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Interference in hyperbolic space

S. Chaturvedi,* G. J. Milburn, and Zhongxi Zhang
Department of Physics, The University of Queensland, Queensland 4072, Australia

~Received 25 July 1997!

The interference in a phase space algorithm of Schleich and Wheeler@Nature326, 574 ~1987!# is extended
to the hyperbolic space underlying the group SU~1,1!. The extension involves introducing the notion of
weighted areas. Analytic expressions for the asymptotic forms for overlaps between the eigenstates of the
generators of su~1,1! thus obtained are found to be in excellent agreement with the numerical results.
@S1050-2947~98!08602-8#

PACS number~s!: 03.65.Sq, 03.65.Ca, 42.50.2p
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I. INTRODUCTION

A central problem in quantum mechanics is the calcu
tion of the overlap, that is, the scalar product between
quantum states. Wheeler, Schleich, and co-workers@1–5#
have given an elegant geometrical algorithm to find the se
classical limits of the overlap integral. According to this a
gorithm, a state is represented in anx-p phase space by
PBS~Planck-Bohr-Sommerfeld! band with a total area of 2p
(\51). The overlap between bands of two quantum sta
uC& and uF& gives intuitive interpretation of the probabilit
amplitude^CuF&, i.e., in the case of more than one overl
the contributing amplitudes have to be combined, the ph
difference determined by an area bounded by the two ba
Thus interference features arise. As a simple example, if
describe a harmonic oscillator stateun& in an x-p phase
space as an annulus centered on the origin and the pos
stateux& as a long strip located atx ~Fig. 1!, then the prob-
ability of finding the particle at positionx can be approxi-
mated as

Wnx5 z^xun& z2

5US 1

p D 21/4

~2nn! !21/2Hn~x!e2x2/2U2

~1!

'US Anx
L

2p D 1/2

~e!2 i ~Snx2p/4!1S Anx
L

2p D 1/2

~e! i ~Snx2p/4!U2

. ~2!

Here 1/2p can be regarded as classical probability dens
and Anx

L is the area of the diamond shaped region of
overlap between the two PBS bands, whileSnx is the area
bounded by two Kramer trajectories associated with sta
un& andux&. Obviously, formula~2! predicts oscillation when
the strip band moves from left to right.

Phase-space-interference~PSI! approaches have been a
plied, for example, to oscillations in transition amplitudes
Frank-Condon transitions@5#, the photon number and th
phase distribution@2,6–8# for squeezed states, the interfe
ence fringes exhibited by superposition states@9#, etc. At-
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tempts have also been made to apply such approache
extended phase spaces@10,13,14#.

Lassig and Milburn@10# discussed the semiclassical limi
of the angular-momentum marginal probability distributio
by applying the PSI approach to a compact spherical ph
space; a two-sphere embedded in a three-dimensional
clidean space, (Jx ,Jy ,Jz) with

J25Jx
21Jy

21Jz
2 . ~3!

This is the classical phase-space representation for a pa
sliding, without friction, on a surface of constant positiv
curvature. An angular-momentum state, say eigens
u j ,m&z of Ĵz , is represented by a PBS band centered o
Kramer trajectory withJz5m . The radius of the sphere i
Aj ( j 11), which is the square root of the eigenvalues of t
Casimir invariant of the SU~2! group

Ĵ25 Ĵx
21 Ĵy

21 Ĵz
2 . ~4!

The groups SU~2! and SU~1,1! are of great interest in
many branches of physics@15–17#. In particular, it is widely
used in the study of nonclassical properties of light in qu
tum optics@18–21#. Thus, for instance, passive interferom
eters can be characterized by an SU~2! symmetry, while ac-
tive interferometers involve the group SU~1,1! @21#.
Motivated by Ref.@10#, it is natural to ask the question o

d,
FIG. 1. Phase representation of a harmonic stateun& and ux& as

PBS bands. Kramer trajectories corresponding to the two state
depicted by dashed lines.
1529 © 1998 The American Physical Society
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1530 57S. CHATURVEDI, G. J. MILBURN, AND ZHONGXI ZHANG
whether such an interference in a phase-space approac
be extended to the SU~1,1! case. The primary aim of this
paper is to answer this question in the affirmative.

The su~2! generators can be naturally associated with c
stants of motion for geodesic motion on a surface of cons
positive curvature, which can be visualized as a sphere
bedded in a three-dimensional Euclidean space. The gen
tors of su~1,1!, on the other hand, may be associated w
geodesic motion on a surface of constant negative curva
i.e., a hyperbolic surface@11#. Such a surface may be visu
alized by a global embedding in a space endowed wit
Minkowski metric. In this paper we will adapt the interfe
ence in a phase space algorithm to the case of a hyper
phase space and thus obtain asymptotic expressions fo
overlap of eigenstates of the generators of su~1,1!. In doing
this we show a crucial difference between the hyperbo
case and the spherical case. In the spherical case, the a
priate phase space has the same geometry as the confi
tion space, i.e., a sphere. However, in the hyperbolic case
appropriate phase-space is not represented by the same
bedded sheet as the configuration space.

In this paper, we use an interference in the phase-sp
method to derive approximate results for the overlap
tween eigenstates of two generators of su~1,1! algebra. In
Sec. II, the appropriate phase-space arena for applying
interference in the phase-space algorithm is identified
considering the motion of a particle sliding without frictio
on a surface of constant negative curvature. The exact q
tum calculation is given in Sec. III. In Sec. IV, by introdu
ing a two-dimensional hyperbolic space embedded in
Minkowski three-dimensional space and replacing theareas
in Eq. ~2! by correspondingweighted areasfor the noncom-
pact group SU~1,1!, we find the asymptotic form of the exac
result. The results obtained by two approaches coincide
with each other and are discussed in the last section.

II. CLASSICAL MOTION ON A HYPERBOLIC SURFACE

The classical description of motion on surfaces of co
stant negative curvature has been extensively discusse
Balazs and Voros@11#. We summarize their approach, with
minor change of notation. Consider a classical point part
of unit mass sliding without friction on a hyperbolic she
defined by

x•x5~x1!21~x2!22~x3!2521, ~5!

where the dot product is defined with the Minkowsk
nonpositive definite Minkowski metricgi j with signature
~11,11,21!. This defines two disconnected hyperbo
sheets intersecting thex3 axes at two points61. We shall
only consider the upper hyperbolic sheet withx3.1. This
hyperbolic sheet will be referred to as the configurat
manifold.

We now determine the dynamics on the configurat
manifold. The Lagrangian of a free particle moving on th
sheet is defined by the kinetic energy, which in Minkows
coordinates takes the form

L5 1
2 ẋ2, ~6!
can
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where the overdot denotes differentiation with respect
time. Of course we must also include the constraint in E
~5!. The Euler-Langrange equations then take the form

ẍ5Cx, ~7!

whereC52E with E the conserved kinetic energy, which
of course positive. The solutions to these equations de
geodesics on the hyperbolic surface. In analogy with the c
served components of angular momentum for motion o
sphere we have the following constants of motion:

K15~x2x3̇2x3x2̇!,

K25~x3x1̇2x1x3̇!,

K352~x1x2̇2x2x1̇!.

These functions form the components of the Minkows
three-vector.

The Hamiltonian description is found in the usual wa
The canonical momenta are defined byp15 ẋ1,p25 ẋ2,p3

52 ẋ3. The corresponding contravariant three-vector th
satisfies

p•p52E. ~8!

Thus the components of momenta lie on a different hyp
bolic sheet to that defined by Eq.~5! for the configuration
manifold. In the Hamiltonian formulation the three constan
of motion take the form

K152~x2p31x3p2!, ~9!

K25x3p11x1p3 , ~10!

K35x1p22x2p1 , ~11!

which are the covariant components of a three-vectorK ,
which satisfies

K•K5K1
21K2

22K3
252E. ~12!

ThusK lies on the same hyperbolic sheet asp. Note, how-
ever, thatp•K50.

Inspection shows thatK3 simply corresponds to the com
ponent of angular momentum around thex3 axis. Thus this
function is the generator of rotations around thex3 axis. The
functionsK1 andK2 generate displacements along thex1,x2

axes, but constrained to lie on the hyperbolic sheet. In
language of special relativity, these correspond to boosts
112 space time. The corresponding group is SU~1,1! and
we thus expect the generators of the transformations to f
the corresponding Lie algebra. Using the method of Lie
gebras of vector fields@12#, we can construct a differentia
operator from any functionF(pi ,xi) on phase space by

F̂5
]F

]pi

]

]xi
2

]F

]xi

]

]pi
. ~13!
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Thus to each of the functionsKi we can associate a differ
ential operatorK̂1 ,K̂2 ,K̂3. The Lie algebra of the resulting
operators is found to be

@K̂1 ,K̂2#5K̂3 ,

@K̂2 ,K̂3#52K̂1 ,

@K̂3 ,K̂1#52K̂2 ,

which is the algebra of su~1,1!, as expected.

III. QUANTUM CALCULATION

We begin the discussion by deriving the exact express
for the overlap between eigenstates of the operatorsK̂3

5 1
4 (a†a1aa†) and K̂15( i /4)(a22a†2). This is the prob-

lem of the photon number distribution for eigenstate ofK̂1,
for the photon number stateun& is actually the eigenstate o
K̂3 with eigenvalue (2n11)/4.

Denote um& as the eigenstate ofG5(1/2i )(a22a†2)
n

@22,23#. Then, we haveK1um&52(m/2)um&. The position
representation of stateum& is

^xum& j5
1

A2p
xj

im21/2 ~ j :1,2 !, ~14!

where the generalized functionxj
l( j :1,2) are defined by

x1
l 5H xl for x.0

0 otherwise,
~15!

x2
l 5H 0 for x.0

uxul otherwise.
~16!

States from different classes are orthogonal:2^mum&1

50; while states within one class are orthonormal w
d-function normalization

j^mum8& j5d~m2m8! ~ j :1,2 !. ~17!

Making use of expressions~1!, ~14!, and the properties o
Hermite polynomials@24#,
E
0

`

e22ax2
xnH2m~x!dx5~21!m22m23/22n/2

G„~n11!/2…G~m11/2!

Apan11/2
FS 2m,

n11

2
,
1

2
,

1

2a D ,

E
0

`

e22ax2
xnH2m11~x!dx5~21!m22m2n/2

G„~n11!/2…G~m/2!

Apa~n11!/2
FS 2m,

n11

2
,
3

2
,

1

2a D , ~18!

we calculate the overlap̂num& j ( j :1,2) as follows:

^num& j5E ^nux&dx^xum& j ~ j :1,2 !

5H ~21!n/2~2p!25/4~2! im/2~n!/2n!21/2G„~2im11!/4…G„~n11!/2…F„2n/2,~2im11!/4,1
2 ,2… ~n52m!

~21!~n21!/2~2p5!21/4~2! im/2~n!/2n!21/2G„~2im13!/4…G„~n11!/2…F„2n/2,~2im13!/4,3
2 ,2… ~n52m11!,

~19!

whereF(a,b,c,z) is the hypergeometric function. For even number state (n52m), the transition probability is

u^2mum&u25
1

A32p3

~2m21!!!

~2m!!! UGS 112im

4 DFS 2m,
112im

4
,
1

2
,2D U2

. ~20!
e

in
tates
With the help of mathematical relations@24#

F~a,b,2b,z!5~12z!2 a/2FS a

2
,b2

a

2
,b1

1

2
,

z2

4z24D
~21!

and

F~a,b,c,1!5
G~c!G~c2a2b!

G~c2a!G~c2b!
, ~22!

we can reduce Eq.~20! at m50 to
u^2mum&u2~m50!5U G~3/4!G~1/2!

G~3/41m/2!G~1/22m/2!
U2

. ~23!

Formula~23! implies that, form50, the overlap between th
eigenstatesum& of K1 and the number statesu4k12&
k50,1,2, . . . vanishes. Expression~20! is plotted in Fig. 5
by solid line (n560,n58 respectively!.

IV. INTERFERENCE ALGORITHM

Our objective is to apply the method of interference
phase space to calculate the overlap between the eigens
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1532 57S. CHATURVEDI, G. J. MILBURN, AND ZHONGXI ZHANG
of the operatorsK̂ i . We first observe that we may define
representation of three generators of su~1,1! in terms of the
Bose creation and annihilation operators by

K̂35
1

4
~a†a1aa†!, K̂15

i

4
~a22a†2!

K̂25
21

4
~a21a†2!, ~24!

The commutation relations are

@K̂1 ,K̂2#52 iK̂ 3 , @K̂2 ,K̂3#5 iK̂ 1 , @K̂3 ,K̂1#5 iK̂ 2 .
~25!

These are identical, up to multiplication byi , to the classical
operators corresponding to the invariance transformation
a particle moving freely on a surface of constant nega
curvature. It is not difficult to verify that for this represent
tion the quadratic Casimir operator for SU~1,1!

K̂25K̂3
22K̂1

22K̂2
2 ~26!

is invariant. The Casimir invariant~26! reduces to the num
ber

K̂1
21K̂2

22K̂3
25

3

16
. ~27!

This immediately suggests that the appropriate phase-s
arena for the interference in phase-space method is the
dimensional hyperbolic sheet defined by Eq.~12!, with E

fixed. For instance, the eigenstate of operatorK̂3, un&, can be
depicted as a cone centered along theK0 axis with its base
intersecting theK0 axis atK35(2n11)/4. The Kramer tra-
jectory associated with this stateun& is the intersection of
planeK35(2n11)/4 and hyperboloid~27!. We define the
PBS band corresponding to this Kramer trajectory to be c
tered on the trajectory and lying betweenK352n/4 andK3
5(2n12)/4. Similarly, the Kramer trajectory of stateum&
(K̂1um&52m/2um&[uum&) is the intersection of the surfac
K15u and the hyperbolic phase-space surface.~See Fig. 2.!

Before applying the interference algorithm on the hyp
bolic space, one should note that as there is no nega
number state, the two-dimensional hyperbolic space mus
restricted toK3> 1

4 part of Eq.~27!. This is of course a pe

FIG. 2. The structure of the hyperbolic space considered.
region on which the interference algorithm can be applied is limi
to theK0> 1

4 part. The Kramer trajectories of statesun& andum& are
depicted by dashed lines.
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culiarity of the single-mode representation of su~1,1! with
which we are working. If we were to use a two-mode Bo
representation for su~1,1! this restriction would not be nec
essary.

Another characteristic of the hyperbolic space is that
geometric area of a PBS band representing the number
un& will increase with the increment of quantum numbern.
Because of this, Eq.~2! cannot be used directly to obtain th
asymptotic form ofu^num&u2. This can be solved by introduc
ing the concept ofweighted area, and changing the twoarea
AL and S in formula ~2! into weighted area. The weight
function P(K3) is defined as

P~K3!2prdl 5P~K38!2pr 8dl8, ~28!

wheredl5dK3A11(dr/dK3)2,dK35dK38 . It is very easy
to verify that

P~K3!5
c

Ar 21K3
2

5
c

A2K3
213/16

. ~29!

Constantc can be determined by assuming the phase are
each PBS band of stateun&(nÞ0) bep. @This assumption is
related to fact thatK3, K1, and K2 are quadratic operator
and are coincident with Eq.~23! ~see Fig. 3!.# So, we have
c51 and

P~K3!5
1

A2K3
213/16

. ~30!

Thus the asymptotic form based on the interference appro
can be written as

Wnm5u^num&u254
Anm

Lw

p
cos2S Snm

w 2
p

4 D , ~31!

e
d

FIG. 3. The PBS bands representing different number state

FIG. 4. Two PBS bands corresponding to statesun& and um&.
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whereAnm
Lw meansweighted areacorresponding togeometric area Anm

Lg represented by the shaded regions in Fig. 4. To
more precise, whenn52m, we have

Anm
Lw~n52m!5E

m

m11/2

P~K3!dK3A11S ]K2

]K3
D 2dK1

sinw
d~K12u! ~32!

5E
m

m11/2

P~K3!dK3! K3
21

3

16

K3
21

3

16
2u2
A2K3

21
3

16
2u2

k3
21

3

16
2u2

, ~33!

wherew5tan21A(K3
213/162u2)/u2 andu52m/2. The delta function in the integrand arises because of Eq.~17! @3#.

For the same reasons as above,Snm
w in Eq. ~31! is taken to be theweighted areabounded by two Kramer trajectories o

statesum& and un& and can be expressed as

Snm
w ~n52m!5E P~K3!rwdK0A11S dr

dK3
D 2

55 EAu223/16

m11/4

wdK3 , m>
1

2

E
1/4

m11/4

wdK3 , 0>m,
1

2
.

~34!

FIG. 5. The photon number distribution form(m522u), for different statesun& ~a! n560, ~b! n58. The solid line is the exac
expression obtained from quantum calculation, and the dashed line is the result using interference approach.
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The above expressions can be uniformed into one:

Snm
w ~n52m!'E

114m2

4m11

dz
1

4S f1
df

dz
DzD

5
1

4F ztan21Az22124m2

4m2
1tan21Az22124m2

4z2m2
22umusinh21Az22124m2

114m2 G
z54m11

, ~35!

where

f5tan21Az22124m2

4m S u52
m

2 D , ~36!

Dz5z12z25
4

z11z2
'

2

z
~z1

2[r 211;z2
2[r 223!. ~37!
fo
ac
p
io

th

em
th
-

n
he
ro
ss
ce
ro
in

n
th

b

m

o
-

-

Substituting Eqs.~33! and ~35! into Eq. ~31!, we get the
asymptotic expression for the photon number distribution
stateum&. The results obtained by the interference appro
~supplemented with an Airy function as described in the A
pendix! are compared with the results using exact calculat
in Fig. 5. Obviously, the agreement is quite good.

In this paper we have shown that the interference in
phase-space algorithm may be adapted to the case of a
perbolic phase space. This enables us to obtain good s
classical results for the inner product of eigenstates of
generators of the group su~1,1!, which are the canonical mo
menta operators for this phase space. Classical motion
surfaces of constant negative curvature with periodic bou
ary conditions is strongly chaotic, and in fact ergodic. T
quantum description of the motion has been used as a p
type for understanding semiclassical quantization of cla
cally ergodic systems@11#. The interference in phase-spa
methods described in this paper may well be useful in p
viding an alternative description of the quantum motion
such systems.

APPENDIX

Equations~2! and ~31! cannot be applied in the regio
where there is only one area of overlap. In this region,
asymptotic form of the scalar product can be expressed
the Airy function.

Recall that a WKB wave function for a periodic syste
has a phase factor of form cos@*x

x0p(x)dx2p/4#, wherep(x)
is the momentum as a function of position along a curve
constant energy, andx0 is the classical turning point. It sat
isfies the second-order differential equation

d2u

dx2
1p2~x!u50. ~A1!
r
h
-
n

e
hy-

i-
e

on
d-

to-
i-

-

e
y

f

Near the turning pointx0, wherep(x0)50, one can Taylor
expandp2(x) at x0 as p2(x)'2pp8ux5x0

(x2x0) and ap-
proximate the above differential equation to

d2u

dx2
1a~x2x0!'0 ~a5pp8ux0

!. ~A2!

This equation has the solution of Airy function

u~x!'Ai @a1/3~x2x0!#. ~A3!

In hyperbolic space, the phase factor in Eq.~31! can be
written as cos@*2m

x0 f(x)dx2p/4# and the corresponding differ
ential equation should be

d2y

dx2
1 f 2~x!y50, ~A4!

where x52m, f (x)5 1
4 tan21(Az0

2132x2/x)(z054m11).
Similarly, we Taylor expandf (x2) at the region nearx0

5Az0
213. Making use of the relations tan21a'a, we ob-

tain

f 2~x!'2 f f 8ux5x0
~x2x0!5

x2Az0
213

8x0
. ~A5!

Thus, near the turning point, the phase factor cos2f is re-
placed by

Ai2$@8A~4m11!213#21/3@2m2A~4m11!213#%.
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