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Precision measurement of phase-dependent resonance fluorescence spectra

H. Z. Zhao, Z. H. Lu, A. M. Bacon, L. J. Wang,* and J. E. Thomas
Physics Department, Duke University, Durham, North Carolina 27708-0305
~Received 22 July 1997; revised manuscript received 12 September 1997!

We measure phase-dependent fluorescence spectra for an elementary system: long-lived coherently driven
two-level atoms in an atomic beam. Phase-dependent fluorescence spectra measure quadrature noise in the
atomic radiation field. These noise spectra are obtained using a homodyne detection scheme that suppresses
excess noise by subtracting signals from two identically prepared atomic samples. Noise spectra are obtained
for atomic radiation which is in phase(0°) and out ofphase (90°) with a resonant driving field, as well as
645° out of phase with an off-resonant driving field. The measured phase-dependent fluorescence spectra are
much richer than ordinary fluorescence spectra, and exhibit many novel features. Particularly interesting are
phase-dependent noise spectra for off-resonant excitation. These strikingly exhibit direct manifestations of time
ordering, which appear as large differences between the measured 45° and245° quadrature noise spectra. The
measured noise spectra are in excellent agreement in magnitude and shape with the results of a quantum
treatment using no free parameters.@S1050-2947~98!09002-7#

PACS number~s!: 42.50.Lc, 32.80.2t
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I. INTRODUCTION

Resonance fluorescence of simple atoms is a central t
in light-matter interactions that has been extensively stud
@1#. An atomic beam illuminated by a continuous monoch
matic laser field strongly scatters light when the laser
tuned near resonance with a two-level transition. The sp
trum of the scattered light observed at right angles to
driving laser beam exhibits a well-known component str
ture @2#, comprising a narrow elastic contribution at the las
frequency and an inelastic triplet structure, where the li
widths are determined by the atomic relaxation rates and
splitting by the Rabi frequency of the driving field@3#. This
spectrum has been measured in great detail@4–7#, and has
been the subject of many theoretical treatments@3,8–19#.
Transient fluorescence has been studied for two-level at
excited by phase-controlled optical fields@20#. In this case,
selected dressed states can be excited, leading to flu
cence spectra missing one component@21#.

In contrast to fluorescence spectra that are detected w
out phase sensitivity,phase-dependentresonance fluores
cence spectra of simple atoms have been relatively un
plored. Phase-dependent resonance fluorescence spect
obtained by homodyne detection of scattered radiation fr
free atoms that are irradiated by a quasiresonant field. Ph
dependent resonance fluorescence spectra are much
than ordinary fluorescence spectra and present many n
features.

In phase-dependent fluorescence experiments, the ra
tion fieldE of the atoms is mixed with a local oscillator~LO!
field uELOueif having a controllable fixed phasef relative to
the field that drives the atoms. As shown in Sec. II, the at
contribution to the detected powerDP then is determined by
the quadrature operator

*Permanent address: NEC Research Institute, 4 Independ
Way, Princeton, NJ 08540.
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x̂f~ t !5e2 ifÊ~ t !1eifÊ†~ t !, ~1!

where D P̂(t)}uELOux̂f(t). Fluctuations in the detecte
power are monitored with a diode detector. A spectrum a
lyzer is used to obtain the phase-dependent power spect
the fluctuations in the selected quadrature.

In this paper, we describe precision measurements
phase-dependent fluorescence spectra for long-lived t
level atoms that are driven by a monochromatic laser fie
For on-resonance excitation, the in-phase and out-of-ph
noise spectra are found to be quite different, and to con
contributions from a variety of atomic noise sources@22#.
For off-resonance excitation, pairs of noise spectra
phases of opposite sign are found to display striking diff
ences that arise entirely from time ordering@23#. We show
that the relevant time-ordered processes arise from colla
to the ground state following emission of a photon by t
coherent part of the atomic dipole moment. A quantum t
oretical treatment of the spectra is presented that yields
sults in excellent quantitative agreement with the data.

Phase-dependent noise power spectra for fluctuation
atomic radiation fields have been studied previously in s
tems with short radiative lifetimes, with an emphasis on o
serving quadrature squeezing@24–29#. Phase-dependen
noise was observed in the intensity of a probe beam tra
mitted through sodium vapor in Ref.@26#. The noise spec-
trum of the transmitted probe field for a pumped, optica
thick vapor was studied recently by Kauranen and cowork
@30–32#. This work elucidates the role of pump-probe tw
beam coupling in atomic vapors: phase-independent pr
noise spectra have been measured to explore two me
nisms which produce excess noise in the transmitted pr
intensity. These include direct amplification of vacuum flu
tuations in the probe via semiclassical gain and spontane
scattering of light into the spatial mode of the probe, due
fluctuations in the atomic medium. The latter provides t
dominant source of excess probe noise.

Measurements of phase-dependent fluorescence sp
provide insights into the contributions of atomic fluctuatio
ce
1427 © 1998 The American Physical Society
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1428 57ZHAO, LU, BACON, WANG, AND THOMAS
to optical noise spectra. Fluctuations in simple atomic s
tems play important roles in diverse physical phenome
They limit the signal-to-background ratio that can be o
tained in spectroscopic experiments, and hence limit the
curacy of atomic clocks@24#. In laser cooling and in optica
traps, atomic dipole fluctuations cause momentum diffus
which determines the minimum temperature that can be
tained@33,34#. Atomic fluctuations also limit the amount o
squeezing that can be obtained in atomic systems@25–
29,35–38#. Despite the many theoretical and experimen
studies of noise in radiating atomic systems@39#, to our
knowledge, detailed measurements of phase-dependent
noise spectra have not been made previously, and a com
physical picture of the distinct sources of atom noise
atomic radiation fields has not been obtained.

Electromagnetically induced transparency by quantum
terference has been demonstrated for eliminating absorp
and dispersion in atomic systems@40#. Applications of this
method include novel schemes for wave mixing and pa
metric downconversion, where strong quadrature squee
may be obtained. Detailed studies of phase-dependent n
in such systems is therefore of interest. This has lead
renewed interest in the theory of phase-dependent fluo
cence. Quantum interference in spontaneous emission
been shown to depend on the phase of a driving field
couples the lower levels of an inverted-V three-level syst
@41#. The role of initial coherence in harmonic generation
two-level systems also has been explored@42#.

Recently, the phase-dependent spectrum of light scatt
from Bose condensates in two different atomic states
been calculated. It is predicted to be a direct probe of
relative phase of the condensates@43#. Hence, detailed stud
ies of phase-dependent fluorescence for simple atomic
tems continue to be of fundamental interest.

Our measurements of phase-dependent resonance flu
cence spectra are obtained using a homodyne dete
scheme that suppresses excess noise by subtracting s
from two identically prepared atomic samples@22,23#. We
use atoms with a radiative lifetime long compared to
transit time of the atoms across the driving laser fields,
that noise power spectra can be analyzed in terms of a sim
fluctuating Bloch vector picture. As mentioned above, ve
different noise spectra are measured for radiation which i
phase or out of phase with a resonant driving field. Th
noise spectra are found to be in good qualitative agreem
with previous predictions of phase-dependent noise in
resonance fluorescence of a driven atomic system wit
short radiative lifetime@35#. As shown below, the data are i
excellent quantitative agreement with a quantum treatm
for a long-lived system.

Particularly interesting is the striking appearance of
effects of time ordering in the phase-dependent fluoresce
spectra for off-resonant excitation. Previously, using corre
tion methods and frequency-filtered resonance fluoresce
it has been possible to observe temporal correlations betw
sideband photons@44# and interference between differe
time orderings of Rayleigh and sideband photons@45#. In the
present measurements, quadrature power spectra for pl
minus 45° phases are found to be markedly different w
the driving field is off resonance. This difference is shown
-
a.
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be a direct manifestation of time ordering@23# as described
physically in Sec. II, and in more detail in Sec. V.

The remainder of this paper is organized as follows. S
tion II provides a brief physical description of phas
dependent resonance fluorescence. It is shown that a clas
description fails to predict the measured spectra. Some of
issues raised in interpreting the noise spectra are descr
including the origin of the observed time ordering effec
Section III describes the experimental system. We disc
the suppression of excess noise in homodyne detection
subtracting signals from two identically prepared atom
samples. This is treated in detail in Appendix A. In Sec.
the measured phase-dependent resonance fluorescence
tra are presented. Section V summarizes the results of
quantum theory of the phase-dependent resonance fluo
cence spectra for long-lived atoms. In order to obtain pred
tions that can be quantitatively compared both in magnitu
and in shape with the data, a detailed treatment is give
Appendix B. Concluding remarks are given in Sec. VI.

II. PHYSICAL PICTURE OF PHASE-DEPENDENT
FLUORESCENCE

As described in Sec. I, phase-dependent resonance
rescence spectra are obtained by homodyne detection of
tered radiation from free atoms that are irradiated by a q
siresonant driving field. Figure 1 depicts the measuremen
phase-dependent noise in the atom radiation field via ph
dependent fluorescence. The field components shown in
figure are slowly varying amplitudes plotted as phasors, w
a common optical phase factore2 iVt removed. HereV is the
frequency for both the local oscillator and the driving fiel
Without loss of generality, the driving field amplitudeEd is
taken to be real.

In response to the driving field, the atom radiates a m
field ^Eatom&. For resonant excitation of an atom that is in
tially in the ground state, the mean field of the atom will
180° out of phase with the driving field in the forward

FIG. 1. Measurement of atomic radiation noise via pha
dependent fluorescence spectra. The amplitudes of the driving
Ed , the local oscillator fieldELO , and the atom field̂Eatom&1DEin

1 iDEout are plotted as phasors.
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57 1429PRECISION MEASUREMENT OF PHASE-DEPENDENT . . .
scattering direction. This causes absorption of the driv
field. In addition to the mean field, the atomic radiation fie
contains fluctuating components. In general, there will b
fluctuating component in phase with the driving field,DEin ,
and a fluctuating component 90° out of phase with the d
ing field, DEout. The net radiation field of the atom can b
written in the form

E~ t !5^Eatom&1DEin1 iDEout. ~2!

To measure the fluctuations, the atomic radiation field
mixed with a strong~LO! field ELO at a diode detector. In the
measurements, the relative~classical! phasef between the
strong LO field and the strong driving field is fixed and a
justable. The detector measures the total power of the c
bined field,}uELO1Eu2. The dominant atom contribution t
the fluctuation in the detected power arises from the inter
ence terms

DP~ t !}ELO* E~ t !1c.c. ~3!

SinceELO5uELOueif, the atom contribution to the detecte
power fluctuation can be written as

D P̂~ t !}uELOux̂f~ t !, ~4!

wherex̂f(t) is the quadrature operator,

x̂f~ t !5e2 ifÊ~ t !1eifÊ†~ t !. ~5!

For a strong classical LO field, small fluctuations in the
diation field of single atoms are converted into large dete
able power fluctuations.

The spectrum of the power fluctuations is measured w
a spectrum analyzer that yields a one-sided power spec
proportional to the Fourier transform of the autocorrelat
function of the power fluctuations:

Sf~v!5
2

pE0

`

dt cosvt^D P̂~ t !D P̂~ t1t!&

}
2

pE0

`

dt cosvt^x̂f~ t !x̂f~ t1t!&. ~6!

Here v is the spectrum analyzer frequency. The ang
brackets denote a quantum statistical average and a time
erage overt.

In the experiments described below, the interaction ti
of the atoms with the laser fields is determined by the tra
time of the atoms to cross the driving field region. The LO
spatially matched to the driving field, so that the time
cross the observation region is identical to the transit time
cross the driving beam. For simplicity in the following di
cussion, we have left out the factor that describes the fi
transit time in the integrands of Eq.~6!. This factor deter-
mines the transit time limited spectral width of the vario
components of the noise power spectrum, and is include
the more complete quantum theory described in Sec. V.

When the relative phasef is set to 0°, the LO is in phas
with the driving field, and atom-field fluctuations in pha
with the driving field are detected. Measurement of t
power spectrum in this case is equivalent to measuring
g
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noise in the transmitted power of the driving field alon
With the LO relative phase set tof590°, fluctuations out of
phase with the driving field are detected. In this case, w
the driving field frequency is resonant, the LO is 90° out
phase with the mean radiation field of the sample. The m
power measured at the detector then is the same whethe
atoms are present or not. Nevertheless, a nonzero n
power spectrum is observed experimentally forf590°. Fi-
nally, with f5645°, the noise power spectrum depends
the cross correlation between atom-field fluctuations that
in phase and out of phase with the driving field.

An important point is that for optically thin samples o
atoms, the correlation function that appears in Eq.~6! con-
tains only the independent contributions ofsingleatoms@37#.
This arises because the atoms enter the interaction regio
random times and are uncorrelated with one another. He
the mean-square noise is the sum of the mean-square n
contributions from each of the N atoms that are in the int
action region.

It is interesting to try to interpret the measured pha
dependent noise power spectra by treating the atoms as
sical dipoles emitting a radiation field equal to the mean fi
of a coherently driven two-level atom. The classical calcu
tion fails in a number of interesting ways, as described
low.

The classical power change arises from the interfere
between the LO field and themeanfield of a single long-
lived two-level atom. For an atom that enters the drivi
beam in its ground state at timet50, the power change take
the form

^D P̂~ t !&}
bd

b8

sinu

2
cosf1

bdD

b82

12cosu

2
sinf. ~7!

Here bd5muEdu/\ is the Rabi frequency arising from th
driving field, andD is the detuning of the driving/LO fields
from atomic resonance.b8 is the generalized Rabi fre
quency,b8[Abd

21D2. For a driving beam with a squar
profile wherebd is constant, the angleu5b8t. Here 0<t
<to , with to the interaction~transit! time for atoms to cross
the driving/LO beams. Equation~7! describes the coheren
radiation of a two-level atom, neglecting spontaneous em
sion. This is appropriate in our experiments, for which t
interaction~transit! time is short compared to the spontan
ous lifetime. Note that we have left out multiplicative facto
that include the LO field magnitude. These factors determ
the transit-time-limited bandwidth, as discussed above.

Classical noise power spectra are determined from Eq.~6!
using Eq.~7!. In doing this, we are treating the atomic radi
tors as though they are unaffected by the radiation proc
The results of this calculation are shown in Fig. 2 for o
resonance excitation withf50° and 90°, and for off-
resonance excitation withf5645° ~or f5180645°). To
compare the classical results to the data properly, the p
are calculated using the same methods and the same pa
eters~Rabi frequency, detuning, atom density, etc.! as for the
exact quantum theory results of Sec. V, but retaining o
the classical contributions that correspond to Eq.~7!.

One immediately sees that the classical calculation of F
2 is in poor agreement with the data shown in Figs. 6, 7, a
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1430 57ZHAO, LU, BACON, WANG, AND THOMAS
8. It also disagrees with the corresponding quantum calc
tions shown in the same figures. The classical calculatio
the on-resonancef50° noise spectrum displays a peak
the generalized Rabi frequency. Classically, this arises so
from the modulation of the coherent dipole moment at
generalized Rabi frequency as the atoms cross the dri
field. While the location of the peak is correct, the calcula
magnitude is smaller than that measured in the experim
and predicted by the quantum theory.

The classical theory also predicts no noise for the
resonancef590° power spectrum, since the LO is out
phase with the atom radiation field, and experiences
power change as the atoms traverse the driving beam
contrast, the measured power spectrum is nonzero, and
sists of a large noise peak centered at the origin.

Finally, for f5645° and off-resonance excitation, th
classical theory predicts essentially identical noise spectr
frequencies near the generalized Rabi frequency. By c
trast, the measured spectra forf5645° differ dramatically
in this frequency region, and the noise peaks are consi
ably larger than those predicted classically.

Both the data and the quantum theory exhibit squeezin
certain frequencies, where the total noise dips below
shot-noise level, i.e, below the zero level in Fig. 8. By co
trast, the classical noise power spectrum can be written a
magnitude squared of the Fourier transform of the class
power change of Eq.~7!. Hence the classical noise pow
spectrum is always positive definite, and will never exhi
squeezing.

The classical theory fails in part because the atomic ra
tion field contains both coherent contributions from the e

FIG. 2. Classical calculation of phase-dependent fluoresce
spectra showing poor agreement with the measurements of Fig
7, and 8. ~a! On-resonance in-phasef50 spectrum~peak! and
out-of-phasef590° spectrum~horizontal line!. ~b! Off-resonance
spectrum forf5135° ~solid line! andf5225° ~dashed line!.
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pectation value of the dipole operator~as used in the classica
calculation!, and contributions that exhibit quantum fluctu
tions @14# that are neglected in the classical calculatio
Spontaneous emission into the LO mode from both the
herent and fluctuating parts of the dipole occurs with sim
rates. Since the spontaneous field of the atom has a ran
phase component, even with the LO phase set at 90° to
driving field, there will be noise in the detected power a
hence a nonzero noise power spectrum.

The appearance of noise in thef590° quadrature shows
that phase-dependent fluorescence measurement can d
guish incoherent spontaneous emission in the presenc
coherent emission. The latter is out of phase with the LO
f590° with resonant excitation, and hence causes no fl
tuations. By contrast, in ordinary resonance fluoresce
measurement, the two contributions are inseparable.

Fluctuations in the atomic dipole moment are phase
pendent, and can be described in terms of fluctuations in
atomic pseudospin~Bloch vector! operators@22#. When the
Bloch vector is rotated so that it lies along a given quadrat
axis, the fluctuations along that axis are suppressed, sinc
length of the Bloch vector is conserved. A heuristic pictu
of the noise spectra in terms of phase-dependent and ph
independent components of the Bloch vector projection no
was given in Ref.@22#. The phase-dependent part of the pr
jection noise spectrum can make a negative contribution
the total noise, that tends to cause squeezing, i.e., the
noise can be suppressed as discussed above. Howeve
phase-independent part of the Bloch vector noise spect
can exhibit increased noise at the same frequency. Hence
total noise need not exhibit squeezing. As noted in Ref.@22#,
separation of the atom noise contributions is somewhat a
ficial, since only certain combinations of these noise ter
can be isolated in the experiments.

The classical theory also fails to incorporate the effects
time ordering@23#. A formal description of the effects o
time ordering is given in Ref.@23#, where it is shown that for
off-resonant excitation, the difference between the645°
spectra arises entirely from the fundamental noncommuta
ity of two positive frequency source field operators evalua
at different times. Time ordering arises in multiple time me
surements because the first measurement alters the qua
state of the atom, and therefore affects the second meas
ment. The correlation function of the quadrature opera
appearing in Eq.~6! involves a two-time field measuremen
and hence should incorporate time ordering effects.

A physical picture of the origin of the effects of tim
ordering in the645° phase-dependent fluorescence spe
can be obtained for atoms with a long radiative lifetime,
used in the experiments. The time-ordered contributions
cause the striking difference between these spectra ca
interpreted as arising entirely from the coherent part of
dipole moment. However, we cannot treat the atom as a c
sical radiator: we must incorporate collapses to the gro
state following detection of a fluctuation arising from phot
emission by the atom@14#, as we now show.

Equation ~6! shows that the noise power spectrum d
pends on the two-time power autocorrelation function. Flu
tuations in the detected power at timest and t1t for t>0
determine the correlation function. These fluctuations a
from the interference between the LO field and the radiat

ce
6,
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57 1431PRECISION MEASUREMENT OF PHASE-DEPENDENT . . .
field of single atoms. Photons radiated by the atom can a
from either the coherent part of the atomic dipole moment
by spontaneous emission from the excited state. We cons
first the coherent dipole.

Suppose we detect a power fluctuation at timet arising
from photon emitted by the coherent part of the atomic
pole. This fluctuation iŝ D P̂(t)&, as given by Eq.~7!. Im-
mediately following detection of a fluctuation at timet, the
atom is reduced to the ground state. A second correla
fluctuation arises from the coherent dipole of the same a
at time t85t1t, since this atom is known to be in th
ground state at timet. This power fluctuation is jus

^D P̂(t82t)&, wheret82t5t. The correlation function is de
termined by the product}^D P̂(t)&^D P̂(t82t)&. For long-
lived atoms, we need not be concerned with spontane
emission between the timest and t8.

Equation~7! shows that phase-dependent terms appea
the product̂ D P̂(t)&^D P̂(t82t)&. These are proportional to
cos2f, sin2f, and sin2f. The first two terms contribute iden
tically to both the plus and minus 45° noise spectra. Ho
ever, the last term changes sign and causes the645° noise
spectra given by Eq.~6! to differ. This term arises from the
cross correlation between absorptive and dispersive contr
tions to the detected power, i.e., from the cross correla
between fluctuations in phase and out of phase with the d
ing field.

It is instructive to look closely at this cross-correlatio
term that is proportional to sin2f. With the definitionsu
[b8t andu85b8t8, Eq. ~7! shows that the cross correlatio
is proportional to the detuning, and takes the form

bd
2D

2b83Fsinu

2

12cos~u82u!

2
1

~12cosu!

2

sin~u82u!

2 Gsin2f.

~8!

The first term in Eq.~8! corresponds to detection of a fluc
tuation at timet arising from the coherent dipole mome
that is in phase with the driving field. This is followed b
collapse to the ground state, and subsequent detection
fluctuation at timet8 arising from the coherent dipole mo
ment that is out of phase with the driving field. The seco
term interchanges the out of phase and in phase parts.

For large generalized Rabi frequencies, whereb8to@1,
when the time average overt is performed in the correlation
function, the second term in Eq.~8! is dominant, since it
contains@sin(u82u)#/45@sin(b8t)#/4 which ist independent.
All other terms are down by a factor (1/b8to). Hence, a
particular time-ordered process is favored in this case. Ev
ation of the power spectrum for this term shows that it is
odd function ofv2b8 that causes the small squeezing
Fig. 8.

Using elementary trigonometric identities, Eq.~8! can be
rewritten as

bd
2D

2b83Fsinu

2

12cosu8

2
2

~12cosu!

2

sinu8

2 Gsin2f. ~9!

A remarkable feature of Eq.~9! is the appearance of th
minussign between the two terms. Hence, the cross corr
tion appears odd in the interchange oft8 andt. Note that Eq.
se
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~9! is valid for t85t1t>t only. For t<0, the order is re-
versed, so that the correlation function actually is an ev
function of t as it must be.

The minus sign in Eq.~9! can be shown to arise from th
commutator of two positive frequency source field operat
evaluated at timest and t8, as discussed in Ref.@23#. This
commutator enforces time ordering. The structure of Eq.~9!
is identical to the quantum noise term described in Sec
(FNsin2f) that causes the difference in the645° noise
power spectra.

Equation ~9! differs from the corresponding classic
cross correlation between absorption and dispersion of at
that cross the driving field. For the classical cross correlat
the minus sign is replaced by aplussign: time ordering does
not arise, as the radiator is not affected by the radiation p
cess. The contributions of the classical cross correlation
the noise spectra are found to be negligible, as shown by
similarity of the spectra in Fig. 2. By contrast, the contrib
tion to the quantum noise spectrum, for which the minus s
appears, is large. It can be shown that the ratio of the c
sically calculated and quantum mechanically calculated cr
correlations is of order 1/b8to , which is !1 in our experi-
ments.

The quantum noise spectrum includes also effects
phase-dependent spontaneous emission from the ex
state, i.e., not arising from the coherent dipole. The prese
of the driving field modulates the spontaneous dipole m
ment. The resulting power fluctuations depend on the rela
phase between the LO and the driving field, leading to pha
dependent structure in the spontaneous noise spectrum.
structure is found to be identical for the645° noise spectra
A more detailed description of the point of view present
briefly here will be given in a future publication.

III. EXPERIMENT

The present experiments, Fig. 3, measure pha
dependent resonance fluorescence spectra using a uniqu
modyne detection system. In this method, excess nois
suppressed by subtracting signals from two identical ato
samples, each prepared as described below. To implem
this scheme, we employ a 1-cm-wide supersonic Yb be
which crosses two identical continuous laser field regions
which the power transmitted through the polarizer GP2
monitored using two diode detectors. The 556-nm1S0
→3P1 transition of174Yb forms a two-level system compris
ing theJ50 state and theJ51, M51 state with a radiative
lifetime of 875 ns. Doppler shifts of the diverging superson
beam are suppressed by applying a magnetic field grad
along the laser propagation directiony @46#. This magnetic
compensation is possible for a supersonic beam, since, w
narrow spread in the atomic speed, there is approximate
linear relation between the Doppler shift and the posit
alongy at which an atom intersects the driving laser bea
Magnetic compensation of the Doppler shifts is acco
plished in the present experiments by using tilted pole pie
for which the gap varies in they direction, Fig. 4. The gra-
dient is adjusted to cancel the Doppler shifts by varying
total current in the magnet coils. The uniform component
the magnetic field along thez axis is used to split theJ51
magnetic sublevels. Magnetic compensation greatly
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1432 57ZHAO, LU, BACON, WANG, AND THOMAS
hances the intensity of the radiation field and simplifies d
analysis, by permitting near-resonant excitation of the en
atomic volume with a driving field of well-defined detunin
@47#.

The laser frequency is offset locked to the atomic re
nance with variable detuning to measure phase-depen
fluorescence spectra for on- or off-resonance excitation. T
is accomplished by frequency shifting two beams deriv
from the same laser: the first~stronger! beam is shifted by
110 MHz using a fixed frequency acousto-optic~AO! modu-
lator, the output of which provides LO and driving fields f
the atoms; the second~weaker! beam is shifted using a tun
able frequency AO modulator, the output of which is focus
into a single mode optical fiber. The output direction of t
beam from the fiber does not vary as the AO modulato
tuned. This beam passes through the atomic beam at a
tion where it does not affect the atoms used in the no
measurements. A discriminator signal for the servo system
obtained by synchronously detecting the absorption of
weak beam as the frequency of the tunable AO modulato
dithered.

A. Identical local oscillator fields

Two identical LO beams are created in the experime
one for each interaction region. Each LO field has the sa
fixed, controllable phase with respect to the field that driv
the atoms in its respective region. This is accomplished
follows. In each interaction region, atoms cross a strong c
tinuous laser field that is polarized in thex-z plane by a glan
prism GP1 oriented at an angleu with respect to thez axis,
Fig. 4. Only thex componentEx interacts with the atoms by
exciting theDM51 transition. TheEz component is far off
resonance with theDM50 transition, due to the strong ap
plied uniform Zeeman field along thez direction, which

FIG. 3. Measurement of phase-dependent resonance flu
cence spectra by subtraction of transmitted power signals from
identically prepared atomic samples.
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splits theJ51, M50,61 magnetic substates by approx
mately 1 GHz. For this reason,Ex is denoted as thedriving
field. The relative phase,w5wz2wx , between thez and x
components is determined by a Babinet-Soleil~SB! compen-
sator. The polarizer GP2 defines a local oscillator fieldELO :
this is the laser field transmitted through GP2. The axis
GP2 is oriented at 45° to thez axis, so that thex-polarized
radiation field of the atoms is mixed withELO to produce the
total field at the detector. For this case, the LO field tra
mitted through GP2 in the absence of atoms is given
ELO5uELOueif5Ex /A21Eze

iw/A2. The corresponding
power is

PLO5 1
2 @Px1Pz12APxPzcos~wz2wx!#. ~10!

The relative phase between the LO field and the driving fie
f[fLO2wx , is determined from

tanf5
sin~wz2wx!

cos~wz2wx!1APx/Pz

. ~11!

Hence, varying the phase of the SB compensator adjusts
relative phasef between the driving fieldEx and the net
local oscillator fieldELO ; this allows measurement of phas
dependent fluorescence spectra for well-defined quadra
components of the radiation field of the atoms.

We define the in phase and out of phase quadrature
nals as those forf50° andf590°, respectively, i.e., the
local oscillator field is in phase or 90° out of phase with t
driving field. Since the mean atomic radiation field isp out
of phase with respect to the driving field~for atoms initially
in the ground state!, the relative phase between the LO fie
and meanatomic radiation field is well defined. Similarly
the LO phase is well defined relative to the mean atom
dipole moment, which is 90° out of phase with the me
atomic radiation field.

B. Subtraction of signals from identically prepared samples

One important feature of the experiments is the subtr
tion of signals from the two identical interaction regions
suppress excess noise, so that quantum noise in the qu
ture signals can be measured. Each of these regions is pl
so that different atoms are excited. Using this method,

es-
o

FIG. 4. Experimental scheme showing one of the prepara
beams and the method for generating a local oscillator field wit
stable phase.
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technical noise in the local oscillator subtracts. Since
total signals from the two regions are subtracted, this met
also subtracts the excess noise in the nonvanishing qua
ture signals@48#, in contrast to homodyne detection with
beam splitter@49#, where the nonvanishing quadrature s
nals add. This feature is important in the present experim
because the quadrature signals are large enough that th
cess noise would dominate the quantum noise signals o
terest. In contrast to the technical noise, which subtracts,
quantum noise from the two regions adds. This is due to
fact that the quantum fluctuations in the two radiating
gions are independent, as the optical fields are gener
with a beamsplitter and interact with independent atoms
detailed discussion of this method is given in Appendix A

Subtraction of signals from the interaction regions
implemented using diode detectors~EG&G FFD-040B! to
monitor the signal fields transmitted through the project
polarizer. The detector outputs are subtracted and conve
to a voltage by a low-noise transimpedance ampli
~Signetics NE5211,R514kV). The detection system has
flat response to.80 MHz, well beyond the 20-MHz spectra
range measured in the experiments. Noise voltage sig
from the transimpedance amplifier are measured with a s
trum analyzer~HP 8553B!.

C. Noise power spectra

Another important feature of the experiments is dire
measurement of the mean-square optical noise voltage,
the noise power spectrum, on alinear scale with high sensi-
tivity. With this system, the atom contributions to the noi
spectra are readily isolated from the shot-noise and electr
noise contributions. This technique is implemented usin
method which is well known in light beating spectrosco
@50#: the voltage output of the analog spectrum analyze
squared using a low-noise multiplier~Analog Devices AD-
534K!. The output of the multiplier then is fed to a lock-i
amplifier ~SR 850-DSP! which subtracts the mean squa
noise signals obtained with the laser fields on and off. In t
way, the mean square electronic noise is subtracted in
time, and the lock-in output is proportional to the mea
square optical noise voltage@51#.

As a calibration of the detection system, the mean-squ
shot-noise voltage is measured. In this case, the lock-in
put scales linearly with the total power incident on the b
anced detectors from 6 mW down to 2mW. The measured
slope agrees with predictions based on shot noise, the sy
gain factors and the detector efficiency to better than 1
@52#.

Phase-dependent resonance fluorescence spectra ar
lated by subtracting the shot-noise contribution. This is
termined by measuring the on-resonance transmitted po
P for a particular quadrature phasef, just after a quadrature
power spectrum is recorded. Then, with the laser far off re
nance, the power is reset toP and the shot-noise spectrum
measured; this determines the shot-noise contribution to
measured power spectrum.

D. Experimental parameters

The detection system efficiency~including focusing
lenses! is ho50.51, as determined from the measured p
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tocurrent conversion factor ofhoe/(\v)50.23 A/W. The
spectrum analyzer bandwidth used in these experimen
Dn5100 kHz. The 1/e field radii of the interaction regions
are found to bea5100 mm along the atomic beam, andb
50.76 mm in the vertical direction. The supersonic speed
found to bev563104 cm/s, as measured by time-of-fligh
methods. In the theory, the laser fields are assumed to ha
square beam profile along the atomic beam axis. This s
plifies calculation of the phase-dependent spectra, as
scribed in Sec. V. Since the laser beams actually hav
Gaussian profile, we take the effective transit time for
atom to cross a beam with a square profile to beto

5aAp/v50.17Ap ms.

E. Phase-dependent absorption spectra

Phase-dependent absorption spectra as a function o
laser frequency have been measured for quadratures in p
(f50°), out ofphase (f590°), and atf545° with respect
to the driving field. These quadrature phase settings are
termined by the Babinet compensator shown in Fig. 4.
each phase setting, the power absorbed from the beam t
mitted through GP2 is measured as a function of laser
quency. These phase-dependent absorption spectra
shown in Fig. 5. The in-phase (f50°) absorption spectrum
is a symmetric, bell-shaped curve, centered at the ato
resonance frequency. By contrast, the out-of-phase~f590°!
absorption spectrum is an antisymmetric function of the la
frequency. The absorption vanishes at zero detuning. In
case, the mean atomic radiation field is 90° out of phase w
the LO field, so that the transmitted power is unaffected u
the laser is detuned from resonance, which changes
phase. The 45° absorption spectrum contains both symm
and antisymmetric functions of the laser detuning.

IV. PHASE-DEPENDENT RESONANCE FLUORESCENCE
SPECTRA

For each quadrature signal at a fixed driving field detu
ing, there is a phase-dependent resonance fluorescence
trum measured as a function of spectrum analyzer freque
This is the power spectrum of the fluctuations in the cho
quadrature. These power spectra are measured for both

FIG. 5. Phase-dependent absorption as a function of laser
quency for the power transmitted through GP2 of Fig. 4. In
experiments,Px51 mW, Pz53 mW, andf50°, 45°, and 90°.

The absorbed power is given in units ofPo[Ṅ\VAPLO /(2Px).
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1434 57ZHAO, LU, BACON, WANG, AND THOMAS
and off-resonant driving fields. Phase-dependent fluo
cence spectra for on-resonance excitation are shown in F
for radiation in phase with the driving field (f50°), and in
Fig. 7 for radiation out of phase with the driving fiel
~f590°!. The driving field is tuned to resonance with
maximum pulse area~for atoms crossing the center of th
interaction region! of uM54p at a driving field power of 1
mW.

The zero level of power spectral density corresponds
the shot noise level of the total transmitted power which
been subtracted. The baseline is not adjusted after sub
tion of the shot noise. The remaining atom-noise spec
density has been divided by the dimensionless ra
PLO(f)/(2Px), which is phase dependent~see Sec. V!. One
unit of spectral density is the shot-noise spectral den
(V2/Hz! for 1 mW of total power. Since the LO beam pow
ers typically are of order 1 mW, the shot-noise spectral d
sity of a 1-mW beam is a convenient unit. Note that
accurate measurement of the power spectrum requires n
sensitivity well below this level.

Figure 8 shows the corresponding noise spectra for
645° quadratures. Here, the driving field is26.6 MHz off-
resonance with a maximum pulse area~on resonance! of
uM55.6p at 2 mW of driving field power.

FIG. 6. Phase-dependent fluorescence spectra for coher
driven two-level atoms.~a! Measured in-phase (f50°) noise spec-
trum for on-resonance excitation and effective pulse areauM54p.

HereṄ\V50.12 mW is determined from the power absorbed fro
Px on resonance;Px51 mW andPz50. The noise spectral densit
(V2/Hz) was divided by the measured shot noise spectral den
for 1 mW of total power; a noise spectral density of 0 correspo
to the shot noise level of the total transmitted power, which
been subtracted.~b! Calculated noise spectra using the same u
as ~a! and no free parameters. Both the data and the theory w
divided byPLO /(2Px).
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A. On-resonance noise spectra

For the in-phase measurements, the driving beam po
is Px51.0 mW~one region! to obtain a maximum pulse are
uM54p. To measure thef50° quadrature noise spectrum
shown in Fig 6~a!, the power in thez-polarized field for each
interaction region isPz50, and the polarizer GP2 is re
moved. Similar noise spectra are obtained forPzÞ0 andf
50° with GP2 installed. This is as it should be, since the
phase data is equivalent to the absorption noise of a str
beam. For the out-of-phase data, againPx51 mW, but the
power in thez-polarized beam is taken to bePz53.0 mW,
and the Soleil-Babinet compensator is adjusted to givewz2
wx5125° so that the denominator of Eq.~11! vanishes and
f5p/2. Equation~10! yields the LO powerPLO51 mW as
measured in the experiments. For comparison with the th
retical power spectra~see Sec. V!, we requireṄ, the number
of atom/s crossing one interaction region. From the measu
absorption of the transmitted driving beam on resonan
Ṅ\V is determined to be.0.12 mW for thef50° data,
and 0.25 mW for thef590° data.

The measured on-resonance in-phase noise spect
@Fig. 6~a!# exhibits a number of interesting features. The
phase spectrum appears as a broad peak centered ne
Rabi frequency of the driving field, and exhibits a local min
mum near 2.5 MHz. By contrast, the out-of-phase spectr

tly

ity
s
s
s
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FIG. 7. Phase-dependent fluorescence spectra for coher
driven two-level atoms.~a! Measured out-of-phase (f590°) noise
spectrum for on-resonance excitation and effective pulse areauM

54p. Here Ṅ\V50.25 mW is determined from the power ab
sorbed fromPx on resonance;Px51 mW, Pz53 mW, andPLO

51 mW. The noise spectral density (V2/Hz) was divided by the
measured shot noise spectral density for 1 mW of total powe
noise spectral density of 0 corresponds to the shot noise level o
total transmitted power, which has been subtracted.~b! Calculated
noise spectra using the same units as~a! and no free parameters
Both the data and the theory were divided byPLO /(2Px).
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@Fig. 7~a!# is centered at zero frequency, and is small near
Rabi sidebands. Spectra of this general structure have
predicted previously for short-lived atoms driven with a Ra
frequency greater than the spontaneous decay rate@35,53#.
The out-of-phase noise approaches zero at high freque
and it exceeds the in-phase noise at low frequency. For e
values ofṄ, the in-phase and out-of-phase spectra cross n
2 MHz. At this frequency, the phase-dependent noise v
ishes, leaving only the phase-independent contribution.
interesting to note that the average of the in-phase and
of-phase spectra yields the phase-independent part of
noise spectrum~see Sec. V!. This average noise spectrum
equivalent to a fluorescence spectrum, with spectral res
tion limited by the transit time across the local oscillat
beam. The average of the measured noise spectra exh
peaks centered at zero frequency and near the Rabi
bands, similar to a Mollow spectrum@3#.

B. Off-resonance noise spectra

For these experiments, the driving beam power isPx52
mW, anduM55.6p. The power in thez-polarized beam is
Pz59 mW. From the measured absorption of the 2-m
driving beam, we findṄ\V50.13 mW.

By using a largePz , the LO field is rendered relatively
insensitive to phase shifts due to the medium. In order

FIG. 8. Phase-dependent fluorescence spectra for coher
driven two-level atoms.~a! Measured noise spectra forf5135°
~solid line! and 225°~dashed line! at a laser detuning of26.661
MHz and an effective pulse areauM55.6p. Px52 mW, Pz59

mW, andPLO51.67 mW. Ṅ\V50.13 mW is determined by the
power absorbed from thePx beam when it is on resonance. Th
noise spectral density (V2/Hz) was divided by the shot noise spe
tral density for 1 mW of total power.~b! Calculated noise spectr
using the same parameters as~a! exceptD525.8 MHz. Both the
data and the theory were divided byPLO /(2Px).
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keep the LO power at a modest level, the Babinet comp
sator is adjusted to givewz2wx5154° or 206°, so that the
quadrature phases used in the experiments aref5135° and
225°, respectively, according to Eq.~11!. Using Eq.~10!, the
corresponding LO powerPLO51.67 mW in both cases, a
measured in the experiments. In the actual experiments,
Babinet compensator is adjusted slightly to yield identi
LO powers for the two quadratures. This compensates fo
small phase shift induced in the off-resonant driving beam
the medium.

With the laser offset-locked off-resonance by appro
mately 26.661 MHz, phase-dependent resonance fluor
cence spectra are obtained forf5180645° quadratures. As
shown in Fig. 8~a!, these spectra are quite different. The tw
spectra cross near 10 MHz. The1135° plot has a high leve
at low frequency, rises to a maximum near 8 MHz, and
scends to a minimum near 12 MHz, where it probably d
below the shot-noise level, indicating a small amount
squeezing. By contrast, the 225° noise spectrum starts
low at low frequency, where it may be dipping below th
shot-noise level. It crosses the 135° data, rises to a m
mum, and then descends to a level well above the shot-n
level at the highest frequency shown.

V. THEORY

In our experiments, phase-dependent absorption is
served and phase-dependent noise is measured for va
phase quadratures of the radiation field emitted by many
oms in the forward direction. This system is similar to th
analyzed theoretically by Heidmann and Reynaud@37#. The
experimental noise spectra obtained for resonant excita
with f50° and 90° are in good qualitative agreement w
predictions by Collett, Walls, and Zoller@35#, as described
above. In this section, we present a quantum treatment o
expected noise spectra for long-lived atoms, without invo
ing the quantum regression theorem. The predicted n
spectra are in excellent quantitative agreement with the m
sured spectra for both on- and off-resonant excitation.

We review the basic physics of two-level atom noi
spectra for a thin sample of coherently driven long-liv
two-level atoms in an atomic beam. We begin with a heu
tic estimate of the magnitude of the phase-dependent abs
tion and atom noise signals. Then, the results of a m
complete quantum mechanical treatment of the noise spe
~Appendix B! are described.

A. Atom-noise estimate

The form and magnitude of the phase-dependent abs
tion and noise for resonant excitation can be estimated u
heuristic arguments. Denoting the radiation field of a sin
atom byEWs , the corresponding change in the power transm
ted through GP2~Fig. 4! is DP(1).(c/8p)2EWLO•EWsA, where
A is the cross-sectional area of the local oscillator bea
With a dipolem in the volumeAL, the radiation field in the
paraxial approximation~i.e., in the near forward direction
where the local oscillator field is nonzero! is EWs

.2p i (V/c) L(m/AL) x̂, where V is the frequency of the
optical field. This leads to a net power change per atom
DP(1).(\V/2)(m x̂•EWLO /\). This can be rewritten in terms

tly
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1436 57ZHAO, LU, BACON, WANG, AND THOMAS
of the pulse area,uM.mExto /\, where to is the transit
time of the atom to cross the interaction regio
DP(1).~\V/2!~uM /to) x̂•EWLO /Ex . With the local oscillator
polarization at 45° to thex axis, x̂•EWLO /Ex5APLO /(2Px),
and the absorbed power per atom is of order

DP~1!5
\V

2

uM

to
APLO

2Px
, ~12!

where Px and PLO are the driving field and LO powers
respectively.

For N interacting atoms in the volume, we can defineṄ
5N/to as the rate at which atoms traverse one interac
region. Then the power absorbed from the beam transm
through GP2 is of orderNDP(1), or

PABS.2Ṅ\VAPLO

2Px
, ~13!

assuming strong excitation whereuM.1. The natural scale
of absorbed power for an atom with a long radiative lifetim
corresponds to one photon being absorbed for each atom
traverses the interaction region.

The magnitude of the phase-dependent optical noise
unit bandwidth,S(n), which is studied in the experiment
also can be understood using heuristic arguments. For
atom that crosses the interaction region, the atomic dip
moment causes a power change of orderP(1) in Eq. ~12!.
Since the atoms arrive independently, the mean-squ
power fluctuation is of orderN@DP(1)#2, and is distributed
over a bandwidth.1/to . It is not difficult to show that
N@DP(1)#2 is of orderNPLOPSpont, wherePSpontis the spon-
taneous power radiated by one atom into the diffract
angle of the LO. Using Eq.~12!, the mean-square powe
noise in a bandwidthDn is of order

S~n!Dn.N@DP~1!#2toDn.DnṄS \V

2 D 2

uM
2 PLO

2Px
.

~14!

From Eqs.~14! and ~13!, we see the natural scale of th
atomic contribution to the optical noise in the transmitt
beam: it is the order of the shot noise corresponding to
absorbed power, i.e., of orderPABS\VDn.

B. Phase-dependent resonance fluorescence spectra

Measurement of phase-dependent resonance fluoresc
spectra permits a study of the atomic contributions to
noise in the radiation field of the driven samples. For a t
sample and long-lived atoms, these phase-dependent n
spectra can be understood from the decay-free operator
tical Bloch equations for the independent two-level atoms
described in detail in Appendix B. Appendix B describes t
calculation of the dipole autocorrelation function for th
long-lived atoms, using the Bloch vector operator evolut
equations. The noise power spectrum is calculated from
normal and time-ordered power autocorrelation function, a
has a magnitude in agreement with the heuristic estimat
Eq. ~14!. This power spectrum can be written in terms
distinct noise sources according to Eq.~B43! in the form
;
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S~n,f!Dn5hSP1hSṄ\VS PLO

2Px
D ho

4
uM

2 $@FD~n!1FSP~n!#

1@FD~n!1FB~n!#cos2f1FN~n!sin2f%,

~15!

wheref[fLO2wx and we have takenPp5Px andfp[wx
in Eq. ~B43!. The first term in Eq.~15! is the mean-square
shot noise due to the total~both regions! transmitted power
P. The terms}Ṅ\V are the atom-noise contributions, a
described below. The rateṄ at which atoms cross a singl
interaction region is determined by measuring the to
power absorbed from a purex-polarized beam as describe
below. In Eq. ~15!, n (Dn) is the spectrum analyzer fre
quency~bandwidth! in Hz. hS[2\VhoDn, with ho the de-
tection system efficiency.PLO (Px) is the total transmitted
~driving! field power with the laser fields off resonance. T
maximum Bloch angle isuM5bxto . The driving field Rabi
frequencybx , detuningD, and the transit timeto for atoms
to cross an interaction region determine the frequency sc
of the dimensionless spectral functions,FD(n), etc.

As shown in Appendix B, we find

FD~n!5F@sinu,sinu;n#,

FSP~n!5F@12cosu,12cosu;n#,
~16!

FB~n!5F@cosu11,cosu21;n#,

FN~n!5DtoH FF12cosu,
sinu

uM8
G2FF sinu

uM8
, 12cosuG J .

HereF@ f ,g,n# takes the form

F@ f ~u!,g~u!;n#52 ReE
0

1

d t̃ e2 i2pnto t̃ C@ f ~u!,g~u!; t̃ #,

~17!

where C@ f ,g, t̃ # is a normal and time-ordered correlatio
function given by

C@ f ~u!,g~u!; t̃ #

5E
2`

` dh

Ap
e22h2E

2~1/2!

~1/2!2 t̃
dj

uM
2 e22h2

uM8
2~h!

3 f @u~j1 t̃ ,h!#g@u~j,h!#. ~18!

In Eq. ~18!, the integral over the dimensionless variableh
5z/b averages the correlation function in the vertical dire
tion, where the field 1/e radius isb. The integral over the
dimensionless variablej5x/a determines the correlation
along the atomic beam axisx. a is the full width of the field,
which is assumed to have a rectangular profile along
atomic beam. This simplifies the calculations for o
resonant excitation. The position-dependent effective Blo
angle is given by

u~j,h!5uM8 ~h!~ 1
2 1j!, ~19!

with the effective maximum pulse area
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uM8 ~h![AuM
2 exp~22h2!1~Dto!2. ~20!

Note that the left argument ofC@ f ,g; t̃ #, f , is evaluated at a
later time,j1 t̃ , than the right argumentg, which is evalu-
ated atj. HenceFD andFSP are symmetric under the inter
change of time ordering,FB has both even and odd contr
butions, andFN is antisymmetric under the interchange
the time ordering@23#.

Corresponding to the phase-dependent noise spectra
phase-dependent power absorbed as a function of dri
field frequency is given by Eq.~B49!. The rate at which
atoms cross one region,Ṅ, is determined by measuring th
total power absorbed from a resonantx-polarized driving
field, with the polarizer GP2 of Fig. 4 removed. In this ca
the factorPLO /(2Px)→1 in Eq. ~B49!, Fc→Fo andFs→0.
Ṅ for one region is determined from the total power a
sorbed from both regions on resonance using

PABS
x 52Ṅ\VFo~uM !, ~21!

where

Fo~uM !5E
2`

` dh

Ap
e22h2

@12cos~uMe2h2
!#. ~22!

Note thatFo(uM)/2 is just the mean excitation probabilit
for an atom which traverses one interaction region.

Atom noise contributions

The first four atomic contributions that appear in Eq.~15!
have been discussed previously@22#. The first two terms
FD1FSP are phase independent, and are similar to an o
nary resonance fluorescence spectrum@3,54#. This spectrum
arises from a sum of elastic and inelastic scattering.
shown previously for long-lived excited states, the sum
the probabilities for the atom to arrive in the ground sta
emit one photon and exit in the ground or excited sta
yields the fluorescence spectrum@55#. For on-resonance ex
citation, FD(11cos2f) describes noise arising from th
mean dipole moment of single atoms that traverse the in
action region, whileFSPdescribes the phase independent p
of the fluctuating atomic dipole moment@14#. TheFBcos2f
term can be considered to arise from phase-dependent
tuations in the in and out-of-phase quadrature componen
the atomic Bloch vector@22#.

The novel spectral features observed in Fig. 8 for o
resonance excitation withf5180645° are described by th
last term of Eq.~15!, FN(n)sin2f. This term causes the
striking asymmetry between these power spectra. It vanis
at zero detuning and for the in-phase (f50°) and out-of-
phase quadratures (f590°). Hence it was not measurable
our first experiment@22#. The structure ofFN shows that it
arises from atomic operator products that are odd under
exchange of time ordering as described above. Hence
easy to see that this contribution would vanish if symme
time ordering were chosen arbitrarily@23#. The effects of
FN(n) are isolated in the experiments, since cos2f50 for
f5135° and 225°, while sin2f571.
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VI. THEORETICAL PHASE-DEPENDENT
FLUORESCENCE SPECTRA

Using Eq.~15!, phase-dependent fluorescence spectra
be calculated in absolute units, using the experiment
measured parameters.

A. On-resonance

The measured on-resonance noise spectra can be
pared to those calculated from Eq.~15! for f50° and 90°.
Figures 6~b! and 7~b! show the calculated phase-depende
noise spectral density@S(n)2hSP#/hS , in units of the shot-
noise spectral density, for 1 mW. The spectra were ca
lated from Eq.~15! using the experimentally determined p
rameters. However, the spectral functions,FD , etc., were
determined using the Gaussian beam results of Ref.@22#.
This was done to eliminate minor oscillations which ari
from the square beam profile assumed in the present w
Except for these minor oscillations, the square beam res
are in good agreement in both form and magnitude with
Gaussian beam results for the on-resonance case. Both
predictions and the data have been divided by the fa
PLO/2Px , the ratio of the phase-dependent local oscilla
power to the driving field power.

The observed spectra have a shape and magnitude in
cellent agreement with the predictions, using no free para
eters. For the in-phase spectrum, the broad peak cent
near the Rabi sidebands arises from three terms:FSP andFB

add to contribute half of the amplitude, while the phase
pendent and independent contributions fromFD provide the
other half. Note that the mean dipole moment termsFD do
not have an ‘‘elastic’’ in-phase peak, centered near zero
quency, as is the case for short lived atoms@14#. For the
long-lived atoms used in this experiment, the mean dip
moment is modulated at the Rabi frequency and the no
spectral functionFD(n) is centered in the Rabi sideband
For the out-of-phase spectrum, the mean dipole moment d
not contribute, andFSP andFB are subtracted to produce th
central peak.

As noted above, at a frequency of 2 MHz, the in-pha
and out-of-phase noise components are of equal magnit
and the phase-dependent noise contribution vanishes. In
case, the mean dipole noise increases the net noise lev
exactly the same amount that the phase-dependent proje
noise decreases it. It is interesting to note that in a sys
with a prepared Bloch vector where the Bloch angleu is time
independent, the net phase-dependent noise contributio
the spectrum vanishes for alln.

The agreement between the data and theory in the pre
experiments is somewhat better than that of our previou
published results@22#. Both the shape and magnitude of th
data are in excellent agreement with the theoretical pre
tions. This is a consequence of improving the method
determiningṄ, which is now obtained directly from the ab
sorption of a strong resonant beam, with GP2 removed. F
ther, the magnetic compensation of the Doppler shifts is
timized midway between the two interactions, whic
improves noise subtraction and reduces the absorption
width by reducing the Doppler broadening contribution.
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B. Off-resonance

The off-resonance noise spectra can be compared to t
predicted using Eq.~15! for f5180645°. The theoretical
noise spectra are evaluated forD525.8 MHz, which yields
spectra centered near 10 MHz as in the experiments.

The agreement between the measured and predicted
tra @Fig. 8~b!# is excellent. Although the data are not qui
enough to conclusively verify the existence of the predic
squeezing, the data are of exactly the correct magnitude
they exhibit all of the correct qualitative features. A partic
larly interesting feature of this data is that it directly exhib
a manifestation of time ordering of the atomic operators
discussed above. If the atomic operators were arbitrarily
dered symmetrically, the termFN(n) in Eq. ~15! would van-
ish, and the 180645° quadrature noise spectra would
identical. Instead, they are quite different.

As described in Sec. II, the asymmetry of the 180645°
spectra cannot be interpreted in terms of the cross correla
between fluctuations in theclassicaldispersion and absorp
tion from individual atoms which randomly pass through t
interaction regions. When the classical contribution to
spectrum is calculated from the correlation function for t
mean dipole moment of the atom, treated as a classica
pole, a cross correlation between absorptive and disper
contributions does arise. It is}sin2f, but it is time symmet-
ric in the atom source field operators, and fails to display
observed difference between the 180645° spectra@23#.

A physical interpretation for the asymmetry between
180645° spectra can be given for long-lived atoms. As d
scribed in Sec. II, a collapse to the ground state follow
detection of a photon is the key difference between the qu
tum and classical evolution of the coherent atomic dip
moment. This leads to time ordering and to the correct cr
correlation between absorptive and dispersive power fluc
tions.

VII. CONCLUSIONS

We have measured phase-dependent resonance flu
cence spectra for an elementary system: driven long-li
two-level atoms in an atomic beam. Phase-dependent r
nance fluorescence spectra are very rich compared to t
of ordinary resonance fluorescence spectra which are m
sured without phase sensitivity. By analyzing the quadrat
power spectra of this simple radiating system, it has b
possible to explore a number of phase-dependent atom n
sources in some detail. We have shown that striking ma
festations of time ordering appear in the phase-depen
fluorescence spectra for off-resonant excitation.

For two-level atoms with a long radiative lifetime, th
dipole autocorrelation function can be calculated without
voking the quantum regression theorem. The resulting th
retical spectra are in excellent agreement with the data,
have a relatively simple structure that is amenable to rig
ous physical interpretation using the Bloch picture. This w
be the subject of a future paper.

To our knowledge, a complete description of thephase-
dependentfluorescence spectra in terms of simple scatter
diagrams does not yet exist. The exploration of such a
ture will provide further insights into the physical process
responsible for phase-dependent noise and time orderin
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this elementary two-level quantum system.
The techniques employed in the measurements can

used to study noise in the radiation fields of atoms in a
riety of configurations. These include atoms in den
Doppler-compensated beams@46,47# where, for example, it
will be possible to explore phase-dependent noise spectr
cooperative emission and in three level systems exhibi
electromagnetically induced transparency.
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APPENDIX A: SUBTRACTION OF IDENTICAL SIGNALS

In the experiments, technical noise in the transmit
power is suppressed by subtracting the signals from two
dependent samples of atoms, instead of using balanced
modyne detection with a beam splitter. These technical no
contributions arise in two ways. The first is just the dire
fluctuation in the transmitted beam, which would contribu
in the absence of atoms, i.e., the classical fluctuations in
effective LO. Additional technical noise arises from classic
fluctuations in the interference between the LO field and
mean field emitted by the atoms, i.e., in the quadrature
nals themselves. These multiplicative technical noise te
can arise from classical fluctuations in the driving fie
which leads to classical noise in the radiation field of t
atoms or from fluctuations in the net LO field, which inte
feres with the average radiation field of the atoms. While
noise which arises directly from the LO can be suppresse
ordinary balanced homodyne detection with a beam split
the interference terms add in this case, and hence the m
plicative noise terms add. For strongly radiating atom
samples, the failure of balanced homodyne detection wit
beam splitter to suppress these multiplicative noise contr
tions leads to substantial technical noise in the measu
noise spectra at low frequencies. By contrast, for atom
samples which are nominally identical, the method of su
tracting signals from two independent regions suppresses
technical noise contributions in both the LO and in t
phase-dependent quadrature signals of the atoms as
This method is analyzed in this section for a thin sample

Let P̂i(t) be the Heisenberg operator for the total tran
mitted power for each samplei 51 and 2. The operator cor
responding to the difference in the transmitted powers is

D P̂~ t !5 P̂1~ t !2 P̂2~ t !. ~A1!

For ideal photodiodes, the one-sided (v>0) power spectrum
of the difference current is proportional to that of the pow
difference operator,

SDP~v!52E
2`

`

dt
eivt

2p
CDP~t! ~A2!
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whereCDP(t) is the time and quantum averaged autocor
lation function of the power difference operator

CDP~t!5^C~ t,t85t1t!&T . ~A3!

HereT denotes an average over the timet, and t8>t for t
>0. The quantum-averaged correlation function is given

C~ t,t8!5^D P̂~ t !D P̂~ t8!&Q , ~A4!

whereQ denotes a quantum statistical average. We ass
that the field modes are in a vacuum state except for a st
local oscillator mode.

The correlation function can be expanded in terms of
transmitted power operators for the two samples

C~ t,t8!5^~ P̂12 P̂2!~ P̂182 P̂28!&Q5^P̂1P̂18&Q2^P̂1P̂28&Q

1^P̂2P̂28&Q2^P̂2P̂18&Q , ~A5!

whereP̂5 P̂(t) and P̂85 P̂(t8).
The power operators are written in terms of the slow

varying field operators at the detectors,Êi(t,xW'), i 51 and 2,
where the plane of the detector is denoted byy5yD5 const,
and xW' is a vector in the detector plane. Then, the cy
averaged power operator is taken as

P̂i~ t !5
c

8pE d2xW'Ê†~ t,xW'!Ê~ t,xW'!. ~A6!

In Eq. ~A6!, we assumed that the fields propagate nomina
alongy, and comprise a band of frequencies centered aro
the optical frequencyV, so that

Ei~xW ,t !5 1
2 Êi~ t,xW'!eiqy2 iVt1H.c. ~A7!

We assume that the total field operators at each detecto
in source free regions, and therefore have the same com
tators as free fields. In this case, the slowly varying fi
operators in a fixed plane (y) for samplesi 51 and 2 are
readily shown to obey approximately the commutation re
tions

@ Êi~ t,xW'!,Êj
†~ t8,xW'8 !#5

8p\V

c
d~xW'2xW'8 !d~ t2t8!d i j .

~A8!

We assume in writing Eq.~A8! that the driving and loca
oscillator fields for samples 1 and 2 are derived using a be
splitter, and that the samples consist of different atoms
that the total field operators for different samples commu

The correlation functions appearing in Eq.~A5! can be
rewritten using Eqs.~A6! and~A8!. Incorporating the detec
tion efficiencyho in the usual way@48# yields

^P̂i P̂j8&Q5d i j ho^P̂i&Q\Vd~ t2t8!1ho
2^: P̂i P̂j8 :&Q ,

~A9!

where the first term is the shot noise of the total power fo
single sample, and the double dots in the second term de
normal and time ordering. With Eq.~A9!, the correlation
function of Eq.~A5! can be written in the form
-
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C~ t,t8!5ho^P̂1~ t !1 P̂2~ t !&Q\Vd~ t82t !

1ho
2@C12~ t,t8!1C21~ t,t8!#, ~A10!

where

C12~ t,t8!5^: P̂1P̂18 :&Q2^: P̂1P̂28 :&Q , ~A11!

andC21(t,t8) is identical in form to Eq.~A11!, with 1↔2.
With Eq. ~A10!, the power spectrum, Eq.~A2!, takes the

form

SDP~v!5ho

\V

p
P1ho

2 2

p
Re E

0

`

dt eivt^C12~ t,t85t1t!

1C21~ t,t85t1t!&T , ~A12!

whereP is the total average transmitted power from the tw
samples~including the absorption!. Note that the correlation
function C12, which describes the atom contribution to th
power spectrum, is symmetric int, so that we taket>0 in
Eq. ~A12! and in the following discussion.

The correlation functionsC12 and C21 can be written in
terms of the the total field,Êi(t) at each detector,i 51 and 2;
for example,

^: P̂1P̂18 :&5S c

8p D 2E d2xW'E d2xW'8 ^Ê1
†Ê1

†8Ê18Ê1&Q .

~A13!

Here we omit the spatial arguments for the field operat
and Ê1[ Ê1(t) and Ê18[ Ê1(t8). For the normal-ordered cor
relation functions, the ordering of the total fields has be
chosen as time ordered, with positive frequency field ope
tors Ê which are evaluated at later times placed to the left
those evaluated at earlier times. For the negative freque
fields, Ê†, the time ordering is reversed. This yields a ma
festly Hermitian correlation function. Since the positive~or
negative! frequency operators for the total fields commu
this ordering is arbitrary. However, the choice of time ord
ing simplifies the evaluation of the correlation functions,
is well known @37#, and employed below.

The total field operators for thei th sample can be written
in the form

Êi~ t !5ELO; i~ t !1 ÊV; i~ t !1 ÊS; i~ t !. ~A14!

The first term in Eq.~A14! is the local oscillator field, which
is modelled as a strong classical field. It is the net laser fi
transmitted through the projection polarizer~Fig. 3! in the
absence of the atoms. The second term is the correspon
vacuum field, which is responsible for the shot noise in
local oscillator power in the absence of atoms. Finally,
third term is the field from the atomic source.

The choice of normal and time ordering allows elimin
tion of the explicit vacuum field operators from the expre
sion for the correlation function. The vacuum field operato
which appear in the outer total field operators of Eq.~A13!
are immediately eliminated, since they act on vacuum sta
This leaves only the classical local oscillator field and t
source field in these outer factors.
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Since the total fields have free-field commutators,
vacuum and source field terms generally do not comm
This is due to the interaction between the vacuum fluct
tions and the source atoms. Vacuum fluctuations polari
along the driving field axis~x! can modify the dipole mo-
ment of the moving atoms, which then radiates a field
response to the fluctuations. As the dipole is affected only
vacuum fluctuations in the past,ÊS; i(t) contains vacuum field
operators evaluated at times<t. Hence vacuum field opera
tors, ÊV; i(t8), evaluated at timet8>t commute withÊS; i(t).
Since t85t1t>t, for t>0 as required according to Eq
~A12!, we have@ ÊV; i8 ,ÊS; i #50, as discussed previously@37#.
Hence, the vacuum field operators which appear in the in
field operators of Eq.~A13! and which are evaluated later i
time than the outer field operators commute with the la
Thus they can be commuted to the outside to act on
vacuum state, and are eliminated.

With the explicit vacuum field operators eliminated by t
normal and time ordering, the correlation function of E
~A11! can be evaluated by defining power operators wh
represent the interference between the source field and
local oscillator field,

P̂S; i~ t ![
c

8pE d2xW'ELO; i* ~ t !ÊS; i~ t !. ~A15!

Then the total power operators which appear in the corr
tion functions of Eq.~A11! can be written as

C12~ t,t8!5^:@PLO;11 P̂S;11 P̂S;1
† 1 êSS;1#@PLO;18 1 P̂S;18

1 P̂S;1
†8 1 êSS;18 #:&Q2^:@PLO;11 P̂S;11 P̂S;1

†

1 êSS;1#@PLO;28 1 P̂S;28 1 P̂S;2
†8 1 êSS;28 #:&Q ,

~A16!

where the double dots denote that theP̂S operators are nor
mal and time ordered, as required after elimination of
explicit vacuum field operators. In Eq.~A16!, êSS; i is a scat-
tered power operator which is quadratic in the source fi
operators and which does not contain the local oscilla
field.

In the experiments, the driving field, the local oscillat
field, and atomic samples are adjusted so thatPLO;1(t)
5PLO;2(t) and also so that the total power operators sat

^P̂1(t)&Q5^P̂2(t)&Q , i.e., signals with identical mean value
are obtained from the two samples. This requires

^P̂S;11 P̂S;1
† 1 êSS;1&Q5^P̂S;21 P̂S;2

† 1 êSS;2&Q ,
~A17!

where the vacuum field operators do not contribute to
average power, and equal LO powers are used. Hence, in
~A16!, the seven terms which are quadratic or explicitly li
ear in PLO in the first correlation function are cancelled b
the corresponding seven terms in the second. Further,
remaining terms which are quadratic inêSS are negligible
compared to those quadratic inP̂S , as the former operator
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are not proportional to the local oscillator field, while th
later are. The correlation function of Eq.~A16! is therefore
simplified to

C12~ t,t8!5^P̂S;18 P̂S;1&Q2^P̂S;18 P̂S;2&Q1^P̂S;1
† P̂S;18 &Q

2^P̂S;1
† P̂S;28 &Q1c.c., ~A18!

where the prime denotes evaluation at timet8, while the
unprimed terms are evaluated at timet. Note the complex
conjugate terms are consistent with the normal and time
dering.

Since the operatorsP̂S of Eq. ~A15! contain only scattered
field operators, they can be expanded in terms of the co
sponding operators for individual atoms. Hence

P̂S; i~ t ![(
a

P̂S
~a!~ t !, ~A19!

where the sum is over atoms (a) in a single sample,i . Note
that at high density, the driving field can be substantia
modified by interaction with the atomic medium, and t
atoms can couple to each other via the radiation field. In
case, the correlation function is not necessarily linear in
atomic density. For simplicity, here we will consider only th
case of small absorption, where the correlation function
linear in the atomic density, and the atoms radiate indep
dently. Denoting by (a,a8) the atoms in sample 1 and b
(b,b8) the atoms in sample 2, a typical correlation functi
which appears in Eq.~A18! can be written as

^P̂S;18 P̂S;1&Q2^P̂S;18 P̂S;2&Q5 (
a8,a

^P̂S
~a8!8P̂S

~a!&Q

2 (
a8,b

^P̂S
~a8!8P̂S

~b!&Q ,

~A20!

where primed operators are evaluated at timet8, while
unprimed operators are evaluated at timet.

The majority of the terms in Eq.~A20! arise from inde-
pendent atoms. In the first term there areN1(N121) contri-
butions foraÞa8, and in the second, which arises from i
dependent samples, there areN1N2 contributions with b
Þa8. Now independent atoms, which traverse a given lo
oscillator field, arrive at random times relative to one a
other. For stable classical driving fields, these terms m
t-independent contributions to the correlation function, E
~A3!. Therefore, they do not contribute to the spectrum
v.0, and they may be dropped, yielding only the sum in
first term with a85a. Since each atom is correlated wit
itself, this yields the desired atom noise spectrum. Due
technical noise, however, there are additional correlation
the independent-atom terms.

To take into account the effects of classical fluctuatio
on the correlation functions, it is convenient to write th
scattered power operators in the form

P̂S
~a!→ P̂S

~a!1dPS
~a! ,
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where the first term denotes the single atom power oper
for stable classical driving and LO fields, and the seco
term denotes the classical fluctuation in the mean scatt
power per atom which is due to technical noise in either
LO or driving fields.

Since the classical fluctuation has a zero mean value,
is independent ofP̂S

(a) , the correlation function@Eq. ~A20!#,
can be written in the form

^P̂S;18 P̂S;1&Q2^P̂S;18 P̂S;2&Q

5(
a

^P̂S
~a!8P̂S

~a!&Q1 (
a8,a

^dPS
~a8!8dPS

~a!&Q

2 (
a8,b

^dPS
~a8!8dPS

~b!&Q . ~A21!

Here t-independent contributions have been dropped,
the first term in Eq.~A21! contains only the sum of single
atom contributions, i.e.,a85a, neglecting classical fluctua
tions. Since each atom is correlated with itself, these y
the dominant noise contribution to the spectrum. Now,
last two terms in Eq.~A21!, which involve primarily inde-
pendent atoms, only contain correlations that arise from fl
tuations in the driving and local oscillator fields. The first
these terms is proportional to the square of the numbe
atoms in sample 1, i.e., toN1

2, while the second is propor
tional to N1N2. If the local oscillator and driving fields ar
derived from a common source, the classical noise in the
samples can be made nearly identical by arranging for b
samples to have the approximately the same number o
oms, i.e.,N15N2. In this case, the last two terms of E
~A21! are subtracted, leaving only the first term. The cor
lation function of Eq.~A21! then takes the form of a sum o
single atom contributions, and Eq.~A18! yields

C12~ t,t8!5(
a

^P̂S
~a!8P̂S

~a!&Q1(
a

^P̂S
†~a!P̂S

~a!8&Q1c.c.

~A22!

When the local oscillator powers in the two interacti
regions are well balanced, i.e., so that the noise spectru
dominated by the LO shot noise in the absence of atoms,
the number of atoms in the first and second interaction
gions differs byDN, then the technical noise contribution
the atom quadrature noise spectra is suppressed by a fac
orderDN/N, compared to that which would be obtained u
ing balanced homodyne detection with a beam splitter.

In Eq. ~A22!, the first term and its complex conjugate w
yield contributions to the noise spectrum which depend
the relative phase between the local oscillator and driv
fields. The second term and its complex conjugate will yi
phase-independent contributions.

APPENDIX B: POWER AUTOCORRELATION FUNCTION

In this section, the power autocorrelation functio
C(t,t8), of Eq. ~A10! is determined by calculating the no
mal and time-ordered power autocorrelation functio
C12(t,t8) of Eq. ~A22! for a thin sample. This is accom
plished by writing the scattered field operator, which appe
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in Eq. ~A15!, in terms of the Bloch vector operators for th
individual atoms.

1. Scattered power operator

We assume that the LO and driving fields propag
nominally in they direction~Fig. 3!. Since the local oscilla-
tor is highly collimated, the required overlap integral b
tween the local oscillator and the scattered field may be
culated using a paraxial approximation. Hence the lo
oscillator field in the detector plane,yD , is related to that in
the source plane,y8, according to

EWLO~yD ,xW' ,t !5E dt8d2xW'8 g~yD2y8,xW'2xW'8 ,t2t8!

3EWLO~y8,xW'8 ,t8!, ~B1!

andq52p/l is the optical wave vector. The Green’s fun
tion in the paraxial approximation is given by

g~xW2xW8,t2t8!5Q~y2y8!dS t2t82
y2y8

c D
3

q

2p i ~y2y8!
ei @q~xW'2xW'8 !2/2~y2y8!#.

~B2!

The projection of the scattered field operator onto the
larization vector of the LO at positionxW in the LO beam is

defined asÊS(xW ,t)[êLO* • ÊWS(xW ,t). It is given in terms of the
slowly varying atomic polarization operator at the sourc
P̂(xW8,t8)5êLO* •PW (xW8,t8), where the LO field vector and th

atomic polarization vector contain no components alongŷ:

ÊS~yD ,xW' ,t !52p iqE dt8d3xW8g~yD2y8,xW'2xW'8 ,t2t8!

3P̂~y8,xW'8 ,t8!. ~B3!

Using Eqs.~B3! and ~B2! in Eq. ~A15! for the scattered
power operator, one obtains

P̂S~ t !5
c

8p
2p iqE d3xW8ELO* ~xW'8 !P̂~xW8,t ret8 !, ~B4!

where t ret8 .t2yD /c, assuming that the source is sma
enough thaty8/c is short compared to the relevant tim
scales for the system. Since the time can be uniformly shi
in the correlation function, we taket ret8 5t. Note that Eq.~B4!
yields the same power as would be obtained by interfer
the LO field with a scattered field 2p iq*dz8P. This is a
consequence of power conservation: the overlap inte
must be the same for any transverse plane after the med

The dipole polarization per unit volume,PW , can be related
to the Bloch vector components in the Heisenberg pictu
Defining r̂ as the atomic density operator, andPW as the
slowly varying polarization operator, we have
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PW ~xW ,t !5 1
2PW ~xW ,t !eiqy2 iVt1c.c.

5(
a

mW 01r̂10
~a!@xWa~ t !,t#d@xW2xWa~ t !#1H.c., ~B5!

where V is the laser frequency andq5V/c is the optical
wave vector. Hereu1& denotes the atomic excited state,u0&
denotes the ground state. (a) denotes the contribution o
atom (a), which travels along a straight line trajectory in th
atomic beam,xWa(t). HenceP̂5êLO* •PW is given by

P̂~xW ,t !52êLO* •mW 01(
a

r̂10
~a!@xWa~ t !,t#d@xW2xWa~ t !#e2 iqy1 iVt.

~B6!

The single-atom density-matrix operator can be written
terms of the slowly varying density matrix operatorŝ10 as

r̂10
~a!~ t ![ŝ10@xWa~ t !,t#eiqy~a!~ t !2 iVt. ~B7!

Then Eq.~B4! can be rewritten in the form of single-atom
contributions, as in Eq.~A19!,

P̂S~ t !5(
a

P̂S
~a!~ t !, ~B8!

where

P̂S
~a!~ t !5 i

\V

2
bLO* @xWa~ t !#ŝ10

~a!@xWa~ t !,t#. ~B9!

Here, the effective Rabi frequency of the LO is defined a

bLO~xWa!5
êLO•mW 10

\
ELO@Q~xa1a/2!2Q~xa2a/2!#e2 za

2/b2

[ubLO~xWa!ueifLO, ~B10!

where Q(x) is a unit step function. The LO and drivin
fields are taken to have rectangular profiles of full widtha
along the atomic beam axis,x, to simplify calculations of the
atomic dipole operator in the off-resonant case, as descr
below. In thez direction ~see Fig. 3!, the fields are taken to
have Gaussian profiles of 1/e radius b. For simplicity, we
suppress thez argument in the following.

2. Dipole operator

The single-atom scattered power operator, Eq.~B9!, can
be used to evaluate the correlation function given by
~A22! in terms of the atomic dipole autocorrelation functio
This is accomplished by finding the Heisenberg equation
motion for the slowly varying density operatorŝ, which is
defined by Eq.~B7!. We assume in the following that th
atom has a long radiative lifetime compared to the tran
time across the laser interaction region. In this case, at m
one spontaneous photon is emitted per atom, and the dri
field can be treated as a strong classical field in determin
atomic Heisenberg operators to zeroth order in the vacu
field, which is all that is needed for evaluation of the norm
and time-ordered correlation functions for a thin sample.
n

ed

.
.
of

it
st

ng
g
m
l

Since the magnetically compensated supersonic beam
fectively cancels the Doppler shifts due to atomic moti
along the laser beam propagation directiony ~Fig. 3!, we
assume for simplicity that Doppler broadening can be
glected, and takevy50. Also, we assume that atoms whic
cross the laser fields move negligibly in the verticalz direc-
tion. Hence we take the atoms to move only in thex direc-
tion. The atom position in the source,x8, at timet8, then can
be written in terms of the position of the atom,x, at timet as
x8(t8)5x2vx(t2t8), so that the interaction potential a
seen in the atom frame can be taken as

V~ t8!52mW •EW p@x2vx~ t2t8!,y8,z8,t8#. ~B11!

In the following, we taket to be a fixed time, and lett8 be
the time variable in the evolution equations. Our prescript
will be to determine the evolution of the Heisenberg ope
tors from the timet850, when the Heisenberg and Schr¨-
dinger operators are taken to coincide, to the timet85t,
when the atom is at positionx in the driving laser beam.

The driving field can be written as

EW p~xW8,t8!5 1
2 êpEp~x8,z8!ei ~qy82Vt8!1c.c. ~B12!

The corresponding driving field Rabi frequency is then d
fined by

bp~x8![
mW 10•êp

\
Ep~x8!, ~B13!

where thez8 argument is suppressed, since it is time ind
pendent by assumption, i.e.,z85z as in Eq.~B10!.

Using Eq.~B11! for the interaction, one obtains the effe
tive Hamiltonian in the Schro¨dinger picture (S) as

ĤS~ t8!5\vou1&^1u2
\

2
$bp@x2vx~ t2t8!#

3ei ~qy2Vt8!u1&^0u1H.c.%. ~B14!

In writing Eq. ~B14!, we assumedy8.y andz8.z.
To find the Heisenberg equations of motion for the slow

varying density operator, let the Schro¨dinger picture density
~pseudospin! operators be defined by

ŝ10
S [u0&^1u,

ŝ01
S [u1&^0u,

~B15!

ŝ11
S [u1&^1u,

ŝ00
S [u0&^0u.

Equations ~B15! are defined so that̂ c(t)uŝ10
S uc(t)&

5^c(t)u0&^1uc(t)&5A0* A15r10(t), as desired, withAi a
Schrödinger picture amplitude andr10 the corresponding
density-matrix element.

The density operators in the Heisenberg picture, and
corresponding slowly varying density operators,ŝ i j (t8), are
defined by
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r̂10
H ~ t8![Û†~ t8!ŝ10

S Û~ t8!

[ŝ10~ t8!eiqy2 iVt8,
~B16!

r̂ i i
H~ t8![Û†~ t8!ŝ i i

SÛ~ t8!

[ŝ i i ~ t8!,

wherei 50 and 1. Here the time translation operator obe

U̇̂~ t8!52
i

\
ĤS~ t8!Û~ t8!. ~B17!

Equations~B16!, ~B17!, and ~B14! yield the Heisenberg
equations of motion for the slowly varying density operato

ṡ̂10~ t8!2 i ~V2vo!ŝ10~ t8!52 i
bp~ t8!

2
@ŝ11~ t8!2ŝ00~ t8!#,

ṡ̂11~ t8!5 i
bp~ t8!

2
ŝ01~ t8!1H.c., ~B18!

ṡ̂00~ t8!52 ṡ̂11~ t8!,

where

bp~ t8!5bp@x2vx~ t2t8!#[eifpubp~ t8!u ~B19!

and bp(x8), is given by Eq.~B13!. Here fp is a time-
independent driving field phase.

It is convenient to define the Bloch vector compone
operators,x̂, ŷ, andẑ in terms of the slowly varying density
operators,s i j :

ẑ~ t8![ 1
2 @ŝ11~ t8!2ŝ00~ t8!#,

~B20!

ŝ10~ t8![eifp@ x̂~ t8!2 i ŷ~ t8!#.

Equations of motion for the Bloch vector component o
erators are readily found from Eqs.~B18!,

ẋ̂~ t8!2D ŷ~ t8!50,

ẏ̂~ t8!1D x̂~ t8!5ubp~ t8!uẑ~ t8!, ~B21!

ż̂~ t8!52ubp~ t8!u ŷ~ t8!.

To solve Eqs.~B21! for the case of nonzero detuning, it
convenient to assume that the laser beam has a rectan
profile along the atomic beam propagation directionx, as
assumed in Eq.~B10!. The initial conditions are determine
from the Heisenberg operators, Eq.~B16!, at t850, i.e.,

ŝ10~ t850!5ŝ10
S e2 iqy,

ands i i (t850)5s i i
S . Then with the definition

fp8[fp1qy, ~B22!

the initial conditions are
:

t

-

lar

x̂~ t850!5 1
2 e2 ifp8ŝ2

S 1H.c.,

ŷ~ t850!5
1

2i
eifp8ŝ1

S 1H.c., ~B23!

ẑ~ t850!5 1
2 @ŝ11

S 2ŝ00
S #.

Here, ŝ2
S [ŝ10

S 5u0&^1u, according to Eq.~B15! and ŝ1
S is

its adjoint.
For a rectangular pump beam of widtha, the Rabi fre-

quency is given by

ubp~ t8!u5ubp@x85x2vx~ t2t8!#u

5ubpuFQS x81
a

2D2QS x82
a

2D Ge2 ~z2/b2!,

~B24!

whereQ(x) is a unit step function, andb is the driving field
1/e radius in the verticalz direction~Fig. 1!. We assume tha
the time,t@a/vx , so that the atom is far to the left of th
driving field at t850. For simplicity, thez85z dependence
of the Rabi frequency is suppressed in the following.

We note that an atom which is at positionx at time t
arrives at the positionx852a/2, where the driving field
starts, at timet85t2(x1a/2)/vx . Hence the atoms evolve
freely from t850 to t85t2(x1a/2)/vx . For completeness
the free evolution will be determined here to show that
only effect on the initial conditions in the interaction regio
is to introduce an invariant phase shiftw(t2x/vx) in the
coefficients ofs6

S . This is as one would expect. To find th
Heisenberg Bloch vector operators at the time the atom
rives at the left side of the driving field,x852a/2, Eqs.
~B21! are solved withubpu50 to obtain

~ x̂2 i ŷ !~ t8!5~ x̂2 i ŷ !~ t850!eiDt8,

and ẑ(t8)5 ẑ(t850). For t85t2(x1a/2)/vx , one obtains
with the initial conditions@Eqs.~B23!#,

ẑ@ t2~x1a/2!/vx#5
ŝ11

S 2ŝ00
S

2
,

x̂@ t2~x1a/2!/vx#5
ŝ2

S

2
e2 ifp81 iD@ t2~x1a/2!/vx#1H.c.,

~B25!

ŷ@ t2~x1a/2!/vx#5 i
ŝ2

S

2
e2 ifp81 iD@ t2~x1a/2!/vx#1H.c.

The atom travels across the driving field~from x85
2a/2 to x85a/2) during the time interval t85t2(x
1a/2)/vx to t85t2(x2a/2)/vx . To find the Heisenberg
Bloch vector operators in this time interval, Eqs.~B21! are
solved for the caseubpu5const. For this purpose, it is con
venient to define a timet8, which is the time relative to the
time the atom arrives atx852a/2, i.e.,

t8[t82@ t2~x1a/2!/vx#. ~B26!
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Hence t850 corresponds to the initial conditions on th
Heisenberg operators att85t2(x1a/2)/vx , when the atom
arrives at the input side of the pump beam, i.e., Eqs.~B25!.

With dt85dt8, and the overdot representing differenti
tion with respect tot8 in Eqs. ~B21!, one obtains by direc
differentiation an equation of motion forŷ(t8),

ÿ̂1b82 ŷ50, ~B27!

where the generalized Rabi frequency is defined by

b8[b8~z!5AD21bp~z!2. ~B28!

Here we include the verticalz dependence of the pump bea
field, which will be taken to be Gaussian. Note thatz85z is
assumed, since we neglect the motion perpendicular tox, as
discussed above.

Equation~B27! is readily solved using Eqs.~B21! to ob-

tain ẏ̂(t850),

ŷ~t8!52 x̂~t850!
D

b8
sinb8t81 ŷ~t850!cosb8t8

1 ẑ~t850!
ubpu

b8
sinb8t8. ~B29!

The other Bloch vector operators then are obtained from E
~B21!,

x̂~t8!5 x̂~t850!1DE
0

t8
dt9ŷ~t9!,

which yields

x̂~t8!5 x̂~t850!F ubpu2

b82
1

D2

b82
cosb8t8G1 ŷ~t850!

D

b8

3sinb8t81 ẑ~t850!
ubpuD

b82
~12cosb8t8!,

~B30!

and from

ẑ~t8!5 ẑ~t850!2ubpu E
0

t8
dt9ŷ~t9!,

which yields

ẑ~t8!5
ubpuD

b82
~12cosb8t8!x̂~t850!

2
ubpu

b8
sinb8t8ŷ~t850!

1F D2

b82
1

ubpu2

b82
cosb8t8G ẑ~t850!. ~B31!

Equations~B29!, ~B30!, and ~B31! are valid in the time in-
terval, t2(x1a/2)/vx<t8<t2(x2a/2)/vx . Hence these
s.

solutions can be multipled by a factorQ@t82t1~x1a/2)/
vx] 2Q@ t82t1(x2a/2)/vx#, to appropriately restrict the
range oft8.

We are interested in the Heisenberg operators at timt8
5t, when the atom arrives at positionx. At t85t, Eq. ~B26!
shows thatt85(x1a/2)/vx . Using Eq.~B20! and the above
restriction factor yields

ŝ10~ t85t !5@Q~x1a/2!2Q~x2a/2!#eifp

3F x̂S t85
x1a/2

vx
D2 i ŷ S t85

x1a/2

vx
D G .

~B32!

The solution is conveniently written in terms of the effecti
pulse area

ue[ue~x,z![b8~z!
x1a/2

vx
, uxu<

a

2
. ~B33!

Using the initial conditions att850, Eqs.~B25!, after some
algebra we obtain

ŝ10~ t85t !5@Q~x1a/2!2Q~x2a/2!#H ŝ2
S

2
eiwF ubpu2

b82

1S 11
D2

b82D cosue1
2iD

b8
sinueG

1
ŝ1

S

2
e2ifp2 iw

ubpu2

b82
~12cosue!

2 i
ŝ11

S 2ŝ00
S

2
eifpF ubpu

b8
sinue

1 i
ubpuD

b82
~12cosue!G J , ~B34!

wherew[D@ t2(x1a/2)/vx#2qy.
The single atom scattered power operator is readily ev

ated from Eq.~B9! using Eq.~B34! and the effective Rab
frequency of the local oscillator, Eq.~B10!,

P̂S
~a!~ t !5

\V

2
ubLO~x,z!ue2 ifLOH ŝ11

S 2ŝ00
S

2
eifpF ubpu

b8
sinue

1 i
ubpuD

b82
~12cosue!G1 i

ŝ2
S

2
eiw

3F ubpu2

b82
1S 11

D2

b82D cosue1
2iD

b8
sinueG

1 i
ŝ1

S

2
e2ifp2 iw

ubpu2

b82
~12cosue!J , ~B35!

where Eq.~B10! shows thatbLO(x,z) is nonzero only in the
interval uxu<a/2, so that the step functions of Eq.~B34! are
implicitly included.
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3. Power autocorrelation function

The power autocorrelation function of Eq.~A22! requires
the evaluation of two single-atom correlation function
which take the form ^P̂S

(a)(t1t) P̂S
(a)(t)& and ^P̂S

(a)†(t

1t) P̂S
(a)(t)&. In evaluating these single-atom correlatio

functions, we requiret85t in one factor, which yields Eq
~B35!. For the second factor, we requiret85t1t which in-
creasest8 of Eqs. ~B29!, ~B30!, and ~B31! by t. This is
equivalent to changing the effective pulse area of Eq.~B33!
by x→x1vxt @see Eq.~B9!#. Sincex[x(t) labels a given
atom by its position at timet, the phasew5w(x2vxt) which
appears in Eqs.~B34! and ~B35! is therefore invariant and
can be treated as a constant. Alternatively, one can make
combined substitutionst→t1t and x(t)→x(t1t)5x
1vxt (y→y for vy50), i.e., a given atom is equally we
labelled by its position at timet or at time t1t. Again the
phasew which appears in Eq.~B34! is invariant. Note that
for the casevyÞ0, the phaseqy→q(y2vyt) also is invari-
ant.

For the case where all atoms are initially in the grou
state,u0&, ŝ00

S u0&51u0&, and^0uŝ2
S ŝ1

S u0&51 make the only
nonzero contributions to the power autocorrelation functio
It is straightforward to obtain

^P̂S
~a!†~ t1t!P̂S

~a!~ t !&1c.c.

5
~\V!2

8
ubLO~x,z!uubLO~x1vxt!u

3S ubpu

b8
D 2

@sinue8 sinue1~12cosue!~12cosue8!#,

~B36!

whereue8[ue(x1vxt,z) andue is given by Eq.~B33!. For
t>0, we have

^P̂S
~a!~ t1t!P̂S

~a!~ t !&1c.c.

5
~\V!2

8
ubLO~x,z!uubLO~x1vxt,z!uS ubpu

b8
D 2

3H @sinue8sinue2~11cosue8!~12cosue!#cos2f

1
D

b8
@sinue~12cosue8!2sinue8~12cosue!#sin2fJ ,

~B37!

where f[fLO2fp is the relative phase between the L
and driving fields.

The correlation functionC12 of Eq. ~A22! consists of a
sum of terms, one for each atom, which take the form of E
~B36! and~B37!. Since all atoms are equivalent, and labell
by their positionx at time t, the sum can be replaced by a
integral over the atomic density,n, with n dx dz dy the
number of atoms atx. The integral*dy5L, whereL is the
sample length. Further, for identical samples, the correla
functionsC12 andC21 appearing in Eq.~A10! are identical,
,

he

s.

s.

n

so thatC121C2152 C12. Hence the atom contribution to th
one sided power spectrum, Eq.~A12!, takes the form

SATOM~v!52 ReE
0

`

dt
eivt

p
2 E n dx dy dz@^P̂S

~a!†~ t1t!

3 P̂S
~a!~ t !&1^P̂S

~a!~ t1t!P̂S
~a!~ t !&1c.c.# ~B38!

It is convenient to denote the atom transit time across
driving or LO fields by

to[a/vx . ~B39!

Further, an effective number of atoms per second cross
one interaction region can be defined as

Ṅ[nApvxbL. ~B40!

Note that a factor ofAp is incorporated, since the beam
assumed to be Gaussian in the vertical direction withb the
field 1/e width. Finally, the maximum pulse area is define
as

uM[bpto . ~B41!

Note that the beam is assumed to have a square profile o
width a alongx, so that noAp is used here.

The power spectrum, Eq.~B38!, can be written as an
integral over dimensionless variables with the substitutio
t5 t̃ to , z5hb, and x5ja. Equation ~B10! shows that
bLO(j,h)}@Q(j1 1

2)2Q(j2 1
2)#. Hence to evaluate the

atom contributions to the power spectrum, we require in
grals of the form

I ~v!52 ReE
0

`

d t̃ e2 ivto t̃ E
2`

`

dj@Q~j1 1
2!2Q~j2 1

2!#

3@Q~j1 1
2 1 t̃ !2Q~j2 1

21 t̃ !# f ~j!g~j1 t̃ !,

~B42!

where f and g are functions ofj and h, as given by Eqs.
~B36! and~B37!. The product of the twoQ functions have a
nonzero overlap for2 1

2<j< 1
22 t̃ . Hence, the maximum

value of t̃ 51.
With these results, the phase-dependent power spec

S(n,f)Dn[SDP(v)2pDn is obtained from Eq.~A12!,
where n (Dn) denotes the spectrum analyzer frequen
~bandwidth! in Hz and f[fLO2fp is the relative phase
between the local oscillator and driving fields. This can
written in terms of distinct noise sources,

S~n,f!5hSFP1Ṅ\VS PLO

2Pp
D ho

4
uM

2 $@FD~n!1FSP~n!#

1@ FD~n!1FB~n!#cos2f1FN~n!sin2f%G .
~B43!
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In Eq. ~B43!, we have usedubLO /bpu25PLO /(2 Pp) for a
blocking polarizer at 45° in thex-z plane. The first term in
Eq. ~B43! is the mean-square shot noise due to the to
transmitted power from both regions, including the mean
sorption, i.e.,P5P11P2. HerehS[2\VhoDn, with ho the
detection system efficiency.

The spectral functions,Fi(n), which appear in Eq.~B43!
can be written in terms of normal and time-ordered corre
tion functions for t̃ >0, with the definitions

F@ f ~u!,g~u!;n#52 ReE
0

1

d t̃ e2 i2pnto t̃ C@ f ~u!,g~u!; t̃ #,

~B44!

where

C@ f ~u!,g~u!; t̃ #5E
2`

` dh

Ap
e22h2E

2~1/2!

~1/2!2 t̃
dj

uM
2 e22h2

uM8
2~h!

3 f @u~j1 t̃ ,h!#g@u~j,h!#. ~B45!

The position-dependent effective Bloch angle is given by

u~j,h!5uM8 ~h!S 1

2
1j D , ~B46!

with the effective maximum pulse area

uM8 ~h![AuM
2 exp~22h2!1~Dto!2. ~B47!

In Eq. ~B45!, note that the left argumentf is evaluated at a
later time,j1 t̃ , than the right argumentg, which is evalu-
ated atj.

With these definitions, we find
Z

.

us
l
-

-

FD~n!5F@sinu,sinu;n#,

FSP~n!5F@12cosu,12cosu;n#,
~B48!

FB~n!5F@cosu11,cosu21;n#,

FN~n!5DtoH FF12cosu,
sinu

uM8
G2FF sinu

uM8
,12cosuG J .

Note that the frequency distributions are determined by F
rier transformation of single-atom correlation functions w
respect toj, i.e., along thex direction, and that the single
atom contributions to the power spectra from different ato
are then summed~integrated! over h in the verticalz direc-
tion.

For completeness, we also give the phase-dependen
sorption as a function of driving field frequency. This is ju
the expectation value of the single-atom power opera
PS

(a)(t) of Eq. ~B35!, integrated over the atomic volume, a
was done to obtain Eq.~B43!. The total power absorbed
from both regions is given by

PABS52Ṅ\VAPLO

2Px
@Fc~uM !cosf1Fs~uM !sinf#,

~B49!

where Ṅ is the number of atoms per second crossing o
region. Here the coefficientsFc andFs are

Fc~uM !5E
2`

` dh

Ap
e22h2 uM

2

uM8
2 ~12cosuM8 !,

~B50!

Fs~uM !5E
2`

` dh

Ap
e22h2 uM

2

uM8
2

Dto

uM8
~uM8 2sinuM8 !.
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