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Quantum radiation in a plane cavity with moving mirrors
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We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the
nonrelativistic approximation. We show that low-frequency photons are generated in pairs that satisfy simple
properties associated to the plane geometry. We calculate the photon generation rates for each polarization as
functions of the mechanical frequency by two independent methods: on one hand from the analysis of the
boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an
effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each
allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length
and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the
moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.
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I. INTRODUCTION

In the presence of moving boundaries, the vacuum stat
the electromagnetic field may not be stable, which result
the generation of photons. This purely quantum effect, wh
has been known either as dynamical Casimir effect@1# or as
motion- @2# or mirror- @3# induced radiation is, like the usua
Casimir effect for standing mirrors, a striking illustration
the physical reality of the quantum vacuum field. Moreov
it may also be understood as a mechanical effect of
vacuum field. In fact, energy conservation entails that
radiation effect must be accompanied by a radiation reac
force that works against the motion of the mirror@3–6#, and
which is connected to the fluctuations of the usual~static!
Casimir force by the fluctuation-dissipation theorem@7–9#.

Several theoretical models have been analyzed. In
one-dimensional approximation~1D!, only one direction of
propagation is taken into account@10#. The quantum radia-
tion generated inside a 1D cavity with moving mirrors w
calculated in Refs.@11# and@12# in the particular case wher
the mechanical frequency satisfies a resonant condition
generation of photons in the lowest-order cavity field mod
whereas Ref.@2# considered a 1D cavity with partially trans
mitting mirrors and with no particular assumption abo
resonance, thereby allowing for a full analysis of the sp
trum of the radiation in a more general case.

A few three-dimensional~3D! models have been recent
analyzed in the literature, including moving dielectric ha
spaces@13,14#, and rotating@15# or collapsing dielectric
spheres@16#, the latter as a model for sonoluminescence.
the other hand, 3D results for the related problem of pho
generation in a medium with time-dependent material co
ficientse andm have been known for nearly ten years@17#.
Perhaps the simplest 3D illustration of motion-induced rad
tion is to consider a single perfectly reflecting plane mir
moving in free space. In the perturbative regime, which
associated to the nonrelativistic limit, it is possible to der
simple results for the spectra of radiation@18#, which display
interesting polarization-dependent features connected to
571050-2947/98/57~2!/1379~12!/$15.00
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angular distribution of the emitted photons. In this paper,
extend the method developed in Ref.@18# to analyze the
radiation emitted when two parallel plane perfectly reflecti
mirrors, initially a distanceL apart, oscillate along the direc
tion perpendicular to their surfaces, and according to a p
defined law imposed by some external apparatus. Such
ometry constitutes the simplest example, from a theoret
point of view, of a 3D cavity of lengthL. As compared to
the previous single-mirror case, we show that the orders
magnitude for the radiation rates generated in the plane
ity may be several orders of magnitude larger, provided t
L is small enough.

The paper is organized as follows. In Sec. II, we calcul
the photon numbers generated inside the cavity starting f
the boundary conditions of a moving perfectly reflecting m
ror. The method is based on the nonrelativistic and lo
wavelength approximations, which are closely connected
the context considered here@5#. In Sec. III we present an
alternative derivation of the results already found in Sec.
now employing usual time-dependent perturbation theory
an effective Hamiltonian that incorporates the motion eff
in terms of a coupling via radiation pressure. This heuris
approach is considerably simpler than the previous one, s
it circumvents the analysis of the moving boundaries. F
thermore, it explicitly unveils the two-photon nature of th
photon emission process, and allows for the computation
the dissipative component of the radiation pressure force
the moving mirrors. In Sec. IV, we consider a specific e
ample of motion in order to isolate the effect of a sing
mechanical frequencyv0 . We show that the photon numbe
obtained by two independent methods in Secs. II and
grow linearly in time, allowing us to define photon produ
tion rates, whose behavior as functions of the dimension
parameterv0L/pc is examined in detail. Section V contain
the concluding remarks.

II. BOUNDARY CONDITIONS AND INTRACAVITY
QUANTUM RADIATION

For the sake of clarity we first assume that one of
mirrors is at rest. The results in the more general case wh
1379 © 1998 The American Physical Society



b
e

he

m

r-
th

-

a
n

n

a
on

b
s.
se
in

th
e
e
he
-

e
gh
rr
a

s
n
gt

y,
ela-

rel-

e

d
eas
s
ller
he

of
n-
a

e
of
e-
e-

ns-

e-

1380 57D. F. MUNDARAIN AND P. A. MAIA NETO
both mirrors are set to move is a simple generalization to
presented later. The moving mirror oscillates along the dir
tion perpendicular to its surface (x direction!, around the
position x50, its instantaneous position being given by t
equationx5dq(t).

We decompose the electromagnetic fields into their co
ponents corresponding to the electric field parallel~TM! or
perpendicular~TE! to the plane of incidence. For each pola
ization it is possible to define a vector potential through
equations:

E~TE!52] tA
~TE!; B~TE!5¹3A~TE! ~1!

and

E~TM!5¹3A~TM!; B~TM!5] tA~TM!. ~2!

The units are mks withc51 and«051. The potentials sat
isfy the gauge equations

¹•A~TE!5¹•A~TM!50. ~3!

As shown in Appendix A, the boundary conditions for
perfectly reflecting moving mirror are very simple whe
written in terms ofA(TE) andA(TM) , due essentially to the
fact that they are both orthogonal to the direction of motio
We find

A~TE!
„x5dq~ t !,r i ,t…50 ~4!

and

„]x1dq̇~ t !] t…A~TM!
„x5dq~ t !,r i ,t…50, ~5!

wherer i5yŷ1zẑ. Furthermore, the fields satisfy the usu
homogeneous Dirichlet and Neumann boundary conditi
on the second mirror, which is at rest atx5L:

A~TE!~x5L,r i ,t !50; ]xA~TM!~x5L,r i ,t !50. ~6!

We want to solve the boundary value problem as defined
Eqs.~4!–~6! for the fields in the region between the mirror
The results for the fields outside the plane cavity are es
tially the same as those for a single moving mirror
vacuum, and hence may be found in Refs.@5,18#. The essen-
tial ‘‘ansatz’’ that allows us to employ the long-waveleng
approximation to solve the boundary value problem defin
by Eqs. ~4!–~6! is to assume that a given mechanical fr
quencyv0 induces the generation of photons only in t
spectral rangev,v0 . This property is satisfied by the non
relativistic models considered previously~see Refs.@2# and
@18#!. Moreover, it agrees with the intuitive notion that th
radiation effect is a nonadiabatic process, so that hi
frequency field modes cannot be excited since the co
sponding time scales are shorter than mechanical time sc
~quasistatic limit!. More importantly, we show later in thi
section that this property is fully satisfied for the model co
sidered here. As for the connection with the long-wavelen
approximation, we note that the amplitudedq0 of a sinu-
soidal nonrelativistic motion must satisfyv0dq0!1. When
combined with our ansatz, this condition leads todq0!l,
e
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wherel is the wavelength of the emitted radiation. Actuall
we may be slightly more general and consider any nonr
tivistic oscillatory motion aroundx50 such that its Fourier
components satisfy the above requirements~more specifi-
cally, we shall consider a weakly damped sinusoidal non
ativistic motion in Sec. IV!.

Accordingly, we look for perturbative solutions in th
form

A~TE!5Asta
~TE!1dA~TE! ~7!

and

A~TM!5Asta
~TM!1dA~TM!. ~8!

Asta
(TE) andAsta

(TM) are the fields satisfying the Dirichlet an
Neumann boundary conditions for standing mirrors, wher
dA(TE) and dA(TM) represent the first-order modification
induced by the motion. As we show below, they are sma
than the fields for the static configuration by a factor of t
order of dq/l. We expand the fields in Eqs.~4! and ~5! in
Taylor series aroundx50. Since thej th spatial derivative of
a monochromatic traveling wave satisfies

u]x
j Au<~2p/l! j uAu, ~9!

we find from Eq.~4! that the TE-polarized fielddA(TE) is
given up to first order indq/l by

dA~TE!~x50,r i ,t !52dq~ t !]xAsta
~TE!~x50,r i ,t !. ~10!

Note that we have neglected the termdq(t)]xdA(TE)(x
50,r i ,t) because, as shown by the above result,dA(TE) is
already of first order indq/l. Following the same method
we find the following result for TM polarization:

]xdA~TM!~x50,r i ,t !52„dq~ t !]x
21dq̇~ t !] t…

3Asta
~TM!~x50,r i ,t !, ~11!

where now we have also neglected terms of the order
dqdq̇/l. According to our ansatz, when considering the ge
eration of photons out of the vacuum field induced by
mechanical frequencyv0 , the relevant wavelengths ar
larger than 2p/v0 , and thus the neglected terms are all
the order of (dq̇)2. We have then transformed the homog
neous boundary conditions for the total fields at the tim
dependent positionx5dq(t) given by Eqs.~4! and ~5! into
inhomogeneous boundary conditions fordA(TE) anddA(TM)

at the positionx50, given by Eqs.~10! and~11!, which may
be solved by standard Green-function techniques.

We introduce periodic boundary conditions on the tra
verse planeyz over a surface of areaS. In the static case, the
normal mode decomposition of the fields in the interval b
tween the mirrors, 0<x<L, is then written as follows:

Asta
~TE!~r ,t !5 i (

l 51

`

(
n
A \

vn
l SL

sinS l p

L
xD

3eiki
n
•r ie2 ivn

l tan,l
~TE!ên1H.c. ~12!
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and for the TM polarization,

Asta
~TM!~r ,t !5 i (

l 50

`

(
n
A \

~11d l 0!vn
l SL

3cosS l p

L
xDeiki

n
•r ie2 ivn

l tan,l
~TM!ên1H.c.,

~13!

where

ki
n52p~nyŷ1nzẑ!/AS ~14!

represents the component of the wave vector parallel to
mirrors — the shorthandn5(ny ,nz) represents a pair o
integer numbers. Note that the two potentials describing
thogonal polarizations are written in terms of the same u
vector

ên5 x̂3
ki

n

ki
n

. ~15!

Throughout the paper, the sum overn — as in Eqs.~12! and
~13! — runs fromny52` and nz52` to ny5` and nz
5`. A given mode with indexes (n,l ) corresponds to a
standing wave along thex direction with wave vectorkx

l

5l p/L traveling along a direction parallel to the mirro
with wave vectorki

n . Its frequency is given by

vn
l 5AS l p

L D 2

1
~2p!2

S
@~ny!21~nz!

2#. ~16!

The bosonic field operators in Eqs.~12! and ~13! satisfy the
usual commutation relations

@an,l
j ,an8,l 8

j 8 #50 ~17!

and

@an,l
j ,~an8,l 8

j 8 !†#5dn,n8d l ,l 8d j , j 8, ~18!

where j 5TE, TM represents the polarization.
It is convenient to work with a mixed Fourier represen

tion defined as

An
~TE!@x,v#5

1

SE dtE d2r ie
2 iki

n
•r ieivtA~TE!~x,r i ,t !

~19!

with an analogous expression for TM polarization. T
Fourier-transformed fields representing the motion-indu
perturbation satisfy the 1D Klein-Gordon equation

„]x
21v22~ki

n!2
…dAn

~TE!@x,v#50, ~20!

„]x
21v22~ki

n!2
…dAn

~TM!@x,v#50, ~21!

and the boundary conditions atx50 andx5L are given by
Eqs.~6!, ~10!, and~11!. The resulting boundary value prob
he

r-
it

-

d

lem for TE polarization is solved with the aid of the appr
priate Dirichlet Green function:

Gn v
D ~x,x8!5

2

L (
l 51

`
sin~ l px/L !sin~ l px8/L !

~v6 i e!22vn
l 2

, ~22!

where the plus~minus! sign in Eq.~22! provides the retarded
~advanced! Green function. The fields with TM polarizatio
are obtained from the Neumann Green function:

Gn v
N ~x,x8!5

2

L (
l 50

`
cos~ l px/L !cos~ l px8/L !

~11d l 0!@~v6 i e!22vn
l 2#

. ~23!

We assume that the mirror moves during a finite tim
interval, then returning to its initial position atx50. As a
consequence, we may define input and output fields,A inn

(TE)

andAoutn
(TE) corresponding to the limit values of very small an

very large times~and likewise in the case of TM polariza
tion!, which satisfy the boundary conditions for a mirror
rest atx50. They are connected by a suitable combination
retarded~superscriptR) and advanced~superscriptA) Green
functions:

Aoutn
~TE!@x,v#5A inn

~TE!@x,v#1dAn
~TE!@x850,v#

3@]x8Gn v
D,R~x,x850!2]x8Gn v

D,A~x,x850!#.

~24!

The TM output fieldAoutn
(TM) is related to the TM input field

Ainn

(TM) by a similar expression:

Aoutn
~TM!@x,v#5Ainn

~TM!@x,v#2]x8dAn
~TE!@x850,v#

3@Gn v
N,R~x,x850!2Gn v

N,A~x,x850!#.

~25!

From Eqs.~22! and ~23! we find

]x8Gn v
D,R~x,x850!2]x8Gn v

D,A~x,x850!

52
2p2i

L2 (
l 51

`
l

vn
l
sinS l px

L D „d~v2vn
l !2d~v1vn

l !…,

~26!

and

Gn v
N,R~x,x850!2Gn v

N,A~x,x850!

52
2p i

L (
l 50

`
cos~ l px/L !

~11d l 0!vn
l

„d~v2vn
l !2d~v1vn

l !….

~27!

In general, there are no monochromatic solutions for
problem of moving boundaries, and hence it is not poss
to write a normal mode decomposition for the field in th
case. However, sinceA inn

TE andAoutn
TE satisfy the boundary con
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ditions for two standing mirrors atx50 andx5L, we may
write their normal mode decompositions as in Eqs.~12! and
~13!, in terms of input and output bosonic operatorsainn

~TE! and

aoutn
(TE) ~at this point our method is quite similar to the a

proach developed in Ref.@17# for the problem of time-
dependent material coefficients!. We then take the Fourie
transform of Eq.~10! and replace the result, jointly with Eq
~26!, into Eq. ~24! in order to find the linear transformatio
between the input and output TE bosonic operators:
-
e

t is
igh

or

g
u

.

ho
gn
th
q
n

aoutnl

~TE! 5ainnl

~TE!1
i

L (
l 851

~ l p/L !l 8p/L

Avn
l vn

l 8
@dq@vn

l 2vn
l 8#ainnl 8

~TE!

1dq@vn
l 1vn

l 8#~ain2nl 8

~TE! !†#, ~28!

wheredq@v# is the Fourier transform ofdq(t). The relation
between TM operators is derived from Eqs.~11!, ~25!, and
~27! in a similar way:
aoutnl

~TM!5ainnl

~TM!2
i

L (
l 850

@~11d l 0!~11d l 80!#21/2H ~ki
n!22vn

l vn
l 8

Avn
l vn

l 8
dq@vn

l 2vn
l 8#ainnl 8

~TM!

1
~ki

n!21vn
l vn

l 8

Avn
l vn

l 8
dq@vn

l 1vn
l 8#~ain2nl 8

~TM! !†J . ~29!
of
n
irs.
this
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From Eqs.~28! and~29! we may readily derive the num
ber of photons generated inside the cavity as a quantum
fect of the mirror’s motion. As discussed below, the effec
associated to the creation operators appearing in the r
hand side~rhs! of Eqs. ~28! and ~29!. We assume that the
field is initially in the vacuum state. The motion of the mirr
then excites a given number of photonsNn,l

j with indexes
n,l and polarizationj . Nn,l

j is given by the correspondin
output number operator averaged over the input vacu
state:

Nn,l
j 5^0,inu~aoutnl

j !†aoutnl

j u0,in&. ~30!

Replacing Eqs.~28! and ~29! into ~30! provides the photon
numbers for each polarization:

Nn,l
~TE!5

1

L2 (
l 851

S l p

L D 2S l 8p

L D 2 1

vn
l vn

l 8
udq@vn

l 1vn
l 8#u2,

~31!

and

Nn,l
~TM!5

1

L2 (
l 850

@~ki
n!21vn

l vn
l 8#2

~11d l 0!~11d l 80!vn
l vn

l 8

3udq@vn
l 1vn

l 8#u2. ~32!

Since the frequenciesvn
l 8 are positive, we infer from Eqs

~31! and ~32! that a given mechanical frequencyv0 gener-
ates photons with frequenciesvn

l <v0 , thereby justifying
the ansatz employed in this section.

From the above results we may directly calculate the p
ton production rates and then estimate the order of ma
tude of the quantum radiation effect. Before addressing
question, however, we present a second derivation of E
~31! and ~32!, which is based on usual time-depende
f-

t-

m

-
i-
is
s.
t

Hamiltonian perturbation theory. Note that the invariance
the rhs of Eqs.~31! and~32! with respect to the permutatio
of l and l 8 suggests that the photons are emitted in pa
That this is indeed the case is more clearly shown by
alternative approach, to be presented in the next section

III. CONNECTION WITH RADIATION PRESSURE

Rather than considering the boundary conditions o
moving mirror, we follow in this section the heuristic ap
proach, first presented in Ref.@6#, in which the effect of the
mirror’s motion is modeled by taking the perturbatio
Hamiltonian

dH52dq~ t !F, ~33!

whereF is the field quantum operator representing the fo
on the moving mirror. Accordingly,dH corresponds to the
energy supplied to the field by means of the vacuum rad
tion pressure effect. The total Hamiltonian of the field is

H5H ~0!1dH, ~34!

where the unperturbed HamiltonianH (0) is written in terms
of the bosonic field operators for a standing mirror@see Eqs.
~12! and ~13!# as

H ~0!5(
n,l

(
j 5TE,TM

\vn
l @~anl

j !†anl
j 11/2#. ~35!

As discussed elsewhere@10#, a Hamiltonian approach is no
rigorously consistent with the model of perfect reflectivene
considered here. However, this model may be considere
an approximation for dielectric mirrors with large refractio
indexn — for which a rigorous Hamiltonian model is avai
able@3#, although such correspondence is not yet settled~ac-
cording to Ref.@13#, some unexpected results show up wh
taking the limit of largen). In any case, the formalism pre
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sented in this section is justified by comparing the result
provides with those obtained in Sec. II.

The force operator is the integral over the surface of
mirror ~at its rest position atx50) of thexx component of
the Maxwell stress tensor:

F5
1

2E d2r i@Ex~01!22Bi~01!2#, ~36!

where the limitx→0 is taken from positive values ofx as
indicated above~as in the previous section, we do not an
lyze the effect of the field outside the plane cavity!. SinceF
is a quadratic operator on the field, the perturbation Ham
toniandH excites pairs of photons as in the problem of pa
metric amplification by ax (2) nonlinear medium. Thus, we
consider a perturbed field state of the form

uC&5 (
$nl j ,n8l 8 j 8%

c$nl j ,n8l 8 j 8%~ t !u$nl j ,n8l 8 j 8%&1b~ t !u0&,

~37!

where we sum over all two-photon statesu$nl j ,n8l 8 j 8%&
~the symbolsj and j 8 representing the polarizations of th
photons in a given pair$nl j ,n8l 8 j 8%). Note that each pair
$nl j ,n8l 8 j 8% is included only once in Eq.~37!, regardless
of the ordering of the indices.

We assume that att→2` the field is in the vacuum state
so that the two-photon amplitudes are initially zer
c$nl j ,n8l 8 j 8%(2`)50,b(2`)51. We compute the buildup
of the two-photon amplitudec$nl j ,n8l 8 j 8%(t) from standard
first-order perturbation theory:
it

e

-

l-
-

:

c$nl j ,n8l 8 j 8%~ t !52
i

\E2`

t

^nl j ,n8l 8 j 8udH~ t8!u0&

3expF i

\
~Enl ,n8l 8

~0!
2Evac

~0!!t8Gdt8, ~38!

with

Enl ,n8l 8
~0!

2Evac
~0!5\~vn

l 1vn8
l 8! ~39!

representing the difference between the~unperturbed! ener-
gies of the final and initial states. As discussed in the pre
ous sections, it is meaningless to discuss two-photon am
tudes as long as the mirror is moving. Accordingly, we m
taket→` in Eq. ~38! in order to have a consistent picture
the quantum radiation effect. Then, replacing Eqs.~33! and
~39! into Eq. ~38! yields

c$nl j ,n8l 8 j 8%~`!5
i

\
^nl j ,n8l 8 j 8uFu0&dq@vn

l 1vn8
l 8#.

~40!

In order to compute the matrix element appearing in
rhs of Eq.~40!, we write the electric and magnetic fields
Eq. ~36! in terms of the potentialsA(TE) andA(TM) . It is
convenient to use the Fourier series representation define

A~TE!~x,r i ,t !5(
n

An
~TE!~x,t !exp~ iki

n
•r i!, ~41!

and by an equivalent expression for the TM potentialA(TM) .
Then, the force operator is written as
he plane
that it has
F5
S

2(n
@~ki

n!2An
~TM!~01,t !A2n

~TM!~01,t !2] tAn
~TM!~01,t !] tA2n

~TM!~01,t !2]xAn
~TE!~01,t !]xA2n

~TE!~01,t !#. ~42!

From Eq.~42!, we obtain

^nl TE,n8l 8 TMuFu0&50. ~43!

Therefore, the photons belonging to a given emitted pair have the same polarization. This is a general property of t
symmetry of the problem, rather than a consequence of the specific model considered in this paper. Note, however,
been recently shown that TE-TM pairs may be radiated in the case of lateral motion of the mirror@14#.

Using the normal mode decomposition of the field operators as given by Eqs.~12! and~13!, we may calculate the TE-TE
and TM-TM matrix elements. We first find

^nl TE,n8l 8TEu]xAN
~TE!~01,t !]xA2N

~TE!~01,t8!u0&5
\

SL

~ l p/L !l 8p/L

Avn
l vn

l 8
~dn,Ndn8,2Nei ~vn

l t1vn
l 8t8!1dn,2Ndn8,Nei ~vn

l 8t1vn
l t8!!,

~44!

and

^nl TM,n8l 8 TMuAN
~TM!~01,t !•A2N

~TM!~01,t8!u0&

5
\

SL
~11d l 0!~11d l 80!vn

l vn
l 8~dn,Ndn8,2Nei ~vn

l t1vn
l 8t8!1dn,2Ndn8,Nei ~vn

l 8t1vn
l t8!!, ~45!

where use was made of the propertyvn
l 5v2n

l . Combining Eqs.~44! and ~45! with Eq. ~42! leads to
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^nl TE,n8l 8 TEuFu0&52
\

L

~ l p/L !l 8p/L

Avn
l vn

l 8
dn,2n8, ~46!

and

^nl TM,n8l 8 TMuFu0&5
\

L

~ki
n!21vn

l vn
l 8

~11d l 0!~11d l 80!Avn
l vn

l 8
dn,2n8. ~47!

From Eqs.~46! and~47!, we may immediately calculate the amplitudes of creation of pairs of photons by combining
with Eq. ~40!. Here we write the results obtained in Appendix B for the more general case where both mirrors are mov
that the first mirror is atx5dq1(t) and the second mirror atx5L1dq2(t). The resulting creation probabilities are

uc$nl TE,n8l 8TE%u
25

1

L2S l p

L D 2S l 8p

L D 2 1

vn
l vn

l 8
udq1@vn

l 1vn
l 8#2~21! l 1l 8dq2@vn

l 1vn
l 8#u2dn,2n8 ~48!

and

uc$nl TM,n8l 8TM%u
25

1

L2

@~K i
n!21vn

l vn
l 8#2

~11d l 0!~11d l 80!vn
l vn

l 8
udq1@vn

l 1vn
l 8#2~21! l 1l 8dq2@vn

l 1vn
l 8#u2dn,2n8. ~49!
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Note that the photons in a given pair have opposite value
ki

n , which is again a consequence of the plane symm
@18#. As shown in Appendix C, Eqs.~44!–~49! must be
slightly modified when considering the particular valuen
5n850 ~which corresponds to the 1D limit of our 3D for
malism, since such modes propagate along thex direction
and do not contain any dependence on the transverse c
dinatesy andz).

According to Eqs.~48! and ~49!, the joint motion of the
two mirrors selects the longitudinal modes according to
parity of the indicesl . When dq152dq2 , which corre-
sponds to the ‘‘elongation mode’’ of the cavity, the two ph
tons in a pair correspond tol values of the same parity, th
opposite taking place when the motion is such that the ca
length is kept constant (dq15dq2). This property is a
straightforward generalization of the situation found in on
dimensional cavities@2#. It shows that the radiation effec
should not be interpreted simply as a consequence of ch
ing the optical cavity length, since it also takes place wh
there is no relative motion of the mirrors.

We may compute the average number of photons i
given cavity mode from

Nn,l
j 5^Cu~anl

j !†anl
j uC&. ~50!

Inserting Eq.~37! into Eq. ~50! yields

Nn,l
j 5(

l 8
uc$nl j ,2nl 8 j %u

2. ~51!

Equations~48! and ~49!, in the particular case ofdq250,
jointly with Eq. ~51! provide results for the photon numbe
in full agreement with Eqs.~31! and ~32! of the previous
section. As for the particular case withn50, Eq. ~51! also
needs some slight modification in order to include the c
tribution of the degenerate two-photon statesu0l ,0l &. As
of
ry

or-

e

ty

-

g-
n

a

-

shown in Appendix C, there is agreement with the resu
found in Sec. II in this case as well. We then conclude t
the heuristic approach developed in this section yields
same final expressions for the number of photons produ
in a given cavity mode. Moreover, it explicitly shows th
the photons are generated in pairs, the photons in a
having the same polarization and opposite values ofkin .

With the aid of the linear response formalism@19#, the
perturbation Hamiltonian as given by Eq.~33! may be also
applied to compute the dissipative part of the radiation pr
sure forcedF exerted on the moving mirrors@6–9#. Such
dissipative force is the mechanical effect of the quantum
diation process, and hence must be interpreted as a radi
reaction force. Since it generalizes Casimir’s result for a s
ation where~at least! one of the mirrors is moving, it has
been called motional Casimir force in Ref.@9#, where a one-
dimensional calculation is presented for the case of parti
transmitting mirrors. We consider again the case where
of the mirrors is at rest, and then write the Fourie
transformed forcedF@v# as

dF@v#5x@v#dq@v#. ~52!

As discussed in Ref.@6#, linear response theory provides
result for the imaginary part of the susceptibility functio
x@v#, which corresponds to the dissipative component of
force, in terms of the functionCFF@v# representing the spec
trum of fluctuations of the force operator on a standing m
ror:

Imx@v#5
1

2\
~CFF@v#2CFF@2v#!. ~53!

The spectrum of fluctuationsCFF@v# is defined as the Fou
rier transform of the force correlation function. It may b
written in terms of the two-photon matrix elements obtain
above as follows@8#:
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CFF@v#52p (
$nl j ,n8l 8 j 8%

d~v2vn
l 2vn8

l 8!

3u^nl j ,n8l 8 j 8uFu0&u2, ~54!

where, as in Eq.~37!, each pair$nl j ,n8l 8 j 8% is included
only once~regardless of the ordering!.

The matrix elements of the force being given by Eq
~43!, ~46!, and~47!, we replace the rhs of Eq.~54! into Eq.
~53! to find

Imx@v#5
p\

2L2 (
n,l ,l 8

3
~ l p/L !2~ l 8p/L !21@~ki

n!21vn
l vn

l 8#2

~11d l 0!~11d l 80!vn
l vn

l 8

3@d~v2vn
l 2vn

l 8!2d~v1vn
l 1vn

l 8!#. ~55!

Equation~55! provides the result for the dissipative comp
nent of the force exerted on the mirror. The term w
n50 in Eq. ~55! is particularly interesting because it allow
for a comparison with the results obtained in Ref.@9# for a
1D scalar field. As discussed in Appendix C, we find that
this case the two polarizations@represented by the two term
in the rhs of Eq.~55!# give identical contributions to the
dissipative susceptibility, which are in agreement with t
perfectly reflecting limit of the 1D susceptibility functio
derived in Ref.@9#.

As mentioned above, Imx@v# is directly related to the
number of radiated photons by energy conservation. Ind
comparing Eqs.~31! and ~32! with Eq. ~55!, we find

(
n,l

\vn
l ~Nn,l

~TE!1Nn,l
~TM!!5E dv

2p
v~ Imx@v#!udq@v#u2.

~56!

Equation~56! shows that the energy supplied to the field
the radiation pressure forcedF@v#, given by its rhs, is equa
to the total radiated energy. In the next section, we discus
detail the properties of the radiation by taking the spec
example of sinusoidal motion.

IV. PHOTON PRODUCTION RATES

In this section, we discuss in some detail the propertie
the radiation emitted inside the cavity, starting from the e
pressions for the two-photon probabilities given by Eqs.~48!
and~49!, which were shown to agree with the results for t
photon numbersNn,l obtained directly from the moving
boundary conditions and given by Eqs.~31! and ~32!. We
assume that the second cavity mirror is at rest atx5L ~hence
dq250), and that the first mirror oscillates aroundx50 ac-
cording to the law

dq~ t !5dq0e2utu/Dtcos~v0t !, ~57!

where the amplitudedq0 and frequencyv0 satisfy the non-
relativistic conditionv0dq0!1. Moreover, we assume tha
the damping timeDt is much larger than the period of th
mechanical oscillation:
.

e

d,

in
c

of
-

v0Dt@1.

We first consider the 1D limit of the results found in Sec
II and III, by picking up the photon pairs withn50. Refer-
ences@11# and@12# presented a 1D nonperturbative treatme
for the situation where the mechanical frequencyv0 satisfies
the resonance condition

v05
p~ l 1l 8!

L
~58!

for two longitudinal cavity modesl and l 8 ~Ref. @12# con-
sidered the particular casel 5l 851, whereas Ref.@11# also
considered the casel 52, l 851). We may discuss the re
lation between such formalism and the one presented in
paper by taking the Fourier transform of Eq.~57! and com-
puting the two-photon probabilities in the resonant case~we
omit explicit reference to polarization while discussing t
1D limit!. As shown in Appendix C, we find

uc$0l ,0l 8%u
25

p2l l 8

~11d l l 8!L
2
~dq0!2Dt2. ~59!

According to Eqs.~51! and ~59!, the number of photons
grows quadratically in time in this case. The same time
pendence may be obtained as the short time limit of the
nonperturbative results found in Refs.@11# and @12#. Such
behavior is related to the property that the spectrum of a
perfect cavity is discrete, and it was also obtained in
model of a 3D perfect closed cavity system discussed in R
@12#. In the case of a continuous spectrum, on the other ha
the emission probabilities grow linearly in time as long
the perturbative approximation is valid, which is well know
from the derivation of Fermi’s ‘‘golden rule,’’ so that in th
end the meaningful physical quantities are the photon p
duction rates,as we show below. That is the case of a p
tially transmitting cavity, even in the 1D approximation~see
Ref. @2#!, as well as of a 3D open cavity, as, for instance,
two parallel infinite plates considered in this paper, even
der the assumption~considered in this paper! of perfect re-
flectiveness.

In the 3D case, we have to sum over all possible value
kin in order to compute the probabilitydPl 1 ,l 2

j for emission

of a pair of photons with indicesl 1 andl 2 and polarization
j . Sincekin is actually a continuous variable, we replace

(
n

5
S

~2p!2E d2ki .

The probabilities do not depend on the direction ofkin ,
hence we find, first for TE polarization,

dPl 1 ,l 2

TE 5
S

2pE0

`

dv vuc$l 1 TE ,l 2TE%~v!u2, ~60!

whereuc$l 1TE,l 2TE%(v)u2 is obtained from Eq.~48!:



re

e

se
o
ul

nd
to
in
tw

itu
-

v

e
t

-

-
r-
one

t a
te-

of
c-

bil-
h

he

en

se

E
the
two
en-
ts

1386 57D. F. MUNDARAIN AND P. A. MAIA NETO
uc$l 1TE,l 2TE%~v!u25
1

L2S l 1p

L D 2S l 2p

L D 2 udq@v1ṽ l 1l 2
#u2

vṽ l 1l 2

,

~61!

where

ṽ l 1l 2
5Av22S l 1p

L D 2

1S l 2p

L D 2

represents the frequency of the ‘‘twin’’ photon of indexl 2
and which is emitted simultaneously with the photon of f
quencyv and indexl 1 . We perform the integral in Eq.~60!
in the limit of very largeDt, so thatdq@v# is sharply peaked
aroundv0 . In this case, each pairl 1 ,l 2 determines com-
pletely the frequenciesv1 andv2 of the two photons. More-
over, it also implies well-defined values for the angles b
tween the direction of emission and thex direction, which
we denote asu1 andu2 . In fact, we have

v11v25v0 , ~62!

as in the problem of parametric amplification by ax (2) non-
linear medium;

v1sinu15v2sinu2 ~63!

expresses the plane symmetry of the cavity, and is loo
analogous to the phase matching condition in nonlinear
tics. Finally we have two additional equations, which res
from the boundary conditions on the two cavity mirrors:

v icosu i5
l ip

L
, ~64!

with i 51,2. Equations~62!–~64! may be solved forv1 , v2 ,
u1, andu2 as functions ofv0 , l 1, andl 2 . We find

v15
v0

2 S 11
l 1

22l 2
2

b2 D , ~65!

where

b5v0L/p

is the ratio between the cavity round-trip time of flight a
the mechanical period. Accordingly, the spectrum of pho
emission, which is continuous in the case of a single mov
mirror @18#, becomes discrete as a consequence of the
additional conditions, given by Eq.~64!, and which are as-
sociated to the presence of the second mirror that const
the cavity. For a given value ofb, the set of emitted frequen
cies is obtained from Eq.~65! by taking all positive integer
values ofl 1 and l 2 in the range defined by

l 11l 2<b. ~66!

In the case of TM polarization, the valuesl 150 and l 2
50 are also allowed — they correspond to traveling wa
modes propagating parallel to the plane of the mirror~wave-
guide modes!. As for the spatial direction of emission, th
photons are emitted along directions defined by a se
cones~whose axis of symmetry is thex direction!, each pair
-

-

ly
p-
t

n
g
o

te

e

of

l 1 , l 2 defining allowed values foru1 andu2 according to
Eqs. ~62!–~64!. As an example, consider the valueb
52A2. Sinceb,3, the only allowed values for TE polar
ization are l 15l 251, corresponding to a pair withv1
5v25v0/2, andu15u2545°, which is, however, not emit
ted in the case of rigid motion of the cavity. For TM pola
ization, on the other hand, there are two additional pairs:
with l 151, l 250 ~rigid motion!, giving v159v0/16, v2
57v0/16, u1'51°, andu2590°; the other withl 15l 2
50 ~elongation motion!, giving v15v25v0/2, and u1
5u2590°.

We compute the photon production rate for emission a
given pair of allowed frequencies assuming that the in
grand in Eq.~60! is the product of a slowly varying function
of v with the sharply peaked squared Fourier transform
dq(t). This amounts to replacing the latter by a delta fun
tion, so that from Eq.~57! we derive

udq@v1ṽ l 1l 2
#u25

p

2
~dq0!2Dt

v02v1

v0
d~v2v1!,

~67!

and noting thatv5v1 implies ṽ l 1l 2
5v2 , we find the pho-

ton production rate of TE pairs with indicesl 1 ,l 2 by re-
placing Eq.~67! into Eq. ~61! and performing the integral in
Eq. ~60!:

Wl 1 ,l 2

~TE! 5
dPl 1 ,l 2

~TE!

Dt
5

S

4L2S l 1p

L D 2S l 2p

L D 2 ~dq0!2

v0
. ~68!

Note that the linear time dependence found for the proba
ity dPl 1 ,l 2

(TE) originates from integrating over the whole widt

of udq@v#u2, instead of taking just the peak value as in t
derivation of the 1D result given by Eq.~59!. For TM pho-
tons, we find, starting from Eq.~49! and following the same
method,

Wl 1 ,l 2

~TM! 5
S

4L2

@v0v12~ l 1p/L !2#2

~11d l 10!~11d l 20!

~dq0!2

v0
. ~69!

We may also derive the total production rate for a giv
value of b by adding over all values ofl 1 and l 2 in the
range defined by Eq.~66!:

Wj5 (
l 1 ,l 2

l 11l 2<b

Wl 1 ,l 2

j , ~70!

with j 5TE,TM. In the Fig. 1 we plotW(TM) andW(TE), both
divided by the total production rate of TE photons in the ca
of a single moving mirror~see Ref.@18#!,

Wsingle
~TE! 5

1

720p2
S~dq0!2v0

5 , ~71!

as functions ofb. The curves displayed in the figure for T
and TM polarizations are similar to those representing
decay rate of a classical dipole at the midpoint between
perfect plane mirrors along the direction parallel and perp
dicular to the mirrors, respectively. Underlying both effec
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are the properties of the vacuum field in the case of a pl
cavity geometry and the corresponding mode spectral den
function @20#. The most striking differences between the tw
problems are related to the two-photon nature of the quan
radiation effect considered in this paper~that explains, for
instance, why, as displayed in the figure, the TE photon p
duction rate vanishes forb,2, whereas the parallel dipol
decay rate vanishes forb,1 only!.

As in the problem of a decaying dipole, the photon p
duction rates jump at integer values ofb. This originates
from adding the contribution of a new pairl 1 ,l 2 within the
range defined by Eq.~66!. The jumps for TE polarization are
comparatively larger, which may be understood from
fact, discussed in detail in Ref.@18# in the case of a single
mirror, that TE photons are preferably emitted near thex
direction, thus being more sensitive to the discrete natur
the wave vector along that direction. For both polarizatio
the jumps become smaller asb increases, and then th
curves approach their asymptotic values forb→`, which
are indicated by the dashed lines in the figure. As expec
they correspond to the photon production rates for a sin
moving mirror — the rate for TM polarization being 1
times larger than the rate for TE polarization, given by E
~71!. Alternatively, the asymptotic limits may be derived d
rectly from the analytical results given by Eqs.~68! and~69!
if we replace the sum in Eq.~70! by an integral. In fact,
performing the integral in the case of TE polarization lea
to the expression given by Eq.~71!, whereas the result fo
TM polarization comes with an extra factor of 11.

Of special interest is the behavior of the TM photon p
duction rate in the range 0,b,1, where, according to the
figure,W( TM) increases strongly asb decreases to zero. Th
precise dependence onb may be obtained by replacingv1
5v25v0/2 in Eqs.~69! and ~70! and comparing with Eq.
~71!:

FIG. 1. Total production rates of TE~a! and TM ~b! photons as
functions of b5v0L/p, which represents the ratio between t
round-trip time of flight and the mechanical period. The scale of
vertical axis is such that the value one corresponds to the gener
rate of TE photons for a single moving mirror. The dashed lin
provide the asymptotic limits for largeb. They show that the pho
ton production rates approach the values corresponding to the
of a single moving mirror in this limit~note that the single mirror
TM photon generation rate is larger than the single mirror TE r
by a factor of 11).
e
ity
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le
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-

W~TM!5W0,0
~TM!5

45

4

Wsingle
~TE!

b2
. ~72!

Such dependence withb suggests that the most favorab
orders of magnitude occur forb,1. In this range, the pho
tons have frequencyv0/2 and propagate along direction
parallel to the mirrors. Following Refs.@2# and @18# we re-
write the photon production rate given by Eq.~72! as

W~TM!5
1

16

S

l0
2S vmax

c D 2 v0

b2
, ~73!

wherevmax5v0dq0 is the maximum value of the velocity
andl052pc/v0 is half the value of the wavelength of th
emitted photons~we have reintroduced the speed of lightc).
As in Ref. @2#, we take vmax/c51027 and v052p
31010 sec21, yieldingl053 cm. A real experiment would
hardly employ moving mirrors with transverse dimensio
larger than that, thus we takeS/l0

2'1 in order to have a
crude estimate of the orders of magnitude, even though
fraction effects at the borders of the mirrors, not taken in
account in this paper, are of course relevant in this ran
Finally, we takeL51 mm, giving b'1024. Equation~73!
then yieldsW( TM)'43103 photons/sec.

V. CONCLUSION

We have calculated the photon production rates fo
plane cavity with moving mirrors by two different method
In the first approach, we consider the boundary conditio
for perfectly reflecting moving mirrors in the long
wavelength approximation and assuming the field modifi
tion due to the motion to be small. We then obtain an inp
output transformation for the field bosonic operators t
allows us to compute the number of emitted photons. In
second approach, we start from an effective perturba
Hamiltonian and apply usual first-order perturbation theo
This method is considerably simpler since the expressi
for the fields scattered by a moving mirror are not requir
and establishes a clear connection between the photon e
sion effect and vacuum radiation pressure. Furthermore
explicitly unveils the fact that the photons are emitted
pairs~that satisfy simple properties expressing the symme
of the plane geometry!, essentially because the effect is co
tained in the time evolution of the field state vectors rath
than in the evolution of the field operators. The two metho
provide the same results for the photon production ra
hence justifying the somewhat heuristic Hamiltonian a
proach.

Radiation is generated even when the distance betw
the mirrors is kept constant, showing that the effect is
simply a consequence of modulating the optical cav
length. When the initial cavity lengthL is much smaller than
2pc/v0 ~we have considered in detail the example of a q
sisinusoidal motion at frequencyv0), however, radiation is
emitted only in the case of relative motion of the mirror
and the generation rate is enhanced asL decreases. In this
regime, the photons are generated at the subharmonic
quencyv0/2, propagate parallel to the plane of the mirro
and are TM polarized. Such an enhancement effect is clo
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related to the properties of the radiation emitted by a sin
mirror in free space@18#, whose spectrum for TM polariza
tion is sharply peaked around the frequencyv0/2.

The orders of magnitude for the photon production r
found in this paper suggest that the motion-induced quan
radiation effect may be observed under certain conditio
However, a careful analysis of the diffraction effects near
border of the mirror would be necessary if a quantitat
comparison with experimental results is required, since
field wavelengths involved would probably be of the order
the transverse dimensions of the mirrors.
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APPENDIX A: BOUNDARY CONDITIONS
FOR A PERFECT MOVING MIRROR

In this Appendix, we derive the boundary conditions
the case of a perfect plane mirror moving along its norm
direction. We take a Lorentz frameS8(t0) whose trajectory
in the laboratory frameS is given by x5dq̇(t0)(t2t0)
1dq(t0), so thatS8(t0) represents the instantaneously c
moving frame at timet0 . Quantities measured inS8(t0) are
denoted by primed letters. The space-time coordinate
S8(t0) are related to those inS by

x5g„x81dq̇~ t0!t8…1dq~ t0!, r i85r i ,

t5g„t81dq̇~ t0!x8…1t0 , ~A1!

whereg5@12@dq̇(t0)#2#21/2. The electromagnetic fieldsE8
andB8 satisfy the following conditions:

x̂3E8~x850,r i8 ,t850!50; x̂•B8~x850,r i8 ,t850!50.
~A2!

In the case of TE polarization, the condition for the elect
field yields

] t8A
~TE!8~x850,r i8 ,t850!50, ~A3!

and sincex̂•A(TE)850, we have from Eqs.~A1! and ~A3!

g„dq̇~ t0!]x1] t…A
~TE!

„x5dq~ t0!,r i ,t5t0…

5gdtA
~TE!

„x5dq~ t5t0!,r i ,t5t0…50 ~A4!

wheredt represents the total time derivative. Sincet0 is ar-
bitrary, Eq.~A4! implies thatA(TE)

„x5dq(t),r i ,t… must as-
sume a constant value, which is taken to be zero as in
~4!.

As for TM polarization, the condition on the electric fie
given by Eq.~A2! jointly with Eq. ~2! yield

]x8A
~TM!8~x850,r i8 ,t850!50. ~A5!

On the other hand, we may write the lhs of Eq.~A5! in terms
of unprimed quantities by using again Eq.~A1! and the fact
that x̂•A(TM)850:
le

e
m
s.
e

e
f

l

-

in

q.

]x8A
~TM!8~x850,r i8 ,t850!

5g„]x1dq̇~ t0!] t…A ~TM!
„x5dq~ t0!,r i ,t5t0…,

~A6!

and then we obtain the boundary condition as given by
~5! from Eqs.~A5! and ~A6!.

APPENDIX B: TWO MOVING MIRRORS

In this Appendix, we consider the more general ca
where both mirrors move along thex direction. The first
mirror is at x5dq1(t), whereas the second one is atx5L
1dq2(t). As before,L represents the initial cavity length
For TE polarization, the boundary condition at the seco
mirror now reads

A~TE!
„L1dq2~ t !,r i ,t…50, ~B1!

which yields, in the long-wavelength and perturbative a
proximations, the following additional boundary conditio
for the motion-induced perturbationdA(TE):

dA~TE!~L,r i ,t !52dq2~ t !]xAsta
~TE! ~x5L,r i ,t !. ~B2!

Working in the mixed reciprocal space and using the norm
mode decomposition ofAsta

(TE) as given by Eq.~12!, Eq. ~B2!
leads to

dAn
~TE!~L,v!52 i (

l 51

`

~21! l S l p

L DA \

vn
l SL

3~dq1@v2vn
l #anl

~TE!1dq2@v1vn
l #

3~a2nl
~TE! !†!ên . ~B3!

Of particular interest in Eq.~B3! is the factor cos(l p)5

(21)l that comes from evaluating thex derivative ofAsta
(TE)

at x5L. Equation~B3! jointly with Eq. ~10! defines a bound-
ary value problem to be solved with the aid of the Gre
functions given by Eq.~22!. We first employ the retarded
Green functionGn v

D,R(x,x8) to solve for the total fieldAn
(TE)

in terms of the input fieldA in, n
(TE) :

An
~TE!~x,v!5A in,n

~TE!~x,v!

1dAn
~TE!~L,v!]x8Gn

D,R~x85L,x;v!

2dAn
~TE!~0,v!]x8Gn

D,R~x850,x;v!.

~B4!

As in Sec. II, we also solve Eq.~B3! in terms of the output
field Aout, n

(TE) with the aid of the advanced Green functio
Gn v

D,A(x,x8). The connection between output and input fiel
is then provided by the difference



a
om

ns
to

nt
s

m

he

lts
ith

of
h

ha
d
e

at
r

ions

wo-

li-
ues

nd

m-
r

-

fied
tes,

t of

en

o-

of

e-

q.
si-

57 1389QUANTUM RADIATION IN A PLANE CAVITY WIT H . . .
]x8Gn v
D,R~x85L,x!2]x8Gn v

D,A~x85L,x!

52
2p i

L (
l 51

`

~21! l S l p

L D sinS l px

L D 1

vn
l

3@d~v2vn
l !2d~v1vn

l !#. ~B5!

As explained in Sec. II, we derive the linear transform
tion between output and input TE bosonic operators fr
Eqs.~B3!–~B5!

aout,nl
~TE! 5ain,nl

~TE! 2
i

L (
l 851

` S l p

L D S l 8p

L D 1

~vn
l vn

l 8!1/2

3$~dq1@vn
l 2vn

l 8#2(21! l 1l 8dq2@vn
l 2vn

l 8# !

3ain,nl 8
~TE!

1~dq1@vn
l 1vn

l 8#

2~21! l 1l 8dq2@vn
l 1vn

l 8# !~ain,2nl 8
~TE!

!†%. ~B6!

From Eq. ~B6! we may calculate the number of photo
Nn,l

(TE) by taking the average of the output number opera
over the input vacuum state as in Eq.~30!. For TM polariza-
tion, we extend the method employed in Sec. II to take i
account the motion of the second mirror exactly as discus
above for TE polarization.

Alternatively, we may compute the photon numbers fro
the effective perturbation Hamiltonian

dH52dq1~ t !F12dq2~ t !F2 , ~B7!

whereFi is the force exerted on mirrori by the vacuum field.
Following the procedure outlined in Sec. III, we derive t
two-photon creation probabilities given by Eqs.~48! and
~49!. As in the case of a single moving mirror, the resu
obtained through this method are in full agreement w
those obtained directly from the boundary conditions.

APPENDIX C: PHOTONS EMITTED
ALONG THE NORMAL DIRECTION

In this Appendix, we consider in detail the contribution
the degenerate two-photon states in the derivation of the p
ton numbers and of the susceptibility function. First note t
degenerate two-photon states necessarily correspon
propagation along the direction perpendicular to the plan
the mirror, i.e., they are of the formun50l j ,n50l j &. The
degenerate two-photon matrix elements of the force oper
are calculated from the representation of the force operato
terms of the vector potentials, given by Eq.~42!, and from
the normal mode decompositions given by Eqs.~12! and
~13!:

^n50l TE,n50l TEuFu0&

52^n50l TM,n50l TMuFu0&52
l p\

A2L2
. ~C1!
-

r

o
ed

o-
t
to

of

or
in

These results are smaller than the values of the express
given by Eqs.~46! and ~47! at n50 andl 5l 8 by a factor
of A2. From them, we easily compute the degenerate t
photon probabilities by using Eq.~40!, allowing us to write
the correct expression forn50:

uc$0l TE,0l 8TE%u
25uc$0l TM,0l 8TM%u

25
1

~11d l l 8!L
2S l p

L D
3S l 8p

L D UdqF l p

L
1

l 8p

L GU2

. ~C2!

According to Eq.~C2!, the degenerate two-photon probabi
ties are one-half the value found when replacing the val
n50, l 5l 8, anddq250 in Eqs.~48! and ~49!.

The contribution of degenerate two-photon states is fou
from Eq. ~50!:

N0,l
j 5 (

l 8,l 8Þl

uc$0l j ,0l 8 j %u
212uc$0l j ,0l j %u

2. ~C3!

The factor two multiplying the degenerate two-photon a
plitude in the rhs of Eq.~C3! cancels the additional facto
one-half appearing in Eq.~C2! for l 5l 8, then yielding a
result in full agreement with Eqs.~31! and ~32!. For the
specific example of motion given by Eq.~57!, and assuming
that the mechanical frequencyv0 satisfies the resonant con
dition as given by Eq.~58!, we derive from Eq.~C2! the
expression for the production rate of photons withn50
given by Eq.~59!

Since the results for the photon numbers are not modi
when taking into account the degenerate two-photon sta
we expect that the formula for the dissipative componen
the susceptibility function, given by Eq.~55!, should also be
valid for n50, so as to preserve the connection betwe
dissipation and total radiated displayed by Eq.~56!. In fact,
we may write separately the contribution of degenerate tw
photon states to the sum over pairs$nl ,n8l 8% in Eq. ~54!:

CFF@v#5p(
j

(
n,l ,l 8

*
d~v2vn

l 2vn
l 8!z^nl j ,nl 8 j uFu0& z2

12p(
j

(
l

d~v22l p/L !z^0l j ,0l j uFu0& z2,

~C4!

where(n,l ,l 8
* represents the sum over all possible values

n, l , and l 8 excluding those where simultaneouslyn50
and l 5l 8. As before, the factor one-half found for the d
generate two-photon matrix element@given by Eq.~C2!# is
canceled by the factor of two appearing in the rhs of E
~C4!. Hence we may write the expression for the 1D dis
pative susceptibility function, Imx1D@v#, by selecting di-
rectly from Eq.~55! the terms withn50:
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Imx1D@v#5
p3\

L4 (
l 51

`

(
l 851

`

l l 8@d„v2~ l 1l 8!p/L…

2d„v1~ l 1l 8!p/L…#. ~C5!

As for Ref. @9#, the result for the~complete! susceptibility
function in the perfectly reflecting limit and in the particul
case where only one mirror moves reads

x̃ @v#5
\

6pF iv3

12e2ivL
1S p

L D 2

~ iv!S 1

2
2

1

12e2ivLD G . ~C6!

In order to compare Eqs.~C5! and ~C6!, we must take the
imaginary part ofx̃ @v#, then yielding, after some algebra
et

a-

p-
Imx̃ @v#5
\

6pFv3

2
1

1

2S p

L D 4

(
n52`

`

n~n221!d~v2np/L !G .

~C7!

The first term in the rhs of Eq.~C7! represents the contribu
tion of the field outside the cavity, being equal to half t
value found for a two-sided single mirror in one-dimension
vacuum@4#. The second term, on the other hand, represe
the contribution of the intracavity field, which is, by inspe
tion of Eqs. ~C5! and ~C7!, equal to half the value found
from taking the 1D limit in Eq.~55!, the factor of two being
related to the two polarizations taken into account in
electromagnetic case.
.
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