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Uniform semiclassical expansions for the direct part of Franck-Condon transitions
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Semiclassical expansions for traces involving Green'’s functions receive two contributions, one from the
periodic or recurrent orbits of the classical system and one from the phase space volume, i.e., the paths of
infinitesimal length. Quantitative calculations require the control of both terms. Here we discuss the contribu-
tion from paths of zero length with an emphasis on the application to Franck-Condon transitions. The expan-
sion in the energy representation is asymptotic and a critical parameter is identified. In the time domain, a
series expansion of the logarithm of the propagator gives very good results. The expansions are illustrated for
transitions onto a linear potential and onto a harmonic oscillf&¥050-294{©8)09402-3

PACS numbg(s): 03.65.Sq, 33.80.Gj, 05.46b

I. INTRODUCTION In view of this it is perhaps not surprising that in semi-

. . . classical calculations of photodissociation cross sections one
Many quantum properties, including the density of states,sq has to go beyond the leading-order terms, and that one

and Franck-Condon transition matrix elements, can be eXsncounters the same kind of divergenf221,11. For prac-
pressed as a trace of the Green'’s function times some opergical applications the problems then are how to estimate the
tor [1,2]. Semiclassical expressions for such quantities arémportance of the higher-order ternfaithout calculating
naturally divided up into two parts, one due to “paths of zerothem, of coursg and how to improve on the series expan-
length” and one due to the longer recurrent or periodic tra-sion. We will show here that the comparison to a simpler
jectories of the associated classical sys{@s6]. The nu-  problem, namely, excitation onto a linear potential, suggests
merical and conceptual difficulties associated with the peri& useful parameter. For the second problem we analyze in
odic orbit part have received considerable attention in th&0Me detail the behavior of three different approximations to
literature (see the contributions to Ref§7,8] and review the background term, and identify the most useful one. For

[9]). Zeta functions have helped to overcome many of thesthe sake of simplicity in notation, all our calculations will be
' . 1€lp . y onfined to one degree of freedom only. Generalizations to
problems, at least in certain, well-behaved situati®sl?].

: ! X more degrees of freedom are straightforward. The main ideas
More recently, higher-order corrections to the dominanty pe jllustrated for transitions onto a linear potential and

semiclassical contributions, in particular in the neighborhoochnto a harmonic potential. Applications to photodissociation
of caustics and bifurcations, have been addregs2d18. In  of water will be given elsewherg22].
applications to the photodissociation of molecules, one has Various theoretical aspects of the classical and semiclas-
an additional source of corrections connected to the fact thatical limit of Franck-Condon transitions were discussed pre-
the operator is a projection on the initial state, and henc#iously in the literature. Much of the history was reviewed in
singular in the semiclassical limit. A way to deal with this Ref.[23], where an interesting alternative phase-space inter-
was proposed by Zobay and Albgi9]. preta_ltior_l for Franck-Condon transitions_can also be found.
In mainly direct reactions the largest part of the crossApplications to molecules can be found in Re24,25. Of
section comes, however, from the paths of zero length. Thiarticular relevance for our discussion is a paper by Heller
leading-order term is also known as the Thomas-Fermi con2): Which contains background information as well as a dis-
tribution for the case of smooth systems, or the Wey! ternffussion of the first few correction terms; we summarize some
for billiards. It measures the volume of the energy shell in®f NS r(;;url]ts in Slfc' Il A. ApprOX|mat|odn_s In th% time do-
units of Planck’s constant, raised to the power of the numbegafIn (VZVGICZ we take up in Sec. flwere discussed, e.g., in
of degrees of freedom presdBt4]. It turns out that in many eTSH[ _tl'a. f h , foll In Sec. Il di
situations one is too far away from this semiclassical limit e outine ot the paper Is as ToTows. In Sec. © We Jis-

(typically one needs a higher density of stafemd so has to cuss the Wigner a|_1d Grammatico_s—Voros expansions in t.he
g0 beyond this leading-order term. In billiards, the approXi_energy representation. The behavior at large orders for a lin-

X i ) ear potential is analyzed in Sec. Ill. In Sec. IV we study
mations to the density of states regularly contain the SUbapproximations in the time domain, which can then be con-

dominant contributions from the surface and corner correcpected to the energy domain by a Fourier transf@perhaps
tions, and even in smooth systems the leading-order terfy pe evaluated numericallyThe quality of the approxima-
alone will not do. The expansion in decreasing powers otions is illustrated for the harmonic oscillator in Sec. V.

energy or wave number, however, can typically besome conclusions are drawn in Sec. VI.
asymptotic at best. Building on their previous developments

in the theory of asymptotic series, Berry and HoWgd] Il. SEMICLASSICAL FRANCK-CONDON FACTORS
illustrated the behavior of the expansion for the case of bil-

liards: the series expansion indeed diverges, and the rate of
divergence is determined by short real or imaginary orbits of We consider transitions from an initial staig , typically
the classical system. a Gaussian, to a manifold of final stat¥s at energyE. The

A. Wigner series
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57 UNIFORM SEMICLASSICAL EXPANSIONS FOR TH. . . . 1537
system has one degree of freedom and the classical Hamilvhere the differentiations act to the left or to the right as
tonian on the upper potential energy surface is given by indicated. If the Hamilton operator is simply replaced by the
classical Hamilton function, the leading-order term for the
1) density of states, the microcanonical measure on the energy

shell,[ 8(E—H)]w~ 8(E—H), is obtained. The fact that the

. . formation of products and Wigner transforms does not com-
Quantum operators will be denoted with a caret, so that, €.9me is the source of quantum corrections which we want to

the quantum Hamilton operator will bél. The Franck- study.
Condon factors we want to calculate are the squares of the A systematic procedure of calculating an expansion of the
transition element§2,24,23, density of states in powers df was suggested long ago by
Wigner[30], and applied to the Franck-Condon problem by
p(E)=[(Wi|¥e)l*. 2

Heller [2]. It uses the statistical operatBr=exp(—3H) and

Using | We)(We|= 8(E—H), whereA is the Hamilton op- gfaftlcl’grhs-;?ir;?eesrature expansion f8r— 0. The statistical op-

erator for the final electronic state, we can write the Franck-
Condon factor as

p2
H(p.q)=5-+V(q).

p(E)=(W|8(E~ )W) ® a7 P 2(HPHPH). 12

= J+mdx (| x)(x| S(E—H)|P;) (4) The symmef[rized version on th_e right-hand_side is particu-
—o larly well suited for the application of the Wigner transfor-
mation, as it immediately shows that the quantum corrections
= tr S(E— ﬂ)ﬁ, (5)  come in even powers df only. Using Eq.(10) for the prod-
uct of two operators, the equation fEfP]W becomes
which has the above-mentioned form as a trace over a
Green'’s function,

J . - f .
) 1 A - @[P]Wz[H]WCOS{EA][P]W- (13
5(E—H):—;Im lIimG(E+ig) (6)
e—0
The first few terms can be calculated by substitution of the
1 1 ansatz
=——Im IIm—————, &>0 (7)
s—0E—H+ie

[Plw=ePM(1+A2c,+h%Cc,+ ). (14

times the projectofl=|W¥;)(¥;| onto the initial state. Tak-

ing the Wigner transform of this expression, one arrives aEach coefficientc,, is itself a polynomial in3. For later
classical phase space traces over the Wigner transforms t#ference we quote, for Hamiltonian(1) [2,30],

the operators involvef29],

1 [+ oo R . C2: _B2f2+ﬁ3f3, (15)
p<E>=Hf_ dpf_ ol S(E—FA) w(p.) [T w(p,a),
where the Wigner transform of an operatris given by 1
[29,30 fa=gm V" (16)
R . X| A X
[A]w(p,q)=f dxe P g+ 5 Alg— 5 ). 9
? ? fm o Vr2h 2 1
3= %5am S P, 17

It is interesting to note that under the trace the Wigner trans-
form of the product of two operators maps into the product
of the Wigner transforms. Generally, for a product of opera-where the primes denote derivatives with respect to position.
tors, one has The statistical operator is the Laplace transform of the
" density of states, so to regain the quantity needed in the
~ A I R phase-space trace, we have to do an inverse Laplace trans-
[AB]W(p,q)=[A]W(p,q)exp{7A][B]W(p,q) 10 form (see Ref[2] for more details The leading exponential
then maps into theé function on the classical energy shell,
with the differential operator 6(E—H), and the powers gB map into derivatives of thé
function with respect to energy. The resulting expansion thus
o (11 becomes
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A 92 The derivatives of thes function are with respect to the
[8(E—=H)]w= é)‘(E—H)—ﬁzfz—2 S(E—H) energy[as in Eq.(18)] and the universal coefficients are
JE the Wigner transforms of powers of the Hamiltonian,

3
+ﬁ2f3%5(E—H)+ﬁ4.... (189 G (p,q,8)=[(H—=H(p,a)1) - (26)

They are universal in that other functions of the Hamiltonian

Heller [2] noted that instead of expanding in the form of an ..n be obtained by integration over energy, e.g.,

exponential times a power series B one could alterna-
tively expand as the exponential of a power series. For the

+ oo
terms given above this leads to an Airy function approxima- [f(ﬂ)]W:f dE f(E)S(E—H) (27)
tion, -
[8(E—H)lw=exp{— (H—E)f,/3f3— 2/2f3/27f2} i 1
r
< (H(p,a)G:(p,a,%), (28)
X o Ail a(H—E+#2f%3)], (19) =0 r! '
with and will contain the same coefficients. We will use this trans-
o 13 formation for the statistical operator and the Green’s func-
a=(3f3) " (200 tion below.

i _ a ) In principle, G, could be calculated by straightforward
Up to and including terms of ordér” the &-function expan-  gynansions of the powers, and subsequent Wigner transfor-
sion of the A|ry function in Eq.(l9) is equwalent.to t.he mation. However, Grammaticos and Voli@i] gave a more
Wigner expansion(18). We will come back to this Airy  efficient algebraic technique, using Green's functions. They

function approximation below. considered transformatiof28) with f(H)=1/(H—2z) and

) ) thus found, for the Green’s function,
B. Grammaticos-Voros expansion

The Wigner method of Sec. Il A is a bit tedious when it . * G(p,a.%)
comes to calculating higher-order terms. A very convenient [Glw(p,a.fi)=2 (— . (29
algebraic method of expansion was developed by Grammati- r=0 (H(p.a)-2)

cos and Vorog31]. The Dirac measurBs(E—H)]y is ex-
panded around the identity operatbrtimes the classical inverse powers offi—z)~"~L. The Green's function satis-

Hamilton function,H(p,q)-1. The resulting series contains fies (A —2)G(z)=1. When we use the symmetrized version

powers of the deviationsl —HI, which have an explicit as in Eqs{(12) and (13), this becomes in the Wigner repre-
dependence because of the Wigner equivalent of the produghtation

of two operators, Eq.10). To obtain this expansion, we start
from the integral representation

G, can be read off from an expansion @&]w(p,q.%) in

[[Tw=1=[(A-2)G(2)]w (30
S(E— H)_21ﬁ - elEt/hg—iHUA Gt (21) 5
=[(H- Z)]w005< )[G]W(Z)
:% ei(E—H)t/ﬁe—[i<H—Hi)]t/hdt (22) .
mh J - . .
=(H=2)[Glu+ 2 #*"Haol Glw-
1 o (31
m (B~ H>t/h20 T (H Hi)"dt.

(23)  The expansion in powers df in the last line defines differ-
ential operator$t,(p,q,V,,V). Forn=2 and 4 and Hamil-
Next, we take the Wigner transform on both sides and intertonian (1), they are
change summation and integration,

[S(E=F)lw=5_ ﬁE uf_ dt(g) 0 8lmyg2 gq2 ap?)’

r!

x el E=HIVAL (] — HT)' Ty, (24) 1 V(g &
47384 aq* ﬁp

(33

o (= 1)’ 50
Z (E-H(p.a)G(p.q.%). The Wigner transform of the Green’s function can be ex-

(25  panded in powers of as well,
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* the maximum of the Gaussian initial stage¢hich here is

[Glw(p.a,2,5)= 20 h"Gm(p,q,2), (34 centered aty=0). Lengthsq=g/\ can conveniently be
m measured in units of

and comparison of like powers d@f in Eq. (30) then gives — (72 1/3
recursion relations for the coefficien®,,: A=(R%2ma)™, “43

1 and energy in units adi\, i.e.,e=E/a\. The eigenfunctions

Go(p.q,2) = , (35  for thi.s potential are Air_y functions, and sets thg scale for
H-z the width of the oscillations near the turning point; the other
oscillations in the wave function have shorter wave length.

1 ! The Franck-Condon matrix elements can also be calculated
GZn(p!qaZ) == H— Z( kgl HZkGZ(n—k)) . (36) exacﬂy,
- : i ati i 1 “ 2215 . ~ ~|?

ggg ([:)Lc;\)/vzrrij (l;fé)]Yanlsh because of symmetrizatipas in p(e)= —— f,wefq P2Ai(— (G +2))dG (44)

Putting everything together one notes that by this method
the Green’s function becomes a double series, organized in 207 1
powers offi and in inverse powers ofH—z). Expression e 7TAiZ(_S4_8>eS'6/6-95'2. (45)
(34) emphasizes the former, and E9) the latter, so thad, an? 4
can be obtained from Eq36) by collecting contributions
with the same powers ofH{—2z) " ~*. The structure of the They depend on energy and on the ratio
expansion is such that there are always finitely many contri-

s=\o (46)

butions to the coefficient§, [for an example, see the expan-
sion for the harmonic oscillator in E¢94) below]. The first

few coefficients are of the length scale of the continuum wave function to the

width of the initial state. This parameter also containand

Go=1 (37) thus indicates how “semiclassical” one is. For smslli.e.,
small # or large ¢ and a broad initial state, the transition
G,=0 (38) integral will average over many of the oscillations of the

Airy function, and one can expect the leading classical term
to be reasonably accurate. However, for lasgend narrow
72 9?V(q) . 7 . - .
a (39) Gaussians, the initial state will probe every fine detail of the

=

4m 99> Airy function and the classical approximation will presum-
ably not work well. We will come back to this point in Sec.
K2 oV 2 p252 g2y 344 gAYV A% _B. It is our aim now to show how _these quantum expec-
= —( (q)) - p2 (zq) + > (4q) ) tations are reflected in the semiclassical expansion. As a first
4mi Jq 4m<  dq 64m*  Jq step we need to calculate the terms in se(Rs.

(40

On the basis of these expansions, we now investigate their B. Asymptotic expansions for a linear potential

large-order behavior, first for the linear potential already For Hamiltonian(42), with its linear potential, Eq(31)

studied by Hellef2]. contains only a single differential operator,
Il LINEAR REPULSIVE POTENTIAL 1 1

- Hp=—§(H-2)A?=— o —,

8m &qz

A. Quantum case

The simplest model for a Franck-Condon transition onto aand all higher operators vanish. Then the recursion relations
dissociating potential describes transitions from a Gaussiafor the G, reduce to

initial state,
Gon=—GoH2Gyn-1)- (47)
1 M N\2). 2
(alwi)= i 1n® (a=do)*/20%, (4D Since
onto a linear potential with the Hamilton operator, Go= Hl_Z - 1 49
72 %—aq—z

ﬂz—%A—aq. (42)
is linear ing, the action ofH, on powers ofG, is
This model can be solved analytically, and can be used as an

approximation for transitions in an arbitrary potentialaifs H,Gh= an(n+ 1)68”. (49)

taken to be the slope of the upper potential-energy surface at ~ 8m
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Together with the prefactor- G, the coefficientsG,, be- 1.0
come
0.0
2 n
3n)! .
Gon=| 5 (n SIS (50) 10
3'n! A_z_o
Comparing the expansion § -3.0
o 2\ n 40t
N a (3n)! 1
— _ 2n
[Clw n§=:0 Sm) g 3! (H-z)3"*! 51 Sor
A -6.0
to the# expansion of G]yy, in Eq. (29), one can easily read 70 . ‘ . . . )
off the coefficientsG, . The asymptotic serie@25) for the 0.0 100 20.0 300 40.0 50.0 60.0 70.0
Dirac phase-space measure then becomes n
o L1[a%h?\" FIG. 1. Seri ion for Franck-Condon transitions ont
S(E—F) o= il SCVE—H(q.p)). . 1. Series expansion for Franck-Condon transitions onto a
Lo ) w E ( 24m) ( (@.p)) linear potential for a Gaussian initial state. Shown is the decadic

(52)  logarithm of the relative error of the series including the finst
terms taken at the energy corresponding to the center of the Gauss-
This may be compared to the exact form p&(E ian.

—H)]yw computed from the exact propagator,

2 *© S3n
1 Pas; mp( g)= 2 I,(e,S), (56)
E—%pz—kaq 1 Y man o 12n!
[6(E—H)]w=Ai 22\ 13 a2 2\ 13
( am ) am with the integrals
1 © aZhZ w
= ﬂf_wdz exp[ i(E—H)z—i Sam 2 ] I.(g,8)= fo e_(XZ_S)ZSZ_XZ/SZHgn((XZ_S)S)dX. (57)

(53

Just like the exact quantum result, the expansion contains
where z is a dimensionless integration variable. The se-only a single parametes=\/o. The behavior for different
quence ofé functions and their derivatives may be obtainedvalues ofs at =0, i.e., for the maximum of the packet, is
[2] by expanding the exponential with tzé term in a power indicated in Fig. 1. For sma# the terms decay rapidly and
series and interchanging integration and summation, up to highn, but eventually they start to grow and to diverge
rapidly: this is the behavior expected for an asymptotic se-
ries. Ass increases, the turnover to divergence comes for
smallern and fors near 1 all higher-order terms are larger
than the first one. In Table | we list the index of the smallest

n term as well as its size for several valuessof
SCV(E—H). (54)

©

- 1 2ﬁ2
[8(E=H)Iw= Ego -

n
J dZ( I23)n i(E—H)z

1 2ﬁ2

n!

-3,

TABLE I. Asymptotics for the cross section of a Gaussian on a
These formulas can now be used for the calculation of théinear potential: We calculate the series up to its smallest term. The
Franck-Condon factors. number of terms included grows with decreasing expansion param-
eters. log;pAp(e=0) is the logarithm of the relative error of the
) ) series including the first terms taken at the energy corresponding
C. Asymptotic behavior to the center of the Gaussian. For lagyel, the asymptotic series
The Wigner transform of the initial Gaussian is a GaussiS Practically of no use.
ian in phase space,

S n log;0A p(e=0)
(a-qo)* o°p? 18 0 0.03
Hw(a,p) ZGXP{ 2 52 ] (55) 1.6 1 -0.16
1.4 1 —-0.59
which helps to limit the domain of integration in E¢B) 1.2 1 -1.38
especially in cases of dissociation processes where the clas- 1.0 1 —1.68
sical phase space is unbounded in certain directions. The 0.8 5 —2.50

expansion for the density of states, E§4), then gives, for 0.63 21 —451
the series expansion of the Franck-Condon factor,
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To estimate the rate of divergence of the series, one canumerical calculations: the wave packet is propagated for a
substitute the generating function for the Hermite polynomi-time long enough so that the overlap with the initial wave

als and express integrals7) for e=0 as

&3]’] ©
= dx
&t3”( fo

In(s)_

e_(XZ_S)ZSZ—X2/32+2t(X28)S_t2)

t

=0
(58

This integral cannot be solved exactly. In the saddle-point

approximation for smal$, one finds just a single saddif®r
somee there are three The result is

1,(S)= agn/ﬁ S e—t2>
" 21— 2t

Expanding in powers of, one finally arrives at

T -1)'
|n<s>:g<3n>!2| s X

fre3n !

(59

t=0

1

(253)r+1< _rz> , (60)

clearly showing a leading-order behavior for smalbf the
form

\/— 3n)!
(_1)3n/27w(;n/;)!s' n even
In(s)~ \r
PN A L) L
(=D Gy S N odd
(61

Together with the other prefactors in E§6), a typical term
in the sum forn even is

(=132 (3n)!
Jman  12°n!(3n/2)!

S3n+1

, (62

and similarly forn odd. With the help of Stirlings formula,

packet is minimal, but short enough so that no major part has
returned, yet. This finite time window is then Fourier trans-
formed to obtain the background term.

This can be mimicked in the semiclassical approximation.
The Franck-Condon factors are related to Feynman'’s propa-
gator in phase space by

1 o dg dp . - -
()= —re| “at | L= p,0) [KTwip.0)
™ 0
(63)
where[R]W is the Wigner transform of the propagator

X

—iAth| 4
)

[Klw(p.a)= j dxe”"’ﬁ<q+ g
(64)

In the standard semiclassical approximation the smooth part
of the Franck-Condon factor is obtained by use of the short-
time propagator frong—x/2 to q+x/2 for Eq. (64). In the
simplest approximatiofe.g., Berry and Mount1972], K is
replaced by a propagator for a free particle in a constant
potentialVV(q),

1/2
ei[(mIZt)xz—V(q)t]/h
2miht )

K(q+x/2,g—x/2t)= (
(65

The dominant part of the Franck-Condon factor as a function
of the energy will come from that region in energy where the
turning point of the classical motion on the upper surface is
near to the maximum of the initial state. The ultimate form
of this is the reflection principle, where the wave function on
the upper surface is replaced by dunction so that the cross
section is obtained by “reflection” of the initial state on the
potential-energy surfacsee Refs|[2,24] for a discussion of

its origin and its limitations This implies that the straight-

one can estimate the size of this term to be of the ordefine propagator on a constant potential is a rather poor ap-
[V6(n/12€)"%]°". The terms start to grow once the squareproximation, since it does not account for a turning point nor

bracket becomes larger than 1, ie., fon>n,

the exponential damping when entering the forbidden region

~(2e/+/6) s~ 3. This strongs dependence is in accord with (see Fig. 2

the variations in Fig. 1.

To obtain a better approximation linearize the potential

The information gained from this analysis of the linear around the center poirmt of the propagator,
potential can be used in more general settings: for excitations

into some arbitrary potentiak(q), the parametea can be
estimated from the slope of the potential at the maxinggm
of the initial state,a=—V’'(qy). If the parameters thus

formed is small, the classical approximation will be good
(and the corrections smaliwhereas some uniform approxi-

mation has to be tried, § is large.

IV. TIME-DOMAIN APPROXIMATIONS

A. Formal theory

Another approach to the calculation of the mean density K
of states exploits the relationship between energy and time
domains. Since the mean parts are obtained by averaging
over (large energy intervals, they correspond to short-time
properties. This is the way the background is obtained in

V(q")=V(+(a'—q)=V(q)+V'(a)(q’'—q), (66
and use the exact propagator for the Lagrangian
NN — mi' 12 ’ ’ ’
£(@',0)=2 59" V'(a)a’' = V(@) +V (@),
(67)
viz.
m 1/2 iTm
_ - 2
(g+x/2,g—x/2}) (Zwiﬁt) exp(h 2tx V(q)
V'(q)? ,
~ 2. (68
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E V(9) ® 3..E=H
/.#"

= ] ‘~~~.\M
|
N - > q

X X
q—- 5 q 9+ =5

/

FIG. 3. Contributions to the Wigner propagator in phase space.
FIG. 2. Contributions to the Wigner propagator in position Two paths contribute to the semiclassical propagator fopax/2
space. The simplest approximation to the short-time Wigner propato g+ x/2: the direct one from phase space points 2 to 3 and the path
gator uses the free one on a constant potential enéfgy. Thisis  through the turning point from 1 to 3.
appropriate for high energies like;. Tunnel effects are important
atloyver e.nergyEz, an.d can be included by use of the propagator onjy,e infinity, depending on momenta. As soon as there is a
the linearized potential. sloping potential, no matter how small is, the topology
changegssee Fig. 3. For negativen, the trajectories running
off to plus infinity will pick up in speed, but be otherwise
unchanged. The ones going toward negative infinity, how-
do d ever, run up to the potential and will have to return after
Uo(E)ZJ pN p; Ai['&(H(q,p)—E)][ﬁ]w(q,p), some time. The position of this turning poinf,= — E/a, if
h E is the kinetic energy aiy, moves further out the smaller,
(69) and also the time for the trajectory to return increases with
decreasin@. The consequences of this are that the return of

The integration overx and time gives an Airy function
phase-space density

with the classical trajectory introduces a long-time scale, which,
B2V ()2 13 upon .Fourier transform to the energy dpmain, will manifest

= —) (70)  itself in a modulation on small energy differences.
8m These modulations are observed in the exact Franck-

. . . . L Condon factor45) in the case of large parameteras then
Comparison with the Airy function approximation intro- the structure of the A part dominategsee Fig. 4 A WKB
dupeql by HeIIt_ar, Eqs(19) gnd (20),’, shows that the wo quantization allows us to connect the oscillations with recur-
coincide for a linear potential: thevt”=0 as well asf,=0 o+ oipits.
and the two scale20) and(70) agree. The above approxi- — rha nositions of the “resonances” in the exact Franck-
mative formula for the direct part of Franck-Condon factorsCOndon factof Eq. (45)] are given by the zeros of the first

is exact for a linear potential and contains an interesting "miHerivative of the Airy function which are approximately de-

case: the one of an almost flat potential. scribed by{32]
B. Recurrence resonances 37 1\12/3
- - - - en=|—|n+=|| +=s7% (72)
If the potential vanishesa=0 in Eq. (42), the Gaussian n 2 4 4

simply spreads and the Franck-Condon factor becomes

> amEs2IH2 If we semiclassically quantize the action of the clogest
Pired E)= /Zm" e _ (71) curren} orbit which starts in the center of the Gaussian, is
fre wh2 JE reflected by the potential, and returns to the initial point with
reversed momentum, by requiring that

Whena=0 is substituted into Eq69), the scalex becomes
infinite and the limit is singular. Similarly, the parameter 2 (—er N
goes to infinity, indicating that the transition proceeds via the S(E)= %fo V2Zm(E+ax)dx=2m(n+3) (73

full guantum regime. Note that in the series expansii)
the transition can be performed easily, the coefficients of th
rivativ f thes function vanish. This shows that the . X L .
g?fec?toeé)se (()jiscuesseg r(;eroe is iosperturt?a;vg. s Mat e ion 3 mste_a_d of} from the Maslov indiceswe obtain reso-
On the classical side, the limit is also singular in a certainance positions
sense. Fix the energy and consider the classical trajectories
starting at some poirg,. For a vanishing potential, there are
two straight line trajectories running off to positive or nega-

?note that there is just one turning point; hence the contribu-

SC_

€n

37 1 2/3
?( n+ Z) } . (79
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The quantization assumes orbits starting and ending in th#® periodic orbits which imply infinitely many revivals, they
center of the Gaussian and hence becomes more accurate &e associated with recurrent orbits, and their autocorrelation
a narrow Gaussian. function differs from that of a simply spreading wave packet.
In the limit s—0 these oscillations are suppressed: The Already Condor{33] and then later Hunt and ChilB4]
initial Gaussian has a momentum distributi@y P >,  and Tellinghuiserf35] have mentioned these oscillations to
which is more concentrated around zero for snsallf we  @ppear on very shallow dissociative potentials and described

regard the initial wave packet as a cloud of particles with thighem with the help of an opposite reflection principle,
momentum distribution, it will move quite uniformly for namely, that the continuum wave function is reflected in the

small s, whereas for large the cloud will spread quickly. Cross sectio36]: For larges, in the Franck-(iondon factor

The fast moving parts are reflected and interfere with thdEq. (44)] we have an initial state centered @t=0 which

slowly moving parts. As the particles obey=p2—7q, their  acts like a needle scanning the continuum state,

energy distribution in the center of the Gaussigrs0, is

e *s °. This energy distribution factor is responsible for the

21:15r)n];.3|ng of the oscillations in the full cross sectifiaq. N
If we take a look at the exact autocorrelation function

8—6252/2 S—®©

— 5(9), (79)

and the cross section becomes

1 202 _i+3
— e*t /45— it /12, 75
V1+its? (79 20\ I
p(e)= V,)\ZAI (—e). (79
in the limit of the reflection principle we have
=0 This example nicely illustrates the importance of recurrent
C(t) —» e v/ (76)  orbits since they are responsible falt the structures which

. ) ) i .. are often associated with periodic orbits.
which results in a Gaussian cross section. In the other limit,

S 1 3 C. Higher-order approximations in the time domain
Ct) > —=e 12, (77 : - - -
[1¥its? In both the energy and time domains, the Airy functions

are intuitively appealing approximations based on the first
the first part resembles the autocorrelation function of dew correction terms, but it is not obvious how to improve on
freely moving, spreading wave packet, but the second oscithem systematically. The most convenient method uses the
lating term accounts for the recurrent path contributions tdNigner expansion of the time propagator, obtained from Eq.
the propagator. (28) with the Grammaticos-Voros method and the universal
It is therefore reasonable to term the oscillating structuresoefficientsg, ; compare Eq(25). The Wigner transform of
“recurrence resonances.” Although they are not connectedhe propagator has the expansion
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. o0 _.t r . 1
[elet/h]W:E uelet/hgr(q’p'ﬁ), (80) fgz—gg?” (88)
=0 rla'

with the samej, as calculated before. This means that the
autocorrelation function of the wave function, i1 1,

A .F4:Z gg4—§gz . (89)
C(t)=(¥;|¥,)=tr e "HVA[] (81)

The above formulas have an interesting phase-space interpre-

tation: According to Berry{39], we have now taken into
(82 account the fringes in the phase space surrounding the en-

ergy shell. The difference with the Berry’s fringes formula is
can be constructed with the help of this series. phiate-  that he omits the second termtfon the assumption that the
grations can always be done analytically, and we are lefsapility of the short trajectory segments does not change, or
only with the coordinate integrations. The cross section ighat it changes slowly compared with the other terms linear
then obtained by a Fourier transform, or cubic with time.

1 A ~
- j dp dde " (p,q)[ T Tw(p.a),

2 ©
_ iEt/A
p(E)=Re fo e XM, (83) V. MATRIX ELEMENTS BETWEEN
HARMONIC-OSCILLATOR EIGENSTATES

wherex(t) is @ window function that confines the region of 14 jjystrate the quality of the various approximations we
integration to the short times needed for the direct part. Thl%ave to go beyond the linear potentiaince there the Airy
window is moreover important as the terms in expansionynctions are exagtand turn to excitations into harmonic
(80) may grow without bound for large time, influencing the tentials. Contrary to expectations based on the usual close
convergence of the integrals. As soon as terms beyond thgationship between classical and quantum dynamics in har-
linear potential approximation are included, the autocorrelag,onic oscillators, the semiclassical expressions for the
tion function may show recurrences structures which have tganck-Condon transitions are not exact and are thus a useful
be switched off by means of a window. test of our formulas.

Equation(82) has an advantage over EQ8) in that it As in the linear case, the initial staf@;) is a Gaussian
avoids the energy derivatives which impose the highest de[-Eq_ (41)] of width o and a Gaussian Wigner transform in

mands on the numerical accuracy of the phase-space i”tegrﬁﬁase spackEq. (55)]. The Hamiltonian now is
tions. The Fourier transform to energy can be done effec-

tively by means of fast Fourier transforms. However, if the

series expansiofB0) is used directly, the high powers for 52 2

. . . Mw
large times have a devastating effect numerically, and noth- H=—-—A+—0@° (90)
ing is gained. A way out of this dilemma is suggested by the 2m 2

manipulations that lead to E¢G4). Perhaps it is possible to
sum the power-series expressiontim Eq. (80) into some
exponentiated form, the first term of which would be an Airy The length scale”=\A/mw is characteristic of the wave

function. This may be achieved by using length of the ground state; all higher excited states oscillate
on shorter scales. It thus plays the same role as threthe

E (—=it)" _ E kj, ~k 84 case of the linear potential, setting the largest scale for quan-

P4 Gr=exp —i n Fil : (84 tum oscillations. The Franck-Condon transitions depend on

the energy and on the single parameter

The expansion coefficients are known from the algebra in
the energy representation, and the coefficiefitean be ob-

tained from the Plemelj-Smithies recursion relatif86—38§ r=/lo= i , (92)
. Mwo?
(_1)nin+1 1 n— (_1)n—kin—k
Fom——5—% = > k}—kﬁgnfk- ) ) . )
n! n k=1 (n—=k)! which measures the size of the quantum oscillations relative

(89 to the width of the initial state.
_ Bt . The Wigner transform of the initial state has a maximum
Since fort=0 we must havg¢e "=V} =1, the coeffi-  in phase space negr=q, andp=0. The leading-order clas-

cient 7,=0. The next few are sical phase-space average then yields a cross section which
increases up tEmanmeqglz and decreases for higher en-
F1=0, (86) ergy. Since the quantum spectrum is discrete, the quantum

transition strengths are discrete as well. A direct comparison
between the leading-order classical Franck-Condon spec-

i
Fo=— Egzy (87) trum,
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dq dp can be carried out quite easily for the scaled Hamiltonian
po(B)= | 5 == SE—H(p, )|V (¥i[lw(p.q), H=hw(ip?+1q?), whereq=q// and p=p//#. Again,
(92)  there is only one operator in seriésl),
e 1 (92 1 92 03

2 8 (9q 8 (9p2'

and the quantum data is shown in Fig. 5
The quantum calculations show that for lafgend large

r the quantum cross section is shifted towards higher ener-
gies. The Grammaticos and Voros seri@$) for the har-

monic oscillator can be calculated as before for the lineaand the others vanish. From the recursion relations we then
potential. The asymptotic expansion of the phase space tradiad up to orderO(%8) with the help ofMAPLE:

[8(E-—H)lw=8E—H)+(hw) - 38"(E-H)+LE8"(E—H)]
+(hw) 3536 V(E—H) — 1HESP(E—H) + 5555E* 8 (E~H)]
+(ﬁw)6[_4 & 6)(E H)+164Z280 (7)(E_H) 101312614220E25(8)(E H) 11%311220160E35(9)(E H)]
+(ﬁw)8[ 10 1335?59205{8)(E_ H)— 11?371527160E5<9)(E H)+ 64155122900Ez5 lo)(E_ H)
E35{11>(E_H)+4971664E45<12)(E_H)]1

(99

17
14720

smaller the local gradient of the potenjidhe worse the

which involves derivatives of thé function up to 12th order
Incidentally, this expansion shows rather clearly the structur@symptotic expansion. In both cases the leading-order term
of the two different series for Greek’s function, one in pow- gives the correct qualitative shape of the Franck-Condon fac-
ers of 4 [Eqg. (34)] and one in derivatives with respect to tor. For large energies, the higher-order corrections are
energy[Eq. (25)]. Figure 6 shows the quantum corrections small, and the series is close to the exact values. For lower
for the harmonic oscillator Franck-Condon factors for differ- energies, the higher-order corrections increase and alternate
ent values of the expansion parameters. Two trends can be sign—the typical features of an asymptotic series. The
recognized: For large, divergence sets in very early, even oscillations increase rapidly withso that the series becomes
practically useless without resummation.

from the first term on, and the smaller the eneigy the



1546 BRUNO HUPPER AND BRUNO ECKHARDT 57

0.06 - - 0.05 :
=15 ay ® quantum —— Weyl term
0.05 =1. { weyl O(h:) i r=1.78 @ - Tunnel corr
- eyl o) 0.04 ® quantum |
0.04 | “ T weyl O) |
. 0.03 |
3 )
5 0.03 =
0.02 |
0.02 |
001} 0.01
0.00 L s 0.00 . : o=
0.0 10.0 20.0 30.0 0.0 10.0 20.0 30.0
Energy Energy
0.06 ) 0.04 : :
_ © quantum Weyl term
+ r=123 0. ey
0.05 — weylO(h) - r=25 0 eees-e Tunnel corr
: - — - weyl O(h")
Y b S \ W weyl O(h") | 0.03 | @ quantum
0.04 Y I R S weyl O(h%)
& 003 I ~
£ 0.03 I: )
& : & 0.02
0021
0.01 § ,'I,' 0.01 ¢
0.00 L3 :
0.0 10.0 20.0 0.0 0.00 . .
Energy 0.0 10.0 20.0 30.0

Energy

FIG. 6. Quantum corrections to Franck-Condon factors for tran-
sitions to harmonic-oscillator eigenstates. The different curves in- FIG. 7. Comparison between the Weyl term, the uniform ap-
clude all terms of Eq(94) up to the indicated order ifi. For larger ~ proximation, and the exact results for transitions in harmonic oscil-
energies, the corrections improve the leading order result. For lovators. The exact result is shown by full circles, the Weyl t¢Eq.
energy they develop oscillations and diverge right away. (92)] as a solid line, and the uniform approximatidiq. (69)] as a
dashed line.
The Airy correction(69) has been computed, and gives
remarkable results in the extreme quantum regime: Figure 0 the width of the initial state as in Eq&t6) and (91).
shows the lowest-order classical approximation to the Clearly, the parameter controlling the convergence can be
harmonic-oscillator matrix elements and the Airy functionput to immediate use and can help to identify whether a
approximation. This confirms the importance of turningclassical approximation will suffice. An example will be
point corrections and tunnel trajectories in the Franck-given in the photodissociation for watgk1,22,.
Condon region. The relationship between the series expansion in energy
with its derivatives of delta functionfEq. (25)], and the
V1. FINAL REMARKS exponentiated one in the time domdigq. (85)], is subtle
and at present not fully understood. The numerical observa-
We set out to calculate quantum corrections for Franckdtion is that it is in very good agreement with the quantum
Condon factors in the classical phase-space tf8celn a  results and that no divergences seem to occur. The calcula-
nutshell, there are three main resulfy: For the expansion tion leading to Eq(54) for the expansion of the Airy func-
based on Eq(25) in the energy domain, the situation seemstion shows that at least in this case all divergences are re-
to be that either the corrections are small to begin with moved instantly: the exponentiated series stops after the
which case one would be happy with the leading-order recubic in time. In general circumstances this will not be the
sult), or that they are large and a resummation of the series isase, and the series will continue. Then the question is
required as it is asymptotic at besii) In the time domain whether the power series in tinfEq. (80)] or its exponenti-
the expansion in the exponefq. (85)] provides a more ated version is convergent or whether at some late time, per-
useful representation and contains nonperturbative effectsaps related to recurrent or periodic orbits, deviations be-
(the recurrence resonange@ii) The quality of the approxi- tween quantum and semiclassical time evolution become
mation in all cases is controlled by a single parameter, whiclmoticeable. For instance, in the case of the harmonic oscilla-
may be estimated from the ratio of a de Broglie wavelengthor the propagator has an exact recurrence after half a period
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which can only be accounted for by a divergence of theCalculation of the cross section, however, again requires im-
series. The success of the present calculation in the timproved formulas which take into account the neighborhood
domain would then be related to the fact that the time evoeof the trajectories, and fringes in phase space are needed.
lution is followed for a short time only. However, from a This would then allow one to calculate all aspects of cross
practical point of view, that is all one is asking for in the sections semiclassically. Work along those lines is in
calculation of the direct part in Franck-Condon transitions,progress.
and we therefore propose to use E8R) with the exponen-

tiated expansioli85) and a fast Fourier transform to the en-

ergy domain.

The formulas presented allow for an accurate semiclassi- We thank J. P. Keating for helpful comments on
cal calculation of the background term, and thus for the largasymptotic series. B. E. thanks the Newton Institute for
est contribution to the cross section in predominantly direcMathematical Sciences for its hospitality during the writing
reactions. The positions and widths of resonances can hbaf this paper. This work was supported by Deutsche Fors-
calculated from periodic orbit expansions andunctions.  chungsgemeinschaft.
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