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Approximate relativistic optimized potential method
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Approximate semianalytical solutions of the integral equation for the relativistic optimized potential are
constructed by extending a method recently proposed by Krieger, Li, and Iafrate@Phys. Lett. A146, 256
~1990!# to the relativistic regime. The quality of the approximation is tested in the longitudinalx-only limit
where fully numerical solutions of the relativistic optimized effective potential integral equation are available
for spherical atoms. The results obtained turn out to be in excellent agreement with the exactx-only values.
The proposed method provides significant improvement over the conventional relativistic local density ap-
proximation and generalized gradient approximation schemes.@S1050-2947~97!04912-3#

PACS number~s!: 31.10.1z, 71.10.2w, 31.30.Jv, 31.15.Ew
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I. INTRODUCTION

Since the seminal work of Hohenberg and Kohn@1# and
Kohn and Sham@2#, density functional theory~DFT! has
become a powerful tool forab initio electronic structure cal
culations of atoms, molecules, and solids@3–5#. The devel-
opment of more and more refined approximations of
exchange-correlation~xc! energy functionalExc has led to
significant improvement over the standard local density
proximation ~LDA !. In particular, the so-called optimize
potential method~OPM! @6,7# employing explicitly orbital-
dependent functionals rather than the traditional dens
dependent functionals has achieved highly accurate re
@7–20#.

Most of the advances in DFT have been made in the c
text of nonrelativistic physics. For high-Z atoms, however,
relativistic contributions have to be considered. For exam
the ground-state energy of mercury~Hg! decreases from its
nonrelativistic value218 408 a.u. to219 649 a.u. if relativ-
istic effects are taken into account. Furthermore, even
systems with moderateZ, relativistic contributions toExc are
larger than the differences between the currently best xc
ergy functionals@21#. Until now, the calculation of such rela
tivistic contributions has mostly been based on the relati
tic local density approximation~RLDA!. To go beyond the
RLDA, an x-only version of the OPM was formulated fo
relativistic systems@22,21#. As in the nonrelativistic case, th
solution of the resulting equations is a rather demanding
and has been achieved so far only for systems of high s
metry, e.g., spherical atoms@21,23–25#.

The purpose of the present paper is to develop a sim
fied version of the relativistic OPM~ROPM! scheme leading
to a generalization of the approximation of Krieger, Li, a
Iafrate ~KLI ! @8–10,26–36# to the realm of relativistic sys
tems. This will be done for systems subject to arbitrary sta
external four-potentials. The paper is organized as follo
In Sec. II we give a brief review of the foundations of rel
tivistic DFT ~RDFT!. After that, in Sec. III, we develop the
ROPM generalizing a nonrelativistic derivation of Go¨rling
and Levy@37# to the relativistic domain. The relativistic KL
571050-2947/98/57~1!/138~11!/$15.00
e

-

-
lts

n-

e,

r

n-

-

sk
-

li-

ic
s.

~RKLI ! scheme is developed in Sec. IV before some limiti
cases are discussed in Sec. V. In Sec. VI, numerical res
of the ROPM and RKLI methods are presented and co
pared to other RDFT methods.

II. THEORETICAL BACKGROUND

On its most general level, RDFT is based on quant
electrodynamics~QED! and thus contains not only relativis
tic but also radiative effects. For a detailed derivation, a
including questions of renormalization, the reader is refer
to recent reviews@23,38#. The central statement of RDFT —
the relativistic version of the Hohenberg-Kohn~HK! theorem
@39# — can be stated in the following way: The renormaliz
ground-state four-currentj n(r ) of an interacting system o
Dirac particles uniquely determines, up to gauge transform
tions, the external four-potentialAext

m @ j n# as well as the
ground-state wave functionC@ j n#. As a consequence, an
observable of the relativistic many-body system under c
sideration is a functional of its ground-state four-current.
in the nonrelativistic case, the exact ground-state four-cur
including all quantum electrodynamical effects can in pr
ciple be obtained from an auxiliary noninteracting system
the relativistic Kohn-Sham~RKS! system@21,38,40,41#:

j n~r !5 (
2c2,«k<«F

w̄ k~r !gnwk~r !1 j V
n ~r !, ~1!

where j V
n (r ) denotes the vacuum contribution to the fou

current. The four-component spinorswk(r ) are solutions of
an effective single-particle Dirac equation~in atomic units
\5e5m51)

g0†2 icg•¹1c21gmAS
m@ j n#~r !‡wk~r !5«kwk~r !, ~2!

with AS
m@ j n#(r ) being the effective four-potential, which ca

be decomposed according to

AS
m@ j n#~r !5Aext

m ~r !1E d3r 8
j m~r 8!

ur2r 8u
1Axc

m @ j n#~r !. ~3!
138 © 1998 The American Physical Society
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57 139APPROXIMATE RELATIVISTIC OPTIMIZED . . .
Here,Aext
m (r ) is a static but otherwise arbitrary external fou

potential, the second term on the right-hand side represe
Hartree-like potential, and the last term, defined by

Axc
m @ j n#~r !:5

dExc@ j n#

d j m~r !
~4!

denotes the xc four-potential containing by construction
nontrivial many-body effects.

Equations~1!–~4! represent the relativistic KS schem
that has to be solved self-consistently. However, the calc
tion of the vacuum contributionj V

n (r ) to the four-current
requires the knowledge of an infinite number of~positive and
negative energy! states, so that one would have to deal w
an infinite system of coupled equations. Since such a pro
dure is highly impractical, we will, in the following, ignore
all vacuum contributions to the various energy compone
and to the four-current, which is then given just by the fi
term on the right-hand side of Eq.~1!. This means that we
restrict ourselves to the calculation of relativistic effects a
neglect radiative corrections. Since we are aiming at e
tronic structure calculations for atoms, molecules, and sol
we expect the neglected terms to be small. If one were a
all interested in the radiative contributions, ana posteriori
perturbative treatment should be sufficient and represen
fact the standard approach.

III. RELATIVISTIC OPTIMIZED POTENTIAL METHOD

In order to derive a relativistic generalization of the OP
integral equation, we start out from the total-energy fun
tional of a system of interacting Dirac particles~neglecting
vacuum contributions! subject to a static external four
potentialAext

m (r ):

Etot
ROPM@ j n#5 (

2c2,«k<«F

E d3r w̄ k~r !~2 icg•¹1c2!wk~r !

1E d3r j m~r !Aext
m ~r !

1
1

2E d3r E d3r 8
j m~r ! j m~r 8!

ur2r 8u
1Exc

ROPM@$w i%#.

~5!

In contrast to the ordinary RDFT approach, the xc ene
functional is given here as an explicit functional of the RK
four-spinors$w i%. Still, Exc

ROPM@$w i%# represents a functiona
of the density: Via the HK theorem applied to noninteracti
systems,j n(r ) uniquely determines the effective potenti
AS

m@ j n#. With this very potential, the Dirac equation~2! is
solved to obtain the set of single-particle orbitals$w i@ j n#%
which are then used to calculate the quant
Exc

ROPM
†$w i@ j n#%‡. Therefore every functional, dependingex-

plicitly on RKS spinors, is animplicit functional of the den-
sity, provided the orbitals come from a local potential. Th
allows us to use the exact expression for the longitud
exchange energy, i.e., the relativistic Fock term
s a
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L,exact@ j n#52

1

2 (
2c2,« l ,«k<eF

E d3r E d3r 8

3
w l

1~r !wk~r !wk
1~r 8!w l~r 8!

ur2r 8u
. ~6!

One major advantage of such an exact treatment of the
change energy lies in the fact that the spurious s
interactions contained in the Hartree energy are fully c
celed. The price to be paid for the orbital dependence ofExc

is that the calculation of the xc four-potentialAxc
m (r ), defined

by Eq. ~4!, is somewhat more complicated. It has to be d
termined by an integral equation, as will be shown in t
following.

Starting from the definition ofAxc
m (r ), Eq. ~4!, we can

calculate the xc four-potential corresponding to an orbit
dependent xc energy functional by applying the chain r
for functional derviatives:

Axcm
ROPM~r !5 (

2c2,«k<«F

E d3r 8E d3r 9

3S dExc
ROPM@$w i%#

dwk~r 8!

dwk~r 8!

dASn~r 9!
1c.c.D dASn~r 9!

d j m~r !
.

~7!

The last term on the right-hand side of Eq.~7! is readily
identified with the inverse of the static response function o
system of noninteracting Dirac particles

xS
mn~r ,r 8!:5

d j m~r !

dASn~r 8!
, ~8!

so that Eq.~9! can be rewritten as

Axcm
ROPM~r !5 (

2c2,«k<«F

E d3r 8E d3r 9

3S dExc
ROPM@$w i%#

dwk~r 8!

dwk~r 8!

dASn~r 9!
1c.c.D xSnm

21 ~r 9,r !.

~9!

Acting with the response operator~8! on Eq. ~9! and using
the identity

E d3rxSnm
21 ~r 9,r !xS

ms~r ,r 8!5dn
sd~r 92r 8! ~10!

we obtain~after rearranging the indices!

E d3r 8Axcn
ROPM~r 8!xS

nm~r 8,r !

5 (
2c2,«k<«F

E d3r 8
dExc

ROPM@$w i%#

dwk~r 8!

dwk~r 8!

dASm~r !
1c.c. ~11!

To further evaluate this equation, we note that the first fu
tional derivative on the right-hand side of Eq.~11! is readily
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140 57T. KREIBICH, E. K. U. GROSS, AND E. ENGEL
computed once an expression forExc
ROPM in terms of single-

particle spinors is given. The remaining functional derivat
is calculated by using standard first-order perturbat
theory, yielding

dwk~r 8!

dASm~r !
5(

« l
l 5” k

w l~r 8!

«k2« l
w̄ l~r !gmwk~r !. ~12!

This equation also enables us to give an explicit expres
for the response function

xS
mn~r ,r 8!:5

d

dASn~r 8!S (
2c2,«k<«F

w̄ k~r !gmwk~r !D
~13!

in terms of the RKS spinors:

xS
mn~r 8,r !5 (

2c2,«k<«F

(
« l

l 5” k

w̄ k~r 8!gmw l~r 8!w̄ l~r !gnwk~r !

«k2« l

1c.c. ~14!

Finally, putting Eqs.~11!, ~12!, and~14! together leads to the
ROPM integral equations for the local xc four-potent
Axcm

ROPM(r ):

(
2c2,«k<«F

E d3r 8S w̄ k~r 8!gnAxcn
ROPM~r 8!

2
dExc

ROPM

dwk~r 8!
D GSk~r 8,r !g0gmwk~r !1c.c.50,

m50,1,2,3 ~15!

whereGSk(r 8,r ) is defined as

GSk~r 8,r !:5(
« l

l 5” k

w l~r 8!w l
1~r !

«k2« l
. ~16!

Now the ROPM scheme is complete: For a given appro
mation of the xc energy, the ROPM integral equations h
to be solved forAxcm

ROPM(r ) simultaneously with the RKS
equation~2! until self-consistency is achieved. Note that E
~15! determines the xc four-potentialAxc

m (r ) only up to an
arbitrary constant, which can be specified by requir
Axcm

ROPM(r ) to vanish asymptotically~for finite systems!.
To conclude this section, we note that exchange and

relation contributions can be treated separately within
ROPM scheme. This is most easily seen by starting out w
only the exchange four-potential, defined
Ax

m(r )5dEx /d j m(r ), instead of Eq.~4! and repeating the
steps which lead to Eq.~15! and likewise for the correlation
potential.
n
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IV. TRANSFORMATION OF THE ROPM
INTEGRAL EQUATIONS

AND THE RELATIVISTIC KLI APPROXIMATION

In order to use the ROPM equations derived in the p
ceding section, we have to solve Eq.~15! for the xc four-
potential. Unfortunately, there is no known analytic soluti
for Axcm

ROPM(r ) depending explicitly on the set of single
particle spinors$w i%. We therefore have to deal with Eq.~15!
numerically, which is a rather demanding task. Thus a s
plified scheme for the calculation ofAxcm

ROPM(r ) appears
highly desirable.

To this end we shall perform a transformation of t
ROPM integral equations similar to the one recently int
duced by KLI in the nonrelativistic domain@29,31#. This will
lead to an alternative but still exact form of the ROPM int
gral equation which naturally lends itself as a starting po
for systematic approximations. We start out by defining

ck
1~r !:5E d3r 8S w̄ k~r 8!gnAxcn

ROPM~r 8!

2
dExc

ROPM

dwk~r 8!
D GSk~r 8,r !, ~17!

such that the ROPM integral equations can be rewritten

(
2c2,«k<«F

c̄ k~r !gmwk~r !1c.c.50, ~18!

where the adjoint spinorc̄ k(r ) is defined in the usual way
i.e.,

c̄ k~r !:5ck
1~r !g0. ~19!

Since the RKS spinors$w i% span an orthonormal set, on
readily proves the orthogonality relation

E d3rck
1~r !wk~r !50. ~20!

We now use the fact thatGSk(r 8,r ) is the Green function of
the RKS equation projected onto the subspace orthogon
wk(r ), i.e., it satisfies the equation

GSk~r 8,r !@ ĥD
1~r !2«k#52@d~r 82r !2wk~r 8!wk

1~r !#.
~21!

The operatorĥD
1(r ) denotes the Hermitian conjugate of th

RKS Hamiltonian,

ĥD
1~r !:5g0@ icg•¹ª 1c21gnASn~r !#, ~22!

acting from the right on the unprimed variable ofGSk(r 8,r )
~the arrow on top of the gradient indicates the direction
which the derivative has to be taken!. Using Eq.~21!, we can
act with the operator@ ĥD

1(r )2«k# from the right on Eq.~17!,
leading to
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ck
1~r !@ ĥD

1~r !2«k#52S w̄ k~r !gnAxc
n ~r !2

dExc
ROPM

dwk~r !
D

1wk
1~r !~ Āxck

ROPM2 ū xck!, ~23!

where we have introducedĀxck
ROPM as a shorthand notation fo

the average value ofgnAxcn
ROPM(r ) with respect to thekth

orbital, i.e.,

Āxck
ROPM:5E d3r w̄ k~r !gnAxcn

ROPM~r !wk~r ! ~24!

and

ū xck :5E d3r
dExc

ROPM

dwk~r 8!
wk~r !. ~25!

The differential equation~23! has the structure of a RKS
equation with an additional inhomogeneity term. Togeth
with the boundary condition

ck
1~r ! →

r→`

0, ~26!

Eq. ~23! uniquely determinesck
1(r ). To prove this state-

ment, we assume that there are two independent solution
Eq. ~23!, namely,ck,1

1 (r ) andck,2
1 (r ). Then the difference of

these two solutions,Ck
1(r ):5ck,1

1 (r )2ck,2
1 (r ), satisfies the

homogeneous RKS equation

Ck
1~r !@ ĥD

1~r !2«k#50, ~27!

which has a unique solution

Ck
1~r !5wk

1~r !, ~28!

if the above boundary condition is fulfilled. However, th
solution leads to a contradiction to the orthogonality relat
~20! so thatCk

1(r ) can only be the trivial solution of Eq
~27!,

Ck
1~r ![0, ~29!

which completes the proof.
As an interesting aside, we briefly consider the physi

meaning of the quantityck
1(r ). Defining

uxck
ab~r !:5

dab

wka* ~r !

dExc

dwka~r !
, ~30!

with a and b denoting spinor indices running from 1 to 4
we can rewrite Eq.~17! as

ck
1~r !5(

« l
l 5” k

w l
1~r !

«k2« l
E d3r 8wka* ~r 8!@g0gnAxcn

ROPM~r 8!

2uxck~r !#abw lb~r 8!, ~31!

where summation overa and b is implicitly understood.
From this equation, it is obvious thatck

1(r ) is the usual
first-order shift in the wave function caused by a perturb
r

of

n

l

g

potential dAxc5(g0gnAxcn
ROPM2uxck). This fact also moti-

vates the boundary condition assumed above. Inx-only
theory,uxck(r ) is the local, orbital-dependent RHF exchan
potential so thatck

1(r ) is the first-order shift of the RKS
wave function towards the RHF wave function. Howev
one has to realize that the first-order shift of the orbit
dependent quantityuxck@$w i%# has been neglected.

Now we use Eq.~23! to further transform the ROPM
equations ~18!. As a first step, we solve Eq.~23! for
AS

0(r )Ck
1(r ), leading to

AS
0~r !ck

1~r !52S w̄ k~r !gnAxcn
ROPM~r !2

dExc
ROPM

dwk~r !
D

1~ Āxck2 ū xck!wk
1~r !

2 c̄ k~r !~ icg•¹ª 1c22g•AS~r !2g0«k!. ~32!

We then multiply the ROPM equations~18! by the zeroth
component of the effective RKS four-potential,AS

0(r ), yield-
ing

(
2c2,«k<«F

AS
0~r !c̄ k~r !gmwk~r !1c.c.50, ~33!

and employ Eq.~32! to obtain

(
2c2,«k<«F

S w̄ k~r !gnAxcn
ROPM~r !2

dExc
ROPM

dwk~r !

2~ Āxck
ROPM2 ū xck!wk

1~r !

1 c̄ k~r !@ icg•¹ª 1c22g•AS~r !2g0«k# D
3g0gmwk~r !1c.c.50. ~34!

Introducing the 434 matrix

Jmn~r !:5
1

2 (
2c2,«k<«F

w̄ k~r !gng0gmwk~r !1c.c. ~35!

and defining

axck
m ~r !:5

dExc
ROPM

dwk~r !
g0gmwk~r !

2 c̄ k~r !@ icg•¹ª 1c22g•AS~r !2g0«k#

3g0gmwk~r !, ~36!

we rewrite Eq.~34! as

Jmn~r !Axcn
ROPM~r !

5 (
2c2,«k<«F

@axck
m ~r !1 j k

m~r !~ Āxck
ROPM2 ū xck!#1c.c.,

~37!

with j k
m(r ) being the four-current with respect to thekth

orbital:
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j k
m~r !:5 w̄ k~r !gmwk~r !. ~38!

In order to solve Eq.~37! for Axcm
ROPM(r ), we first have to

investigate whether the 434 matrix J(r ), defined by Eq.
~35!, is nonsingular, i.e., whether the inverseJ 21(r ) exists.
We therefore calculate the determinant ofJ(r ), yielding

det@J~r !#5@ j 0~r !#2
• j m~r ! j m~r !5n4~r !S 12

j2~r !

c2n2~r !
D ,

~39!

where the last equality follows from the decomposition
the four-current into the scalar density and the vector co
ponents according to

j m~r !5S n~r !,
1

c
j ~r ! D . ~40!

Since the currentj (r ) divided by the densityn(r ) is the
velocity field of the system, it follows fromv(r ),c that

det@J~r !#5” 0 ~41!

and therefore that the matrixJ(r ) is nonsingular.
Solving then Eq.~37! for Axcm

ROPM(r ) yields

Axcm
ROPM~r !5

1

2
J mn

21~r ! (
2c2,«k<«F

@axck
n ~r !

1 j k
n~r !~ Āxck

ROPM2 ū xck!#1c.c. ~42!

We emphasize that Eq.~42! is anexacttransformation of the
ROPM equation~15!. In particular, Eq.~42! is still an inte-
gral equation. However, its advantage lies in the fact tha
naturally lends itself as a starting point for deriving syste
atic approximations ofAxcm

ROPM(r ): We only need approximate
ck

1(r ) in Eq. ~36! by a suitable function of the set of RK
orbitals $w i%. The simplest possible approximation is o
tained by completely neglecting the terms involvingck

1(r )
in Eq. ~36!. Although this approximation may seem to b
rather crude, it was shown to produce highly accurate res
in the nonrelativistic case@29,31#.

The xc potentialAxcm
ROPM(r ) is then approximately deter

mined by the following equation:

Axcm
RKLI~r !5

1

2
J mn

21~r ! (
2c2,«k<«F

S dExc
ROPM

dwk~r !
g0gnwk~r !

1 j k
n~r !~ Āxck

RKLI2 ū xck! D 1c.c. ~43!

This equation establishes the generalization of the nonr
tivistic KLI approximation to the realm of relativistic sys
tems.

In contrast to the ROPM equation~15!, the relativistic
KLI ~RKLI ! equation, although still being an integral equ
tion, can be solved explicitly in terms of the RKS spino
$w i%: Multiplication of Eq. ~43! with j l

m(r ), summing over
all m, and integrating over space yields
f
-

it
-

lts

a-

-

Āxcl5 Āxcl
S 1 (

2c2,«k<«F

M lkS Āxck
RKLI2

1

2
~ ū xck2 ū xck* ! D ,

~44!

where we have defined

Āxcl
S :5E d3r j l

m~r !Jmn
21~r !

3
1

2 (
2c2,«k<«F

S dExc
ROPM

dwk~r !
g0gnwk~r !1c.c.D

~45!

and

Mlk :5E d3r j l
m~r !J mn

21~r ! j k
n~r !. ~46!

The unknown coefficients@ Āxck
RKLI2 1

2 ( ū xck2 ū xck* )# are then
determined by the linear equation

(
2c2,«k<«F

~d lk2Mlk!S Āxck
RKLI2

1

2
~ ū xck2 ū xck* ! D

5S Āxcl
S 2

1

2
~ ū xcl2 ū xcl* ! D . ~47!

Solving this equation and substituting the result into Eq.~43!
finally leads to an expression for the xc four-potent
Axcm

RKLI(r ) that depends explicitly on the set of single-partic
spinors$w i%. We thus have obtained a method of calculati
the xc four-potentialAxcm

ROPM(r ) in an approximate way,
which is numerically much less involved compared to t
full solution of the ROPM integral equations.

V. ELECTROSTATIC LIMIT

The ROPM and RKLI methods, developed in the prece
ing sections, can be applied to systems subject to arbit
static external four-potentials. In particular, the methods
low us to deal with external magnetic fields of arbitra
strength. Yet, in electronic structure calculations of atom
molecules, and solids, we most commonly encounter si
tions, where no magnetic fields are present~in a suitable
Lorentz frame, typically the rest frame of the nuclei!.

Thus in this section we consider four-potentials who
spatial components vanish, i.e.,Aext(r )50. ~This also in-
cludes a partial fixing of the gauge.! In this situation, a sim-
plified Hohenberg-Kohn-Sham scheme can be develop
stating that the zeroth componentn(r )5 j 0(r ) of the ground-
state current density alone determines the external pote
Vext@n# and the ground-state wave functionC@n# uniquely
~for a discussion on this so-called ‘‘electrostatic case’’
Refs. @21,23#!. Consequently, only a scalar effective pote
tial VS(r ) is present in the RKS equation~2!.

When orbital-dependent functionals are used for the
energy in this context, the corresponding scalar xc poten
Vxc(r ) can be calculated by repeating the steps of Sec.
One then finds the ROPM integral equation for the ‘‘elect
static case’’:
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(
2c2,«k<«F

E d3r 8S wk
1~r 8!Vxc

ROPM~r 8!

2
dExc

ROPM

dwk~r 8!
D GSk~r 8,r !wk~r !1c.c.50. ~48!

We mention that the same result is obtained if one
mands thatVS(r ) be the variationally best local effectiv
potential yielding single-particle spinors minimizing th
total-energy functional~5!, i.e.,

dEtot
ROPM

dVS~r !
U

VS5V
S
ROPM

50. ~49!

In fact, using this approach, Shadwick, Talman, and Norm
@22# derived thex-only limit of the ROPM integral equation
~48!.

Compared to the four ROPM integral equations~15!,
which determine the xc four-potentialAxcm

ROPM, Eq. ~48! is
considerably simpler. Still, its numerical solution is a rath
demanding task which has been achieved so far only
systems of high symmetry, i.e., spherical atoms@21–24#.
Again, an approximate ROPM scheme can be derived: F
lowing the arguments of Sec. IV, the ROPM integral equ
tion ~48! can be exactly rewritten as

Vxc
ROPM~r !5

1

2n~r ! (
2c2,«k<«F

nk~r !@vxck1~ V̄xck
ROPM2 ū xck!#

1c.c., ~50!

where

vxck~r !:5
1

nk~r !
S dExc

ROPM

dwk~r !
wk~r !2 ic¹@c̄ k~r !gwk~r !# D

~51!

and

ck
1~r !:5E d3r 8S wk

1~r 8!Vxc
ROPM~r 8!2

dExc
ROPM

dwk~r 8!
D GSk~r 8,r !

~52!

similar to Eq. ~17!. Equation~50! represents the ‘‘electro
static case’’ analog of Eq.~42! and can also be approximate
in the same way, namely, by neglecting all terms involvi
ck

1(r ) in Eq. ~51!.
In the context of the ‘‘electrostatic case’’ considered he

some more insight into the nature of this approximation c
be gained: It can be interpreted as a ‘‘mean-field’’-type a
proximation in the sense that the average of the negle
terms with respect to the ground-state density vanishes
demonstrate this, we note that the neglected terms aver
over n(r ) are given by

(
2c2,«k<«F

icE d3r¹@c̄ k~r !gwk~r !#1c.c. ~53!

Applying the divergence theorem, this integral can be tra
formed to a surface integral which vanishes for finite syste
-

n

r
r

l-
-

,
n
-
ed
o
ed

s-
s

if the surface is taken to infinity. Hence, neglecting the ter
involving ck

1(r ) means replacing them by their avera
value, which is zero.

The xc potentialVxc
ROPM(r ) can therefore approximatel

be determined by the following equation, leading to t
RKLI equation for the ‘‘electrostatic case’’:

Vxc
RKLI~r !5

1

2n~r ! (
2c2,«k<«F

S dExc
ROPM

dwk~r !

1nk~r !~ V̄xck
RKLI2 ū xck! D 1c.c. ~54!

From this form it is obvious that the RKLI potential close
resembles the relativistic Dirac-Slater potential as well as
nonrelativistic KLI potential. Whether the accuracy of th
corresponding nonrelativistic scheme is maintained in
relativistic domain will be investigated in the following se
tion.

VI. RESULTS

In this section, we test the accuracy of the approxim
ROPM scheme, derived within the framework of the ‘‘ele
trostatic case’’ in the last section, for atomic systems.
order to assess the quality of this approximation, exact
sults either for the xc energyExc or for the xc potential
Vxc(r ) would be useful. However, for systems where relat
istic effects become important, e.g., high-Z atoms, exact re-
sults are presently not available. Consequently, we hav
look for a different standard to compare with.

Such a standard reference is available within thex-only
limit of RDFT @21,23,24#. As in the nonrelativistic case, th
x-only limit of the xc energy functional is defined by the u
of the exact exchange energy functional, i.e., by the rela
istic Fock term, Eq.~6!, in the case of only longitudina
~Coulomb! interactions.~Since, in the present context, ou
principal goal is to the test the quality of the RKLI metho
we restrict ourselves to this longitudinal case and neg
transverse contributions.! As explained in the preceding sec
tion, the exact longitudinal exchange potentialVx

L(r ) can
then be obtained by solving the full ROPM integral equati
~15! with Exc replaced byEx

L,exact. Simultaneous solution o
the ROPM integral equation and the RKS equation~2! there-
fore represents the exact implementation of the longitud
x-only limit of RDFT. This scheme will serve as a referen
standard in the following.

It is first compared — of course — to the RKLI metho
which employs the same exact expression~6! for the ex-
change energy and only approximates the local excha
potentialVx

L(r ) by means of Eq.~54!. Besides that, we list
the results from traditional RKS calculations obtained w
the longitudinalx-only RLDA (xRLDA! and two recently
introduced relativistic generalized gradient approximat
~RGGA! functionals @24#: The first one is based on th
Becke88 GGA@42# ~RB88!, the second one on a GGA func
tional due to Engel, Chevary, MacDonald, and Vosko@11#
~RECMV92!.

These various approaches are analyzed for sphe
~closed-shell! atoms. To this end, the spin-angular part of t
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TABLE I. Longitudinal ground-state energy2Etot
L from various self-consistentx-only and RHF calcula-

tions. D̄ denotes the mean absolute deviation andd̄ the average relative deviation~in 0.1 percent! from the
exact ROPM values~all energies are in hartree units!.

RHF ROPM RKLI RB88 RECMV92 xRLDA

He 2.862 2.862 2.862 2.864 2.864 2.724
Be 14.576 14.575 14.575 14.569 14.577 14.226
Ne 128.692 128.690 128.690 128.735 128.747 127.628
Mg 199.935 199.932 199.931 199.952 199.970 198.556
Ar 528.684 528.678 528.677 528.666 528.678 526.337
Ca 679.710 679.704 679.702 679.704 679.719 677.047
Zn 1794.613 1794.598 1794.595 1794.892 1794.880 1790.45
Kr 2788.861 2788.848 2788.845 2788.907 2788.876 2783.28
Sr 3178.080 3178.067 3178.063 3178.111 3178.079 3172.07
Pd 5044.400 5044.384 5044.380 5044.494 5044.442 5036.67
Cd 5593.319 5593.299 5593.292 5593.375 5593.319 5585.08
Xe 7446.895 7446.876 7446.869 7446.838 7446.761 7437.07
Ba 8135.644 8135.625 8135.618 8135.612 8135.532 8125.33
Yb 14067.669 14067.621 14067.609 14068.569 14068.452 14054.3
Hg 19648.865 19648.826 19648.815 19649.141 19649.004 19631.6
Rn 23602.005 23601.969 23601.959 23602.038 23601.892 23582.2
Ra 25028.061 25028.027 25028.017 25028.105 25027.962 25007.5
No 36740.682 36740.625 36740.609 36741.900 36741.783 36714.8

D̄ 0.006 0.189 0.168 8.668

d̄ 0.002 0.103 0.108 6.20
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RKS wave function is treated analytically and the remain
radial Dirac equation is solved numerically on a logarithm
mesh@21#. In all our calculations we use finite nuclei mod
eled by a homogeneously charged sphere with radius

Rnucl51.0793A1/310.735 87 fm, ~55!

whereA is the atomic mass taken from@43#. We mention in
passing that employing finite nuclei is not necessary to
sure convergent results as, for example, in the relativi
Thomas-Fermi model. We incorporate finite nuclei beca
they represent the physically correct approach.

In Table I, we show the longitudinal ground-state ener
Etot

L obtained from the various self-consistentx-only RDFT
approaches and, in addition, from relativistic Hartree-Fo
~RHF! calculations. Comparing the first two columns, w
recognize that the RHF and the ROPM data are very clo
The largest deviation is found for Be with 41 ppm. Wi
increasing atomic number, the inner orbitals, contribut
most to the total energy, become more and more locali
such that the difference between the nonlocal RHF poten
and the local ROPM decreases. In fact, for No, the differe
is down to 2 ppm. We emphasize that these differences
due to the different nature of the two approaches. While
RHF method, by construction, yields the variationally b
energy, the ROPM scheme additionally constrains the
change potential to be local. Consequently, we expect
ROPM results to always be somewhat higher, which is c
firmed in Table I. In the third column, the total energi
obtained from the RKLI approximation are presented. Th
always lie above the corresponding ROPM values since
same exchange energy functional is employed in both
g
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e

p-

proaches and the variationally bestlocal potential
Vxc

L,ROPM(r ) is approximated by Eq.~43! in the RKLI ap-
proach. However, the results are clearly seen to agree
closely: For the mean absolute deviation from the ex
ROPM data of the 18 neutral atoms listed in Table I, o
obtains only 5 mhartree. Thus the RKLI method impre
sively improves on the RLDA results, for which we find
mean absolute deviation of 6092 mhartree. The accurac
the RKLI scheme becomes even more obvious when c
pared to the RGGAs. Both RGGAs improve significan
over the RLDA method. Still, their deviations from the exa
ROPM data are more than one order of magnitude lar
compared to the RKLI results.

The trends found in the above discussion are almost id
tical to the ones found in the nonrelativistic case. In order
analyze the relativistic effects more directly, we additiona
consider the relativistic contribution toEtot

L , defined by

DEtot :5Etot
L @nR#2Etot

NR@nNR#. ~56!

Via this decomposition, we are able to test the quality of
RKLI scheme independently of the accuracy of its nonre
tivistic equivalent. Yet, at first, we want to point out that th
relativistic treatment leads to drastic corrections especi
for high-Z atoms. For example, Table II shows that the re
tivistic correction of Hg amounts for about 6.7% of the tot
energy thus demonstrating the need for a fully relativis
treatment. Furthermore, by comparing the second and t
columns of Table II, we realize that the ROPM and the RK
method yield almost identical results for the relativistic co
tribution DEtot . In other words, almost no additional devia
tions are introduced by the relativistic treatment of the K
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TABLE II. Relativistic contribution2DEtot
L from various self-consistentx-only and RHF calculations.D̄

denotes the mean absolute deviation andd̄ the average relative deviation~in 0.1 percent! from the exact
ROPM values~all energies are in hartree units!.

RHF ROPM RKLI RB88 RECMV92 xRLDA

He 0.000 0.000 0.000 0.000 0.000 0.000
Be 0.003 0.003 0.003 0.003 0.003 0.002
Ne 0.145 0.145 0.145 0.145 0.145 0.138
Mg 0.320 0.320 0.320 0.321 0.321 0.308
Ar 1.867 1.867 1.867 1.867 1.867 1.821
Ca 2.953 2.953 2.953 2.952 2.953 2.888
Zn 16.771 16.770 16.770 16.779 16.779 16.555
Kr 36.821 36.820 36.820 36.822 36.821 36.432
Sr 46.554 46.553 46.553 46.552 46.551 46.092
Pd 106.527 106.526 106.526 106.526 106.525 105.715
Cd 128.245 128.243 128.243 128.243 128.241 127.323
Xe 214.860 214.858 214.858 214.825 214.822 213.522
Ba 252.223 252.222 252.221 252.176 252.173 250.725
Yb 676.559 676.551 676.549 676.590 676.588 673.785
Hg 1240.521 1240.513 1240.511 1240.543 1240.538 1236.34
Rn 1736.153 1736.144 1736.142 1736.151 1736.151 1730.89
Ra 1934.777 1934.770 1934.768 1934.781 1934.783 1929.11
No 3953.172 3953.155 3953.151 3953.979 3954.015 3944.56

D̄ 0.001 0.056 0.058 1.788

d̄ 0.009 1.14 1.35 33.7
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scheme. Considering now the relativistic corrections cal
lated with the conventional RDFT methods, the conclusio
drawn in the discussion ofEtot

L can be repeated: Compared
the RKLI method, the RGGA results are worse by more th
one order of magnitude whereas the RLDA is the by far le
accurate approximation.

These trends also remain valid when other quantities
interest are considered. For example, in Tables III and IV
have listed the relativistic contributions to the longitudin
exchange energy, defined analogously to Eq.~56!. Again, the
RKLI method almost exactly reproduces the ROPM resu
It is worthwhile noting that the exchange energyEx

L is influ-
enced quite substantially by relativistic effects, too. Tak
again Hg as an example, we realize that the 5.8% contr
tion to Ex

L is of the same order as for the total energy. F
thermore, even for lighter atoms such as Mg, the relativi
corrections toEx

L are comparable or even larger than t
differences between the currently best nonrelativistic
change functionals. As a consequence, a relativistic tr
ment is indispensable for the ultimate comparison with
periments@21#. Next, we turn our attention to the calculatio
of DEx from the RGGA functionals listed in the third an
fourth columns of Table III. With the exception of No, th
results are also in excellent agreement with the exact o
However, when we turn our attention to other systems l
some ions of the neon-isoelectronic series shown in Ta
IV, we recognize that the RGGAs cannot reproduce the ex
results to the same level of accuracy as obtained for
neutral atoms above@24#. This can be explained by the fac
that the RGGAs are optimized for the neutral atoms. In c
trast, the agreement of the RKLI results with the exact o
for these ions is as good as for the neutral atoms.
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TABLE III. Relativistic contribution 2DEx to the exchange

energy from various self-consistentx-only calculations.D̄ denotes

the mean absolute deviation andd̄ the average relative deviation~in
percent! from the exact ROPM values~all energies are in hartree
units!.

ROPM RKLI RB88 RECMV92 xRLDA

He 0.000 0.000 0.000 0.000 0.000
Be 0.001 0.001 0.001 0.001 0.000
Ne 0.015 0.015 0.015 0.015 0.007
Mg 0.029 0.029 0.029 0.029 0.015
Ar 0.118 0.118 0.117 0.118 0.069
Ca 0.172 0.172 0.171 0.171 0.104
Zn 0.627 0.626 0.632 0.632 0.402
Kr 1.215 1.214 1.212 1.211 0.814
Sr 1.478 1.477 1.473 1.472 1.005
Pd 2.785 2.787 2.782 2.780 1.958
Cd 3.264 3.264 3.255 3.252 2.322
Xe 5.021 5.020 4.977 4.974 3.657
Ba 5.739 5.736 5.684 5.680 4.215
Yb 12.043 12.024 12.027 12.024 9.194
Hg 19.963 19.956 19.965 19.957 15.734
Rn 26.637 26.620 26.612 26.610 21.307
Ra 29.241 29.218 29.225 29.224 23.513
No 52.403 52.402 53.168 53.205 43.683

D̄ 0.004 0.053 0.056 1.819

d̄ 0.079 1.03 0.857 35.9
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To further proceed with our investigation, we next rai
the question of how well local properties such as the
change potentialVx

L(r ) are reproduced within the differen
RDFT methods. In Fig. 1, the exchange potential is plot
for the case of Hg. As expected, the RKLI result follows t
exact curve most closely. Yet, the pronounced shell struc
apparent in the ROPM curve is not fully reproduced,
though clearly visible~cf. the more detailed plot in Fig. 2!, in
the RKLI approximation. However, it again improves si
nificantly over the conventional RDFT results, where the
tershell peaks are strongly smeared out or even absen
Fig. 3, the asymptotic region, which is of particular impo
tance for excitation properties, is plotted in greater det
There we recover the known deficiencies of the conventio
RDFT functionals: The RLDA as well as both RGGAs fa
off much too rapidly. In contrast, the RKLI and ROPM
curves become indistinguishable in the asymptotic reg
both decaying as 1/r as r→` and thus reflecting the prope
cancellation of self-interaction effects. Since all these obs
vations are already known for the corresponding nonrela
istic functionals, we again consider the relativistic contrib
tion separately. This relativistic contribution to the exchan
potential, given by

DVx~r !:5
Vx

L@nR#~r !2Vx
NR@nNR#~r !

Vx
OPM@nNR#~r !

, ~57!

TABLE IV. Relativistic contribution2DEx to the exchange
energy from various self-consistentx-only calculations for some

ions of the neon-isoelectronic series.D̄ denotes the mean absolu

deviation andd̄ the average relative deviation~in percent! from the
exact ROPM values~all energies are in hartree units!.

ROPM RKLI RB88 RECMV92 xRLDA

Ca101 0.159 0.160 0.158 0.158 0.093
Zr301 1.528 1.528 1.507 1.509 0.983
Nd501 5.780 5.783 5.667 5.675 3.970
Hg701 15.599 15.606 15.293 15.325 11.365
Fm901 36.475 36.494 36.258 36.366 28.173

D̄ 0.006 0.132 0.102 2.992

d̄ 0.041 1.34 1.17 31.8

FIG. 1. Longitudinal exchange potentialVx
L(r ) for Hg from

various self-consistentx-only calculations~in hartree units!.
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is plotted in Fig. 4. We first observe strong oscillations b
tween 0.1 a.u. and 5 a.u. These oscillations are introduce
the displacement of the density due to relativistic effects a
thus represent a direct consequence of the atomic shell s
ture. As the shell structure of the exchange potential is
fully reproduced within the RKLI approach, the amplitud
of the oscillations are somewhat smaller compared
DVx

OPM(r ). While these deviations are clearly visible, th
RKLI curve is still closest to the exact one, especially in t
region near the nucleus and in the asymptotic region, wh
large deviations occur for the conventional RDFT method

The properties of thex potential in the large-r asymptotic
region also strongly influence the eigenvalue of the high
occupied orbital shown in Table V: Due to the correct a
ymptotics, the energies calculated within the RKLI sche
are almost identical to the exact ROPM results. On the c
trary, the lack of the correct 1/r behavior of the RGGAs and
the RLDA shows up in rather poorly reproduced eigenvalu
of the highest occupied state. Since in the exact nonrela
istic theory, the highest occupied energy level coincides w
the ionization potential@44#, we also list this quantity, given
by I 5Etot@N21#2Etot@N#, in Table VI. Again, the RKLI
and ROPM methods provide almost identical results. In

FIG. 2. Longitudinal exchange potentialVx
L(r ) for Hg showing

the shell structure of Fig. 1 in more detail~in hartree units!.

FIG. 3. Asymptotic region of the longitudinal exchange pote
tial of Fig. 1 ~in hartree units!.
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dition, when comparing the ionization potential to the en
gies of the highest occupied level, we see that the rela
I 5eN — which we of course expect to hold only approx
mately, since correlation contributions are neglected —
fulfilled within a few percent for the ROPM and RKLI data
whereas the results of the conventionalx functional differ to
a much larger extent. To conclude, we note that the inclus
of relativistic effects leads to large corrections for heavy
oms even for the outermost orbitals: Taking Hg as an
ample, we find a 20% shift for the ionization potential.

TABLE V. Eigenenergy2eN of the highest occupied orbita

from various self-consistentx-only calculations.D̄ denotes the

mean absolute deviation andd̄ the average relative deviation~in
percent! from the exact ROPM values~all energies are in hartre
units!.

ROPM OPM RKLI RB88 RECMV92 xRLDA

Be 0.309 0.309 0.309 0.181 0.182 0.170
Mg 0.253 0.253 0.253 0.149 0.149 0.142
Ca 0.196 0.196 0.196 0.116 0.116 0.112
Zn 0.299 0.293 0.298 0.195 0.194 0.191
Sr 0.181 0.179 0.181 0.108 0.108 0.104
Cd 0.282 0.266 0.282 0.183 0.182 0.181
Ba 0.163 0.158 0.163 0.097 0.097 0.095
Hg 0.329 0.262 0.332 0.223 0.222 0.222

D̄ 0.001 0.095 0.095 0.099

d̄ 0.156 38.3 38.4 40.0

FIG. 4. Relativistic contributionDVx(r ), Eq. ~57!, for Hg from
various self-consistentx-only calculations~in hartree units!.
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VII. CONCLUSIONS

In this work, we derived an approximate ROPM schem
generalizing the arguments of Krieger, Li, and Iafrate to
relativistic domain. As for the full ROPM, the advantage
the RKLI method lies in the fact that xc functionals depen
ing explicitly on a set of RKS single-particle spinors can
treated within the framework of RDFT. This, in particula
allows us to employ the exact expression for the excha
energy functional, i.e., the relativistic Fock term in the lo
gitudinal case. Therefore the RKLI approach satisfies a nu
ber of important properties, most notably the freedom fro
self-interactions implying the correct asymptotic decay.

In numerical tests on spherical atoms within the longi
dinal x-only limit of RDFT the RKLI method was found to
be clearly superior to the known relativisticx-only function-
als. The results obtained are seen to be in close agree
with the exact ROPM values, thus reducing the deviation
for example, the widely used RLDA by more than three o
ders of magnitude. On the other hand, the numerical ef
involved is considerably less compared to the solution of
full ROPM scheme. We therefore expect that the RK
scheme will be successfully used for larger~nonspherical!
systems, e.g., molecules, including also correlation contri
tions.
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TABLE VI. Ionization potential calulated from various self

consistentx-only calculations.D̄ denotes the mean absolute devi

tion andd̄ the average relative deviation~in percent! from the exact
ROPM values~all energies are in hartree units!.

ROPM OPM RKLI RB88 RECMV92 xRLDA

Be 0.296 0.295 0.296 0.326 0.327 0.312
Mg 0.243 0.243 0.243 0.269 0.269 0.261
Ca 0.189 0.188 0.189 0.210 0.210 0.205
Zn 0.284 0.278 0.283 0.339 0.338 0.334
Sr 0.175 0.172 0.175 0.195 0.196 0.192
Cd 0.269 0.253 0.268 0.315 0.315 0.314
Ba 0.157 0.152 0.157 0.176 0.176 0.174
Hg 0.313 0.250 0.312 0.364 0.363 0.364

D̄ 0.000 0.034 0.034 0.029

d̄ 0.130 13.5 13.6 11.6
.
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