’’ of the initial state on th
potential-energy surface~see Refs.@2,24# for a discussion of
its origin and its limitations!. This implies that the straight
line propagator on a constant potential is a rather poor
proximation, since it does not account for a turning point n
the exponential damping when entering the forbidden reg
~see Fig. 2!.

To obtain a better approximation linearize the poten
around the center pointq of the propagator,

V~q8!5V„q1~q82q!…'V~q!1V8~q!~q82q!, ~66!

and use the exact propagator for the Lagrangian

L~ q̇8,q8!5(
i

mi

2
q̇822V8~q!q82V~q!1V8~q!q,

~67!

viz.

K~q1x/2,q2x/2,t !5S m

2p i\t D
1/2

expS i

\F m

2t
x22V~q!

2
V8~q!2

24m
t3G D . ~68!
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The integration overx and time gives an Airy function
phase-space density

s0~E!5E dp dp

hN
ã Ai @ ã„H~q,p!2E…#@P̂#W~q,p!,

~69!

with

ã5S \2uV8~q!u2

8m D 21/3

. ~70!

Comparison with the Airy function approximation intro
duced by Heller, Eqs.~19! and ~20!, shows that the two
coincide for a linear potential: thenV950 as well asf 250
and the two scales~20! and ~70! agree. The above approx
mative formula for the direct part of Franck-Condon facto
is exact for a linear potential and contains an interesting li
case: the one of an almost flat potential.

B. Recurrence resonances

If the potential vanishes,a50 in Eq. ~42!, the Gaussian
simply spreads and the Franck-Condon factor becomes

r free~E!5A2ms2

p\2

e22mEs2/\2

AE
. ~71!

Whena50 is substituted into Eq.~69!, the scaleã becomes
infinite and the limit is singular. Similarly, the parameters
goes to infinity, indicating that the transition proceeds via
full quantum regime. Note that in the series expansion~52!
the transition can be performed easily, the coefficients of
derivatives of thed function vanish. This shows that th
effect to be discussed here is nonperturbative.

On the classical side, the limit is also singular in a cert
sense. Fix the energy and consider the classical trajecto
starting at some pointq0. For a vanishing potential, there a
two straight line trajectories running off to positive or neg

FIG. 2. Contributions to the Wigner propagator in positi
space. The simplest approximation to the short-time Wigner pro
gator uses the free one on a constant potential energyV(q). This is
appropriate for high energies likeE1. Tunnel effects are importan
at lower energyE2, and can be included by use of the propagator
the linearized potential.
it

e

e

n
ies

-

tive infinity, depending on momenta. As soon as there i
sloping potential, no matter how smalla is, the topology
changes~see Fig. 3!. For negativea, the trajectories running
off to plus infinity will pick up in speed, but be otherwis
unchanged. The ones going toward negative infinity, ho
ever, run up to the potential and will have to return af
some time. The position of this turning point,qc52E/a, if
E is the kinetic energy atq0, moves further out the smallera,
and also the time for the trajectory to return increases w
decreasinga. The consequences of this are that the return
the classical trajectory introduces a long-time scale, wh
upon Fourier transform to the energy domain, will manife
itself in a modulation on small energy differences.

These modulations are observed in the exact Fran
Condon factor~45! in the case of large parameters, as then
the structure of the Ai2 part dominates~see Fig. 4!. A WKB
quantization allows us to connect the oscillations with rec
rent orbits.

The positions of the ‘‘resonances’’ in the exact Franc
Condon factor@Eq. ~45!# are given by the zeros of the firs
derivative of the Airy function which are approximately d
scribed by@32#

«n5F3p

2 S n1
1

4D G2/3

1
1

4
s24. ~72!

If we semiclassically quantize the action of the closed~re-
current! orbit which starts in the center of the Gaussian,
reflected by the potential, and returns to the initial point w
reversed momentum, by requiring that

S~E!5
2

\E0

2«l
A2m~E1ax!dx52p~n1 1

4 ! ~73!

~note that there is just one turning point; hence the contri
tion 1

4 instead of1
2 from the Maslov indices! we obtain reso-

nance positions

«n
sc5F3p

2 S n1
1

4D G2/3

. ~74!

a-

n

FIG. 3. Contributions to the Wigner propagator in phase spa
Two paths contribute to the semiclassical propagator fromq2x/2
to q1x/2: the direct one from phase space points 2 to 3 and the
through the turning point from 1 to 3.
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FIG. 4. Exact Franck-Condon factors for th
transition onto a linear potential. For smalls the
cross section Eq.~44! has a single maximum. Fo
larger s, recurrence resonances develop. In
scaled units they have a spacing given by E
~72!. In original units the oscillations becom
denser and denser.
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The quantization assumes orbits starting and ending in
center of the Gaussian and hence becomes more accura
a narrow Gaussian.

In the limit s→0 these oscillations are suppressed: T
initial Gaussian has a momentum distributione2 p̃2s22

,
which is more concentrated around zero for smalls. If we
regard the initial wave packet as a cloud of particles with t
momentum distribution, it will move quite uniformly fo
small s, whereas for larges the cloud will spread quickly.
The fast moving parts are reflected and interfere with
slowly moving parts. As the particles obey«5 p̃22 q̃ , their
energy distribution in the center of the Gaussian,q̃50, is
e2«s22

. This energy distribution factor is responsible for t
damping of the oscillations in the full cross section@Eq.
~45!#.

If we take a look at the exact autocorrelation function

C~ t !5
1

A11 i ts2
e2t2/4s22 i t 3/12, ~75!

in the limit of the reflection principle we have

C~ t !→
s→0

e2t2/4s2
, ~76!

which results in a Gaussian cross section. In the other li

C~ t ! →
s→` 1

A11 i ts2
e2 i t 3/12 , ~77!

the first part resembles the autocorrelation function o
freely moving, spreading wave packet, but the second os
lating term accounts for the recurrent path contributions
the propagator.

It is therefore reasonable to term the oscillating structu
‘‘recurrence resonances.’’ Although they are not connec
e
for

e

s

e

it,

a
il-
o

s
d

to periodic orbits which imply infinitely many revivals, the
are associated with recurrent orbits, and their autocorrela
function differs from that of a simply spreading wave pack

Already Condon@33# and then later Hunt and Child@34#
and Tellinghuisen@35# have mentioned these oscillations
appear on very shallow dissociative potentials and descr
them with the help of an opposite reflection principl
namely, that the continuum wave function is reflected in
cross section@36#: For larges, in the Franck-Condon facto
@Eq. ~44!# we have an initial state centered atq̃50 which
acts like a needle scanning the continuum state,

e2 q̃2s2/2

A2ps
→

s→`

d~ q̃ !, ~78!

and the cross section becomes

r~«!5
2sAp

V8l2
Ai2~2«!. ~79!

This example nicely illustrates the importance of recurr
orbits since they are responsible forall the structures which
are often associated with periodic orbits.

C. Higher-order approximations in the time domain

In both the energy and time domains, the Airy functio
are intuitively appealing approximations based on the fi
few correction terms, but it is not obvious how to improve
them systematically. The most convenient method uses
Wigner expansion of the time propagator, obtained from
~28! with the Grammaticos-Voros method and the univer
coefficientsGr ; compare Eq.~25!. The Wigner transform of
the propagator has the expansion
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@e2 iĤ t/\#W5(
r 50

`
~2 i t !r

r !\ r
e2 iHt /\Gr~q,p,\!, ~80!

with the sameGr as calculated before. This means that t
autocorrelation function of the wave function,

C~ t !5^C i uC r&5tr e2 iĤ t/\P̂ ~81!

5
1

hE dp dq@e2 iĤ t/\#W~p,q!@P̂#W~p,q!,

~82!

can be constructed with the help of this series. Thep inte-
grations can always be done analytically, and we are
only with the coordinate integrations. The cross section
then obtained by a Fourier transform,

r~E!5
2

h
Re E

0

`

eiEt/\C~ t !x~ t !, ~83!

wherex(t) is a window function that confines the region
integration to the short times needed for the direct part. T
window is moreover important as the terms in expans
~80! may grow without bound for large time, influencing th
convergence of the integrals. As soon as terms beyond
linear potential approximation are included, the autocorre
tion function may show recurrences structures which hav
be switched off by means of a window.

Equation~82! has an advantage over Eq.~18! in that it
avoids the energy derivatives which impose the highest
mands on the numerical accuracy of the phase-space inte
tions. The Fourier transform to energy can be done eff
tively by means of fast Fourier transforms. However, if t
series expansion~80! is used directly, the high powers fo
large times have a devastating effect numerically, and n
ing is gained. A way out of this dilemma is suggested by
manipulations that lead to Eq.~54!. Perhaps it is possible to
sum the power-series expression int in Eq. ~80! into some
exponentiated form, the first term of which would be an A
function. This may be achieved by using

(
r

~2 i t !r

r !\ r
Gr5expH 2 i(

k
Fkt

k\2kJ . ~84!

The expansion coefficientsGr are known from the algebra in
the energy representation, and the coefficientsFk can be ob-
tained from the Plemelj-Smithies recursion relations@36–38#

Fn5
~21!ni n11

n!
Gn2

1

n (
k51

n21

kFk

~21!n2ki n2k

~n2k!!
Gn2k .

~85!

Since fort50 we must have@e2 i (Ĥ2H)t/\#W51, the coeffi-
cientF050. The next few are

F150, ~86!

F252
i

2
G2 , ~87!
e

ft
is

is
n

he
-

to

e-
ra-
c-

h-
e

F352
1

6
G3 , ~88!

F45
i

4S 1

6
G42

1

2
G2

2D . ~89!

The above formulas have an interesting phase-space inte
tation: According to Berry@39#, we have now taken into
account the fringes in the phase space surrounding the
ergy shell. The difference with the Berry’s fringes formula
that he omits the second term int2 on the assumption that th
stability of the short trajectory segments does not change
that it changes slowly compared with the other terms lin
or cubic with time.

V. MATRIX ELEMENTS BETWEEN
HARMONIC-OSCILLATOR EIGENSTATES

To illustrate the quality of the various approximations w
have to go beyond the linear potential~since there the Airy
functions are exact! and turn to excitations into harmoni
potentials. Contrary to expectations based on the usual c
relationship between classical and quantum dynamics in
monic oscillators, the semiclassical expressions for
Franck-Condon transitions are not exact and are thus a us
test of our formulas.

As in the linear case, the initial stateuC i& is a Gaussian
@Eq. ~41!# of width s and a Gaussian Wigner transform
phase space@Eq. ~55!#. The Hamiltonian now is

H52
\2

2m
D1

mv2

2
q2. ~90!

The length scalel 5A\/mv is characteristic of the wave
length of the ground state; all higher excited states oscil
on shorter scales. It thus plays the same role as thel in the
case of the linear potential, setting the largest scale for qu
tum oscillations. The Franck-Condon transitions depend
the energy and on the single parameter

r 5l /s5A \

mvs2
, ~91!

which measures the size of the quantum oscillations rela
to the width of the initial state.

The Wigner transform of the initial state has a maximu
in phase space nearq5q0 andp50. The leading-order clas
sical phase-space average then yields a cross section w
increases up toEmax'mv2q0

2/2 and decreases for higher e
ergy. Since the quantum spectrum is discrete, the quan
transition strengths are discrete as well. A direct compari
between the leading-order classical Franck-Condon sp
trum,
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FIG. 5. Comparison be-
tween thenth harmonic-oscillator
eigenstate matrix element
^nuC i&^C i un& of the projector
onto a GaussianC i(q) with q
5A2.1 and the corresponding
classical phase-space average
the Wigner transform@Eq. ~92!#.
The center of the initial Gaussia
remains the same for all figures
The oscillator eigenvalues areEn

5\v(n11/2) with \54.0, 2.0,
1.0, and 0.25, andv51.0.
ne

ea
ra

ian

hen
r0~E!5E dq dp

2p\
d„E2H~p,q!…@ uC i&^C i u#W~p,q!,

~92!

and the quantum data is shown in Fig. 5.
The quantum calculations show that for large\ and large

r the quantum cross section is shifted towards higher e
gies. The Grammaticos and Voros series~25! for the har-
monic oscillator can be calculated as before for the lin
potential. The asymptotic expansion of the phase space t
u
w-
to
ns
r-

n
n

r-

r
ce

can be carried out quite easily for the scaled Hamilton

H5\v( 1
2 p̃21 1

2 q̃2), where q̃5q/l and p̃5pl /\. Again,
there is only one operator in series~31!,

H25
1

8

]2

] q̃2
1

1

8

]2

] p̃2
, ~93!

and the others vanish. From the recursion relations we t
find up to orderO(\8) with the help ofMAPLE:
@d~E2Ĥ !#W5d~E2H !1~\v!2@2 1
8 d9~E2H !1 1

12Ed-~E2H !#

1~\v!4@ 5
384d~4!~E2H !2 3

160Ed~5!~E2H !1 160
46 080E

2d~6!~E2H !#

1~\v!6@2 61
46 080d

~6!~E2H !1 479
16 1280Ed~7!~E2H !2 11648

10 321 920E
2d~8!~E2H !2 1120

11 612 160E
3d~9!~E2H !#

1~\v!8@ 1385
10 321 920d

~8!~E2H !2 4757
11 612 160Ed~9!~E2H !1 1529

64 512 00E
2d~10!~E2H !

2 17
41 472 0E

3d~11!~E2H !1 1
49 766 4E

4d~12!~E2H !#, ~94!
erm
fac-
are
wer
nate
he
s

which involves derivatives of thed function up to 12th order.
Incidentally, this expansion shows rather clearly the struct
of the two different series for Greek’s function, one in po
ers of \ @Eq. ~34!# and one in derivatives with respect
energy@Eq. ~25!#. Figure 6 shows the quantum correctio
for the harmonic oscillator Franck-Condon factors for diffe
ent values of the expansion parameters. Two trends ca
recognized: For larger , divergence sets in very early, eve
from the first term on, and the smaller the energy~or the
re

be

smaller the local gradient of the potential! the worse the
asymptotic expansion. In both cases the leading-order t
gives the correct qualitative shape of the Franck-Condon
tor. For large energies, the higher-order corrections
small, and the series is close to the exact values. For lo
energies, the higher-order corrections increase and alter
in sign—the typical features of an asymptotic series. T
oscillations increase rapidly withr so that the series become
practically useless without resummation.
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The Airy correction~69! has been computed, and give
remarkable results in the extreme quantum regime: Figu
shows the lowest-order classical approximation to
harmonic-oscillator matrix elements and the Airy functi
approximation. This confirms the importance of turni
point corrections and tunnel trajectories in the Fran
Condon region.

VI. FINAL REMARKS

We set out to calculate quantum corrections for Fran
Condon factors in the classical phase-space trace~8!. In a
nutshell, there are three main results:~i! For the expansion
based on Eq.~25! in the energy domain, the situation seem
to be that either the corrections are small to begin with~in
which case one would be happy with the leading-order
sult!, or that they are large and a resummation of the serie
required as it is asymptotic at best.~ii ! In the time domain
the expansion in the exponent@Eq. ~85!# provides a more
useful representation and contains nonperturbative eff
~the recurrence resonances!. ~iii ! The quality of the approxi-
mation in all cases is controlled by a single parameter, wh
may be estimated from the ratio of a de Broglie wavelen

FIG. 6. Quantum corrections to Franck-Condon factors for tr
sitions to harmonic-oscillator eigenstates. The different curves
clude all terms of Eq.~94! up to the indicated order in\. For larger
energies, the corrections improve the leading order result. For
energy they develop oscillations and diverge right away.
7
e

-

-

-
is

ts

h
h

to the width of the initial state as in Eqs.~46! and ~91!.
Clearly, the parameter controlling the convergence can

put to immediate use and can help to identify whether
classical approximation will suffice. An example will b
given in the photodissociation for water@11,22#.

The relationship between the series expansion in ene
with its derivatives of delta functions@Eq. ~25!#, and the
exponentiated one in the time domain@Eq. ~85!#, is subtle
and at present not fully understood. The numerical obser
tion is that it is in very good agreement with the quantu
results and that no divergences seem to occur. The calc
tion leading to Eq.~54! for the expansion of the Airy func-
tion shows that at least in this case all divergences are
moved instantly: the exponentiated series stops after
cubic in time. In general circumstances this will not be th
case, and the series will continue. Then the question
whether the power series in time@Eq. ~80!# or its exponenti-
ated version is convergent or whether at some late time, p
haps related to recurrent or periodic orbits, deviations b
tween quantum and semiclassical time evolution beco
noticeable. For instance, in the case of the harmonic osci
tor the propagator has an exact recurrence after half a pe

-
-

w

FIG. 7. Comparison between the Weyl term, the uniform a
proximation, and the exact results for transitions in harmonic os
lators. The exact result is shown by full circles, the Weyl term@Eq.
~92!# as a solid line, and the uniform approximation@Eq. ~69!# as a
dashed line.
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which can only be accounted for by a divergence of
series. The success of the present calculation in the
domain would then be related to the fact that the time e
lution is followed for a short time only. However, from
practical point of view, that is all one is asking for in th
calculation of the direct part in Franck-Condon transitio
and we therefore propose to use Eq.~82! with the exponen-
tiated expansion~85! and a fast Fourier transform to the e
ergy domain.

The formulas presented allow for an accurate semicla
cal calculation of the background term, and thus for the la
est contribution to the cross section in predominantly dir
reactions. The positions and widths of resonances can
calculated from periodic orbit expansions andz functions.
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Calculation of the cross section, however, again requires
proved formulas which take into account the neighborho
of the trajectories, and fringes in phase space are nee
This would then allow one to calculate all aspects of cro
sections semiclassically. Work along those lines is
progress.
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tanović, special issue of Chaos2, 1–158~1992!, and further
articles in this issue.

@9# P. Gaspard, D. Alonso, and I. Burghardt, Adv. Chem. Ph
80, 105 ~1995!.

@10# B. Eckhardt, G. Russberg, P. Cvitanovic´, P. E. Rosenqvist, and
P. Scherer, inQuantum Chaos, edited by G. Casati and B.V
Chirikov ~Cambridge University Press, Cambridge, 1995!.
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