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Interference in hyperbolic space
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The interference in a phase space algorithm of Schleich and WHéklarre326, 574 (1987)] is extended
to the hyperbolic space underlying the group (8d). The extension involves introducing the notion of
weighted areas. Analytic expressions for the asymptotic forms for overlaps between the eigenstates of the
generators of qd,1) thus obtained are found to be in excellent agreement with the numerical results.
[S1050-294{@8)08602-9

PACS numbg(s): 03.65.Sq, 03.65.Ca, 42.56p

I. INTRODUCTION tempts have also been made to apply such approaches to
extended phase spadd®,13,14.

A central problem in quantum mechanics is the calcula- Lassig and Milburri10] discussed the semiclassical limits
tion of the overlap, that is, the scalar product between twmf the angular-momentum marginal probability distributions
guantum states. Wheeler, Schleich, and co-workérs5] by applying the PSI approach to a compact spherical phase
have given an elegant geometrical algorithm to find the semispace; a two-sphere embedded in a three-dimensional Eu-
classical limits of the overlap integral. According to this al- clidean space,J,Jy,J;) with
gorithm, a state is represented in ®&p phase space by a
PBS(Planck-Bohr-Sommerfe)cand with a total area of 2 PP=0+35+32. 3
(A=1). The overlap between bands of two quantum states = ) ) )
| W) and|®) gives intuitive interpretation of the probability Th|§ is thg classm.al _phase-space representation for a pa_lrtlcle
amplitude('¥|®), i.e., in the case of more than one overlapS“d'ng’ without friction, on a surface of constant positive
the contributing amplitudes have to be combined, the phasgUrvature. An angular-momentum state, say eigenstate
difference determined by an area bounded by the two band§..m), of J,, is represented by a PBS band centered on a
Thus interference features arise. As a simple example, if w&ramer trajectory withJ,=m . The radius of the sphere is
describe a harmonic oscillator stafe) in an x-p phase Vj(j+1), which is the square root of the eigenvalues of the
space as an annulus centered on the origin and the positid@asimir invariant of the S(2) group
state|x) as a long strip located at (Fig. 1), then the prob- o
ability of finding the particle at positio can be approxi- J2:J§+ J§+Jf. (4
mated as

The groups S(2) and SU1,1) are of great interest in
W,y = [(x|n)[? many branches of physi¢45—17. In particular, it is widely
5 used in the study of nonclassical properties of light in quan-
(1 tum optics[18-21]. Thus, for instance, passive interferom-
eters can be characterized by an(3Usymmetry, while ac-
tive interferometers involve the group &1 [21].
Motivated by Ref[10], it is natural to ask the question of
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Here 1/2r can be regarded as classical probability density
and A’ is the area of the diamond shaped region of the
overlap between the two PBS bands, wilg is the area
bounded by two Kramer trajectories associated with states
[n) and|x). Obviously, formula2) predicts oscillation when
the strip band moves from left to right.
Phase-space-interferen@@S|) approaches have been ap-
plied, for example, to oscillations in transition amplitudes for
Frank-Condon transition§5], the photon number and the
phase distributiof2,6—8 for squeezed states, the interfer-
ence fringes exhibited by superposition stai@s etc. At-
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FIG. 1. Phase representation of a harmonic dtateand|x) as
*Permanent address: School of Physics, University of Hyderabad?BS bands. Kramer trajectories corresponding to the two states are
Hyderabad 500046, India. depicted by dashed lines.
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whether such an interference in a phase-space approach cahere the overdot denotes differentiation with respect to
be extended to the SW,1) case. The primary aim of this time. Of course we must also include the constraint in Eq.

paper is to answer this question in the affirmative. (5). The Euler-Langrange equations then take the form
The sy2) generators can be naturally associated with con-
stants of motion for geodesic motion on a surface of constant x=CX, (7)

positive curvature, which can be visualized as a sphere em-

bedded in a three-dimensional Euclidean space. The genenghereC=2E with E the conserved kinetic energy, which is

tors of sy1,1), on the other hand, may be associated withof course positive. The solutions to these equations define
geodesic motion on a surface of constant negative curvaturgeodesics on the hyperbolic surface. In analogy with the con-
i.e., a hyperbolic surfacgl1]. Such a surface may be visu- served components of angular momentum for motion on a

alized by a global embedding in a space endowed with &phere we have the following constants of motion:
Minkowski metric. In this paper we will adapt the interfer-

ence in a phase space algorithm to the case of a hyperbolic
phase space and thus obtain asymptotic expressions for the
overlap of eigenstates of the generators dfisl). In doing

K= (XoX3—X3X2),

2o s
this we show a crucial difference between the hyperbolic K= (XaX1=X1X3),
case and the spherical case. In the spherical case, the appro- i i

priate phase space has the same geometry as the configura- K3= — (XX — XpXq).

tion space, i.e., a sphere. However, in the hyperbolic case the
appropriate phase-space is not represented by the same effese functions form the components of the Minkowski
bedded sheet as the configuration space. three-vector.

In this paper, we use an interference in the phase-space The Hamiltonian description is found in the usual way.

method to derive approximate results for the overlap beThe canonical momenta are defined py= )'<1,p2:;(2,p3

tween eigenstates c.)f two generators of1sl) algebra. _In =—x%. The corresponding contravariant three-vector then
Sec. Il, the appropriate phase-space arena for applying th:‘f‘atisfies

interference in the phase-space algorithm is identified by

considering the motion of a particle sliding without friction p-p=2E. (®)
on a surface of constant negative curvature. The exact quan-
tum calculation is given in Sec. lll. In Sec. IV, by introduc- 11,5 the components of momenta lie on a different hyper-

ing a two-dimensional hyperbolic space embedded in §jic sheet to that defined by E¢B) for the configuration
Minkowski three-dimensional space and replacingd®as i anifold. In the Hamiltonian formulation the three constants
in Eq. (2) by correspondingveighted areagor the noncom- ¢ \qtion take the form

pact group S{L,1), we find the asymptotic form of the exact

re;ult. The results obtameq by two gpproaches 00|_nC|de well Ky=— (x2ps+x3p,), 9)
with each other and are discussed in the last section.

Ko=x3p;+x'p3, (10
Il. CLASSICAL MOTION ON A HYPERBOLIC SURFACE

Ka=x'p—x?py, (11)

The classical description of motion on surfaces of con-
stant negative curvature has been extensively discussed %ich are the covariant components of a three-veetor
Balazs and Vorogl1]. We summarize their approach, with a which satisfies
minor change of notation. Consider a classical point particle
of unit mass sliding without friction on a hyperbolic sheet

K24 K2_pk2_
defined by K-K=K2+K2-K2=2E. (12)

ThusK lies on the same hyperbolic sheetmsNote, how-
x-x=(x1)?+(x?) 2= (x*)2=—1, (5  ever, thatp-K=0.

Inspection shows thd€; simply corresponds to the com-
where the dot product is defined with the Minkowski, Ponent of angular momentum around theaxis. Thus this
nonpositive definite Minkowski metrig;; with signature function is the generator of rotations around #ieaxis. The
(+1,+1,—1). This defines two disconnected hyperbolic functionsK; andK, generate displacements along tttex?
sheets intersecting the® axes at two points=1. We shall ~axes, but constrained to lie on the hyperbolic sheet. In the
only consider the upper hyperbolic sheet witfi>1. This  language of special relativity, these correspond to boosts in a
hyperbolic sheet will be referred to as the configurationl+2 space time. The corresponding group is(50) and
manifold. we thus expect the generators of the transformations to form

We now determine the dynamics on the configurationthe corresponding Lie algebra. Using the method of Lie al-
manifold. The Lagrangian of a free particle moving on thisgebras of vector fieldgl2], we can construct a differential
sheet is defined by the kinetic energy, which in Minkowskioperator from any functiof (p; ,x') on phase space by
coordinates takes the form

. JoF ¢ oF a9
Feoo o — (13

L£=1x? (6) IP; X gx Ip;i

N
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Thus to each of the function§; we can associate a differ- [22,23. Then, we haveK,|u)=—(u/2)|u). The position

ential operatoiK;,K,,Ks. The Lie algebra of the resulting representation of stafg) is
operators is found to be

[K1,K,]=Kj <><Iu>;=—mx}”*l’2 (ji+,-), (14)
[Kz,Ka]=—Ky, where the generalized functiod(j: +,—) are defined by
K 3,K K A for x>0
[K3,Ki]= =Ky, N _ X

**~10 otherwise, (19

which is the algebra of $(,1), as expected.

N

Ill. QUANTUM CALCULATION X-

0 for x>0
= (16)

|x|* otherwise.

We begin the discussion py deriving the exact eXpression g aq from different classes are orthogonafie| ) +
for the overlap between eigenstates of the operalofs —q; while states within one class are orthonormal with
=1(a'a+aa') andK,=(i/4)(a®—a'?). This is the prob-  s-function normalization
lem of the photon number distribution for eigenstateKaf N , .
for the photon number stata) is actually the eigenstate of Kplw)=o(p—p) (4,7 (17

R3 with eigenvalue (2+1)/4. Making use of expression(d), (14), and the properties of
Denote 1) as the eigenstate o6=(1/2)(a?—a'?) Hermite polynomialg24],

o F'(v+21)/2T(m+1/2 +11 1
J eizaXZXVHZm(X)dXZ(— 1)m22m73/27 vI2 ((V ) ) ( ) ( -m, v ) ,
0

172 2 '2'24
., (v DT (M) v+1 3 1
jo € 2 X H pmy 1(X)dx= (— 1)M22Mm~ /2 NPT Mgl (18

we calculate the overlagn|u); (j: +,—) as follows:

(0l = [ (pgaxixla); (G:+,-)

(—1)M2(27r) =S4 2) 212" TV ((2i w+ 1)/ (n+ 1) /2)F (—n/2(2iw+1)/43,2)  (n=2m)
- (— 1) V2275~ V4 2) 2(n12M) 12 ((2i w+ 3) AT (n+1)/2)F (—n/2,(2iw+3)/4,2,2) (n=2m+1),

(19
whereF(a,b,c,z) is the hypergeometric function. For even number state Zm), the transition probability is
1 @em-1| [1+2iu 1+2ip 1 \|?
2_ _ _
|
With the help of mathematical relatiof24] ) (34T (1/2) |2
[(2m[u)[A(n=0)= . (29

) I'(3/4+m/2)T (1/2—m/2)|
F(a,b,2b,2)=(1-2)" ¥%F b-2p : Z—)
. 2’7 2" 2'4z-4 Formula(23) implies that, foru=0, the overlap between the
(21)  eigenstates|u) of K; and the number stateptk+ 2)
k=0,1,2 ... vanishes. Expressiof20) is plotted in Fig. 5

and by solid line (h=60n=8 respectively.

I'(c)I'(c—a—h)

I XCEEIN TR

(22 IV. INTERFERENCE ALGORITHM

Our objective is to apply the method of interference in
we can reduce Eq20) at u=0 to phase space to calculate the overlap between the eigenstates
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FIG. 2. The structure of the hyperbolic space considered. The FIG. 3. The PBS bands representing different number states.

region on V\llhICh the interference glgorl_thm can be applied is IlmltedCullarlty of the single-mode representation of() with
to theKy= 5 part. The Kramer trajectories of staeg and|ux) are . ;

. : which we are working. If we were to use a two-mode Bose
depicted by dashed lines.

representation for §(,1) this restriction would not be nec-
essary.

Another characteristic of the hyperbolic space is that the
geometric area of a PBS band representing the number state
[n) will increase with the increment of quantum numiver
Because of this, Eq2) cannot be used directly to obtain the
(a>—a'? asymptotic form of(n|«)|?. This can be solved by introduc-

ing the concept ofveighted areaand changing the twarea
A® and S in formula (2) into weighted areaThe weight

of the operatorK;. We first observe that we may define a
representation of three generators oflsl) in terms of the
Bose creation and annihilation operators by

K =£(a*a+aa*) Ki=—
3 4 1 l 4

R2=_Tl(a2+ a’?), (24)  function P(K3) is defined as
. . P(K3)2ardl =P(Kg)2ar'dl’, (29
The commutation relations are
o A o A o A wheredl=dKg\/1+ (dr/dK3)%,dKs=dK}. It is very easy
[Kl,Kz]:_iKs, [Kz,Ks]:iKl, [K3,Kl]:iK2. to Ve”fythat
(25)

h d I Itipl b he cl I P(K3) ° - (29
These are identical, up to multiplication byto the classica T T > .
operators corresponding to the invariance transformations of Jr +K3 \/2K3+3/16

a particle moving freely on a surface of constant negativesgnsiant can be determined by assuming the phase area of
curvature. It is not difficult to verify that for this representa- o5 PBS band of stafe)(n+0) be. [This assumption is
tion the quadratic Casimir operator for &L) related to fact thaKs, K;, andK, are quadratic operators

R2=R§—R§—R§ 26) and are coincident with Eq23) (see Fig. 3.] So, we have

c=1 and
is invariant. The Casimir invariar{26) reduces to the num- 1
ber P(Kg)= ————. (30
3 V2K3+3/16
K2+ K5—K3=—. (27) : :
16 Thus the asymptotic form based on the interference approach

can be written as
This immediately suggests that the appropriate phase-space

arena for the interference in phase-space method is the two-
dimensional hyperbolic sheet defined by Ef2), with E

fixed. For instance, the eigenstate of oper&gr|n>, can be
depicted as a cone centered along kqeaxis with its base
intersecting thek, axis atkK;=(2n+1)/4. The Kramer tra-
jectory associated with this stata) is the intersection of
planeK;=(2n+1)/4 and hyperboloid27). We define the
PBS band corresponding to this Kramer trajectory to be cen-
tered on the trajectory and lying betwekn=2n/4 andK,
=(2n+2)/4. Similarly, the Kramer trajectory of stafe)

(Kq| )= — /2| wy=u|u)) is the intersection of the surface
K;=u and the hyperbolic phase-space surfdSee Fig. 2.
Before applying the interference algorithm on the hyper-
bolic space, one should note that as there is no negative
number state, the two-dimensional hyperbolic space must be
restricted toK ;=3 part of Eq.(27). This is of course a pe- FIG. 4. Two PBS bands corresponding to stdteésand|u).

Ow
n
W, = (] )= 4—2-cog

a
S Z)’ (31

K,
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FIG. 5. The photon number distribution fer(x=—2u), for different stategn) (@) n=60, (b) n=8. The solid line is the exact
expression obtained from quantum calculation, and the dashed line is the result using interference approach.

WhereA,?MW meansweighted areacorresponding t@eometric area ,ﬁiﬂg represented by the shaded regions in Fig. 4. To be
more precise, when=2m, we have

o m+ 172 9K, \ 2dK,
AnM(n=2m)=f P(Kg)dKa \1+| 5% | 2 a(Ks—u) 32)
m

o K3+ 2K3+——u
=J P(K3)dK; : 33
" k2+——
K2+ ——u

where p=tan \/(K2+3/16-u?)/u? andu= — /2. The delta function in the integrand arises because of E8.[3].
For the same reasons as aboS#ﬂ in Eq. (31 is taken to be theveighted areabounded by two Kramer trajectories of
states/u) and|n) and can be expressed as

dr
S‘,’1“#(n=2m)=f P(K3)redKo\/1+ ng)

fm+ 1/ 1
dKs, =—
\/u2—3/16(P 3 K73

(34)

m+1/4 1
f (Pd K3, 02M<—
1/4 2
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The above expressions can be uniformed into one:

w 4m+1 1 d¢)
SnM(n=2m)m L+4M2dzz( b+ EAZ)

2 2 2 2 2 2
z2—1-4 z°—1-4 z2—1-4
ztan‘l\/—2M+tan‘1\/%—2|u|sinh‘l\/—ZM
4u 47°u 1+4u e ams1
z°—1-4u M
—tap-l -_
p=tan 14/ a5 (u 2), (36)

Az=2,-2 =L~E(z =r2+1;z5=r2-3) (37)
V% g4z, 2 2 '

: (39

1
T4

where

Substituting Egs(33) and (35 into Eq. (31), we get the Near the turning poink,, wherep(xy) =0, one can Taylor
asymptotic expression for the photon number distribution forexpand p?(x) at x, as p?(x)~2pp’ |X:X0(x—x0) and ap-
state|u). The results obtained by the interference approactyroximate the above differential equation to
(supplemented with an Airy function as described in the Ap-
pendiX are compared with the results using exact calculation ey
in Fig. 5. Obviously, the agreement is quite good. - VNS '

In this paper we have shown that the interference in the dx? Talx=%)=0 (a=pp |X0)' (A2)
phase-space algorithm may be adapted to the case of a hy-
perbolic phase space. This enables us to obtain good semjy,;q equation has the solution of Airy function
classical results for the inner product of eigenstates of the
generators of the group &y1), which are the canonical mo-
menta operators for this phase space. Classical motion on
surfaces of constant negative curvature with periodic bound-
ary conditions is strongly chaotic, and in fact ergodic. The In hyperbolic space, the phase factor in E81) can be
guantum description of the motion has been used as a protavritten as co@f;‘;f(x)dx— 7r/4] and the corresponding differ-
type for understanding semiclassical quantization of classiential equation should be
cally ergodic systemfll]. The interference in phase-space
methods described in this paper may well be useful in pro- 2

u(x)~Ai[a¥3(x—xg)]. (A3)

viding an alternative description of the quantum motion in d_y+f2(x)y:o, (A4)
such systems. dx?
APPENDIX where x=2pu,f(x)=tan (\z2+3—x%/x)(zo=4m+1).

Equations(2) and (31) cannot be applied in the region Similarly, we Taylor expandf (x?) at the region neax,
where there is only one area of overlap. In this region, the= VZo+ 3. Making use of the relations taha~a, we ob-
asymptotic form of the scalar product can be expressed b{gin
the Airy function.

Recall that a WKB wave function for a periodic system ) X — /ZO?+3
has a phase factor of form ¢¢&p(x)dx— /4], wherep(x) F200) ~2F 1 [y —x,(X—X0) = 8%, (A5)

is the momentum as a function of position along a curve of
constant energy, anx, is the classical turning point. It sat-

isfies the second-order differential equation Thus, near the turning point, the phase factor*gois re-

placed by

d’u 2(x)u=0 (A1)
e X)u=2~0.
dx? P

Ai2{[8V(4m+1)2+3] Y 2u—\(4m+1)2+3]}.
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