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Approximate relativistic optimized potential method
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Approximate semianalytical solutions of the integral equation for the relativistic optimized potential are
constructed by extending a method recently proposed by Krieger, Li, and I1§fhies. Lett. A146 256
(1990] to the relativistic regime. The quality of the approximation is tested in the longitudioaly limit
where fully numerical solutions of the relativistic optimized effective potential integral equation are available
for spherical atoms. The results obtained turn out to be in excellent agreement with the-exdgtvalues.

The proposed method provides significant improvement over the conventional relativistic local density ap-
proximation and generalized gradient approximation schef8d€50-294{®7)04912-3

PACS numbdps): 31.10+2z, 71.10-w, 31.30.Jv, 31.15.Ew

I. INTRODUCTION (RKLI) scheme is developed in Sec. IV before some limiting
cases are discussed in Sec. V. In Sec. VI, numerical results

Since the seminal work of Hohenberg and Kdihand  of the ROPM and RKLI methods are presented and com-
Kohn and Shan{2], density functional theoryfDFT) has pared to other RDFT methods.
become a powerful tool faab initio electronic structure cal-
culations of atoms, molecules, and sol{@s-5]. The devel- Il. THEORETICAL BACKGROUND
opment of more and more refined approximations of the
exchange-correlatiofixc) energy functionalE,. has led to
significant improvement over the standard local density ap

On its most general level, RDFT is based on quantum
electrodynamic$QED) and thus contains not only relativis-
proxinaton (DA). In partcular, the so-alled optnized 1© 0% 80 adalve efects For & detaled derhaton, sy
potential method OPM) [6,7] employing explicitly orbital- to recent review$23,38. The central statement of RDFT —

dependent functionals rather than the traditional density: S ;

dependent functionals has achieved highly accurate resul Sl verS|on.of the Hohgnberg—KoﬁﬂK) theore”.‘

[7-20] 9] — can be stated in the following way: The renormalized
: nground-state four-currerjt’(r) of an interacting system of

Most of the advances in DFT have been made in the co Rirac particles uniquely determines t0 uaLge transformas
text of nonrelativistic physics. For high-atoms, however, Jirac parti uniquely ! upV) gaug
tions, the external four-potentiadi [j”] as well as the

relativistic contributions have to be considered. For example, ) -
the ground-state energy of merculiig) decreases from its 9round-state wave functio[j"]. As a consequence, any
nonrelativistic value- 18 408 a.u. to- 19 649 a.u. if relati-  OPServable of the relativistic many-body system under con-

istic effects are taken into account. Furthermore. even fopideration is a functional of its ground-state four-current. As
systems with moderat, relativistic contributions t(E' are In the nonrelativistic case, the exact ground-state four-current
1 XC

larger than the differences between the currently best xc eHDC|Ud'ng all quantum electrod_ynam|call effects. can in prin-
ergy functional§21]. Until now, the calculation of such rela- CiPI€ be obtained from an auxiliary noninteracting system—

tivistic contributions has mostly been based on the relativisthe relativistic Kohn-ShaniRKS) system(21,38,40,4%

tic local density approximatiofRLDA). To go beyond the L

RLDA, an x-only version of _the OPM Was.florr_nulated for M= > er(N) Y er(r)+ju(r), (€h)

relativistic system§22,21]. As in the nonrelativistic case, the —c2<ey=er

solution of the resulting equations is a rather demanding task . o

and has been achieved so far only for systems of high symvhere jy(r) denotes the vacuum contribution to the four-

metry, e.g., spherical atonfg1,23—25. current. The four-component spinogg(r) are solutions of
The purpose of the present paper is to deve|0p a simp]ian effective Single-particle Dirac equatiﬂji’m atomic units

fied version of the relativistic OPNROPM) scheme leading fi=e=m=1)

to a generalization of the approximation of Krieger, Li, and . 2 uriv _

lafrate (KLI) [8—10,26—3% to the realm of relativistic sys- Yol —icy V4™ v, Asli”1(ND]ew(r) =exp(r), (2

tems. This will be dqne for systems s_ubject tc_) arbitrary Stat'cwith A ”](r) being the effective four-potential, which can

external four-potentials. The paper is organized as followsbe decomposed according to

In Sec. Il we give a brief review of the foundations of rela- P 9

tivistic DFT (RDFT). After that, in Sec. Ill, we develop the #(r)

ROPM generalizing a n_onre_:lativisti(_: derivation_o_f'lc_Blmg Aé[i”](r)=A§X(r)+f d3r’J—,+A§(‘c[jV](r). 3)

and Levy[37] to the relativistic domain. The relativistic KLI [r—r'|
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. . . L, HS7a
potential, the second term on the right-hand side represents a Ex®til=-5

Here, AL (r) is a static but otherwise arbitrary external four- 1 5 J' & J &
Hartree-like potential, and the last term, defined by

7C <g|,es

o ) X<p|+(r)<pk(|r)<PII(|r’)<P|(r’)_ ©
= r—r
57,1 @

A::c jy](r)::

One major advantage of such an exact treatment of the ex-
denotes the xc four-potential containing by construction alichange energy lies in the fact that the spurious self-
nontrivial many-body effects. interactions contained in the Hartree energy are fully can-

Equations(1)—(4) represent the relativistic KS scheme celed. The price to be paid for the orbital dependencg,pf
that has to be solved self-consistently. However, the calculas that the calculation of the xc four-potentif(r), defined
tion of the vacuum contributiojy(r) to the four-current by Eq.(4), is somewhat more complicated. It has to be de-
requires the knowledge of an infinite numberpbsitive and  termined by an integral equation, as will be shown in the
negative energystates, so that one would have to deal withfollowing.
an infinite system of coupled equations. Since such a proce- Starting from the definition oA, (r), Eq. (4), we can
dure is highly impractical, we will, in the following, ignore calculate the xc four-potential correspondlng to an orbital-
all vacuum contributions to the various energy componentslependent xc energy functional by applying the chain rule
and to the four-current, which is then given just by the firstfor functional derviatives:
term on the right-hand side of E@l). This means that we
restrict ourselves to the calculation of relativistic effects and AROPM 3 3,n

AROPM(r) = E f dr f dr
neglect radiative corrections. Since we are aiming at elec- ***

. . . —c?<ey=er
tronic structure calculations for atoms, molecules, and solids,

we expect the neglected terms to be small. If one were after ( SEROPMIG] Sei(r') SAs, (")
all interested in the radiative contributions, arposteriori X ; P )
perturbative treatment should be sufficient and represents in dp(r’) A, (1) djH(r)
fact the standard approach. @

The last term on the right-hand side of E®T) is readily
IIl. RELATIVISTIC OPTIMIZED POTENTIAL METHOD identified with the inverse of the static response function of a

In order to derive a relativistic generalization of the OPM SyStém of noninteracting Dirac particles

integral equation, we start out from the total-energy func- »
tional of a system of interacting Dirac particléseglecting BV(pp)i= 51(r) @)
vacuum contributions subject to a static external four- Xs LT 5Asu(f'),

potential AL (r):
so that Eq.(9) can be rewritten as

ROP ] — 3 _ 2
Enr 1i"1= . ENF Jd rer)(—icy-V+cewr) AROPM(r) = E fda fda "
—C <sk\sp

SER™M{ei}] dailr) ) ).
sot)  sAg () T X

de fd3 /J ( )J EROPN[{ I}] (9)

5 Acting with the response operat@®) on Eq.(9) and using
(5) the identity

+fd3rj (NAL(r)

In contrast to the ordinary RDFT approach, the xc energy 3. 1 ,m oy po oS p
functional is given here as an explicit functional of the RKS f d°r Xy, (1", 1) xs”(r,r")=6,76(r"=r") (10
four-spinors{¢;}. Still, EROPM{ ;1] represents a functional

of the density: Via the HK theorem applied to noninteractingwe obtain(after rearranging the indices

systems,j”(r) uniquely determines the effective potential

AZ[]”]. With this very potential, the Dirac equatidg) is d3r ' AROPM(p 7y \ i(p 7 1)

solved to obtain the set of single-particle orbitéls[j”]} xer s

which are then wused to calculate the quantity ROP

EROPM{¢i[j”1}]. Therefore every functional, dependieg- _ 2 fds , B T{eit] deu(r +e.c. (11)
plicitly on RKS spinors, is ammplicit functional of the den- S So(r’) 5Asﬂ(f)

sity, provided the orbitals come from a local potential. This

allows us to use the exact expression for the longitudinallo further evaluate this equation, we note that the first func-
exchange energy, i.e., the relativistic Fock term tional derivative on the right-hand side of H4l) is readily
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computed once an expression B "™ in terms of single- IV. TRANSFORMATION OF THE ROPM

particle spinors is given. The remaining functional derivative INTEGRAL EQUATIONS

is calculated by using standard first-order perturbation ~AND THE RELATIVISTIC KLI APPROXIMATION

theory, yielding In order to use the ROPM equations derived in the pre-

ceding section, we have to solve EG5) for the xc four-

op(r @(r')— potential. Unfortunately, there is no known analytic solution
S5As, (1) _gl QD'(r)y k(). 12 for Ao M(r) depending explicitly on the set of single-
14k particle sp|nors{<p,} We therefore have to deal with EG.5)
numerically, which is a rather demanding task. Thus a sim-
This equation also enables us to give an explicit expressioplified scheme for the calculation OAEC?LPM(r) appears
for the response function highly desirable.
To this end we shall perform a transformation of the
s ROPM integral equations similar to the one recently intro-
XEr(rr')yi= ————— > (1) Y @(r) duced by KLI in the nonrelativistic doma[29,31]. This will
OAs, (') —c2<e = lead to an alternative but still exact form of the ROPM inte-

(13)  gral equation which naturally lends itself as a starting point
for systematic approximations. We start out by defining

in terms of the RKS spinors:

wk*(r)::J d3r'(<7k<r'>y”A§£PM<r )

s 2E(r')y#w(r')&(r)ywk(r)

) € Ex— €
co<egysep | ROPM
14k oE

xs'(r',r)=

+c.c. (14 Soi(r")

GSk(r,lr)! (17)

Finally, putting Eqs(11), (12), and(14) together leads to the such that the ROPM integral equations can be rewritten as

ROPM integral equations for the local xc four-potential

A () > () y*e(r)+c.c=0, (18)
702<skS£F
E f d’r ( ou(r) Y ARSPMr) where the adjoint spinog,(r) is defined in the usual way,
—C <skés,: i.e.,
5EROPM o
- ) Gsr’.1) ¥’ y*ei(r)+c.c=0, r):= g (1)7°. (19)
Sei(r’)
Since the RKS spinor§e;} span an orthonormal set, one
©n=0,1,2,3 (15) readily proves the orthogonality relation
whereGg,(r',r) is defined as f d3r i (1) i(r)=0. (20)

s @ (r) e (r)

(169 We now use the fact th&g(r’,r) is the Green function of
g k& the RKS equation projected onto the subspace orthogonal to
£k o (), i.e., it satisfies the equation

Ggr',r):=

Now the ROPM scheme is complete: For a given approxi-
mation of the xc energy, the ROPM integral equations have
to be solved forAR°PM(r) simultaneously with the RKS
equation(2) until self-consistency is achieved. Note that Eq
(15) determines the xc four-potentidl.(r) only up to an
aer(;tPrSry constant, which can be specified by requiring
A (r) to vanish asymptoticallyfor finite systems N ) -

"To conclude this section, we note that exchange and cor- hp(r):=9"licy-V+c?+y"Ag, ()], (22
relation contributions can be treated separately within the

ROPM scheme. This is most easily seen by starting out witfacting from the right on the unprimed variable ®§(r’,r)
only the exchange four-potential, defined as(the arrow on top of the gradient indicates the direction in
AX(r)=8E, /8] ,(r), instead of Eq.(4) and repeating the which the derivative has to be taketUsing Eq.(21), we can
steps which lead to Eq15) and likewise for the correlation act with the operatc[rh (r)—&,] from the right on Eq(17),

potential. leading to

Gslr' NS (N =& d=—[8(r"—1)— @ (r ) ey (N)].
(21)

"The operatoﬁg(r) denotes the Hermitian conjugate of the
RKS Hamiltonian,
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U SEROPM potential 6A,.=(y°y"AROPM—u,). This fact also moti-
YIRS (N —ed=—| e(N) v, Ar(r) ———— o) vates the boundary condition assumed above.x4only
o theory,u,q(r) is the local, orbital-dependent RHF exchange
+op (r)( Xck — Uye) s (23 potential so thaty, (r) is the first-order shift of the RKS

wave function towards the RHF wave function. However,
where we have introduced?9" as a shorthand notation for one has to realize that the first-order shift of the orbital-

the average value of”AR>"M(r) with respect to thekth ~ dependent quantity,[{¢;}] has been neglected.
orbital, i.e., Now we use EQ.23) to further transform the ROPM

equations(18). As a first step, we solve Eq23) for

A ¥ (r), leading to
AL = [ ey Al g (2g  ASIYID): leading

and AU (D) == @(r) y"ARPMr) -

ROPM
Ugge = | d3r r). 25
xck - j Sor) @x(r) (25

ROPM
XC

Sei(r)
+(Axek— Ua) @ (1)
— i (r)(icy-V+c?—y-Agr)— %), (32

We then multiply the ROPM equatior(d8) by the zeroth
component of the effective RKS four- potennA@,(r) yield-

ing

The differential equatiori23) has the structure of a RKS
equation with an additional inhomogeneity term. Together
with the boundary condition

r—oe
¥ (r) — 0, (26) _
2 AUDG(N Y e +ec=0, (33
Eq. (23) uniquely determinesy, (r). To prove this state- —c?<e=ep
ment, we assume that there are two independent solutions of

Eq. (23), namely, zpkyl(r) and zpk‘z(r) Then the difference of and employ Eq(32) to obtain

these two solutionsW (r):= i 4(r) — ¥ 5(r), satisfies the o ROPM

homogeneous RKS equation > or(N YA M)~
S S 5<Pk(f)

Wy (NLhp (1) =] =0, (27) —
P — (A= Uxgd @y (1)
which has a unique solution
\I’:(r)=qo;(r) (28) +¢k(r)[iC7'€+02_7'AS(r)_yosk]
if the above boundary condition is fulfilled. However, this X2y ei(r)+c.c=0. (34

solution leads to a contradiction to the orthogonality relation
(20) so thatW¥ (r) can only be the trivial solution of Eq.

(27),

Introducing the &4 matrix

\7’”(f)2=E 2 eV ren +ec. (35
Wy (r)=0, (29 2 255 <er

which completes the proof. and defining
As an interesting aside, we briefly consider the physical

meaning of the quantityy, (r). Defining ROPM

A(r):= 5;:(” Yoy eu(r)

_ 5aﬁ 5Exc . _
()= @) 0¢kall)’ (30 —g(nlicy V+c?— y-Ag(r) —1%,]
XYy ey(r), 36
with @ and 8 denoting spinor indices running from 1 to 4, Y rtedrn) (36)
we can rewrite Eq(17) as we rewrite Eq.(34) as
¢ ( ) ‘7}1.1/ r AROVP r
Y ()= 2 : jdgr e (r[ ¥y ARCPMr ) (DA )
£| o
lqék = 22 [axck(r)+]k(r)(_§c(iPM Uyg) ]t cC.C.,
_uxck(r)]a'B(PI,B(r,). (31 TeT<gser
(37

where summation ovetr and 8 is implicitly understood.
From this equation, it is obvious thag, (r) is the usual with j{(r) being the four-current with respect to ttkeh
first-order shift in the wave function caused by a perturbingorbital:
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JE): = e(n) y*@i(r). (39)
In order to solve Eq(37) for Ao (r), we first have to
investigate whether the X4 matrix J(r), defined by Eq.
(35), is nonsingular, i.e., whether the inverge (r) exists.
We therefore calculate the determinant/@f), yielding

|

(39

j3(r)
c?n?(r)

de[J(r)]=[j°(r)]2~j#(r)j“(r)=n4(r)( 1-

where the last equality follows from the decomposition of

T. KREIBICH, E. K. U. GROSS, AND E. ENGEL

the four-current into the scalar density and the vector com-

ponents according to

1
j"(r)=(n(r>,gj(r)>- (40

Since the currenj(r) divided by the densityn(r) is the
velocity field of the system, it follows from(r)<c that

def J(r)]#0 (41

and therefore that the matri(r) is nonsingular.

Solving then Eq(37) for ARS"M(r) yields

1 - 14
A (=57 () 2 [auln)
—Co<eysep

IO (AR = u g ]+ce. (42

We emphasize that E42) is anexacttransformation of the
ROPM equation15). In particular, Eq.(42) is still an inte-

57
N _7S Rk L —
Ach:Axcl+ 2 Mlk Axck _E(uxck_uxck) '

—cP<gyser
(44)
where we have defined
A= [ @it g
1 SEROPM
X= —= 90 (r)+c.c.
27c2<28k<sF o) VY @i(r)
(45)
and
M|ki=f d3rjf‘(r)5;3(r)iﬁ(r)- (46)

The unknown coefficientBARKY — L (U, — u%,)] are then

determined by the linear equation

>

—cP?<g<er

KRKLI

1
(5Ik_MIk)( xck —E(uxck—u;;k)

1 -
:<K§cl_§(uxcl_u:cl))- (47)
Solving this equation and substituting the result into @)
finally leads to an expression for the xc four-potential
A% (r) that depends explicitly on the set of single-particle
spinors{ ¢;}. We thus have obtained a method of calculating
the xc four-potential Ay, (r) in an approximate way,

which is numerically much less involved compared to the

gral equation. However, its advantage lies in the fact that ifull solution of the ROPM integral equations.
naturally lends itself as a starting point for deriving system-

atic approximations ofARo;"(r): We only need approximate

¥y (r) in Eq. (36) by a suitable function of the set of RKS
orbitals {¢;}. The simplest possible approximation is ob-
tained by completely neglecting the terms involvigg (r)
in Eg. (36). Although this approximation may seem to be
rather crude, it was shown to produce highly accurate resul
in the nonrelativistic casg29,31l.

The xc potentialAR>"™(r) is then approximately deter-
mined by the following equation:

RKLI 1 1 5E5€OPM 0
A rN=5J,,(r > V(T
XCu ( ) 2 M ( )7c <8kS£F 5(Pk(r) ')’ 7 ()Dk( )
+ (N (AR = Uya) | +c.c. 43)

V. ELECTROSTATIC LIMIT

The ROPM and RKLI methods, developed in the preced-
ing sections, can be applied to systems subject to arbitrary
static external four-potentials. In particular, the methods al-

fow us to deal with external magnetic fields of arbitrary

strength. Yet, in electronic structure calculations of atoms,
molecules, and solids, we most commonly encounter situa-
tions, where no magnetic fields are presént a suitable
Lorentz frame, typically the rest frame of the nuglei
Thus in this section we consider four-potentials whose

spatial components vanish, i.6¢,(r)=0. (This also in-
cludes a partial fixing of the gaugén this situation, a sim-
plified Hohenberg-Kohn-Sham scheme can be developed,
stating that the zeroth componerir)=j°(r) of the ground-
state current density alone determines the external potential
Vexd N] and the ground-state wave functidn n] uniquely

This equation establishes the generalization of the nonreldfor a discussion on this so-called “electrostatic case” cf.

tivistic KLI approximation to the realm of relativistic sys-
tems.
In contrast to the ROPM equatiofl5), the relativistic

Refs.[21,23). Consequently, only a scalar effective poten-
tial V4(r) is present in the RKS equatidg).
When orbital-dependent functionals are used for the xc

KLI (RKLI) equation, although still being an integral equa-energy in this context, the corresponding scalar xc potential
tion, can be solved explicitly in terms of the RKS spinorsV,(r) can be calculated by repeating the steps of Sec. lIl.

{®;}: Multiplication of Eq. (43) with j{*(r), summing over
all x, and integrating over space yields

One then finds the ROPM integral equation for the “electro-
static case’:
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if the surface is taken to infinity. Hence, neglecting the terms
E fd"‘ r')VROPMr7) involving « (r) means replacing them by their average
—c?<e=ep value, which is zero.

SEROPM The xc potentialvscop'v'(r) can therefore approximately
_ Gelr' ) ey(r) +c.c=0. (48) be determmed by the following equation, leading to the
Soi(r’) RKLI equation for the “electrostatic case™:
We mention that the same result is obtained if one de- 5E)F§C°PM
mands thatVs(r) be the variationally best local effective VR (r) = ) > (5—(r)
potential yielding single-particle spinors minimizing the P<ey=ep | 0Pk
total-energy functional5), i.e.,
SEROPM (N (VR = Uy | +c.c. (54
> =0. (49)
OV(r) |, _ropm . o . .
s Vs From this form it is obvious that the RKLI potential closely

In fact, using this approach, Shadwick, Talman, and Normaﬁesembles the relativistic Dirac-Slater potential as well as the

[22] derived thex-only limit of the ROPM integral equation nonrelativistic KLI potential. Whether the accuracy of the
(48) corresponding nonrelativistic scheme is maintained in the

Compared to the four ROPM integral equatiofiss), relativistic domain will be investigated in the following sec-

which determine the xc four-potenti®d7o"™, Eq. (48) is tion.

considerably simpler. Still, its numerical solution is a rather

demanding task which has been achieved so far only for VI. RESULTS
systems of high symmetry, i.e., spherical atof2g&—24.
Again, an approximate ROPM scheme can be derived: Fol:
lowing the arguments of Sec. IV, the ROPM integral equa-
tion (48) can be exactly rewritten as

In this section, we test the accuracy of the approximate
ROPM scheme derived within the framework of the “elec-
trostatic case” in the last section, for atomic systems. In
order to assess the quality of this approximation, exact re-

1 o sults either for the xc energ,. or for the xc potential
VoM = 5— 5 > (D [oxat (VEgM—u,q0] V,(r) would be useful. However, for systems where relativ-
n(r)- c?<e=er istic effects become important, e.g., highatoms, exact re-
+c.c., (50) sults are presently not available. Consequently, we have to

look for a different standard to compare with.
where Such a standard reference is available within xhenly
limit of RDFT [21,23,24. As in the nonrelativistic case, the
A — x-only limit of the xc energy functional is defined by the use
W@k(r)_mv[ (1) yei(r)] of the exact exchange energy functional, i.e., by the relativ-
(51)  istic Fock term, Eq.(6), in the case of only longitudinal
(Coulomb interactions.(Since, in the present context, our
and principal goal is to the test the quality of the RKLI method,
we restrict ourselves to this longitudinal case and neglect
. - ROP , transverse contributionsAs explained in the preceding sec-
‘ﬂk(r)':f d°r (on(r Vi )= ol )> Gsr'.r) tion, the exact longitudinal exchange potentidi(r) can
K (52) then be obtained by solving the full ROPM integral equation
(15) with E,. replaced byEL®*®*. Simultaneous solution of
similar to Eq.(17). Equation(50) represents the “electro- the ROPM integral equation and the RKS equat@rthere-
static case” analog of Eq42) and can also be approximated fore represents the exact implementation of the longitudinal
in the same way, namely, by neglecting all terms involvingx-only limit of RDFT. This scheme will serve as a reference
Y (1) in Eq. (52). standard in the following.
In the context of the “electrostatic case” considered here, It is first compared — of course — to the RKLI method,
some more insight into the nature of this approximation carwhich employs the same exact expressiéh for the ex-
be gained: It can be interpreted as a “mean-field’-type ap-change energy and only approximates the local exchange
proximation in the sense that the average of the neglectegotential V(r) by means of Eq(54). Besides that, we list
terms with respect to the ground-state density vanishes. Tme results from traditional RKS calculations obtained with
demonstrate this, we note that the neglected terms averagese longitudinalx-only RLDA (xRLDA) and two recently
overn(r) are given by introduced relativistic generalized gradient approximation
(RGGA) functionals [24]: The first one is based on the
2 icf d3rV[ﬁ(r)ygok(r)]+c.c. (53) Becke88 GGA42] (RB88), the second one on a GGA func-
tional due to Engel, Chevary, MacDonald, and Vo$ka]
(RECMV92.
Applying the divergence theorem, this integral can be trans- These various approaches are analyzed for spherical
formed to a surface integral which vanishes for finite systemsgclosed-shejlatoms. To this end, the spin-angular part of the

ROPM

chk(f)ZZW

ROPM

—c?<g=eg
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TABLE I. Longitudinal ground-state energy Ewt from various self-consistent-only and RHF calcula-

tions. A denotes the mean absolute deviation @hthe average relative deviatigin 0.1 percentfrom the
exact ROPM valuegall energies are in hartree units

RHF ROPM RKLI RB88 RECMV92 XRLDA
He 2.862 2.862 2.862 2.864 2.864 2.724
Be 14.576 14.575 14.575 14.569 14.577 14.226
Ne 128.692 128.690 128.690 128.735 128.747 127.628
Mg 199.935 199.932 199.931 199.952 199.970 198.556
Ar 528.684 528.678 528.677 528.666 528.678 526.337
Ca 679.710 679.704 679.702 679.704 679.719 677.047
Zn 1794.613 1794.598 1794.595 1794.892 1794.880 1790.458
Kr 2788.861 2788.848 2788.845 2788.907 2788.876 2783.282
Sr 3178.080 3178.067 3178.063 3178.111 3178.079 3172.071
Pd 5044.400 5044.384 5044.380 5044.494 5044.442 5036.677
Cd 5593.319 5593.299 5593.292 5593.375 5593.319 5585.086
Xe 7446.895 7446.876 7446.869 7446.838 7446.761 7437.076
Ba 8135.644 8135.625 8135.618 8135.612 8135.532 8125.336
Yb 14067.669 14067.621 14067.609 14068.569 14068.452 14054.349
Hg 19648.865 19648.826 19648.815 19649.141 19649.004 19631.622
Rn 23602.005 23601.969 23601.959 23602.038 23601.892 23582.293
Ra 25028.061 25028.027 25028.017 25028.105 25027.962 25007.568
No 36740.682 36740.625 36740.609 36741.900 36741.783 36714.839
A 0.006 0.189 0.168 8.668
5 0.002 0.103 0.108 6.20

RKS wave function is treated analytically and the remainingproaches and the variationally bedbcal potential
radial Dirac equation is solved numerically on a logarithmicvL;RPMr) is approximated by Eq(43) in the RKLI ap-
mesh[21]. In all our calculations we use finite nuclei mod- proach. However, the results are clearly seen to agree very

eled by a homogeneously charged sphere with radius closely: For the mean absolute deviation from the exact
ROPM data of the 18 neutral atoms listed in Table I, one
Rpue=1.0793AY3+0.735 87 fm, (55  obtains only 5 mhartree. Thus the RKLI method impres-

sively improves on the RLDA results, for which we find a
whereA is the atomic mass taken fropd3]. We mention in  mean absolute deviation of 6092 mhartree. The accuracy of
passing that employing finite nuclei is not necessary to enthe RKLI scheme becomes even more obvious when com-
sure convergent results as, for example, in the relativistigpared to the RGGAs. Both RGGAs improve significantly
Thomas-Fermi model. We incorporate finite nuclei becaus@ver the RLDA method. Still, their deviations from the exact

they represent the physically correct approach. ROPM data are more than one order of magnitude larger
In Table I, we show the longitudinal ground-state energycompared to the RKLI results.
Ei, obtained from the various self-consistenbnly RDFT The trends found in the above discussion are almost iden-

approaches and, in addition, from relativistic Hartree- FocKical to the ones found in the nonrelativistic case. In order to
(RHF) calculations. Comparing the first two columns, we analyze the relativistic effects more d|rectly, we additionally
recognize that the RHF and the ROPM data are very close&onsider the relativistic contribution g, defined by

The largest deviation is found for Be with 41 ppm. With

increasing atomic number, the inner orbitals, contributing AE o =E{ %]~ Epf [ n"F]. (56)
most to the total energy, become more and more localized

such that the difference between the nonlocal RHF potentid¥ia this decomposition, we are able to test the quality of the
and the local ROPM decreases. In fact, for No, the differenc&KLI scheme independently of the accuracy of its nonrela-
is down to 2 ppm. We emphasize that these differences ardvistic equivalent. Yet, at first, we want to point out that the
due to the different nature of the two approaches. While theelativistic treatment leads to drastic corrections especially
RHF method, by construction, yields the variationally bestfor high-Z atoms. For example, Table Il shows that the rela-
energy, the ROPM scheme additionally constrains the extivistic correction of Hg amounts for about 6.7% of the total
change potential to be local. Consequently, we expect thenergy thus demonstrating the need for a fully relativistic
ROPM results to always be somewhat higher, which is contreatment. Furthermore, by comparing the second and third
firmed in Table I. In the third column, the total energiescolumns of Table Il, we realize that the ROPM and the RKLI
obtained from the RKLI approximation are presented. Theymethod yield almost identical results for the relativistic con-
always lie above the corresponding ROPM values since th&ibution AE,. In other words, almost no additional devia-
same exchange energy functional is employed in both apgions are introduced by the relativistic treatment of the KLI
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TABLE II. Relativistic contribution— AEL, from various self-consistentonly and RHF calculations\

denotes the mean absolute deviation ahthe average relative deviatidin 0.1 percentfrom the exact
ROPM valuegall energies are in hartree units

RHF ROPM RKLI RB88 RECMV92 XRLDA
He 0.000 0.000 0.000 0.000 0.000 0.000
Be 0.003 0.003 0.003 0.003 0.003 0.002
Ne 0.145 0.145 0.145 0.145 0.145 0.138
Mg 0.320 0.320 0.320 0.321 0.321 0.308
Ar 1.867 1.867 1.867 1.867 1.867 1.821
Ca 2.953 2.953 2.953 2.952 2.953 2.888
Zn 16.771 16.770 16.770 16.779 16.779 16.555
Kr 36.821 36.820 36.820 36.822 36.821 36.432
Sr 46.554 46.553 46.553 46.552 46.551 46.092
Pd 106.527 106.526 106.526 106.526 106.525 105.715
Cd 128.245 128.243 128.243 128.243 128.241 127.323
Xe 214.860 214.858 214.858 214.825 214.822 213.522
Ba 252.223 252.222 252.221 252.176 252.173 250.725
Yb 676.559 676.551 676.549 676.590 676.588 673.785
Hg 1240.521 1240.513 1240.511 1240.543 1240.538 1236.349
Rn 1736.153 1736.144 1736.142 1736.151 1736.151 1730.890
Ra 1934.777 1934.770 1934.768 1934.781 1934.783 1929.116
No 3953.172 3953.155 3953.151 3953.979 3954.015 3944.569
A 0.001 0.056 0.058 1.788
5 0.009 1.14 1.35 33.7

scheme. Considering now the relativistic corrections calcu-

lated with the conventional RDFT methods, the conclusions

drawn in the discussion d, can be repeated: Compared to  TABLE Il Relativistic contribution —AE, to the exchange

the RKLI method, the RGGA results are worse by more tharenergy from various self-consistextonly calculationsA denotes

one order of magnitude whereas the RLDA is the by far leasfhe mean absolute deviation anche average relative deviatigm

accurate approximation. percent from the exact ROPM valuegll energies are in hartree
These trends also remain valid when other quantities ofinitg).

interest are considered. For example, in Tables Ill and IV we

have listed the relativistic contributions to the longitudinal ROPM RKLI RB8S RECMV92 xRLDA

exchange energy, defined analogously to(&6). Again, the

RKLI method almost exactly reproduces the ROPM resultsHe 0.000  0.000  0.000 0.000 0.000
It is worthwhile noting that the exchange ener@y isinflu-  Be 0.001 0.001 0.001 0.001 0.000
enced quite substantially by relativistic effects, too. TakingN® 0.015  0.015  0.015 0.015 0.007
again Hg as an example, we realize that the 5.8% contribuV9 0.029 0029  0.029 0.029 0.015
tion to EL is of the same order as for the total energy. Fur-Af 0118 0118 0117 0.118 0.069
thermore, even for lighter atoms such as Mg, the relativistic2 01vr2 0172 0171 0.171 0.104
corrections toE; are comparable or even larger than theZn 0627 0626  0.632 0.632 0.402
differences between the currently best nonrelativistic exXr 1215 1214 1212 1211 0.814
change functionals. As a consequence, a relativistic treaB" 1478  1.477 1473 1.472 1.005
ment is indispensable for the ultimate comparison with exPd 2.785 2.787 2.782 2.780 1.958
perimentg 21]. Next, we turn our attention to the calculation Cd 3.264 3.264 3.255 3.252 2.322
of AE, from the RGGA functionals listed in the third and Xe 5.021 5.020 4.977 4.974 3.657
fourth columns of Table Ill. With the exception of No, the Ba 5.739 5.736 5.684 5.680 4.215
results are also in excellent agreement with the exact one¥b 12.043  12.024  12.027 12.024 9.194
However, when we turn our attention to other systems likeHg 19.963 19.956  19.965 19.957 15.734
some ions of the neon-isoelectronic series shown in Tablen 26.637 26.620 26.612 26.610 21.307
IV, we recognize that the RGGAs cannot reproduce the exagta 20241 29218 29.225 29.224 23.513
results to the same level of accuracy as obtained for theg 52.403 52.402 53.168 53.205 43.683
neutral atoms abovi24]. This can be explained by the fact —

0.004 0.053 0.056 1.819

that the RGGAs are optimized for the neutral atoms. In con4
trast, the agreement of the RKLI results with the exact oney 0.079 1.03 0.857 35.9
for these ions is as good as for the neutral atoms.
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TABLE IV. Relativistic contribution —AE, to the exchange

energy from various self-consistertonly calculations for some 0F
ions of the neon-isoelectronic serigs.denotes the mean absolute
deviation ands the average relative deviatidim percent from the
exact ROPM valuegall energies are in hartree units
3 -2t —— ROEP
ROPM RKLI RB88 RECMV92 xRLDA S ——— RKU
= ----- RLDA
caor 0.159  0.160  0.158 0.158 0.093 N R / RESS
zr3o* 1528 1528  1.507 1.509 0.983 —— RECMV92
Nd>%* 5780 5783  5.667 5.675 3.970 4t
Hg'°* 15599 15.606 15.293 15.325 11.365
Fm®®*  36.475 36.494 36.258 36.366 28.173 ,
A 0.006 0.132 0.102 2.992 r1[a.u.] 10
S 0.041 1.34 1.17 31.8

FIG. 2. Longitudinal exchange potentMt(r) for Hg showing

To further proceed with our investigation, we next raisethe shell structure of Fig. 1 in more detéih hartree units
the question of how well local properties such as the ex-
change potentiavlg(r) are reproduced within the different is plotted in Fig. 4. We first observe strong oscillations be-
RDFT methods. In Fig. 1, the exchange potential is plottedween 0.1 a.u. and 5 a.u. These oscillations are introduced by
for the case of Hg. As expected, the RKLI result follows thethe displacement of the density due to relativistic effects and
exact curve most closely. Yet, the pronounced shell structurghus represent a direct consequence of the atomic shell struc-
apparent in the ROPM curve is not fully reproduced, al-tyre. As the shell structure of the exchange potential is not
though clearly visiblécf. the more detailed plotin Fig)2in  fylly reproduced within the RKLI approach, the amplitudes
the RKLI approximation. However, it again improves sig- of the oscillations are somewhat smaller compared to
nificantly over the conventional RDFT results, where the in- VSPM(I.)_ While these deviations are clearly visible, the
E;Shse" trﬁ)gzlésyriﬁoiitéorneggli}g:mvmrcidiSOl(J)tf g;r(ii\éi?a??ns’l?)rc])tr.— KLI curve is still closest to the exact one, especially in the
e ' region near the nucleus and in the asymptotic region, where

tance for excitation properties, is plotted in greater detail oo :
There we recover the known deficiencies of the conventionaharge deV|at|oqs occur for the (;or1_vent|onal RDFT me”?OdS-
The properties of th& potential in the large-asymptotic

RDFT functionals: The RLDA as well as both RGGAs fall . . ) :
region also strongly influence the eigenvalue of the highest

off much too rapidly. In contrast, the RKLI and ROPM ied orbital shown in Table V- Due to th rrect as-
curves become indistinguishable in the asymptotic region(,)CClJp.e oroital sho abie V. bue o the correct as
both decaying as fi/asr—c and thus reflecting the proper ymptotics, the energies calculated within the RKLI scheme

cancellation of self-interaction effects. Since all these obserf[:’lrraer almgslgfkegpfﬁé tgot:eecfﬁocéhzasyofr?ﬁgItsé(él;hgnzon'
vations are already known for the corresponding nonrelativ;[heyR’LDA Shows Up in rather poorly reproduced eigenvalues
istic functionals, we again consider the relativistic contribu- P poorly rep 9

tion separately. This relativistic contribution to the exchangeOf -the highest oc_cup|ed state. Since in the exact npnrela’gv-
potential, given by istic theory, the highest occupied energy level coincides with

the ionization potentidl44], we also list this quantity, given

V)Iz[nR](r)_V)l?lR[nNR](r) by IzEtot[N—l]—Etot[N],_in Table V_I. Again, the RKLI
AV,(r):= PV NR , (57) and ROPM methods provide almost identical results. In ad-
Vi TIntr(r)
-0.001 |
-10.0
-0.01 |
— -30.0 -
3 —— ROEP 3 -0.1 f
S, -——- RKLI =
z _ L —-—-- RLDA =
= 500 - g T RES8 = 1 f —~—- RKLI
e RECMV92 —~== RLDA
------ RB88
-70.0 -10°} —— RECMV92
/ (] 1 aul PR TYY 1 1 1
-90.0 Ll
0.001 0.01 0.1 1 10 2 7 12
r [a.u.] r [a.u.]
FIG. 1. Longitudinal exchange potentiMi(r) for Hg from FIG. 3. Asymptotic region of the longitudinal exchange poten-

various self-consistent-only calculationdin hartree units tial of Fig. 1 (in hartree units
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‘ TABLE VI. lonization potential calulated from various self-
————— AL consistentx-only calculationsA denotes the mean absolute devia-

tion and & the average relative deviatidim percent from the exact
ROPM valuedall energies are in hartree units

0.2

ROPM OPM RKLI RB88 RECMV92 xRLDA

3: 0 \ % Be 0.296 0.295 0.296 0.326 0.327 0.312
———— RKLI . Mg 0.243 0.243 0.243 0.269 0.269 0.261
- ::;':8’: Ca 0.189 0.188 0.189 0.210 0.210 0.205
02 + RECMVE2 Zn 0.284 0.278 0.283 0.339 0.338 0.334
Sr 0.175 0.172 0.175 0.195 0.196 0.192
N L it P Cd 0.269 0.253 0.268 0.315 0.315 0.314
0.001 001 01 1 10 Ba 0157 0.152 0.157 0.176 0.176 0.174
rlau] Hg 0313 0250 0.312 0.364 0.363 0.364
FIG. 4. Relativistic contributiom\V,(r), Eq. (57), for Hg from A 0.000 0.034 0.034 0.029
various self-consistent-only calculations(in hartree units S 0.130 13.5 13.6 11.6
dition, when comparing the ionization potential to the ener- VIl. CONCLUSIONS
gies of the highest occupied level, we see that the relation ] } )
| = ey — which we of course expect to hold only approxi- In this work, we derived an approximate ROPM scheme

mately, since correlation contributions are neglected — ig€neralizing the arguments of Krieger, Li, and lafrate to the
fulfilled within a few percent for the ROPM and RKLI data, '€lativistic domain. As for the full ROPM, the advantage of
whereas the results of the conventiordlinctional differ to the RKLI method lies in the fact that xc functionals depend-

; ._Ing explicitly on a set of RKS single-particle spinors can be
a much larger extent. To conclude, we note that the mclusmt’t{;'eated within the framework of RDFT. This, in particular,

of relativistic effects leads to large corrections for heavy at- .
S . allows us to employ the exact expression for the exchange
oms even for the outermost orbitals: Taking Hg as an ex

| find a 20% shift for the ionizati rential energy functional, i.e., the relativistic Fock term in the lon-
ample, we find a o Shift for the 1onization potential. gitudinal case. Therefore the RKLI approach satisfies a num-

ber of important properties, most notably the freedom from
self-interactions implying the correct asymptotic decay.
TABLE V. Eigenenergy— ey of the highest occupied orbital In numerical tests on spherical atoms within the longitu-

from various self-consistenk-only calculations.A denotes the dinal x-only limit of RDFT the RKLI method was found to
mean absolute deviation andl the average relative deviatigin ~ be clearly superior to the known relativistieonly function-
percent from the exact ROPM value&ll energies are in hartree als. The results obtained are seen to be in close agreement
units). with the exact ROPM values, thus reducing the deviation of,
for example, the widely used RLDA by more than three or-
ROPM OPM RKLI RB88 RECMV92 xRLDA ders of magnitude. On the other hand, the numerical effort
involved is considerably less compared to the solution of the

I\B/IZ g‘g’gg 85503? g'jgg g'llfé 8'11;3: 8'1113 full ROPM_ scheme. We therefore expect that the_ RKLI
: : ' ' ' ‘ scheme will be successfully used for larg@onspherical
Ca 0196 0196 0.196 0.116 0.116 0.112 systems, e.g., molecules, including also correlation contribu-
Zn 0.299 0.293 0.298 0.195 0.194 0.191 tions.
Sr 0.181 0.179 0.181 0.108 0.108 0.104
Cd 0.282 0.266 0.282 0.183 0.182 0.181 ACKNOWLEDGMENTS
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