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Quantum radiation in a plane cavity with moving mirrors

D. F. Mundaraith and P. A. Maia Netd
Facultad de Fsica, Pontificia Universidad Calica, Casilla 306, Santiago 22, Chile
2Instituto de Fsica, UFRJ, Caixa Postal 68528, 21945-970 Rio de Janeiro, Brazil
(Received 10 June 1997; revised manuscript received 6 Octobey 1997

We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the
nonrelativistic approximation. We show that low-frequency photons are generated in pairs that satisfy simple
properties associated to the plane geometry. We calculate the photon generation rates for each polarization as
functions of the mechanical frequency by two independent methods: on one hand from the analysis of the
boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an
effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each
allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length
and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the
moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.
[S1050-294{@8)05202-7

PACS numbdps): 42.50.Lc, 42.50.Dv, 03.65.w

I. INTRODUCTION angular distribution of the emitted photons. In this paper, we
extend the method developed in RgL8] to analyze the
In the presence of moving boundaries, the vacuum state dfdiation emitted when two parallel plane perfectly reflecting
the electromagnetic field may not be stable, which results ifnirrors, initially a distanceé. apart, oscillate along the direc-
the generation of photons. This purely quantum effect, whiction Perpendicular to their surfaces, and according to a pre-
has been known either as dynamical Casimir effétor as  d€fined law imposed by some external apparatus. Such ge-
motion-[2] or mirror-[3] induced radiation is, like the usual ometry constitutes the simplest example, from a theoretical

Casimir effect for standing mirrors, a striking illustration of point of view, of a 3D cavity of lengtiL.. As compared to

the physical reality of the quantum vacuum field Moreoverthe previous single-mirror case, we show that the orders of
the phy y q . : 'magnitude for the radiation rates generated in the plane cav-
it may also be understood as a mechanical effect of th

) ) . may be several orders of magnitude larger, provided that
vacuum field. In fact, energy conservation entails that th

o ) I L is small enough.
radiation effect must be accompanied by a radiation reaction g

. ; X The paper is organized as follows. In Sec. Il, we calculate
force that works against the motion of the mirf8+6], and 1 photon numbers generated inside the cavity starting from

which is connected to the fluctuations of the us(shtio  the poundary conditions of a moving perfectly reflecting mir-
Casimir force by the fluctuation-dissipation theorgra-9). ror. The method is based on the nonrelativistic and long-
Several theoretical models have been analyzed. In thgavelength approximations, which are closely connected in
one-dimensional approximatiofiD), only one direction of the context considered hef8]. In Sec. Ill we present an
propagation is taken into accoufit0]. The quantum radia- alternative derivation of the results already found in Sec. Il
tion generated inside a 1D cavity with moving mirrors wasnow employing usual time-dependent perturbation theory for
calculated in Refd.11] and[12] in the particular case where an effective Hamiltonian that incorporates the motion effect
the mechanical frequency satisfies a resonant condition fdn terms of a coupling via radiation pressure. This heuristic
generation of photons in the lowest-order cavity field modesapproach is considerably simpler than the previous one, since
whereas Ref[2] considered a 1D cavity with partially trans- it circumvents the analysis of the moving boundaries. Fur-
mitting mirrors and with no particular assumption aboutthermore, it explicitly unveils the two-photon nature of the
resonance, thereby allowing for a full analysis of the specPhoton emission process, and allows for the computation of
trum of the radiation in a more general case. the dlSSlpatlvg component of the radlatlon pressure fqrce on
A few three-dimensional3D) models have been recently the moving mirrors. In Sec. IV, we consider a specific ex-
analyzed in the literature, including moving dielectric halif- @MPle of motion in order to isolate the effect of a single

spaces[13,14, and rotating[15] or collapsing dielectric mechanical frequency,. We show that the photon numbers

sphereg16], the latter as a model for sonoluminescence. OnObtalned by two independent methods in Secs. Il and Il

the other hand, 3D results for the related problem of photorﬁJrOW linearly in time, allowing us to define photon produc-

generation in a medium with time-dependent material coeflion rates, whose behavior as functions of the dimensionless

ficients e and . have been known for nearly ten yedis]. parametemQL/rrc is examined in detail. Section V contains
Perhaps the simplest 3D illustration of motion-induced radia-the concluding remarks.

tion is to consider a single perfectly reflecting plane mirror
moving in free space. In the perturbative regime, which is
associated to the nonrelativistic limit, it is possible to derive
simple results for the spectra of radiatid8], which display For the sake of clarity we first assume that one of the
interesting polarization-dependent features connected to thairrors is at rest. The results in the more general case where

II. BOUNDARY CONDITIONS AND INTRACAVITY
QUANTUM RADIATION
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both mirrors are set to move is a simple generalization to bevhere\ is the wavelength of the emitted radiation. Actually,
presented later. The moving mirror oscillates along the direcwe may be slightly more general and consider any nonrela-

tion perpendicular to its surfacex (direction, around the tivistic oscillatory motion arounc=0 such that its Fourier
positionx=0, its instantaneous position being given by thecomponents satisfy the above requiremefm®re specifi-

equationx= 6q(t). cally, we shall consider a weakly damped sinusoidal nonrel-
We decompose the electromagnetic fields into their comativistic motion in Sec. IV.
ponents corresponding to the electric field paralleM) or Accordingly, we look for perturbative solutions in the

perpendiculafTE) to the plane of incidence. For each polar- form
ization it is possible to define a vector potential through the

equations: ATE=ATE 1 SA(TE) @)
ETE— _5ATE:;  BTO_yxATE 1) and
and AT = AT 4 54T, ®)
EMM_yx 4T BTMI— g A4(TM) @ Al and. AR are the fields satisfying the Dirichlet and

Neumann boundary conditions for standing mirrors, whereas
The units are mks witlt=1 ands,=1. The potentials sat- SA(® and 5. A™ represent the first-order modifications

isfy the gauge equations induced by the motion. As we show below, they are smaller
than the fields for the static configuration by a factor of the
V.-AM=v. AM™ (. (3)  order of 5g/\. We expand the fields in Eq$4) and (5) in

Taylor series aroung=0. Since thgth spatial derivative of
As shown in Appendix A, the boundary conditions for a a monochromatic traveling wave satisfies
perfectly reflecting moving mirror are very simple when

written in terms ofA(™® and A™), due essentially to the |olA|<(27/N)|A], 9
fact that they are both orthogonal to the direction of motion.
We find we find from Eq.(4) that the TE-polarized fieldA(™® is

given up to first order in5g/\ by
ATE(x=8q(t),r),t)=0 (4)
SATE(x=0r),1)= = 8a() AL (x=0r,1). (10)
and
Note that we have neglected the terfig(t)d,sATE)(x
(dy+ 80(1) ). A™ (x= (1), 1, 1)=0, (59 =0ry.t) because, as shown by the above rest#t(™ is
already of first order in5g/\. Following the same method

wherer|=yy+zz Furthermore, the fields satisfy the usual W& find the following result for TM polarization:
homogeneous Dirichlet and Neumann boundary conditions )
on the second mirror, which is at restat L: I SA™ (x=0r,t)=—(8q(t) 5+ 5q(t)3,)

(TM)(y —
ATE(X=L,1,0=0; a4 A™(x=L,r,)=0. (6) X Asa (=011, (1Y

We want to solve the boundary value problem as defined by/vhere now we have also neglected terms of the order of

Eqgs.(4)—(6) for the fields in the region between the mirrors. d6a/\. According to our ansatz, when considering the gen-
The results for the fields outside the plane cavity are esserfation of photons out of the vacuum field induced by a
tially the same as those for a single moving mirror inMechanical frequencyw, the relevant wavelengths are
vacuum, and hence may be found in R¢g518]. The essen- larger than Zrl_wo, and thus the neglected terms are all of
tial “ansatz” that allows us to employ the long-wavelength the order of ¢q)2. We have then transformed the homoge-
approximation to solve the boundary value problem definedieous boundary conditions for the total fields at the time-
by Egs. (4)—(6) is to assume that a given mechanical fre-dependent positiom= 5q(t) given by Eqgs.(4) and (5) into
quency wo induces the generation of photons only in theinhomogeneous boundary conditions #&4(™ and . A(™)
spectral range<wg. This property is satisfied by the non- at the positiorx=0, given by Eqs(10) and(11), which may
relativistic models considered previoudlsee Refs[2] and  be solved by standard Green-function techniques.

[18]). Moreover, it agrees with the intuitive notion that the  We introduce periodic boundary conditions on the trans-
radiation effect is a nonadiabatic process, so that highverse plang/z over a surface of ared. In the static case, the
frequency field modes cannot be excited since the correaormal mode decomposition of the fields in the interval be-
sponding time scales are shorter than mechanical time scalegseen the mirrors, &x=<L, is then written as follows:
(quasistatic limit. More importantly, we show later in this

section that this property is fully satisfied for the model con- o 7 S

sidered here. As for the connection with the long-wavelength AUBE(r =i > ——sin x)
approximation, we note that the amplitudg, of a sinu- =1 n w,SL L

soidal nonrelativistic motion must satisty;69q<<1. When Kol (TE)

combined with our ansatz, this condition leadsdmy<\, x e Mle” n"a, e, +H.c. (12




57

and for the TM polarization,

f
™) —
AL, t)= uZ E \/—(H%)w/SL

Xcos(TWx)e'k TeTte ta(Ty')o.=n+ H.c.,
(13
where
ki'=2m(n,y+n,z)//S (14)

represents the component of the wave vector parallel to the

mirrors — the shorthansh=(ny,n,) represents a pair of
integer numbers. Note that the two potentials describing or-
thogonal polarizations are written in terms of the same uni
vector

(15

Throughout the paper, the sum over— as in Eqs(12) and
(13) — runs fromn,=— andn,= - to ny=% andn,
=, A given mode with indexesn|/) corresponds to a
standing wave along thg direction with wave vectonk)'(/
=/=/L traveling along a direction parallel to the mirrors
with wave vectorkﬁ‘. Its frequency is given by

T

The bosonic field operators in Eq4.2) and (13) satisfy the
usual commutation relations

Jm
L

/:

@h [(ny)2+(ny)?]. (16)

[ah,.ay, 1=0 17
and
[al (@, ,)"=80n6, 18 (18)
wherej=TE, TM represents the polarization.

It is convenient to work with a mixed Fourier representa-
tion defined as

1 n
AETE)[X,(U]: éf dtf dzl'HeilkH 'rHelth(TE)(X,I’H By
(19

with an analogous expression for TM polarization. The
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lem for TE polarization is solved with the aid of the appro-
priate Dirichlet Green function:

sin(Z wx/L)sin(/wx'/L)

/2
W

. (22

2 oo
G’E‘)”’(X’X,): E/gl

(w*ie)?—

where the plugminusg sign in Eq.(22) provides the retarded
(advancedl Green function. The fields with TM polarization
are obtained from the Neumann Green function:

2w
L2

/=0

cog/mx/L)coq /ax' /L)
(1+8,0[(wxie)?~wp?]

(23

N (X X)=

We assume that the mirror moves during a finite time
interval, then returning to its initial position at=0. As a
jconsequence, we may define input and output flekﬁE)

andAgﬂ'i) corresponding to the limit values of very small and

very large timegand likewise in the case of TM polariza-
tion), which satisfy the boundary conditions for a mirror at
rest atx=0. They are connected by a suitable combination of
retarded(superscripR) and advanceésuperscripA) Green
functions:

AL [, 0]1= AP X, 0]+ SATE X' =0,0]
X[ 3y GRR(x,x" =0)— 3, G2 A(x,x" =0)].

(29

The TM output field. A" is related to the TM input field

A{™ by a similar expression:

™
Aoy

[x,0]= A%, 0] = 35 SATF[x' =0,0]
X[GNR(x,x'=0)— GNA(x,x'=0)].
(25
From Egs.(22) and (23) we find

9y GRR(x,x"=0)— 9,, GRM(x,x" =0)

/

274 S/ (/7TX
- S|n
n

p)

L2 /=1

) ((w— a)h/)— S w+ wg)),
(26)
and

GNR(x,x"=0)—GNA(x,x' =0)

Fourier-transformed fields representing the motion-induced

perturbation satisfy the 1D Klein-Gordon equation

(2 + 02— (kD SAT®[X,0]=0, (20)

(@ + w? = (kDDA [x,0]=0, (21)

and the boundary conditions &0 andx=L are given by
Egs.(6), (10), and(11). The resulting boundary value prob-

2i

Sl

=0 (14 6,0) oy,

coqg/mxIL)
— X (- wn) 5(w+w ).

(27)

In general, there are no monochromatic solutions for the
problem of moving boundaries, and hence it is not possible
to write a normal mode decomposition for the field in this

case. However, sino&j" andAgj; satisfy the boundary con-
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ditions for two standing mirrors at=0 andx=L, we may . . y

write their normal mode decompositions as in E4®) and a™® _a(TE)+ 2 (/L) ”/L[ [w ]a(TE)
. . . ) out, , inn, L oq N,/

(13), in terms of input and output bosonic operataﬁEE and /T=1 /wﬁwg

EL';) (at this point our method is quite similar to the ap-

proach developed in Refl7] for the problem of time-
dependent material coefficientdVe then take the Fourier
transform of Eq(10) and replace the result, jointly with Eq. wheredq[ w] is the Fourier transform ofq(t). The relation
(26), into EqQ.(24) in order to find the linear transformation between TM operators is derived from Eq$1), (25), and
between the input and output TE bosonic operators: (27) in a similar way:

+8q[ wl, + o, ](aTE) buR (28)

i (k])?— wiop’
Al =al™— = 3 [(1+35,0)(1+8,:0)] ¥ — - sa[wp — w Jalg)
/ /LT, w/w/ n/'
: n n
(k% + ! e
T 0 sqlwd+ o 1(@™ )t (29)
VN n/’'
wnwn

From Egs.(28) and(29) we may readily derive the num- Hamiltonian perturbation theory. Note that the invariance of
ber of photons generated inside the cavity as a quantum efhe rhs of Eqs(31) and(32) with respect to the permutation
fect of the mirror’s motion. As discussed below, the effect isof /" and/”’ suggests that the photons are emitted in pairs.
associated to the creation operators appearing in the righthat this is indeed the case is more clearly shown by this
hand side(rhs) of Egs. (28) and (29). We assume that the alternative approach, to be presented in the next section.
field is initially in the vacuum state. The motion of the mirror
then excites a given number of photoN§ , with indexes I1l. CONNECTION WITH RADIATION PRESSURE
n,/ and polarizationj. N/, , is given by the corresponding
output number operator averaged over the input vacuum
state:

Rather than considering the boundary conditions of a
moving mirror, we follow in this section the heuristic ap-
proach, first presented in R¢B], in which the effect of the
mirror's motion is modeled by taking the perturbation

h=(0,in(aby, )'aby 0,in). (300 Hamiltonian

outy/

Replacing Eqs(28) and (29) into (30) provides the photon

numbers for each polarization: OH=—0q(F, (33

whereF is the field quantum operator representing the force

- 1 s\ w21 P on the movin.g mirror. A_ccordingly;SH corresponds to the.
Np,/ == > -\ 7|5q[wh + o} 1% energy supplied to the field by means of the vacuum radia-
L%r=1 W, Wy (31 tion pressure effect. The total Hamiltonian of the field is
and H=H©+sH, (34)

w2 s i where the unperturbed Hamiltonia(® is written in terms
N(T"’” 1 [(k) "+ wpoy ] of the bosonic field operators for a standing mirfreee Egs.

L2520 (14 8,0)(1+8,10) oo, (12) and(13)] as

IARTY

x|oaten+en JI% 3 HO=3 3 hoql@h)ah +12. (@9
Since the frequencie&,’f/ are positive, we infer from Egs. e
(31 and (32) that a given mechanical frequenay gener-  As discussed elsewhef&0], a Hamiltonian approach is not
ates photons with frequenmes/ <wq, thereby justifying rigorously consistent with the model of perfect reflectiveness
the ansatz employed in this section. considered here. However, this model may be considered as

From the above results we may directly calculate the phoan approximation for dielectric mirrors with large refraction
ton production rates and then estimate the order of magnindexn — for which a rigorous Hamiltonian model is avail-
tude of the quantum radiation effect. Before addressing thigble[3], although such correspondence is not yet setthed
question, however, we present a second derivation of Eqsording to Ref[13], some unexpected results show up when

(31 and (32, which is based on usual time-dependenttaking the limit of largen). In any case, the formalism pre-
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sented in this section is justified by comparing the results it it , ,

provides with those obtained in Sec. Il. Cinsjnrsrjn(t)=— gf (n/j,n'/'j'|8H(t")]0)
The force operator is the integral over the surface of the o

mirror (at its rest position ak=0) of thexx component of i 0 .

the Maxwell stress tensor: Xexl{g(En/,nw— Elaot’ |dt’, (39

1 with
F=§J d?r|[EL(07)2—By(0")?], (36) ,
N N En.r s~ Ese=h(wf + oy, ) (39
where the limitx— 0 is taken from positive values of as _ _
indicated aboveas in the previous section, we do not ana-representing the difference between theperturbegl ener-
lyze the effect of the field outside the plane cayitginceF gies of the final and initial states. As discussed in the previ-
is a quadratic operator on the field, the perturbation HamilOUS sections, it is meaningless to discuss two-photon ampli-
tonian SH excites pairs of photons as in the problem of paratudes as I_ong as the_m|rror IS moving. Acco_rdmgly,_we must
metric amplification by ay® nonlinear medium. Thus, we taket—o in Eq.(38) in order to have a consistent picture of

consider a perturbed field state of the form the quantum radiation effect. Then, replacing E@S) and
(39) into Eq.(39) yields

W)= X cpnop O30 27 +b(1)]0), [ /!
Ty AR Cinvinr i ()= (010" [Fl0) S0l oy + o, .

er:ere WE Tu_m 0(;’?{ al two-photonhstatk{lm/j,n_’/’j ’}2 h In order to compute the matrix element appearing in the
(the Symbols| and r.ep;‘?se,”;[‘% t eNpo ar;]zanonsho e s of Eq.(40), we write the electric and magnetic fields in
photons in a given paifn/j,n’/"j’}). Note that each pair Eq. (36) in terms of the potential&(™ and A™) |t is

g;{ r{énoé ériaésgpfrigdiﬁgigglsy once in Eq37), regardless convenient to use the Fourier series representation defined by

We assume that at- — o the field is in the vacuum state, (T5) _ TE) n
so that the two-photon amplitudes are initially zero: AT ’t)_E An T Dexplik-rp), (4D
Cinsjnr/1jn(—®)=0p(—>)=1. We compute the buildup
of the two-photon amplitude,,; »,+;(t) from standard and by an equivalent expression for the TM potent#di™ .
first-order perturbation theory: Then, the force operator is written as

S
F=52 [(K)2AM (0,0 AT(07 1) - g A (0% )2 AT(07 1) = AP (07 )G ATD (07, 1)]. (42
n

From Eq.(42), we obtain
(n/ TE,n’/" TM|F|0)=0. (43

Therefore, the photons belonging to a given emitted pair have the same polarization. This is a general property of the plane
symmetry of the problem, rather than a consequence of the specific model considered in this paper. Note, however, that it has
been recently shown that TE-TM pairs may be radiated in the case of lateral motion of the[tfiror

Using the normal mode decomposition of the field operators as given by(Efjsand (13), we may calculate the TE-TE
and TM-TM matrix elements. We first find

b (ZwlL)/ @il A sy
(5n N5n’ _Nel(wnt+wn t )+ 5n —N5n' Nel(oz)n t+w,t )),
SL /w/w/r , , , ,
n='n
(44)

(n/TEN' /" TE| AP (0" 1) 3, ATR(0*,t)|0)=

and
(n/TM,n’ /" TM[ATW (07 1) - AT (0*,t)|0)

h ) Gl L s
= ST (1 8,01+ 6,10 00, (Snndy, €00 4 8, 8y ellen trent), (45)

where use was made of the propeﬂgzwfn. Combining Egs(44) and (45) with Eq. (42) leads to
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(n/TE,n" /" TE|F|0) i —(/W/L)/, miL (46)
n/ ,nl/,/! —__ - —n’s
L /wgwg n n
and
| f (kD)2 + wf ol
(n/ TM,n" /" TM|F|0)= — (47

S i,
L 7 n,—n
(14 68,0)(1+8,10) Vol ),

From Eqgs.(46) and(47), we may immediately calculate the amplitudes of creation of pairs of photons by combining them
with Eq. (40). Here we write the results obtained in Appendix B for the more general case where both mirrors are moving, so
that the first mirror is ak= 6q,(t) and the second mirror at=L + §q,(t). The resulting creation probabilities are

1 /77 2 /”ﬂ' 2 ' ' 1
|C{n/TE,n'/'TE}|2:_2(T) (T) 7|5QI[wg+wg ]_(_1)/+/ 5QZ[wg+wg ]|25n,—n’ (48)
L Wy, W,
and
1 [(KH2+ ol o’ ]2 , , ,
|Conron ooy | 2= L L lsailwptwp 1= (— 1) Sqlwpt wf 1260w (49)

L2 (14 6,0)(1+6,10) 0} o],

Note that the photons in a given pair have opposite values cdhown in Appendix C, there is agreement with the results
kﬁ‘, which is again a consequence of the plane symmetrjound in Sec. Il in this case as well. We then conclude that
[18]. As shown in Appendix C, Eqsi44—(49) must be the heuristic approach developed in this section yields the
slightly modified when considering the particular valne same final expressions for the number of photons produced
=n’=0 (which corresponds to the 1D limit of our 3D for- in a given cavity mode. Moreover, it explicitly shows that
malism, since such modes propagate alongxtdirection the photons are generated in pairs, the photons in a pair
and do not contain any dependence on the transverse codraving the same polarization and opposite valuekof

dinatesy andz).
According to Eqs(48) and (49), the joint motion of the

With the aid of the linear response formaligiQ], the
perturbation Hamiltonian as given by E@3) may be also

two mirrors selects the longitudinal modes according to theapplied to compute the dissipative part of the radiation pres-

parity of the indices/. When 8q,=— 8q,, which corre-

sure forcesF exerted on the moving mirrof6—9]. Such

sponds to the “elongation mode” of the cavity, the two pho- dissipative force is the mechanical effect of the quantum ra-
tons in a pair correspond 6 values of the same parity, the diation process, and hence must be interpreted as a radiation
opposite taking place when the motion is such that the cavityeaction force. Since it generalizes Casimir’s result for a situ-
length is kept constant&;=5q,). This property is a ation where(at least one of the mirrors is moving, it has
straightforward generalization of the situation found in one-been called motional Casimir force in R€8], where a one-
dimensional cavitie§2]. It shows that the radiation effect dimensional calculation is presented for the case of partially
should not be interpreted simply as a consequence of chan§fansmitting mirrors. We consider again the case where one
ing the optical cavity length, since it also takes place wherPf the mirrors is at rest, and then write the Fourier-
there is no relative motion of the mirrors. transformed forceSF[ w] as

We may compute the average number of photons in a SF[w] = x[w]3a[o].

given cavity mode from (52)

As discussed in Ref.6], linear response theory provides a

i = i \fal
N, =(¥|(an,) an V). (50 result for the imaginary part of the susceptibility function
: . . x[ @], which corresponds to the dissipative component of the
Inserting Eq.(37) into Eq. (50) yields force, in terms of the functio@[ w] representing the spec-
_ trum of fluctuations of the force operator on a standing mir-
NL =2 [Cm—nipl? (61  ror
/l

1
|mX[w]:%(CFF[‘U]_CFF[_(‘)])- (53

Equations(48) and (49), in the particular case 06g,=0,
jointly with Eq. (51) provide results for the photon numbers

in full agreement with Eqs(31) and (32) of the previous
section. As for the particular case with=0, Eq. (51) also

The spectrum of fluctuationSgg[ w] is defined as the Fou-
rier transform of the force correlation function. It may be

needs some slight modification in order to include the conwritten in terms of the two-photon matrix elements obtained

tribution of the degenerate two-photon states’,0/). As

above as followg8]:
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, At>1.
Cerlw]=27 >, 5((u—wh/—wr’]/,) @0
{n/jn’' 7"} . . . .
S ) We first consider the 1D limit of the results found in Secs.
X[(nZj.n" 77§ |FI0)]%, (54 y1 and III, by picking up the photon pairs with="0. Refer-

enced11] and[12] presented a 1D nonperturbative treatment
for the situation where the mechanical frequengysatisfies
the resonance condition

where, as in Eq(37), each paif{n/j,n’/"j’} is included
only once(regardless of the ordering

The matrix elements of the force being given by Egs.
(43), (46), and(47), we replace the rhs of Eq54) into Eq.

(53) to find woz—w(‘/r ) (58
wh
Imxlw]= En/z/ for two longitudinal cavity modeg” and/”’ (Ref.[12] con-

, sidered the particular cagé=/"=1, whereas Ref.11] also
(/L) w2+ [ (K) P+ wf o) 12 considered the casé=2, /' =1). We may discuss the re-
X 7 lation between such formalism and the one presented in this
(1+8,0)(1+6,10) 0y paper by taking the Fourier transform of E&7) and com-
puting the two-photon probabilities in the resonant case
omit explicit reference to polarization while discussing the
1D limit). As shown in Appendix C, we find

X[&(m—wg—wg,)—5(w+wg+wg,)]. (55

Equation(55) provides the result for the dissipative compo-
nent of the force exerted on the mirror. The term with
n=0 in Eq.(55) is particularly interesting because it allows 2,00
for a comparison with the results obtained in R&f| for a |C{0/,0/r}|2=—2
1D scalar field. As discussed in Appendix C, we find that in (1+3,,)L
this case the two polarizatiofieepresented by the two terms
in the rhs of Eq.(55)] give identical contributions to the According to Egs.(51) and (59), the number of photons
dissipative susceptibility, which are in agreement with thegrows quadratically in time in this case. The same time de-
perfectly reflecting limit of the 1D susceptibility function pendence may be obtained as the short time limit of the 1D
derived in Ref[9]. nonperturbative results found in Refdl] and[12]. Such
As mentioned above, Igj w] is directly related to the behavior is related to the property that the spectrum of a 1D
number of radiated photons by energy conservation. Indeeggrfect cavity is discrete, and it was also obtained in the
comparing Eqs(31) and(32) with Eq. (55), we find model of a 3D perfect closed cavity system discussed in Ref.
[12]. In the case of a continuous spectrum, on the other hand,
S o (NTE 4+ NTW) = © s ) the emission probabilities grow linearly in time as long as
= wn(Np7+Np )= | 5o mxle])|salw]|*. the perturbative approximation is valid, which is well known
(56) from the derivation of Fermi’s “golden rule,” so that in the
end the meaningful physical quantities are the photon pro-
Equation(56) shows that the energy supplied to the field byductionrates,as we show below. That is the case of a par-
the radiation pressure fore¥ [ w], given by its rhs, is equal tially transmitting cavity, even in the 1D approximatitsee
to the total radiated energy. In the next section, we discuss iRef.[2]), as well as of a 3D open cavity, as, for instance, the
detail the properties of the radiation by taking the specifictwo parallel infinite plates considered in this paper, even un-

(8q0)2At2. (59)

example of sinusoidal motion. er the assumptiofconsidered in this papepf perfect re-
ple of si idal i der th ptiolc dered in this papepof perfect
flectiveness.
IV. PHOTON PRODUCTION RATES In the 3D case, we have to sum over all possible values of

k| in order to compute the probabilii’é}’PJ/l/2 for emission

In this section, we discuss in some detail the properties ogf - TR T
S ’ S . . a pair of photons with indices; and/", and polarization
the radiation emitted inside the cavity, starting from the ex-; b P ! 2 P

pressions for the two-photon probabilities given by He#) J. Sincek, is actually a continuous variable, we replace
and(49), which were shown to agree with the results for the

photon numbersN,, . obtained directly from the moving S )

boundary conditions and given by Eq81) and (32). We ; - (277)2J’ d%k; -

assume that the second cavity mirror is at rest=at. (hence

80,=0), and that the first mirror oscillates arouxe0 ac- o o
cording to the law The probabilities do not depend on the direction kpf,

hence we find, first for TE polarization,

8q(t) = 6q0e” 1" cog wqt), (57)

where the amplitudég, and frequencyw, satisfy the non- 57???/2= ;J do w|c{/1 TE ,/ZTE}(w)|2, (60
relativistic conditionwgéqgo<<1l. Moreover, we assume that mJo

the damping timeAt is much larger than the period of the

mechanical oscillation: where|c{/1TE/2TE}(w)|2 is obtained from Eq(49):
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11 /m\2 /w2 00w+, , ]2 /1, /' defining allowed values fo#, and 6, according to
|c{/lTE,/2TE}(w)|2=—2( 177) ( 277) _ 2 Egs. (62—(64). As an example, consider the valye
L2\ L L 0o, ,, =2./2. SinceB<3, the only allowed values for TE polar-

(61)  ization are/;=/,=1, corresponding to a pair withv,
=wy=wp/2, andd, = 6,=45°, which is, however, not emit-
ted in the case of rigid motion of the cavity. For TM polar-

R PR ization, on the other hand, there are two additional pairs: one
~ /17T /27T
W=\ T -

where

with /=1, /,=0 (rigid motion), giving w;=9wy/16, w,
=7wp/16, 6,~51°, and #,=90°; the other with/ =/
=0 (elongation motiojy giving wi=w,=we/2, and 6,
=6,=90°.

We compute the photon production rate for emission at a
given pair of allowed frequencies assuming that the inte-
grand in Eq.(60) is the product of a slowly varying function

. f o with the sharply peaked squared Fourier transform of
pletely the frequencies, andw, of the two photons. More- 0 . .
over, it also implies well-defined values for the angles be-ﬁq(t)' This amounts to replacing the latter by a delta func-

tween the direction of emission and tRedirection, which tion, so that from Eq(57) we derive
we denote a®; and 6,. In fact, we have

L L

represents the frequency of the “twin” photon of inde%
and which is emitted simultaneously with the photon of fre-
guencyw and index/;. We perform the integral in Eq60)

in the limit of very largeAt, so thatéq[ o] is sharply peaked
aroundwg. In this case, each paif,,/, determines com-

Wo— W
o(w—wy),
wo

~ a
o+ w 2=—(5q)%At
o1t 0y ) 62 [dale+ o,/ )*=5(5q0
(67)
as in the problem of parametric amplification by/& non- _
linear medium; and noting thatv= w, impliesw, , =w,, we find the pho-
ton production rate of TE pairs with indices,;,/, by re-

18INd; = w,SING, 63 placing Eq.(67) into Eq.(61) and performing the integral in

expresses the plane symmetry of the cavity, and is Ioosel?q' (60):
analogous to the phase matching condition in nonlinear op- SPUTE o s 5
tics. Finally we have two additional equations, which result ey _ 172 _i( /177) (/277) (69)

from the boundary conditions on the two cavity mirrors: ‘172 At g2\ L L - (68

wiC039i=/i—7T (64) Note that the linear time dependence found for the probabil-

L’ ity 5P5), originates from integrating over the whole width

of |5q[ w]|?, instead of taking just the peak value as in the
derivation of the 1D result given by E¢9). For TM pho-
tons, we find, starting from Eq49) and following the same

with i =1,2. Equation$62)—(64) may be solved fow,, w,,
6., and @, as functions ofwy, /1, and/,. We find

o /2,2 method,
1T 2 ' €9 : 212 2
B oy _ S Logwi—(4mlL’P (509°
where ‘072412 (14 6,,0)(1+68,,0)  wo
B=wolL/ We may also derive the total production rate for a given

value of 8 by adding over all values of’; and/’, in the
is the ratio between the cavity round-trip time of flight and range defined by Eq66):
the mechanical period. Accordingly, the spectrum of photon
emission, which is continuous in the case of a single moving . .
mirror [18], becomes discrete as a consequence of the two W= /2/ Wj/l,/zv (70
additional conditions, given by Eq64), and which are as- e
sociated to the presence of the second mirror that constitutg;i, j=TE,TM. In the Fig. 1 we plow(™ andW(™®, both
the cavity. For a given value @, the set of emitted frequen- gjyiged by the total production rate of TE photons in the case

cies is obtained from Eq65) by taking all positive integer  of 5 single moving mirro(see Ref[18]),
values of/’; and/’, in the range defined by

z / 1
/140 =B. (66) Weiige= > S(8do) a5, 7D

O+ o<p

In the case of TM polarization, the value§=0 and/,

=0 are also allowed — they correspond to traveling waveas functions of3. The curves displayed in the figure for TE
modes propagating parallel to the plane of the mifvemve- and TM polarizations are similar to those representing the
guide modeps As for the spatial direction of emission, the decay rate of a classical dipole at the midpoint between two
photons are emitted along directions defined by a set operfect plane mirrors along the direction parallel and perpen-
cones(whose axis of symmetry is thedirection, each pair dicular to the mirrors, respectively. Underlying both effects
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™) (TM) 45 gg)le
W( :WO,O :Z ? (72)
L
§ Such dependence witB suggests that the most favorable
B orders of magnitude occur fg8<<1. In this range, the pho-
g tons have frequencwy/2 and propagate along directions
< parallel to the mirrors. Following Ref$2] and[18] we re-
;01 write the photon production rate given by E@2) as
TM):ii Umax)zﬂ, (73
16)\3\ ¢ | g2

wg Lin
wherev ma,= weddg is the maximum value of the velocity,
FIG. 1. Total production rates of TE) and TM(b) photons as and \y=2mc/w, is half the value of the wavelength of the
functions of B=weL/m, which represents the ratio between the emitted photongwe have reintroduced the speed of ligit
round-trip time of flight and the mechanical period. The scale of theAs in Ref. [2], we take vy /c=10"' and wy=27
vertical axis is such that the value one corresponds to the generation 101° sec?, yielding\o=3 cm. A real experiment would
rate of TE phOtOﬂS for a single moving mirror. The dashed |ineShard|y emp|oy moving mirrors with transverse dimensions
provide the asymptotic limits for largé. They show tha}t the pho- larger than that, thus we tal&’)\g~1 in order to have a
ton production rates approach the values corresponding to the cageje estimate of the orders of magnitude, even though dif-
of a single moving mirror in this limi{note that the single mirror fraction effects at the borders of the mirrors. not taken into
TM photon generation rate is larger than the single mirror TE rateaccount in this paper, are of course relevar,1t in this range.
by a factor of 11). Finally, we takeL=1 um, giving 8~10 *. Equation(73)
then yieldsw( ™ ~4x 10° photons/sec.
are the properties of the vacuum field in the case of a plane
cavity geometry and the corresponding mode spectral density V. CONCLUSION
function[20]. The most striking differences between the two
problems are related to the two-photon nature of the quantum We have calculated the photon production rates for a
radiation effect considered in this papghat explains, for ~plane cavity with moving mirrors by two different methods.
instance, why, as displayed in the figure, the TE photon prol” the first approach, we consider the boundary conditions

duction rate vanishes fg8<2, whereas the parallel dipole for perfectly reflecting moving mirrors in the long-
decay rate vanishes f@<1 only). wavelength approximation and assuming the field modifica-

tion due to the motion to be small. We then obtain an input-
output transformation for the field bosonic operators that
allows us to compute the number of emitted photons. In the
second approach, we start from an effective perturbative
. . Hamiltonian and apply usual first-order perturbation theory.
compa_ratlvely '?‘rge“ Wh'Ch may _be understood frc_)m th his method is considerably simpler since the expressions
fact, discussed in detail in Ref18] in the case of a single ¢, the fields scattered by a moving mirror are not required,
mirror, that TE photons are preferably emitted near the 4nq establishes a clear connection between the photon emis-
direction, thus being more sensitive to the discrete nature afjon effect and vacuum radiation pressure. Furthermore, it
the wave vector along that direction. For both polarizationsexpncmy unveils the fact that the photons are emitted in
the jumps become smaller g5 increases, and then the pairs(that satisfy simple properties expressing the symmetry
curves approach their asymptotic values fdr-c, which  of the plane geometjyessentially because the effect is con-
are indicated by the dashed lines in the figure. As expectedained in the time evolution of the field state vectors rather
they correspond to the photon production rates for a singléhan in the evolution of the field operators. The two methods
moving mirror — the rate for TM polarization being 11 provide the same results for the photon production rates,
times larger than the rate for TE polarization, given by Eq.hence justifying the somewhat heuristic Hamiltonian ap-
(71). Alternatively, the asymptotic limits may be derived di- proach.
rectly from the analytical results given by Eq68) and(69) Radiation is generated even when the distance between
if we replace the sum in Eq.70) by an integral. In fact, the mirrors is kept constant, showing that the effect is not
performing the integral in the case of TE polarization leadssimply a consequence of modulating the optical cavity
to the expression given by E@r1), whereas the result for length. When the initial cavity length is much smaller than
TM polarization comes with an extra factor of 11. 27rcl wg (we have considered in detail the example of a qua-
Of special interest is the behavior of the TM photon pro-sisinusoidal motion at frequenay,), however, radiation is
duction rate in the range<0B8<1, where, according to the emitted only in the case of relative motion of the mirrors,
figure, W(™) increases strongly 38 decreases to zero. The and the generation rate is enhanced.adecreases. In this
precise dependence ghmay be obtained by replacing; regime, the photons are generated at the subharmonic fre-
=w,=wgyl2 in Egs.(69 and (70) and comparing with Eq. quencywg/2, propagate parallel to the plane of the mirror,
(72): and are TM polarized. Such an enhancement effect is closely

As in the problem of a decaying dipole, the photon pro-
duction rates jump at integer values Bf This originates
from adding the contribution of a new pait, ,/’, within the
range defined by Eq66). The jumps for TE polarization are
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related to the properties of the radiation emitted by a single 9r AT (%! zoerf t'=0)

mirror in free spacg18], whose spectrum for TM polariza-

tion is sharply peaked around the frequerngy?2. = y(dx+ 89(to) ) A ™ (x= 5q(to), I ,t=tp),
The orders of magnitude for the photon production rate (A6)

found in this paper suggest that the motion-induced quantum

radiation effect may be observed under certain conditions.

However, a careful analysis of the diffraction effects near theand then we obtain the boundary condition as given by Eq.

border of the mirror would be necessary if a quantitative(5) from Eqgs.(A5) and (A6).

comparison with experimental results is required, since the

field wavelengths involved would probably be of the order of

the transverse dimensions of the mirrors. APPENDIX B: TWO MOVING MIRRORS

In this Appendix, we consider the more general case
ACKNOWLEDGMENTS where both mirrors move along the direction. The first
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FONDECYT No. 2960009, and by Conselho Nacional gefor TE polarization, the boundary condition at the second
Desenvolvimento Ciefftco e Tecnolgico. mirror now reads

APPENDIX A: BOUNDARY CONDITIONS ATE(L+ 80,(1),1,1)=0, (B1)
FOR A PERFECT MOVING MIRROR

In this Appendix, we derive the boundary conditions inwhich yields, in the long-wavelength and perturbative ap-
the case of a perfect plane mirror moving along its normaproximations, the following additional boundary condition
direction. We take a Lorentz fran® (t,) whose trajectory for the motion-induced perturbatioA(™®:
in the laboratory frameS is given by x=dq(ty)(t—to)

+ 5q_(t0), o) thatS_ (to) represgpts the mstant'afleously co- 5A(TE)(L'rH H=— 5Q2(t)f7xA(stTaE) (x=L,rj,t). (B2
moving frame at timd,. Quantities measured @& (ty) are
denoted by primed letters. The space-time coordinates in

S'(t,) are related to those i by Working in the mixed reciprocal space and using the normal
_ mode decomposition ck{{E) as given by Eq(12), Eq. (B2)
x=y(X"+8q(to)t" )+ 8q(ty), rj=ry, leads to
t=y(t' +8q(to)x') +to, (A1) -
. 5A(TE)(|_ w)=—i2 (_1)/ ﬁ L
wherey=[1-[3q(to)]?]~¥2 The electromagnetic fields' notm 1 L/ Vst

andB’ satisfy the following conditions: P ,
. . X (801 0= wp]ay? + 80z 0 + oy ]
XXE'(x"=0r,t'=0)=0; x-B'(x'=0r(,t'=0)=0.

(A2) x@ )€ (B3)
In the case of TE polarization, the condition for the electric
field yields Of particular interest in Eq(B3) is the factor cos(w)=
T , (—1)” that comes from evaluating thederivative of A{l®
AR (x"=0r( ,t'=0)=0, (A3) I : s - : i
I atx=L. Equation(B3) jointly with Eq. (10) defines a bound

s A(TE) ary value problem to be solved with the aid of the Green
and sincex- A 0, we have from Eqs(Al) and(A3) functions given by Eq(22). We first employ the retarded
. : DR ' ) (TE)
Y(8q(to) dx+ d)ATE (x= 84(to),ry t=to) Qreen functlorQn w(x,'x ) E(T)E)solve for the total fieldA,
in terms of the input fieldAj; 5
= yd AP (x=8q(t=to),r ,t=ty)=0  (A4)

whered, represents the total (tiTrBe derivative. Sirtgeis ar- AE(X,0)=AT(X,0)

<Ume. a oansiant value, which i taken (5 b 76ro 28 in £ +BATE(L,0) 0 GRR(X =L i)

(4)As for TM polarization, the condition on the electric field B 5AE‘TE)(O'M)(9X'GE’R(X, =0Xw).

given by Eq.(A2) jointly with Eq. (2) yield (B4)
g AT™ (X" =0r( ,t'=0)=0. (A5)

As in Sec. Il, we also solve E@B3) in terms of the output

On the other hand, we may write the Ihs of EA5) in terms  field AP, with the aid of the advanced Green function

of unprimed quantities by using again E&1) and the fact  GD*(x,x’). The connection between output and input fields

w

thatx- A™)’"=0: is then provided by the difference
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9y GPR(x' =L,x)— 8, GP"A(x' =L,x) These results are smaller than the values of the expressions
given by Egs(46) and(47) atn=0 and/'=/" by a factor
27 — p /m\ [ Zwx) 1 of V2. From them, we easily compute the degenerate two-
=- TZ =D S'”(T 7 photon probabilities by using E¢40), allowing us to write
n the correct expression for=0:
X[8(w— )~ 8w+ wl)]. (B5)
As explained in Sec. Il, we derive the linear transforma- |C{O/TEO/’TE}|2: |C{0/TM 0/’TM}|2: 1 </_77)
tion between output and input TE bosonic operators from B T (1+6,,)L2 L
Egs.(B3)—(B5) ,
/’77)‘ {/17 /o |?
X 3 al + 3 (C2

i (/m\[ 1
aglt?]/: ai(rIE)/_ L > (T) (T>(

— 7 N2
7=l @h @) According to Eq(C2), the degenerate two-photon probabili-
O SN VA ties are one-half the value found when replacing the values
X{(uLwp —on J= (=17 dtzlwp —on 1) n=0,/=/", and5q,=0 in Egs.(48) and(49).
Xai(,I'r:‘])/,Jr(&ql[wngwﬁ'] The contribution of degenerate two-photon states is found

from Eq. (50):
— (-1 sqylel+ep D@D )T (B6)

in,—n/"’
From Eg. (B6) we may calculate the number of photons Nb, = E lciosioil?+2lco 40412 (CI)
N{'® by taking the average of the output number operator i
over the input vacuum state as in £E80). For TM polariza-

tion, we extend the method employed in Sec. Il to take intdThe factor two multiplying the degenerate two-photon am-
account the motion of the second mirror exactly as discusseglitude in the rhs of Eq(C3) cancels the additional factor

above for TE polarization. one-half appearing in EqC2) for /=/", then yielding a
Alternatively, we may compute the photon numbers fromresult in full agreement with Eqs(31) and (32). For the
the effective perturbation Hamiltonian specific example of motion given by E(7), and assuming
that the mechanical frequeneyy satisfies the resonant con-
SH=— 80, (1)F1— 805(t)F 5, (B7) dition as given by Eq(58), we derive from Eq.C2) the

expression for the production rate of photons with 0
) o ] given by Eq.(59)
whereF; is the force exerted on mirrérby the vacuum field. Since the results for the photon numbers are not modified
Following the procedure outlined in Sec. Ill, we derive thewhen taking into account the degenerate two-photon states,
two-photon creation probabilities given by Eqel8) and e expect that the formula for the dissipative component of
(49). As in the case of a single moving mirror, the resultsthe susceptibility function, given by E¢65), should also be
Obtained through thIS method are in fU” agreement W|thva||d for n:O, SO as to preserve the Connection between

those obtained directly from the boundary conditions. dissipation and total radiated displayed by E8g). In fact,
we may write separately the contribution of degenerate two-
APPENDIX C: PHOTONS EMITTED photon states to the sum over pajrs”,n’/’} in Eq. (54):
ALONG THE NORMAL DIRECTION
In this Appendix, we consider in detail the contribution of * ,

the degenerate two-photon states in the derivation of the phoCrelw]=72, > 8(w—w)—w) )(n/j,n/"j|F|0)]?

ton numbers and of the susceptibility function. First note that Ionss

degenerate two-photon states necessarily correspond to

propagation along the direction perpendicular to the plane of +2mY, 2, Sw—2/7/L)[0/],0/]|F|0)P,

the mirror, i.e., they are of the forhtm=0/7j,n=0/7). The e

degenerate two-photon matrix elements of the force operator (Co

are calculated from the representation of the force operator in
terms of the vector potentials, given by E42), and from N )
the normal mode decompositions given by E¢) and WhereX  , represents the sum over all possible values of
(13); n, /, and/" excluding those where simultaneousiy-0
and/=/". As before, the factor one-half found for the de-
generate two-photon matrix elemdumfiven by Eq.(C2)] is
(n=0/TE,n=0/ TE|F|0) canceled by the factor of two appearing in the rhs of Eq.
(C4). Hence we may write the expression for the 1D dissi-
=—(n=0/TM,n=O/”TM|F|O>=—;. (C1) pative susceptibility function, Iyyp[ @], by selecting di-
J2L2 rectly from Eq.(55) the terms withn=0:
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As for Ref.[9], the result for thelcomplete susceptibility
function in the perfectly reflecting limit and in the particular
case where only one mirror moves reads

oS m\?
1—e?let +(E) (Iw)(

In order to compare EggC5) and (C6), we must take the
imaginary part ofy[ ], then yielding, after some algebra,

~ h
xol=5o

1 1
271 )
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2

T 42
5 —) > n(n?—1)8(w—nm/L)|.

L
(C7)

~ 0 1
|mx[w]=ﬁ (

=—0o0

The first term in the rhs of EqC7) represents the contribu-
tion of the field outside the cavity, being equal to half the
value found for a two-sided single mirror in one-dimensional
vacuum[4]. The second term, on the other hand, represents
the contribution of the intracavity field, which is, by inspec-
tion of Egs.(C5) and (C7), equal to half the value found
from taking the 1D limit in Eq(55), the factor of two being
related to the two polarizations taken into account in the
electromagnetic case.
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