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Precision measurement of phase-dependent resonance fluorescence spectra
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We measure phase-dependent fluorescence spectra for an elementary system: long-lived coherently driven
two-level atoms in an atomic beam. Phase-dependent fluorescence spectra measure quadrature noise in the
atomic radiation field. These noise spectra are obtained using a homodyne detection scheme that suppresses
excess noise by subtracting signals from two identically prepared atomic samples. Noise spectra are obtained
for atomic radiation which is in phag@®°®) and out ofphase (90°) with a resonant driving field, as well as
+45° out of phase with an off-resonant driving field. The measured phase-dependent fluorescence spectra are
much richer than ordinary fluorescence spectra, and exhibit many novel features. Particularly interesting are
phase-dependent noise spectra for off-resonant excitation. These strikingly exhibit direct manifestations of time
ordering, which appear as large differences between the measured 45°4&fidjuadrature noise spectra. The
measured noise spectra are in excellent agreement in magnitude and shape with the results of a quantum
treatment using no free parametgiS1050-29478)09002-7

PACS numbsgs): 42.50.Lc, 32.80-t

. INTRODUCTION Xg(h)=e 18t +e e (1), @

Resonance fluorescence of simple atoms is a central topighere Aﬁ)(t)oc|gLo|§<¢(t)_ Fluctuations in the detected
in light-matter interactions that has been extensively studiegower are monitored with a diode detector. A spectrum ana-
[1]. An atomic beam illuminated by a continuous monochro-lyzer is used to obtain the phase-dependent power spectra of
matic laser field strongly scatters light when the laser ighe fluctuations in the selected quadrature.
tuned near resonance with a two-level transition. The spec- In this paper, we describe precision measurements of
trum of the scattered light observed at right angles to thgophase-dependent fluorescence spectra for long-lived two-
driving laser beam exhibits a well-known component strucdevel atoms that are driven by a monochromatic laser field.
ture[2], comprising a narrow elastic contribution at the laserFor on-resonance excitation, the in-phase and out-of-phase
frequency and an inelastic triplet structure, where the linehoise spectra are found to be quite different, and to contain
widths are determined by the atomic relaxation rates and theontributions from a variety of atomic noise sour¢e2).
splitting by the Rabi frequency of the driving fiel8]. This ~ FOr off-resonance excitation, pairs of noise spectra for
spectrum has been measured in great dédail7], and has phases of opposite sign are found to display striking differ-

been the subject of many theoretical treatmeit8—19. ences that arise entirely from time orderif28]. We show
Qat the relevant time-ordered processes arise from collapses

Transient fluorescence has been studied for two-level atorr{0 the ground state following emission of a photon by the
excited by phase-controlled optical fielf20]. In this case, coherent part of the atomic dipole moment. A quantum the-

selr(]acted dr;arss%? sitr?tesncan r?]e ?;(dg;tﬂed, leading to ﬂuore(Sc'r'etical treatment of the spectra is presented that yields re-
cence spectra missing oné compo ' . Sults in excellent quantitative agreement with the data.
In contrast to fluorescence spectra that are detected witl

o " Phase-dependent noise power spectra for fluctuations in
out phase sensitivityphase-dependentesonance fluores- g4 mic radiation fields have been studied previously in sys-

cence spectra of simple atoms have been relatively un&tgms with short radiative lifetimes, with an emphasis on ob-
plored. Phase-dependent resonance fluorescence spectra &Ring quadrature squeezin4—29. Phase-dependent
Obtained by homOdyne deteCtion Of Scattered I’adiation frorrhoise was Observed in the intensity Of a probe beam trans-
free atoms that are irradiated by a quasiresonant field. Phasgitted through sodium vapor in Ref26]. The noise spec-
dependent resonance fluorescence spectra are much richgim of the transmitted probe field for a pumped, optically
than ordinary fluorescence spectra and present many novetick vapor was studied recently by Kauranen and coworkers
features. [30-32. This work elucidates the role of pump-probe two-

In phase-dependent fluorescence experiments, the radibeam coupling in atomic vapors: phase-independent probe
tion field £ of the atoms is mixed with a local oscillatdrO)  noise spectra have been measured to explore two mecha-
field |€ o|€'? having a controllable fixed phasgrelative to  nisms which produce excess noise in the transmitted probe
the field that drives the atoms. As shown in Sec. Il, the atonintensity. These include direct amplification of vacuum fluc-
contribution to the detected powAP then is determined by tuations in the probe via semiclassical gain and spontaneous
the quadrature operator scattering of light into the spatial mode of the probe, due to

fluctuations in the atomic medium. The latter provides the
dominant source of excess probe noise.
*Permanent address: NEC Research Institute, 4 Independence Measurements of phase-dependent fluorescence spectra
Way, Princeton, NJ 08540. provide insights into the contributions of atomic fluctuations
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to optical noise spectra. Fluctuations in simple atomic sys- Re
tems play important roles in diverse physical phenomena.
They limit the signal-to-background ratio that can be ob- & 8LO
tained in spectroscopic experiments, and hence limit the ac- d (I)
curacy of atomic clock§24]. In laser cooling and in optical
traps, atomic dipole fluctuations cause momentum diffusion,
which determines the minimum temperature that can be ob-
tained[33,34]. Atomic fluctuations also limit the amount of
squeezing that can be obtained in atomic syst¢@&s-—
29,35-38. Despite the many theoretical and experimental
studies of noise in radiating atomic systeff@9], to our <8atom>
knowledge, detailed measurements of phase-dependent atom
noise spectra have not been made previously, and a complete
physical picture of the distinct sources of atom noise in ASout
atomic radiation fields has not been obtained.

Electromagnetically induced transparency by quantum in-
terference has been demonstrated for eliminating absorption ASin
and dispersion in atomic systerf@0]. Applications of this
method include novel schemes for wave mixing and para- FIG. 1. Measurement of atomic radiation noise via phase-
metric downconversion, where strong quadrature Squeezir@pendent fluorescence spectra. The amplitudes of the driving field
may be obtained. Detailed studies of phase-dependent noise: the local oscillator fielcf o, and the atom fieldExom +Aéin
in such systems is therefore of interest. This has lead td A& are plotted as phasors.
renewed interest in the theory of phase-dependent fluores-
cence. Quantum interference in spontaneous emission h

been shown to depend on thq phase of a driving field thal The remainder of this paper is organized as follows. Sec-
couples the lower levels of an inverted-V three-level systerqion Il provides a brief physical description of phase-

[41]. The role of initial coherence in harmonic generation Independent resonance fluorescence. It is shown that a classical
two-level systems also has been exploféd|. ) description fails to predict the measured spectra. Some of the
Recently, the phase-dependent spectrum of light scattergds e raised in interpreting the noise spectra are described
from Bose condensates in two different atomic states hagclyding the origin of the observed time ordering effects.
been calculated. It is predicted to be a direct probe of the&ection 11l describes the experimental system. We discuss
relative phase of the condensafd8]. Hence, detailed stud- the suppression of excess noise in homodyne detection by
ies of phase-dependent fluorescence for simple atomic sysubtracting signals from two identically prepared atomic
tems continue to be of fundamental interest. samples. This is treated in detail in Appendix A. In Sec. IV
Our measurements of phase-dependent resonance fluorése measured phase-dependent resonance fluorescence spec-
cence spectra are obtained using a homodyne detectiam are presented. Section V summarizes the results of the
scheme that suppresses excess noise by subtracting signgisantum theory of the phase-dependent resonance fluores-
from two identically prepared atomic samplg22,23. We  cence spectra for long-lived atoms. In order to obtain predic-
use atoms with a radiative lifetime long compared to thetions that can be quantitatively compared both in magnitude
transit time of the atoms across the driving laser fields, s@nd in shape with the data, a detailed treatment is given in
that noise power spectra can be analyzed in terms of a simpjgppendix B. Concluding remarks are given in Sec. VI.
fluctuating Bloch vector picture. As mentioned above, very
different noise spectra are measured for radigtion_ whichisin || pHYSICAL PICTURE OF PHASE-DEPENDENT
phase or out of phase with a resonant driving field. These FLUORESCENCE
noise spectra are found to be in good qualitative agreement
with previous predictions of phase-dependent noise in the As described in Sec. |, phase-dependent resonance fluo-
resonance fluorescence of a driven atomic system with gescence spectra are obtained by homodyne detection of scat-
short radiative lifetimg35]. As shown below, the data are in tered radiation from free atoms that are irradiated by a qua-
excellent quantitative agreement with a quantum treatmergiresonant driving field. Figure 1 depicts the measurement of
for a long-lived system. phase-dependent noise in the atom radiation field via phase-
Particularly interesting is the striking appearance of thedependent fluorescence. The field components shown in the
effects of time ordering in the phase-dependent fluorescendigure are slowly varying amplitudes plotted as phasors, with
spectra for off-resonant excitation. Previously, using correlaa common optical phase facter '* removed. Heré) is the
tion methods and frequency-filtered resonance fluorescenctgequency for both the local oscillator and the driving field.
it has been possible to observe temporal correlations betweafithout loss of generality, the driving field amplitudsg is
sideband photon$44]| and interference between different taken to be real.
time orderings of Rayleigh and sideband photpt. In the In response to the driving field, the atom radiates a mean
present measurements, quadrature power spectra for plus feld (€40 . FOr resonant excitation of an atom that is ini-
minus 45° phases are found to be markedly different whetially in the ground state, the mean field of the atom will be
the driving field is off resonance. This difference is shown t0180° out of phase with the driving field in the forward-

a direct manifestation of time orderifg3] as described
ysically in Sec. Il, and in more detail in Sec. V.
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scattering direction. This causes absorption of the drivinghoise in the transmitted power of the driving field alone.
field. In addition to the mean field, the atomic radiation field With the LO relative phase set th=90°, fluctuations out of
contains fluctuating components. In general, there will be ghase with the driving field are detected. In this case, when
fluctuating component in phase with the driving fiel!;,, the driving field frequency is resonant, the LO is 90° out of
and a fluctuating component 90° out of phase with the drivphase with the mean radiation field of the sample. The mean
ing field, A&,,;. The net radiation field of the atom can be power measured at the detector then is the same whether the

written in the form atoms are present or not. Nevertheless, a nonzero noise
) power spectrum is observed experimentally or 90°. Fi-
E) = (Eatom T Ain T 1AL (2 nally, with ¢=+45°, the noise power spectrum depends on

. . . . . the cross correlation between atom-field fluctuations that are
To measure the fluctuations, the atomic radiation field ISn phase and out of phase with the driving field

mixed with a strongLO) fi_eld ELO_ at a diode detector. In the An important point is that for optically thin samples of
measurements, the reIatMeIassm_a]. pha.se¢_be.tween the atoms, the correlation function that appears in &j).con-
strong LO field and the strong driving field is fixed and ad'tains only the independent contributionssirigleatoms| 37].
justable. The detector measures the total power of the COMpjg 4rises because the atoms enter the interaction region at
bined field, <[ o+ £]°. The dominant atom contribution t0 3n46m times and are uncorrelated with one another. Hence
the fluctuation in the detected power arises from the interferg, mean-square noise is the sum of the mean-square noise
ence terms contributions from each of the N atoms that are in the inter-
3) action region.
It is interesting to try to interpret the measured phase-
" the atom contribution to the detected d_epen_dent noise_z power spectra b_y treating the atoms as_clas-
sical dipoles emitting a radiation field equal to the mean field
of a coherently driven two-level atom. The classical calcula-
Aﬁ(t)“|5Lo|>A<¢(t), (4) Iti)c\)lc fails in a number of interesting ways, as described be-
The classical power change arises from the interference
between the LO field and theeanfield of a single long-
;((b(t):efi@(t”ewgt(t)_ (5) lived tyvq-level atom. For an atom that enters the driving
beam in its ground state at time 0, the power change takes
For a strong classical LO field, small fluctuations in the ra-the form
diation field of single atoms are converted into large detect-
able power fluctuations. _ _ _ R B4 Sind B4A 1—cosd
The spectrum of the power fluctuations is measured with (AP(t))er P cosp+ —— 5
a spectrum analyzer that yields a one-sided power spectrum B B
proportional to the Fourier transform of the autocorrelation
function of the power fluctuations: Here Bq= u|&yl/h is the Rabi frequency arising from the
driving field, andA is the detuning of the driving/LO fields
from atomic resonanceB’ is the generalized Rabi fre-
quency,ﬂ’zx/ﬁdanAz. For a driving beam with a square
profile whereBy is constant, the anglé=g't. Here 0<t
<17,, With 7, the interactiontransiy time for atoms to cross
the driving/LO beams. Equatiof¥) describes the coherent
radiation of a two-level atom, neglecting spontaneous emis-
Here w is the spectrum analyzer frequency. The angledsion. This is appropriate in our experiments, for which the
brackets denote a quantum statistical average and a time awveraction(transiy time is short compared to the spontane-
erage ovet. ous lifetime. Note that we have left out multiplicative factors
In the experiments described below, the interaction timehat include the LO field magnitude. These factors determine
of the atoms with the laser fields is determined by the transithe transit-time-limited bandwidth, as discussed above.
time of the atoms to cross the driving field region. The LO is  Classical noise power spectra are determined from(&q.
spatially matched to the driving field, so that the time tousing Eq.(7). In doing this, we are treating the atomic radia-
cross the observation region is identical to the transit time tdors as though they are unaffected by the radiation process.
cross the driving beam. For simplicity in the following dis- The results of this calculation are shown in Fig. 2 for on-
cussion, we have left out the factor that describes the finiteesonance excitation withp=0° and 90°, and for off-
transit time in the integrands of E@6). This factor deter- resonance excitation witih=*+45° (or ¢=180+45°). To
mines the transit time limited spectral width of the variouscompare the classical results to the data properly, the plots
components of the noise power spectrum, and is included iare calculated using the same methods and the same param-
the more complete quantum theory described in Sec. V. eters(Rabi frequency, detuning, atom density, g for the
When the relative phasg is set to 0°, the LO is in phase exact quantum theory results of Sec. V, but retaining only
with the driving field, and atom-field fluctuations in phasethe classical contributions that correspond to &g-
with the driving field are detected. Measurement of the One immediately sees that the classical calculation of Fig.
power spectrum in this case is equivalent to measuring th& is in poor agreement with the data shown in Figs. 6, 7, and

AP(t)x&HE(t) +c.c.

Since ELO: |€LO| ei 4
power fluctuation can be written as

where§<¢(t) is the quadrature operator,

sing.  (7)

Sy(w)= %f:dr cosw 7 (AP(t)AP(t+ 7))

2 (= A .
M;fo d7 cosw (X 4(t)X4(t+ 7)). (6)
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1.0 pectation value of the dipole operatas used in the classical
calculation, and contributions that exhibit quantum fluctua-
0.8 tions [14] that are neglected in the classical calculation.
0.6 - Spontaneous emission into the LO mode from both the co-
= o4 L (a) herent and fluctuating parts of the dipole occurs with similar
- : rates. Since the spontaneous field of the atom has a random
= 02 phase component, even with the LO phase set at 90° to the
g driving field, there will be noise in the detected power and
— 0.0 hence a nonzero noise power spectrum.
e 0.2 | I | | The appearance of noise in tlle=90° quadrature shows
-— 0 4 8 12 16 20 that phase-dependent fluorescence measurement can distin-
s 10 guish incoherent spontaneous emission in the presence of
C%-‘ ‘ coherent emission. The latter is out of phase with the LO for
@ 1.0 - $=90° with resonant excitation, and hence causes no fluc-
o2 0.8 tuations. By contrast, in ordinary resonance fluorescence
<23 0.6 measurement, the two contributions are inseparable.
0.4 Fluctuations in the atomic dipole moment are phase de-
0.2 pendent, and can be described in terms of fluctuations in the
: atomic pseudospiBloch vectoj operatorg 22]. When the
0.0 Bloch vector is rotated so that it lies along a given quadrature
-0.2 L1 L1 1 | axis, the fluctuations along that axis are suppressed, since the
2 4 6 81012141618 length of the Bloch vector is conserved. A heuristic picture
Spectrum Analyzer ]:‘requency [MHz] of the noise spectra in terms of phase-dependent and phase-

independent components of the Bloch vector projection noise

FIG. 2. Classical calculation of phase-dependent fluorescenc&as given in Ref{22]. The phase-dependent part of the pro-
spectra showing poor agreement with the measurements of Figs. ECtion noise spectrum can make a negative contribution to
7, and 8.(a) On-resonance in-phas¢=0 spectrum(peal and the total noise, that tends to cause squeezing, i.e., the field
out-of-phasep=90° spectrumhorizontal ling. (b) Off-resonance  noise can be suppressed as discussed above. However, the
spectrum for¢p=135° (solid line) and ¢=225° (dashed ling phase-independent part of the Bloch vector noise spectrum

can exhibit increased noise at the same frequency. Hence the
8. It also disagrees with the corresponding quantum calculaotal noise need not exhibit squeezing. As noted in 2],
tions shown in the same figures. The classical calculation ofeparation of the atom noise contributions is somewhat arti-
the on-resonanceéé=0° noise spectrum displays a peak atficial, since only certain combinations of these noise terms
the generalized Rabi frequency. Classically, this arises solelgan be isolated in the experiments.
from the modulation of the coherent dipole moment at the The classical theory also fails to incorporate the effects of
generalized Rabi frequency as the atoms cross the drivintime ordering[23]. A formal description of the effects of
field. While the location of the peak is correct, the calculatedime ordering is given in Ref23], where it is shown that for
magnitude is smaller than that measured in the experimentsff-resonant excitation, the difference between thd5°
and predicted by the quantum theory. spectra arises entirely from the fundamental noncommutativ-

The classical theory also predicts no noise for the onity of two positive frequency source field operators evaluated
resonancap=90° power spectrum, since the LO is out of at different times. Time ordering arises in multiple time mea-
phase with the atom radiation field, and experiences nsurements because the first measurement alters the quantum
power change as the atoms traverse the driving beam. Bstate of the atom, and therefore affects the second measure-
contrast, the measured power spectrum is nonzero, and coment. The correlation function of the quadrature operator
sists of a large noise peak centered at the origin. appearing in Eq(6) involves a two-time field measurement,

Finally, for ¢=*45° and off-resonance excitation, the and hence should incorporate time ordering effects.
classical theory predicts essentially identical noise spectra at A physical picture of the origin of the effects of time
frequencies near the generalized Rabi frequency. By corprdering in thex45° phase-dependent fluorescence spectra
trast, the measured spectra fpe= + 45° differ dramatically can be obtained for atoms with a long radiative lifetime, as
in this frequency region, and the noise peaks are consideutsed in the experiments. The time-ordered contributions that
ably larger than those predicted classically. cause the striking difference between these spectra can be

Both the data and the quantum theory exhibit squeezing dnterpreted as arising entirely from the coherent part of the
certain frequencies, where the total noise dips below the&lipole moment. However, we cannot treat the atom as a clas-
shot-noise level, i.e, below the zero level in Fig. 8. By con-sical radiator: we must incorporate collapses to the ground
trast, the classical noise power spectrum can be written as tlstate following detection of a fluctuation arising from photo-
magnitude squared of the Fourier transform of the classicamission by the atorfil4], as we now show.
power change of Eq(7). Hence the classical noise power Equation(6) shows that the noise power spectrum de-
spectrum is always positive definite, and will never exhibitpends on the two-time power autocorrelation function. Fluc-
squeezing. tuations in the detected power at timeandt+ 7 for 7=0

The classical theory fails in part because the atomic radiadetermine the correlation function. These fluctuations arise
tion field contains both coherent contributions from the ex-from the interference between the LO field and the radiation
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field of single atoms. Photons radiated by the atom can aris@®) is valid fort’=t+ 7=t only. For <0, the order is re-

from either the coherent part of the atomic dipole moment, oversed, so that the correlation function actually is an even

by spontaneous emission from the excited state. We considéunction of r as it must be.

first the coherent dipole. The minus sign in Eq(9) can be shown to arise from the
Suppose we detect a power fluctuation at titmarising  commutator of two positive frequency source field operators

from photon emitted by the coherent part of the atomic di-evaluated at times andt’, as discussed in Ref23]. This

pole. This fluctuation is{AIs(t)), as given by Eq(7). Im-  commutator enforces time ordering. The structure of @j.
mediately following detection of a fluctuation at timethe s identical to the quantum noise term described in Sec. V
atom is reduced to the ground state. A second correlatetFnSin2¢) that causes the difference in the45° noise
fluctuation arises from the coherent dipole of the same atorROWer spectra.

at time t'=t+ 7, since this atom is known to be in the  Equation (9) differs from the corresponding classical
ground state at timet. This power fluctuation is just Cross correlation between absorption and dispersion of atoms

that cross the driving field. For the classical cross correlation,
the minus sign is replaced bypdus sign: time ordering does
) : not arise, as the radiator is not affected by the radiation pro-
I|ve.d atoms, we need not be c9ncerned with SpontaneoUS,ss The contributions of the classical cross correlation to
emission between the tim¢sandt’. ‘the noise spectra are found to be negligible, as shown by the
Equation(7) shows that phase-dependent terms appear i@imijarity of the spectra in Fig. 2. By contrast, the contribu-
the produc AP(t))(AP(t'—t)). These are proportional to tion to the quantum noise spectrum, for which the minus sign
cos¢, sirf¢, and sin2b. The first two terms contribute iden- appears, is large. It can be shown that the ratio of the clas-
tically to both the plus and minus 45° noise spectra. Howsically calculated and quantum mechanically calculated cross
ever, the last term changes sign and causestth®° noise  correlations is of order B’ r,, which is <1 in our experi-
spectra given by Eq6) to differ. This term arises from the ments.
cross correlation between absorptive and dispersive contribu- The quantum noise spectrum includes also effects of
tions to the detected power, i.e., from the cross correlatiophase-dependent spontaneous emission from the excited
between fluctuations in phase and out of phase with the drivstate, i.e., not arising from the coherent dipole. The presence
ing field. of the driving field modulates the spontaneous dipole mo-
It is instructive to look closely at this cross-correlation ment. The resulting power fluctuations depend on the relative
term that is proportional to sir2 With the definitionsé  phase between the LO and the driving field, leading to phase-
=g'tand¢’'=B't’, Eq.(7) shows that the cross correlation dependent structure in the spontaneous noise spectrum. This
is proportional to the detuning, and takes the form structure is found to be identical for the45° noise spectra.
A more detailed description of the point of view presented
briefly here will be given in a future publication.

(AP(t'—t)), wheret’ —t=r. The correlation function is de-
termined by the product:(AP(t))(AP(t'—t)). For long-

ﬂgA[sine 1-cog6'—6) (1—cod) sin(6'—6)]
—_ + Sin2¢.
283 2 2 2 2
(8) I1l. EXPERIMENT

The first term in Eq(8) corresponds to detection of a fluc-  The present experiments, Fig. 3, measure phase-
tuation at timet arising from the coherent dipole moment gependent resonance fluorescence spectra using a unique ho-
that is in phase with the driving field. This is followed by mogyne detection system. In this method, excess noise is
collapse to the ground state, and subsequent detection ofsppressed by subtracting signals from two identical atomic
fluctuation at timet’ arising from the coherent dipole mo- samples, each prepared as described below. To implement
ment that is out of phase with the driving field. The secondiis scheme, we employ a 1-cm-wide supersonic Yb beam
term interchanges the out of phase and in phase parts.  hich crosses two identical continuous laser field regions for
For large generalized Rabi frequencies, whgfe,>1,  which the power transmitted through the polarizer GP2 is
when the time average oveis performed in the correlation monijtored using two diode detectors. The 556-n8,
function, the second term in E@8) is dominant, since it _,3p_ transition of174Yb forms a two-level system compris-
containg sin(¢” - 6) J/4=[sin(8'7) /4 which ist independent.  jng theJ=0 state and thd=1, M=1 state with a radiative
All other terms are down by a factor (d/7,). Hence, & |jifetime of 875 ns. Doppler shifts of the diverging supersonic
particular time-ordered process is favored in this case. Evaliyeam are suppressed by applying a magnetic field gradient
ation of the power spectrum for this term shows that it is angong the laser propagation directign46]. This magnetic
odd function ofw— g’ that causes the small squeezing of compensation is possible for a supersonic beam, since, with a

Fig. 8. . o N narrow spread in the atomic speed, there is approximately a
Using elementary trigonometric identities, H) can be  |inear relation between the Doppler shift and the position
rewritten as alongy at which an atom intersects the driving laser beam.

Magnetic compensation of the Doppler shifts is accom-
) plished in the present experiments by using tilted pole pieces
for which the gap varies in the direction, Fig. 4. The gra-
dient is adjusted to cancel the Doppler shifts by varying the
A remarkable feature of Eq9) is the appearance of the total current in the magnet coils. The uniform component of
minussign between the two terms. Hence, the cross correlathe magnetic field along the axis is used to split thd=1
tion appears odd in the interchangetbfandt. Note that Eq. magnetic sublevels. Magnetic compensation greatly en-

BﬁA[sine 1-cos®’ (1—cos) sing’
2p'3 2 2 2 2

Sin2¢.
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GP1 SB Detector

Magnet Pole

FIG. 4. Experimental scheme showing one of the preparation
beams and the method for generating a local oscillator field with a
stable phase.

splits theJ=1, M=0,=1 magnetic substates by approxi-
mately 1 GHz. For this reaso#d, is denoted as thdriving
field. The relative phasep= ¢,— ¢, between the andx
components is determined by a Babinet-Sdi8B) compen-
sator. The polarizer GP2 defines a local oscillator f&glg:

FIG. 3. Measurement of phase-dependent resonance fluoregjs is the laser field transmitted through GP2. The axis of
cence spectra by subtractjon of transmitted power signals from twespo is oriented at 45° to theaxis, so that the-polarized
identically prepared atomic samples. radiation field of the atoms is mixed witf) 5 to produce the

total field at the detector. For this case, the LO field trans-
hances the intensity of the radiation field and simplifies datanitted through GP2 in the absence of atoms is given by
analysis, by permitting near-resonant excitation of the entirg; = |5Lo|ei¢:gx/\/§+ £€¢\J2. The corresponding
atomic volume with a driving field of well-defined detuning power is
[47].

The laser frequency is offset locked to the atomic reso- Plo=3[Px+P,+2{P,P,cof¢,— ¢,)]. (10
nance with variable detuning to measure phase-dependent
fluorescence spectra for on- or off-resonance excitation. Thighe relative phase between the LO field and the driving field,
is accomplished by frequency shifting two beams derivedp= ¢ o— ¢y, is determined from
from the same laser: the firgstrongey beam is shifted by
110 MHz using a fixed frequency acousto-og#¢) modu- sin(g,— @y)
lator, the output of which provides LO and driving fields for tang= o) PIP, (11)
the atoms; the secon@veakej beam is shifted using a tun- COs @z~ ¢x) Xz

able frequency AO modulator, the output of which is focusedHence, varying the phase of the SB compensator adjusts the

into a single mode optical fiber. The output direction of th,erelative phases between the driving fieldE, and the net

beam from the fiber does not vary as the AO modulator i§, .5 osciliator fields, o ; this allows measurement of phase-

t_uned. This _beam passes through the atomic be_am ata F?olcfi'épendent fluorescence spectra for well-defined quadrature
tion where it does not affect the atoms used in the no's%omponents of the radiation field of the atoms

measurements. A discriminator signal for the servo system is v« qofine the in phase and out of phase quadrature sig-
obtained by synchronously detecting the absorption of thi§1a|S as those fors=0° and ¢=90°, respectively, i.e., the
weak beam as the frequency of the tunable AG modulator %ocal oscillator field is in phase or 90° out of phase with the

dithered. driving field. Since the mean atomic radiation field#sout
of phase with respect to the driving fie(tbr atoms initially
A. Identical local oscillator fields in the ground staje the relative phase between the LO field

and meanatomic radiation field is well defined. Similarly,

Two |dent|gal LO beams are created |n'the experimentsy,, | g phase is well defined relative to the mean atomic
one for each interaction region. Each LO field has the samaipole moment, which is 90° out of phase with the mean
fixed, controllable phase with respect to the field that drivesatomic radiatior'1 field

the atoms in its respective region. This is accomplished as
follows. In each interaction region, atoms cross a strong con-
tinuous laser field that is polarized in tikez plane by a glan
prism GP1 oriented at an anglewith respect to the axis, One important feature of the experiments is the subtrac-
Fig. 4. Only thex component, interacts with the atoms by tion of signals from the two identical interaction regions to
exciting theAM =1 transition. Theg, component is far off suppress excess noise, so that quantum noise in the quadra-
resonance with thd M =0 transition, due to the strong ap- ture signals can be measured. Each of these regions is placed
plied uniform Zeeman field along the direction, which  so that different atoms are excited. Using this method, the

B. Subtraction of signals from identically prepared samples
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technical noise in the local oscillator subtracts. Since the
total signals from the two regions are subtracted, this method
also subtracts the excess noise in the nonvanishing quadra-
ture signalg48], in contrast to homodyne detection with a
beam splitte{49], where the nonvanishing quadrature sig-
nals add. This feature is important in the present experiments
because the quadrature signals are large enough that the ex-
cess noise would dominate the quantum noise signals of in- 90°
terest. In contrast to the technical noise, which subtracts, the

guantum noise from the two regions adds. This is due to the b
fact that the quantum fluctuations in the two radiating re- -60 —40 =20 O 20 40 60

gions are independent, as the optical fields are generated

with a beamsplitter and interact with independent atoms. A | aser Frequency Detuning MHz]

detailed discussion of this method is given in Appendix A.

Subtraction of signals from the interaction regions is FIG. 5. Phase-dependent absorption as a function of laser fre-
implemented using diode detectoiSG&G FFD-040B to  quency for the power transmitted through GP2 of Fig. 4. In the
monitor the signal fields transmitted through the projectionexperimentsP,=1 mW, P,=3 mW, and¢$=0°, 45°, and 90°.
polarizer. The detector outputs are subtracted and convertéthe absorbed power is given in units B§=NAQ P o/(2P,).
to a voltage by a low-noise transimpedance amplifier )

(Signetics NE5211R= 14k0}). The detection system has a tocurrent conversion factor of.e/(fw)=0.23 AIW. The
flat response te=80 MHz, well beyond the 20-MHz spectral spectrum analyzer bar!dW|dth _psed m_these t_axperlments is
range measured in the experiments. Noise voltage signa&”zloo kHz. The 1¢ field radii of the interaction regions

from the transimpedance amplifier are measured with a spe@'® found to bea=100 um along the atomic beam, ar
trum analyzerHP 8553B. =0.76 mm in the vertical direction. The supersonic speed is

found to bev =6x10* cm/s, as measured by time-of-flight
methods. In the theory, the laser fields are assumed to have a
square beam profile along the atomic beam axis. This sim-
Another important feature of the experiments is direCtp“ﬁeS calculation of the phase-dependent spectra, as de-
measurement of the mean-square optical noise voltage, i.&¢ribed in Sec. V. Since the laser beams actually have a

the noise power spectrum, orliaear scale with high sensi- - Gaussian profile, we take the effective transit time for an
tivity. With this system, the atom contributions to the noiseatom to cross a beam with a square profile to he

spectra are readily isolated from the shot-noise and electronic g /7, —=0.17/7 us.
noise contributions. This technique is implemented using a
method which is well known in light beating spectroscopy
[50]: the voltage output of the analog spectrum analyzer is
squared using a low-noise multipli¢Analog Devices AD- Phase-dependent absorption spectra as a function of the
534K). The output of the multiplier then is fed to a lock-in laser frequency have been measured for quadratures in phase
amplifier (SR 850-DSP which subtracts the mean square (¢=0°), out ofphase (=90°), and aip=45° with respect
noise signals obtained with the laser fields on and off. In thigo the driving field. These quadrature phase settings are de-
way, the mean square electronic noise is subtracted in reé@rmined by the Babinet compensator shown in Fig. 4. For
time, and the lock-in output is proportional to the mean-each phase setting, the power absorbed from the beam trans-
square optical noise voltag81]. mitted through GP2 is measured as a function of laser fre-
As a calibration of the detection system, the mean-squarguency. These phase-dependent absorption spectra are
shot-noise voltage is measured. In this case, the lock-in oushown in Fig. 5. The in-phasep=0°) absorption spectrum
put scales linearly with the total power incident on the bal-is @ symmetric, bell-shaped curve, centered at the atomic
anced detectors from 6 mW down tog@N. The measured resonance frequency. By contrast, the out-of-ptigse90°)
slope agrees with predictions based on shot noise, the syste¥hsorption spectrum is an antisymmetric function of the laser
gain factors and the detector efficiency to better than 1094requency. The absorption vanishes at zero detuning. In this
[52]. case, the mean atomic radiation field is 90° out of phase with
Phase-dependent resonance fluorescence spectra are ihe LO field, so that the transmitted power is unaffected until
lated by subtracting the shot-noise contribution. This is dethe laser is detuned from resonance, which changes the
termined by measuring the on-resonance transmitted powd@hase. The 45° absorption spectrum contains both symmetric
P for a particular quadrature phasge just after a quadrature and antisymmetric functions of the laser detuning.
power spectrum is recorded. Then, with the laser far off reso-
nance, the power is reset Bband the shot-noise spectrum is 1V. PHASE-DEPENDENT RESONANCE FLUORESCENCE
measured; this determines the shot-noise contribution to the SPECTRA
measured power spectrum.

0°
45°

T | T | T | T ‘ T | T

Absorbed Power (P, /P,

C. Noise power spectra

E. Phase-dependent absorption spectra

For each quadrature signal at a fixed driving field detun-
ing, there is a phase-dependent resonance fluorescence spec-
trum measured as a function of spectrum analyzer frequency.

The detection system efficiencyincluding focusing This is the power spectrum of the fluctuations in the chosen
lenses is 7,=0.51, as determined from the measured pho-quadrature. These power spectra are measured for both on-

D. Experimental parameters
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FIG. 6. Phase-dependent fluorescence spectra for coherently FIG. 7. Phase-dependent fluorescence spectra for coherently
driven two-level atoms(a) Measured in-phasef(=0°) noise spec- driven two-level atoms(a) Measured out-of-phasep(=90°) noise
trum for on-resonance excitation and effective pulse #ga47. ~ Spectrum for on-resonance excitation and effective pulse éyea
HereNAQ =0.12 mW is determined from the power absorbed from =47. Here NAQ)=0.25 mW is determined from the power ab-
P, on resonance®,=1 mW andP,=0. The noise spectral density sorbed fromP, on resonanceP,=1 mW, P,=3 mW, andP ¢
(V2/Hz) was divided by the measured shot noise spectral densityF 1 MW. The noise spectral density4/Hz) was divided by the
for 1 mW of total power; a noise spectral density of O correspondgneasured shot noise spectral density for 1 mW of total power; a
to the shot noise level of the total transmitted power, which hadoise spectral density of O corresponds to the shot noise level of the
been subtractedb) Calculated noise spectra using the same unitsiotal transmitted power, which has been subtracterCalculated

as (a) and no free parameters. Both the data and the theory wer@0ise spectra using the same units(@sand no free parameters.
divided by P, o/(2P,). Both the data and the theory were divided By, /(2P,).

A. On-resonance noise spectra
and off-resonant driving fields. Phase-dependent fluores-

o S For the in-phase measurements, the driving beam power
cence spectra for on-resonance excitation are shown in F|g.ig P.— 1.0 mW (one region to obtain a maximum pulse area
for radiation in phase with the driving field=0°), and in o 9 P

. S . D . Oy =4m. To measure thep=0° quadrature noise spectrum
Fig. 7 for radlat.|0.n ogt Of. phase with the driving .f'eld shown in Fig §a), the power in thez-polarized field for each
(¢=90°). The driving field is tuned to resonance with a

; , interaction region isP,=0, and the polarizer GP2 is re-
maximum pulse areéfor atoms crossing the center of the moved. Similar noise spectra are obtained Bgr=0 and é
interaction regiop of 6, =4 at a driving field power of 1

=0° with GP2 installed. This is as it should be, since the in-

mw. phase data is equivalent to the absorption noise of a strong

The zero level of power spectral density corresponds team. For the out-of-phase data, agBip=1 mW, but the
the shot noise level of the total transmitted power which hagower in thez-polarized beam is taken to #&,=3.0 mw,
been subtracted. The baseline is not adjusted after subtragnd the Soleil-Babinet compensator is adjusted to giye
tion of the shot noise. The remaining atom-noise spectrap, =125° so that the denominator of E(.1) vanishes and
density has been divided by the dimensionless ratiay= /2. Equation(10) yields the LO poweP o=1 mW as
PLo(¢)/(2P,), which is phase dependefsiee Sec. Y One  measured in the experiments. For comparison with the theo-
unit of spectral density is the shot-noise spectral densityetical power spectrésee Sec. Y, we requireN, the number
(V2Hz) for 1 mW of total power. Since the LO beam pow- of atom/s crossing one interaction region. From the measured
ers typically are of order 1 mW, the shot-noise spectral denabsorption of the transmitted driving beam on resonance,

sity of a 1-mW beam is a convenient unit. Note that anyyz () is determined to be=0.12 mW for the¢p=0° data,

accurate measurement of the power spectrum requires noig@q 0.25 mw for thep=90° data.

sensitivity well below this level. The measured on-resonance in-phase noise spectrum,
Figure 8 shows the corresponding noise spectra for 180Fig. 6(a)] exhibits a number of interesting features. The in-

*+45° quadratures. Here, the driving field-6.6 MHz off-  phase spectrum appears as a broad peak centered near the

resonance with a maximum pulse ar@mn resonangeof  Rabi frequency of the driving field, and exhibits a local mini-

0y =5.67 at 2 mW of driving field power. mum near 2.5 MHz. By contrast, the out-of-phase spectrum,
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12 keep the LO power at a modest level, the Babinet compen-
' sator is adjusted to give,— ¢,=154° or 206°, so that the
1.0 = quadrature phases used in the experimentspard 35° and
0.8 — 225°, respectively, according to E@.1). Using Eq.(10), the
06 corresponding LO poweP, o=1.67 mW in both cases, as
_E,‘ measured in the experiments. In the actual experiments, the
§7 0.4 Babinet compensator is adjusted slightly to yield identical
5 0.2 LO powers for the two quadratures. This compensates for a
/ 00 small phase shift induced in the off-resonant driving beam by
= 0.9 the medium.
= s With the laser offset-locked off-resonance by approxi-
8 » mately —6.6x1 MHz, phase-dependent resonance fluores-
[ ‘ cence spectra are obtained #r 180+ 45° quadratures. As
v 1.0 = shown in Fig. &), these spectra are quite different. The two
&£ 038 A spectra cross near 10 MHz. THel35° plot has a high level
'S 06 at low frequency, rises to a maximum near 8 MHz, and de-
= 0.4 ; (b) scends to a minimum near 12 MHz, where it probably dips
0.2 I below the shot-noise level, indicating a small amount of
TR / squeezing. By contrast, the 225° noise spectrum starts out
0.0 _‘J(\F/ low at low frequency, where it may be dipping below the
-0.2 . shot-noise level. It crosses the 135° data, rises to a maxi-
2 4 6 81012141618 mum, and then descends to a level well above the shot-noise
Spectrum Analyzer Frequency (MHz] level at the highest frequency shown.

FIG. 8. Phase-dependent fluorescence spectra for coherently V. THEORY

driven two-level atoms(a) Measured noise spectra fef=135° In our experiments, phase-dependent absorption is ob-
(solid line) and 225°(dashed lingat a laser detuning of 6.6x1  geryed and phase-dependent noise is measured for various
MHz and an effective pulse areyy=5.6m. P,=2 mW, P,=9  hhaqe quadratures of the radiation field emitted by many at-
mW, andP o=1.67 mW.NA(=0.13 mW is determined by the oms in the forward direction. This system is similar to that
power absorbed from thE, beam when it is on resonance. The analyzed theoretically by Heidmann and Reyn&sid. The
noise spectral densit\f/Hz) was divided by the shot noise spec- experimental noise spectra obtained for resonant excitation
tra_l der;]slty for 1 mW of total power(.b)AC_aIcuIated noise shpe;]:tra with ¢=0° and 90° are in good qualitative agreement with
ZZ'tggatn; tflznzﬁezfravry;t::js}\(/?(fezxgpt/ (EP_)S‘S MHz. Both the predictions by Collett, Walls, and Zoll¢B5], as described

y 0 X above. In this section, we present a quantum treatment of the

[Fig. 7(@)] is centered at zero frequency, and is small near thgxpected noise spectra for long-lived atoms, without invok-

Rabi sidebands. Spectra of this general structure have beeie the quantum regression _thgorem. The pred_|cted noise
. . . . i .Spectra are in excellent quantitative agreement with the mea-
predicted previously for short-lived atoms driven with a Rabi

. sured spectra for both on- and off-resonant excitation.
frequency greater than the spontaneous decayl 3 We review the basic physics of two-level atom noise
The out-of-phase noise approaches zero at high frequencg

. : ; Pectra for a thin sample of coherently driven long-lived
and it exceeds the in-phase noise at low frequency. For €AUgLo-level atoms in an atomic beam. We begin with a heuris-

values ofN, the in-phase and out-of-phase spectra cross negf; estimate of the magnitude of the phase-dependent absorp-
2 MHz. At this frequency, the phase-dependent noise vangon and atom noise signals. Then, the results of a more

ishes, leaving only the phase-independent contribution. It igomplete quantum mechanical treatment of the noise spectra
interesting to note that the average of the in-phase and OUEAppendix B are described.

of-phase spectra yields the phase-independent part of the
noise spectrungsee Sec. Y. This average noise spectrum is
equivalent to a fluorescence spectrum, with spectral resolu- ]
tion limited by the transit time across the local oscillator ~The form and magnitude of the phase-dependent absorp-
beam. The average of the measured noise spectra exhibfi§n and noise for resonant excitation can be estimated using
peaks Centered at zero frequency and near the Rab| Sideeuristic al’guments. Denoting the I’adiation f|e|d Of a Single

A. Atom-noise estimate

bands, similar to a Mollow spectrufi3]. atom byE’S, the corresponding change in the power transmit-
ted through GP2Fig. 4) is APM=(c/8m)2& o EA, Where
B. Off-resonance noise spectra A is the cross-sectional area of the local oscillator beam.

For these experiments, the driving beam powelP js- 2 With a dipole i_n th_e V(_)Ium_eAL, the radiation field_ in t_he
MW, and 6,,=5.67. The power in thez-polarized beam is paraxial approximatior(i.e., in the near forward dll’eCEIOI’]
P,=9 mW. From the measured absorption of the 2-mwwhere the local oscillator field is nonzgrois &
driving beam, we findN%Q =0.13 mWw. =2 (Q/c) L(w/AL)X, where Q) is the frequency of the

By using a largeP,, the LO field is rendered relatively Optical field. This leads to a net power change per atom of
insensitive to phase shifts due to the medium. In order ta\ P(l):(ﬁQ/Z)(,ufofLO/ﬁ). This can be rewritten in terms
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of the pulse areafy=uéi7,/%, where 7, is the transit . Plo| 70
time of the atom to cross the interaction region; S(¥:$)Av=nsP+nNil 2P, 2 OmilFo(»)+Fs(v)]

APWD=#012)(0y | 75)X- E ol E,. With the local oscillator

polarization at 45° to thex axis, X- & o/ &= VP Lo/ (2Py), +[Fo(v)+Fg(v)]cosab+Fy(v)sin24},

and the absorbed power per atom is of order (15
" 2Q 6y [Plo where ¢= ¢ o— ¢, and we have takeR,=P, and ¢,=¢,
AP =— "\ 5p (120 in Eq. (B43). The first term in Eq(15) is the mean-square
o] X

shot noise due to the toté@both regiong transmitted power
where P, and P, are the driving field and LO powers, P. The terms=<NA(Q) are the atom-noise contributions, as
respectively. described below. The rafs at which atoms cross a single
For N interacting atoms in the volume, we can defde interaction region is determined by measuring the total
=N/7, as the rate at which atoms traverse one interactioppower absorbed from a pursepolarized beam as described
region. Then the power absorbed from the beam transmittebdelow. In Eq.(15), » (Av) is the spectrum analyzer fre-

through GP2 is of ordeNAP™), or quency(bandwidth in Hz. ns=2AQ 5,A v, with 7, the de-
tection system efficiencyP o (Py) is the total transmitted

. IPLo (driving) field power with the laser fields off resonance. The
Pags=—N# 2P, 13 maximum Bloch angle i®,,= By7,. The driving field Rabi

frequencypB,, detuningA, and the transit time, for atoms
assuming strong excitation whe#ig=1. The natural scale to cross an interaction region determine the frequency scales
of absorbed power for an atom with a long radiative lifetimeof the dimensionless spectral functiofs,(v), etc.
corresponds to one photon being absorbed for each atom that As shown in Appendix B, we find
traverses the interaction region.

The magnitude of the phase-dependent optical noise per Fp(v)=F[sing,sing;v],
unit bandwidth,S(v), which is studied in the experiments, B _
also can be understood using heuristic arguments. For each Fse(v)=F[1-coss,1-cosf;v], (16)

atom that crosses the interaction region, the atomic dipole
moment causes a power change of orB€P in Eq. (12).
Since the atoms arrive independently, the mean-square
power fluctuation is of ordeN[APM]2, and is distributed Fu(v)=Ar| F
over a bandwidth=1/7,. It is not difficult to show that N °
N[AP®)]? s of orderN P oPspont, WherePgyonds the spon-

taneous power radiated by one atom into the diffractiorHereF[f,g,v] takes the form
angle of the LO. Using Eq(12), the mean-square power

g : . 1 ~ _
noise in a bandwidti v is of order FLf(0),9(0);v]=2 Rej dr e "?™7Clf(6),9(0); 7],
0
0\ , Pwo (17)

(R
~ (172 ~ R _—
S(v)Av=N[AP'W]*m,Av AVN( 5 ) M2p, -

Fg(v)=F[cos9+ 1,co9—1;v],

sing
F — 1- cosﬂ” .
M

sing
1-cos9, —|—
O

(14)  WhereC[ f,g,7] is a normal and time-ordered correlation
function given by
From Eqgs.(14) and (13), we see the natural scale of the

atomic contribution to the optical noise in the transmitted CLf(0),9(0); 7]

beam: it is the order of the shot noise corresponding to the B 2 2

absorbed power, i.e., of ord@gsi QA v. _ f* d_ne,z,]z (12=7 ¢ Ope 7
—em ~a2 7 Oy3(n)

B. Phase-dependent resonance fluorescence spectra

Measurement of phase-dependent resonance fluorescence X TLOCet 7, m) 9L 0(&,m)], (18)

spectra permits a study of the atomic contributions to than Eq. (18), the integral over the dimensionless variabje
noise in the radiation field of the driven samples. For a thin= z/hy averages the correlation function in the vertical direc-
sample and long-lived atoms, these phase-dependent noiggn, where the field ¥ radius isb. The integral over the
spectra can be understood from the decay-free operator ORimensionless variablg=x/a determines the correlation
tical Bloch equations for the independent two-level atoms, a3long the atomic beam axis a is the full width of the field,
described in detail in Appendix B. Appendix B describes theyyhich is assumed to have a rectangular profile along the
calculation of the dipole autocorrelation function for the 5tomic beam. This simplifies the calculations for off-

long-lived atoms, using the Bloch vector operator evolutionyesgonant excitation. The position-dependent effective Bloch
equations. The noise power spectrum is calculated from thgng|e is given by

normal and time-ordered power autocorrelation function, and

has a magnitude in agreement with the heuristic estimate of 0(&,7m)=04,(n)(%+&), (19
Eqg. (14). This power spectrum can be written in terms of

distinct noise sources according to EB43) in the form with the effective maximum pulse area
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0! ()= O2exn — 27D (AT )2, 20 VI. THEORETICAL PHASE-DEPENDENT
W)= OyeXA = 27)+ (A1) (20 FLUORESCENCE SPECTRA

Note that the left argument @[ f,g;7], f, is evaluated at a Using Eq.(15), phase-dependent fluorescence spectra can
later time, &+ 7, than the right argumeng, which is evalu- be calculated in absolute units, using the experimentally
ated at¢. HenceFp andFgpare symmetric under the inter- measured parameters.
change of time ordering;g has both even and odd contri-
butions, andFy is antisymmetric under the interchange of
the time ordering23]. A. On-resonance

Corresponding to the phase-dependent noise spectra, the The measured on-resonance noise spectra can be com-
phase—depender)t power absorbed as a function of _drivingared to those calculated from E@5) for ¢=0° and 90°.
field frequency is given by EqB49). The rate at which g res gb) and 7b) show the calculated phase-dependent
atoms cross one regiof, is determined by measuring the noise spectral densifyS(») — 7sP]/7s. in units of the shot-
total power absorbed from a resonanpolarized driving  ngjse spectral density, for 1 mW. The spectra were calcu-
field, with the polarizer GPZ of Fig. 4 removed. In this case,|gted from Eq.(15) using the experimentally determined pa-
the factorP, o/(2P,)—1 in Eq.(B49), Fc—F, andFs—0.  rameters. However, the spectral functiofs,, etc., were

N for one region is determined from the total power ab-determined using the Gaussian beam results of 2.

sorbed from both regions on resonance using This was done to eliminate minor oscillations which arise
_ from the square beam profile assumed in the present work.

Piss= —NAQF(6y), (21 Except for these minor oscillations, the square beam results

are in good agreement in both form and magnitude with the
where Gaussian beam results for the on-resonance case. Both the

predictions and the data have been divided by the factor
= dy , , P.o/2P,, the ratio of the phase-dependent local oscillator
Fof GM)=J —e ?27[1-cogbye 7)]. (22 power to the driving field power.
e\ The observed spectra have a shape and magnitude in ex-
cellent agreement with the predictions, using no free param-
Note thatF,(6y)/2 is just the mean excitation probability eters. For the in-phase spectrum, the broad peak centered

for an atom which traverses one interaction region. near the Rabi sidebands arises from three tefrgsandFg
_ o add to contribute half of the amplitude, while the phase de-
Atom noise contributions pendent and independent contributions frBm provide the

The first four atomic contributions that appear in Etp) ~ other half. Note that the mean dipole moment teffigsdo
have been discussed previougB2]. The first two terms not have an “elastic” in-phase peak, centered near zero fre-
Fp+ Fgpare phase independent, and are similar to an ordiquency, as is the case for short lived atofid]. For the
nary resonance fluorescence spectf@B4]. This spectrum long-lived atoms used in this experiment, the mean dipole
arises from a sum of elastic and inelastic scattering. Agnoment is modulated at the Rabi frequency and the noise
shown previously for long-lived excited states, the sum ofspectral functionFp(v) is centered in the Rabi sidebands.
the probabilities for the atom to arrive in the ground stateFor the out-of-phase spectrum, the mean dipole moment does
emit one photon and exit in the ground or excited stategiot contribute, andFspandFg are subtracted to produce the
yields the fluorescence spectriBb]. For on-resonance ex- central peak.
citation, Fp(1+cos2p) describes noise arising from the  As noted above, at a frequency of 2 MHz, the in-phase
mean dipole moment of single atoms that traverse the inteland out-of-phase noise components are of equal magnitude,
action region, whild- gp describes the phase independent par@énd the phase-dependent noise contribution vanishes. In this
of the fluctuating atomic dipole momefit4]. The Fgcos2p case, the mean dipole noise increases the net noise level by
term can be considered to arise from phase-dependent fluexactly the same amount that the phase-dependent projection
tuations in the in and out-of-phase quadrature components @oise decreases it. It is interesting to note that in a system
the atomic Bloch vectof22]. with a prepared Bloch vector where the Bloch angis time

The novel spectral features observed in Fig. 8 for off-independent, the net phase-dependent noise contribution to
resonance excitation witth=180+45° are described by the the spectrum vanishes for all
last term of Eq.(15), Fy(v)sin2¢. This term causes the The agreement between the data and theory in the present
striking asymmetry between these power spectra. It vanishegxperiments is somewhat better than that of our previously
at zero detuning and for the in-phas¢=0°) and out-of- Ppublished result§22]. Both the shape and magnitude of the
phase quadraturegh=90°). Hence it was not measurable in data are in excellent agreement with the theoretical predic-
our first experimenf22]. The structure of shows that it tions. This is a consequence of improving the method of
arises from atomic operator products that are odd under théeterminingN, which is now obtained directly from the ab-
exchange of time ordering as described above. Hence it isorption of a strong resonant beam, with GP2 removed. Fur-
easy to see that this contribution would vanish if symmetricther, the magnetic compensation of the Doppler shifts is op-
time ordering were chosen arbitraril23]. The effects of timized midway between the two interactions, which
Fn(v) are isolated in the experiments, since aps for  improves noise subtraction and reduces the absorption line-
¢=135° and 225°, while sing=¥1. width by reducing the Doppler broadening contribution.
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B. Off-resonance this elementary two-level quantum system.

The off-resonance noise spectra can be compared to those The technique_s e_mployed _in .the measurements can he
predicted using Eq(15) for ¢=180+45°. The theoretical used to study noise in the radiation fields of atoms in a va-
noise specira are evaluated e _ 5.8 MHz. which yields riety of configurations. These include atoms in dense
spectra centered near 10 MHz as in the experiments. Doppler-compensated bearp#6,47 where, for example, it

. will be possible to explore phase-dependent noise spectra in

Th? agreement between the measured and predicted .Sp%%operative emission and in three level systems exhibiting
tra [Fig. 8b)] is excellent. Although the data are not quiet lectromagnetically induced transparency
enough to conclusively verify the existence of the predictec[E '
squeezing, the data are of exactly the correct magnitude and
they exhibit all of the correct qualitative features. A particu- ACKNOWLEDGMENTS
larly interesting feature of this data is that it directly exhibits
a manifestation of time ordering of the atomic operators ag,
discussed above. If the atomic operators were arbitrarily org
dered symmetrically, the terfy(v) in Eq. (15) would van-
ish, and the 186 45° quadrature noise spectra would be
identical. Instead, they are quite different.

As described in Sec. Il, the asymmetry of the 180b°
spectra cannot be interpreted in terms of the cross correlation
between fluctuations in thelassicaldispersion and absorp- APPENDIX A: SUBTRACTION OF IDENTICAL SIGNALS

tion from individual atoms which randomly pass through the

interaction regions. When the classical contribution to th ower is suppressed by subtracting the signals from two in-

ﬁi)ecr’irudT 'IS Cr?]lcfr:atnid ;r?r:n thte rﬁortl;elaflc:jn functnIJn f?r tlhgdependent samples of atoms, instead of using balanced ho-
ean dipole moment o {ne atom, treated as a classical ¢ }hodyne detection with a beam splitter. These technical noise

pole, a cross correlation between absorptive and dlsperswce

ibuti d ise. It iesi but it is i ; ontributions arise in two ways. The first is just the direct
contributions does arise. fssin2g, but it is IMe SYMMeL-  q,ctuation in the transmitted beam, which would contribute
ric in the atom source field operators, and fails to display th

) §n the absence of atoms, i.e., the classical fluctuations in the
obiervhed _d|ff|e_retnce btett\{vee? tht?] 1805 spe;:tre[bZ?;]. ineEffective LO. Additional technical noise arises from classical
180+|15¥,S'C‘3 '? erpre g on for ; & Iasynr'medryt © we;n d Sfluctuations in the interference between the LO field and the

=49 Spectra can be given Tor 1ong-lived atoms. AS U€-, 04, field emitted by the atoms, i.e., in the quadrature sig-

SC:'bE’tq n fSec.hII,t a Qol'[lﬁpske t%_tf?e grourtl)d tstate ft?]”OW'ngnaIs themselves. These multiplicative technical noise terms
etection or a pnoton 1S the key diiference between the quans,, 4rise from classical fluctuations in the driving field,

tum and chssmaI evolgtlon of the coherent atomic dlp0|e\Nhich leads to classical noise in the radiation field of the
moment. This leads to time ordering and to the correct Cr0S§toms or from fluctuations in the net LO field, which inter-

correlation between absorptive and dispersive power fluctu
tions.

This work was supported in part by the National Science

undation, the Rome Air Development Center, the U.S. Air

orce Office of Sponsored Research, and the U.S. Army Re-
search Office. We thank Professor D. Gauthier, Professor H.
Carmichael, and Professor P. Berman for many stimulating
conversations regarding this work.

In the experiments, technical noise in the transmitted

Feres with the average radiation field of the atoms. While the
noise which arises directly from the LO can be suppressed in
ordinary balanced homodyne detection with a beam splitter,

VIl. CONCLUSIONS the interference terms add in this case, and hence the multi-

We have measured phase-dependent resonance fluor@dcative noise terms add. For strongly radiating atomic
cence spectra for an elementary system: driven long-lived@mPples, the failure of balanced homodyne detection with a
two-level atoms in an atomic beam. Phase-dependent resBeam splitter to suppress these muluphqauvg noise contribu-
nance fluorescence spectra are very rich compared to thol@ns leéads to substantial technical noise in the measured
of ordinary resonance fluorescence spectra which are meB0iS€ spectra at low frequencies. By contrast, for atomic
sured without phase sensitivity. By analyzing the quadratur&2mples which are nominally identical, the method of sub-
power spectra of this simple radiating system, it has beeffcting signals from two independent regions suppresses the
possible to explore a number of phase-dependent atom noidgchnical noise contributions in both the LO and in the
sources in some detail. We have shown that striking maniPhase-dependent quadrature signals of the atoms as well.
festations of time ordering appear in the phase-dependertiS méthod is analyzed in this section for a thin sample.
fluorescence spectra for off-resonant excitation. Let P;(t) be the Heisenberg operator for the total trans-

For two-level atoms with a long radiative lifetime, the mitted power for each sample=1 and 2. The operator cor-
dipole autocorrelation function can be calculated without in-responding to the difference in the transmitted powers is
voking the quantum regression theorem. The resulting theo-
retical spectra are in excellent agreement with the data, and AP(t)=Py(t)—Py(t). (A1)
have a relatively simple structure that is amenable to rigor-
ous physical interpretation using the Bloch picture. This will
be'It'rc]>eoiL:bliﬁgtvvoltl;c?ggmgecgrigféie description of fhiease of the difference current is proportional to that of the power
dependenfluorescence spectra in terms of simple scatteringdlfference operator,
diagrams does not yet exist. The exploration of such a pic- or
ture will provide further insights into the physical processes SAP((U):ZJOC dTe_CAp( 7) (A2)
responsible for phase-dependent noise and time ordering in —w 2T

For ideal photodiodes, the one-sided=0) power spectrum
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whereC,p(7) is the time and quantum averaged autocorre- Ct,t)=17 (|51(t)+ Isz(t)> RS —1)
lation function of the power difference operator ’ ° , Q
+ 7ol Coaot,t") + Cog(tt')], (A10)
Cap(1)=(C(L,t'=t+7))7. (A3) o .
) where
HereT denotes an average over the tilmeandt’ =t for 7
=0. The quantum-averaged correlation function is given by Clt t'):<1ﬁ’1ﬁ’ii>o—<3ﬁ’1ﬁ’éi>Q (A11)
C(t,t")=(AP()AP(t"))q, (A4)  andC(t,t') is identical in form to Eq(A11), with 1< 2.

. With Eg. (A10), the power spectrum, E@A2), takes the
whereQ denotes a quantum statistical average. We assu a. (A10) P P Wh2)

that the field modes are in a vacuum state except for a strong
local oscillator mode. X0 2

The correlation function can be expanded in terms of the Syp(w)=7n,—P+ ng— Ref
transmitted power operators for the two samples ™ &

dr €“(Cyyt,t' =t+7)
0

, ~ ~ 2, a, A, A A, +C21(t,t,:t+7')>'|', (A12)
C(t,t")=((P1—P2)(P1—P3))o=(P1P1)o—(P1P2)q
whereP is the total average transmitted power from the two

+(P2P3)q=(P2P1)q, (AS) sampleg(including the absorption Note that the correlation
. N function C4,, which describes the atom contribution to the
whereP=P(t) andP’'=P(t’). power spectrum, is symmetric i so that we taker=0 in
The power operators are written in terms of the sIowaEq_ (A12) and in the following discussion.
varying field operators at the detectofg(t,x, ), i=1 and 2, The correlation function€,, and C,; can be written in

where the plane of the detector is denoted/byyp= cONSt,  terms of the the total field;(t) at each detector=1 and 2;
and x, is a vector in the detector plane. Then, the cyclefor example,

averaged power operator is taken as ,
.. c - o) gt a
NI P Pbi=(ge] [ [ ER Be.
P(t)zg dox, EN(t,x, ) E(L, X, ). (AB) (A13)

In Eq. (A6), we assumed that the fields propagate nominallyHere we omit the spatial arguments for the field operators

alongy,- and comprise a band of frequencies centered arounging £,=£,(t) and &;=&,(t'). For the normal-ordered cor-
the optical frequency), so that relation functions, the ordering of the total fields has been
chosen as time ordered, with positive frequency field opera-

tors & which are evaluated at later times placed to the left of

. h val rlier times. For the n ive fr n
We assume that the total field operators at each detector atr_eOse evaluated at earlier imes. For the negative frequency

AT . . . . . .
in source free regions, and therefore have the same comm{j€!dS; €', the time ordering is reversed. This yields a mani-
tators as free fields. In this case, the slowly varying field'€Stly Hermitian correlation function. Since the positite
operators in a fixed planey) for samplesi=1 and 2 are negative frequency operators for the total fields commute,

readily shown to obey approximately the commutation rela—f[his ordering is arbitrary. However, the choice of time order-

ing simplifies the evaluation of the correlation functions, as

Ei(X,t)= 2&(t,x, )€Y 12y Hc. (A7)

tions
is well known[37], and employed below.
L . 87hQ . . The total field operators for theh sample can be written
[&(tx).& (' x)]= —o O mx)8t—t) gy in the form

(A8) . . .
&Gi(H)=Eo;i(H) +Ev,i (D) +E;i(1). (A14)
We assume in writing Eq(A8) that the driving and local ] ) ) ) ] )
oscillator fields for samples 1 and 2 are derived using a beanhhe first term in Eq(A14) is the local oscillator field, which
splitter, and that the samples consist of different atoms, sé modelled as a strong classical field. It is the net laser field
that the total field operators for different samples commutefransmitted through the projection polarizéfig. 3) in the
The correlation functions appearing in E(q\S) can bhe absence of the atoms. The second term is the Correspondlng
rewritten using Eqs(AG) and (AS) |ncorporating the detec- Vvacuum field, which is responSible for the shot noise in the

tion efficiency 7, in the usual way48] yields local oscillator power in the absence of atoms. Finally, the
third term is the field from the atomic source.
(PiP{)o= 8 1o(P))ghQ8(t—t") + ,75<:pipj’ Do The choice of normal and time ordering allows elimina-

(A9) tion of the explicit vacuum field operators from the expres-
sion for the correlation function. The vacuum field operators
where the first term is the shot noise of the total power for avhich appear in the outer total field operators of E413)
single sample, and the double dots in the second term denotee immediately eliminated, since they act on vacuum states.
normal and time ordering. With EqA9), the correlation This leaves only the classical local oscillator field and the
function of Eq.(A5) can be written in the form source field in these outer factors.
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Since the total fields have free-field commutators, theare not proportional to the local oscillator field, while the
vacuum and source field terms generally do not commutdater are. The correlation function of EGA16) is therefore
This is due to the interaction between the vacuum fluctuasimplified to
tions and the source atoms. Vacuum fluctuations polarized

along the driving field axigx) can modify the dipole mo- Codt,t)=(P&1Ps1)o— (P&1Ps2)o+ (PLIPS Do
ment of the moving atoms, which then radiates a field in T T T
response to the fluctuations. As the dipole is affected only by —(PL.PS)otcc, (A18)

vacuum fluctuations in the pa§t3;i(t) contains vacuum field
operators evaluated at timest. Hence vacuum field opera- where the prime denotes evaluation at titrie while the

tors, &.i(t), evaluated at tim¢’ =t commute withég;(t).  unprimed terms are evaluated at timeNote the complex
Sincet’ =t+ r=t, for =0 as required according to Eq. Conjugate terms are consistent with the normal and time or-

(A12), we have[ & ,E5i]1=0, as discussed previoudl§7]. derlr?g. . .
Hence, the vacuum field operators which appear in the inner Since the operatoi8s of Eq. (A15) contain only scattered
field operators of Eq(A13) and which are evaluated later in field operators, they can be expanded in terms of the corre-
time than the outer field operators commute with the laterSPonding operators for individual atoms. Hence
Thus they can be commuted to the outside to act on the
vacuum state, and are eliminated.

With the explicit vacuum field operators eliminated by the
normal and time ordering, the correlation function of Eq.

(A11) can be evaluated by defining power operators whichyhere the sum is over atoma)(in a single samplei, Note
represent the interference between the source field and thgat at high density, the driving field can be substantially
local oscillator field, modified by interaction with the atomic medium, and the
atoms can couple to each other via the radiation field. In this
R c - - case, the correlation function is not necessarily linear in the
=_ 2 : " . . - . g
Psi()= 877J d°x, Elo;i (D) Esi (). (A15) atomic density. For simplicity, here we will consider only the
case of small absorption, where the correlation function is
Then the total power operators which appear in the correldlinéar in the atomic density, and the atoms radiate indepen-

tion functions of Eq.(A11) can be written as dently. Denoting by ¢,a’) the atoms in sample 1 and by
(b,b") the atoms in sample 2, a typical correlation function

which appears in E/A18) can be written as

Psi(t)=> P&(1), (A19)

Cit,t")=(:[PLoat ﬁ’s;1+ IE’;;1+A'5531][p£o;1+ |E>,s;l

A’ o . . > BT A A A A AalN A
tPsat esqllom (IPont Psat P, (P51Ps1)o=(PsiPsa)o= 2 (PEPE)q
~ ' Y 5t ~r . a'a
+esgil[Plog2t Ps ot Plotessa]io,
(A16) 2 (PSTPS)e,
a,
where the double dots denote that fhg operators are nor- (A20)

mal and time ordered, as required after elimination of the

explicit vacuum field operators. In EGAL6), Essi is a scat- where primed operators are evaluated at fime while

tered power operator which is quadratic in the source field" nprimed operators are evaluated at time
P pera q : . The majority of the terms in EqA20) arise from inde-
operators and which does not contain the local oscillator

field pendent atoms. In the first term there &gN,—1) contri-
' . o ' . butions fora#a’, and in the second, which arises from in-
In the experiments, the driving field, the local osclllatordepenolent samples, there @gN, contributions withb

field, and atomic samples are adjusted so tRgh,y(t) #a’. Now independent atoms, which traverse a given local
=P, 0.»(t) and also so that the total power operators satisfy’ ™. , pen P €adg
' oscillator field, arrive at random times relative to one an-

(P1(1))o=(P2(t))q. i.e., signals with identical mean values

; - ] ther. For stable classical driving fields, these terms make
are obtained from the two samples. This requires

7-independent contributions to the correlation function, Eg.
R R R R R R (A3). Therefore, they do not contribute to the spectrum for
(Ps1+PLi+esq1)o=(Ps2t PLo+esso, >0, and they may be dropped, yielding only the sum in the
(A17)  first term with a’=a. Since each atom is correlated with
itself, this yields the desired atom noise spectrum. Due to
where the vacuum field operators do not contribute to théechnical noise, however, there are additional correlations in
average power, and equal LO powers are used. Hence, in Ethe independent-atom terms.
(A16), the seven terms which are quadratic or explicitly lin-  To take into account the effects of classical fluctuations
ear inP g in the first correlation function are cancelled by on the correlation functions, it is convenient to write the
the corresponding seven terms in the second. Further, thgeattered power operators in the form

remaining terms which are quadratic &g are negligible R )
compared to those quadratic i, as the former operators P — P+ 5P,
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where the first term denotes the single atom power operatan Eq. (A15), in terms of the Bloch vector operators for the
for stable classical driving and LO fields, and the secondndividual atoms.
term denotes the classical fluctuation in the mean scattered

power per atom which is due to technical noise in either the

LO or driving fields.

1. Scattered power operator

Since the classical fluctuation has a zero mean value, and We assume that the LO and driving fields propagate

is independent oP® | the correlation functiofiEq. (A20)],
can be written in the form

<|S,S;1|SS;1>Q_<IS’S;1ISS;2>Q

=2 (P PE)o+ 2 (0PSRN
a’,a

- Zb (6P 5PP)y, . (A21)
a’,

Here r-independent contributions have been dropped, an
the first term in Eq(A21) contains only the sum of single-
atom contributions, i.ea’=a, neglecting classical fluctua-

tions. Since each atom is correlated with itself, these yield
the dominant noise contribution to the spectrum. Now, the

last two terms in Eq(A21), which involve primarily inde-
pendent atoms, only contain correlations that arise from fluc
tuations in the driving and local oscillator fields. The first of

these terms is proportional to the square of the number of

atoms in sample 1, i.e., tN2, while the second is propor-
tional to N;N,. If the local oscillator and driving fields are

derived from a common source, the classical noise in the two

samples can be made nearly identical by arranging for bot

samples to have the approximately the same number of at-

oms, i.e.,N;=N,. In this case, the last two terms of Eq.

nominally in they direction (Fig. 3). Since the local oscilla-
tor is highly collimated, the required overlap integral be-
tween the local oscillator and the scattered field may be cal-
culated using a paraxial approximation. Hence the local
oscillator field in the detector plangy, , is related to that in
the source planeg;’, according to

Euolyo X1 0= [ dUEBR gyo -y’ K -t
X Eoly' X[ 1), (B1)

dndg=2x/\ is the optical wave vector. The Green’s func-
tion in the paraxial approximation is given by

|

eilac —x)72(y-y")].

LYY

g(i—i’.t—t’):my—y’)ﬁ(t

) q
X——
27i(y—y')

(B2)

The projection of the scattered field operator onto the po-
fization vector of the LO at positior in the LO beam is

defined asfg(x,t)=&%- £s(X,1). It is given in terms of the

(A21) are subtracted, leaving only the first term. The corre-Slowly varying atomic polarization operator at the source,

lation function of Eq.(A21) then takes the form of a sum of
single atom contributions, and EGA18) yields

Clz(tatl)zg <|5(Sa)f|5(sa)>Q+§ <|Sg(a)|5(8a),>Q+C.C.
(A22)

When the local oscillator powers in the two interaction
regions are well balanced, i.e., so that the noise spectrum

dominated by the LO shot noise in the absence of atoms, but

the number of atoms in the first and second interaction re
gions differs byAN, then the technical noise contribution to
the atom quadrature noise spectra is suppressed by a factor
order AN/N, compared to that which would be obtained us-
ing balanced homodyne detection with a beam splitter.

In Eq. (A22), the first term and its complex conjugate will

P(x',t')=efy- P(x',t'), where the LO field vector and the
atomic polarization vector contain no components algng

Es(Yp X, ,t)=21-riqj dt’d®x'g(yp—y'.X, — x| ,t—t’)
XP(y' x| ). (B3)

is

Using Egs.(B3) and (B2) in Eq. (A15) for the scattered

power operator, one obtains

of B _ c : 3o TINTDY ol !
Ps(t)—Equ d>X EF(X D P(X ,trep) s (B4)

where t/~t—yp/c, assuming that the source is small

yield cor]tributions to the noise spectrum yvhich depenq Osnough thaty’/c is short compared to the relevant time
the relative phase between the local oscillator and drivingscajes for the system. Since the time can be uniformly shifted

fields. The second term and its complex conjugate will yield
phase-independent contributions.

APPENDIX B: POWER AUTOCORRELATION FUNCTION

In this section, the power autocorrelation function,
C(t,t"), of Eq. (A10) is determined by calculating the nor-
mal and time-ordered power autocorrelation function,
Co(t,t") of Eq. (A22) for a thin sample. This is accom-

in the correlation function, we také,=t. Note that Eq(B4)

yields the same power as would be obtained by interfering

the LO field with a scattered field7&qfdz' P. This is a

consequence of power conservation: the overlap integral

must be the same for any transverse plane after the medium.
The dipole polarization per unit volumB, can be related

to the Bloch vector components in the Heisenberg picture.

Defining p as the atomic density operator, atias the

plished by writing the scattered field operator, which appearslowly varying polarization operator, we have
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B(x,t)= %zﬁ()‘(’,t)eiqyfiﬂt_’_c'c' S_.ince the magnetically comper_wsated supersoni_c bear_n ef-
fectively cancels the Doppler shifts due to atomic motion
-~y - . along the laser beam propagation directipriFig. 3), we
=2 1o §Xa(),t]SIX—Xa()]+H.C., (BS)  assume for simplicity that Doppler broadening can be ne-
2 glected, and take,=0. Also, we assume that atoms which
where Q is the laser frequency ang=Q/c is the optical ~ Cross the laser fields move negligibly in the vgrtizaj!rec-
wave vector. Heré1) denotes the atomic excited stajg)  tion. Hence we take the atoms to move only in theirec-
denotes the ground statea)( denotes the contribution of tion. The atom position in the source,, at timet’, then can
atom (@), which travels along a straight line trajectory in the b?()[",’;'tten In tgrmﬁ )Of the fhoiltlt?]n of tthe attc_>m,at tltme':' 6}S
: > N X =Xx—v,(t—t"), so that the interaction potential as
atomic beamx,(t). HenceP=eio- P is given by seen in the z);tom frame can be taken as P

POx,t)=26{0" o2, pRIXa(0), 110X~ xa(t) Je™ W10 V(t')=—p-Eg[x—v (t=t'),y" 2’ t']l.  (B1D)

(B6) In the following, we taked to be a fixed time, and ld@t be
the time variable in the evolution equations. Our prescription

The single-atom density-matrix operator can be written "Will be to determine the evolution of the Heisenberg opera-

terms of the slowly varying density matrix opera®fo 8 (ors from the timet’ =0, when the Heisenberg and Schro

dinger operators are taken to coincide, to the tithet,

when the atom is at positiox in the driving laser beam.
The driving field can be written as

P (1) =01 Xa(1), 1]l VO -i0t, 87)

Then Eq.(B4) can be rewritten in the form of single-atom

contributions, as in EqA19), Ep(i’,t’): %épgp(x’,z’)e‘(qy/‘m')+c.c. (B12)

Ps(t)=>, P@(1), (B8)  The corresponding driving field Rabi frequency is then de-
a fined by
where ﬁzlo'é
Bo(X')=——— E,(x"), (B13)

sy Y e s “(a)ry
PE(t) =i —BlolXa(D]0[Xa(t).t]. (B
where thez' argument is suppressed, since it is time inde-
; ; ; - pendent by assumption, i.&,=z as in Eq.(B10).
Here, the effective Rabi frequency of the LO is defined as Using Eq.(B11) for the interaction, one obtains the effec-
o .z tive Hamiltonian in the Schiinger picture 6) as
-, _ SLo M0 — 22/p2
Bo(Xa) = = €10l O (Xa+ 2/2) — O(xa—al2)Je” % .
. HS(t') =hwo| 11| = 5 {Bplx—vx(t=1")]
=|BLo(Xa)|€' "o, (B10)
where O(x) is a unit step function. The LO and driving X e WTEI1) (0] +H.c}. (B14)
fields are taken to have rectangular profiles of full width
along the atomic beam axis, to simplify calculations of the
atomic dipole operator in the off-resonant case, as describe\;ia
below. In thez direction(see Fig. 3, the fields are taken to
have Gaussian profiles ofelfadiusb. For simplicity, we
suppress the argument in the following.

In writing Eq. (B14), we assumeg’'=y andz’=z.

To find the Heisenberg equations of motion for the slowly
rying density operator, let the Schinger picture density
(pseudospinoperators be defined by

U?OE|0><1|1
| 2. Dipole operator U§1£|1>(O|,
The single-atom scattered power operator, @), can (B1Y
be used to evaluate the correlation function given by Eq. oS =|1)(1]
(A22) in terms of the atomic dipole autocorrelation function. 1 '
This is accomplished by finding the Heisenberg equations of ~g
000=|0)(0l.

motion for the slowly varying density operater, which is
defined by Eq.(B7). We assume in the following that the i i -
atom has a long radiative lifetime compared to the transiEduations (B15) are defined so that(’_ﬁ(t”‘ffd Y(t))
time across the laser interaction region. In this case, at most{#(D)[0)(1[¢(1))=A5A1=p1((t), as desired, withA; a

one spontaneous photon is emitted per atom, and the drivilwgchr(_ﬁ'”ger picture amplitude ang@;, the corresponding
field can be treated as a strong classical field in determining€nsity-matrix element. _ _

atomic Heisenberg operators to zeroth order in the vacuum The density operators in the Heisenberg picture, and the
field, which is all that is needed for evaluation of the normalcorresponding slowly varying density operatass(t'), are

and time-ordered correlation functions for a thin sample. defined by



PRECISION MEASUREMENT
Pt =07t of0(t")
= t! eiqy—i()t’,
oit’) (B16)
pii(t)=0"(t")of0t")
=a;(t"),
wherei =0 and 1. Here the time translation operator obeys

- i~ .

U(t’)=—%HS(t’)U(t’). (B17)
Equations(B16), (B17), and (B14) yield the Heisenberg

equations of mation for the slowly varying density operators:

X n t’) . n
Ulo(tl)_i(Q_wo)O'lo(t,):_iBp; )[on(t’)—aoo(t’)],
oyt =i ﬁpg )&Ol(t’)+H.c., (B18)
éfoo(t'):—(;'u(t'),
where
Bo(t')=Bo[x—v,(t—t')]=e"%|B,(t")|  (B19)

and By(x'), is given by Eq.(B13). Here ¢, is a time-
independent driving field phase.
It is convenient to define the Bloch vector component

operatorsy, y, andz in terms of the slowly varying density
operatorsg; :

z(t")=3[on(t)—ooot')], (B20)

o) =€ x(t") —iy(t")].

Equations of motion for the Bloch vector component op-
erators are readily found from Eqd818),

X(1') = Ay(1')=0,

YUY+ AX(E) =] Byt (L), (B21)
2(t) = —| Byt |3 (1),

To solve Egs(B21) for the case of nonzero detuning, it is
convenient to assume that the laser beam has a rectangu
profile along the atomic beam propagation directignas
assumed in EqB10). The initial conditions are determined
from the Heisenberg operators, Eg.16), att’=0, i.e.,

o1t =0)=a3e 'V,

and ;i (t'=0)= o7 . Then with the definition
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x(t'=0)=1e %5 +H.c,
~ 1 . !AS
y(t'=0)= Ee‘¢pa++H.c., (B23)

2(t'=0)= 3 [0F,~ o5].

S

Here, o° =03,=|0)(1|, according to Eq(B15) and ¢% is
its adjoint.
For a rectangular pump beam of widéh the Rabi fre-

qguency is given by

|:8p(t’)|:|Bp[X,:X_Ux(t_t’)]|

a 212
X' — —| o= (22107
2” ’

where® (x) is a unit step function, anld is the driving field
1/e radius in the verticak direction(Fig. 1). We assume that
the time,t>alv,, so that the atom is far to the left of the
driving field att’=0. For simplicity, thez’ =z dependence
of the Rabi frequency is suppressed in the following.

We note that an atom which is at positionat time t
arrives at the positiorx’ = —a/2, where the driving field
starts, at time'=t—(x+a/2)/v,. Hence the atoms evolve
freely fromt’=0 tot'=t—(x+a/2)/v,. For completeness,
the free evolution will be determined here to show that its
only effect on the initial conditions in the interaction region
is to introduce an invariant phase shif{(t—x/v,) in the
coefficients ofa? . This is as one would expect. To find the
Heisenberg Bloch vector operators at the time the atom ar-
rives at the left side of the driving fields’ = —a/2, Eqs.
(B21) are solved with 3,|=0 to obtain

o(x'+2)-0
XT3

:|Bp|

(B24)

(X—iy)(t")=(x—iy)(t'=0)e",

and z(t')=2z(t'=0). Fort’ =t—(x+a/2)/v,, one obtains

with the initial conditiong Egs.(B23)],

~S ~S
~ O11— 0
z[t—(x+a/2)/vx]=1lToo,
a_S
X[t—(x+al2)lv,]= T’e—i¢p+m[t—<x+a’2>’vx1+ H.c.,
(B25)
~S

~ o_ S
lar 91t — (x+a/2)/v,]=i e hprialaaRind L He,

The atom travels across the driving fie{flom x'=
—al2 to x'=al2) during the time intervalt’=t—(x
+al2)lv, to t'=t—(x—al2)/v,. To find the Heisenberg
Bloch vector operators in this time interval, E4B21) are

solved for the casgB,|=const. For this purpose, it is con-

venient to define a time’, which is the time relative to the

bp=bptay, (B22

the initial conditions are

time the atom arrives at’

—al2, ie.,

t'—[t—(x+al2)lv,]. (B26)

7_!



1444 ZHAO, LU, BACON, WANG, AND THOMAS 57

Hence ' =0 corresponds to the initial conditions on the solutions can be multipled by a fact®[t’ —t+(x+a/2)/
Heisenberg operators Ht=t— (x+a/2)/v, when the atom v,]—0O[t'—t+(x—al2)/v,], to appropriately restrict the
arrives at the input side of the pump beam, i.e., E§&5). range oft’.

With dt’=d7’, and the overdot representing differentia- We are interested in the Heisenberg operators at time
tion with respect tor’ in Egs.(B21), one obtains by direct =t, when the atom arrives at position At t'=t, Eq. (B26)

differentiation an equation of motion for( '), shows thatr’ = (x+a/2)/v,. Using Eq.(B20) and the above
restriction factor yields

yrpy=0 (B27) ot =t)=[O(x+a/2)— O (x—al2)]e' %
where the generalized Rabi frequency is defined by ) xral2| . <+ a/2
B'=B'(2)=\A%+ By(2)%. (B29) KT "y<7'= vy
Here we include the verticaldependence of the pump beam (B32)

field, which will be taken to be Gaussian. Note that z is
assumed, since we neglect the motion perpendicular &s
discussed above.

Equation(B27) is readily solved using Eq$B21) to ob-

The solution is conveniently written in terms of the effective
pulse area

. x+al2 a
0= 0:(x,2)=8'(2) . IX=5. (B33

tainy(7'=0), Ux
~ ~ AL ., Using the initial conditions at’ =0, Eqgs.(B25), after some
y(r')=—x(7 =0)E sing’ 7’ +y(7'=0)coB’ 7 algebra we obtain
) 18, < of 8ol
+Z(T'=O)B— sing’ 7 (B29) owt'=)=[0(x+a/2)-O(x—a2)]} —- Pz
The other Bloch vector operators then are obtained from Egs. A? 2iA
1+ —|coh,+ — sinb,
(le), BIZ BI
~ ~ I -~ ~S 2
! — /: ! ’ ag
X(r')=X(7 0)+Af0 dr'y ("), - T et ,Wlﬁpl (1-cosd,)
which yields -
. 0‘%1 (T(S)O |¢ |16p|
) ) 18,2 A —i———e sing,
X(7)=X(1'=0)| =+ cosB’ "|+y(7'=0)—
pe B # AR
|B | +1 —,2(1—C0399) , (B34)
Xsing' 7' +2(7'=0) —2—(1—-cos8' '), B
wherep=A[t—(x+a/2)/v,]—qy.
(B30) The single atom scattered power operator is readily evalu-
ated from Eq.(B9) using Eq.(B34) and the effective Rabi
and from frequency of the local oscillator, E¢B10),
2(r)=2(r'=0)— jT,d”AH’, . A Q) - [eS-a3
()=2z(7"=0)—|Byl , 97 y(7") P(Sa)(t)=—|,8LO(X,Z)|e'¢LO[ 1~ 700 g {|Bp| sind,
2 2 B’
which yields .
. |BP|A . 0-§ i
i |ﬂ| +i— (1—co¥,) +|7e
2(1')=—2—(1-co' 7 )x('=0)
| Bol? A? 2iA
X|—=+| 1+ —< | cosh.+ — sinb,
|Bp| B/Z 12 ,8,
——-sing'r 'y('=0)
s oSN
|ﬁ 2 ) +i 2+ e 2 (1—cos) | , (B35)
ﬂ/z ﬂ‘,’z coss' ' |z(7'=0). (B3]

where Eq.B10) shows thaiB, o(x,z) is nonzero only in the
Equations(B29), (B30), and (B31) are valid in the time in- interval|x|<a/2, so that the step functions of E@®34) are
terval, t—(x+a/2)/v,<t’'<t—(x—a/2)/v,. Hence these implicitly included.



3. Power autocorrelation function

The power autocorrelation function of EGA22) requires

the evaluation of two single-atom correlation functions,

which take the form (P& (t+7)P@(t)) and (PE(t

+T)I5(Sa)(t)>. In evaluating these single-atom correlation

functions, we requiré’ =t in one factor, which yields Eq.
(B35). For the second factor, we require=t+ 7 which in-
creasesr’ of Egs. (B29), (B30), and (B31) by 7. This is
equivalent to changing the effective pulse area of (B33
by x—x+uv,7 [see Eq.B9)]. Sincex=x(t) labels a given
atom by its position at timé, the phase = ¢(X—wv,t) which
appears in Eqs(B34) and (B35) is therefore invariant and

can be treated as a constant. Alternatively, one can make the

combined substitutionst—t+7 and x(t)—x(t+7)=x
vyt (y—y for v,=0), i.e., a given atom is equally well
labelled by its position at timé or at timet+ 7. Again the
phasee which appears in EqB34) is invariant. Note that
for the caseyy#0, the phasgy—q(y—wv,t) also is invari-
ant.

For the case where all atoms are initially in the ground

state,|0), 050y =1|0), and(0|o° o5 |0) =1 make the only

nonzero contributions to the power autocorrelation functions

It is straightforward to obtain
(P&M(t+ ) P(1)) +c.c.

(fi€))?
T|BLO(X!Z)||BLO(X+UXT)|

12
ﬁ/

[Sin@, Sinfe+ (1—coe)(1—cosvy)],

(B36)

where 6,= 0,(x+v,7,z) and 6, is given by Eq.(B33). For
=0, we have

(PO (t+ 1)PR(1)) +c.c.

(ﬁ )?

2
| BLo(X,2)|| BLo(X+ v TZ)|<|£?|>

[sindgsind,— (1+ coHg) (11— cosh,) ]cOS2p

A
+ E[sinae(l— cosd,) —sinf (1 — cosﬂe)]sinzqs] ,

(B37)

where ¢= ¢ o— ¢, is the relative phase between the LO
and driving fields.
The correlation functiorC,, of Eq. (A22) consists of a

sum of terms, one for each atom, which take the form of Egs.
(B36) and(B37). Since all atoms are equivalent, and labelled S(v,¢)= 74

by their positionx at timet, the sum can be replaced by an
integral over the atomic density), with n dx dz dythe
number of atoms at. The integralfdy=L, whereL is the
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so thatC,,+ C,,=2 C;,. Hence the atom contribution to the
one sided power spectrum, E#\12), takes the form

ot

SATOM(w):Z Ref dr
0 aa

2 f n dx dy dg(P&T(t+r)

XP@(0))+ (PP (t+1)P@(1))+c.c] (B39

It is convenient to denote the atom transit time across the
driving or LO fields by

To=alvy. (B39

Further, an effective number of atoms per second crossing
one interaction region can be defined as

NEn\/;vxbL.

Note that a factor of/r is incorporated, since the beam is
assumed to be Gaussian in the vertical direction \bittine
field 1/ width. Finally, the maximum pulse area is defined
as

(B40)

Om=PBpTo - (B41)
Note that the beam is assumed to have a square profile of full
width a alongx, so that noy/r is used here.

The power spectrum, EqB38), can be written as an
integral over dimensionless variables with the substitutions
r=17,, z=7b, and x=£a. Equation (B10) shows that
Blo(&,7)=[O(é+3)—O(£—3)]. Hence to evaluate the
atom contributions to the power spectrum, we require inte-
grals of the form

I(w)= ZRGJ dr e_"“°7fo;d§[(§+%)—(5—%)]

X[O(&+3+7)— 06— 3+ DI (HY(E+T),

(B42)

wheref and g are functions of¢ and #, as given by Egs.
(B36) and(B37). The product of the tw@® functions have a
nonzero overlap for—i<¢<3—"7. Hence, the maximum
value of 7=1.

With these results, the phase-dependent power spectrum
S(v,¢)Av=S,p(w)27Av is obtained from Eq.(Al2),
where v (Av) denotes the spectrum analyzer frequency
(bandwidth in Hz and ¢= ¢ o— ¢, is the relative phase
between the local oscillator and driving fields. This can be
written in terms of distinct noise sources,

(o]
S

02 {[Fpo(v)+Fse1)]

+[ Fp(v)+Fg(v)]cos2p+Fy(v)sin24} |.

sample length. Further, for identical samples, the correlation

functionsC,, and C,; appearing in Eq(A10) are identical,

(B43)



1446 ZHAO, LU, BACON, WANG, AND THOMAS 57

In Eq. (B43), we have usedB o/ By|?=Po/(2P,) for a Fp(v)=F[sing,sing; v],
blocking polarizer at 45° in th&-z plane. The first term in
Eq. (B43) is the mean-square shot noise due to the total Fsev)=F[1—cos,1-cosh; v], (B49)

transmitted power from both regions, including the mean ab-

sorption, i.e.P=P;+ P,. Hereps= 2/ 5,A v, with 7, the Fe(v)=Flco+1,co9—1v],

detection system efficiency. sing sing
The spectral functionss;(v), which appear in Eq(B43) Fn(v)=Ary{ F| 1—cosd, — | — F{—,l— cos| b
can be written in terms of normal and time-ordered correla- O M
tion functions for7=0, with the definitions Note that the frequency distributions are determined by Fou-

1 _ rier transformation of single-atom correlation functions with
F[ f(0),9(0);v]=2 Ref dr e—iZwVTofc[ f(g),g(a);?], respect to¢, i.e., along thex direction, and that the single-
0 atom contributions to the power spectra from different atoms
(B44)  are then summedntegrated over 7 in the verticalz direc-
tion.

where For completeness, we also give the phase-dependent ab-
. d ~ e 2 sorption as a function of driving field frequency. This is just
Cl 1(6).9(8):7]= _”efzan'(l’z)*ng me the expectation value of the single-atom power operator,
’ ’ R~ —(1/2) 03,%( 1) P@(t) of Eq. (B35), integrated over the atomic volume, as

_ was done to obtain EqB43). The total power absorbed
Xf[O(é+ 7,m)]9[6(&,1)]. (B45)  from bothregions is given by

The position-dependent effective Bloch angle is given b . Plo .
P P T OVEIRY Pags= —NAQ \[5EFe( ) cosp+ Pl f)sine),

1
0, =04(n)| 5 +¢|, (B49) (B49
where N is the number of atoms per second crossing one
with the effective maximum pulse area region. Here the coefficients, andFg are

/ — (2 2 2 o 2

= —27°)+ (A1)~ B4 d o

Oia() =N Oy exp —27%) + (A7) (B47) chM):f 9 -2 M 1 cosy),
_oc\/; 6,

In Eq. (B45), note that the left argumeriitis evaluated at a (B50)

later time, &+ 7, than the right argumerg, which is evalu- - 2
d7] 2 2 HM ATO )
ated até. Fo(Oy)= ——=e T — ——(fy—sinby).
With these definitions, we find —eNT O Ow
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