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Quantum-state reconstruction in the one-atom maser

C. T. Bodendorf,1,2 G. Antesberger,1,2 M. S. Kim,1,* and H. Walther1,2
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2Sektion Physik, Ludwig-Maximilians-Universita¨t, München, Germany

~Received 14 August 1997!

We propose a reconstruction scheme for the quantum-mechanical state of a field inside a microwave cavity
in the Fock representation. It will be shown that two experimental steps are required for this purpose:~i! the
quantum state under consideration has to be shifted in phase space, and~ii ! it has to be examined by state-
selective detection of two-level atoms after a resonant interaction with the field. The method is examined in a
computer simulation including measurement errors.@S1050-2947~98!04802-1#

PACS number~s!: 42.50.Dv, 42.50.Ct, 84.40.Ik
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I. INTRODUCTION

In quantum mechanics all physical properties of a sys
are contained in the state vector; once it is known, the m
mum information that quantum mechanics allows us to g
is at hand. However, the state itself isnot a measurable quan
tity. Nevertheless it is possible to‘‘reconstruct’’ a quantum
state based on a suitable set of measurements. This topi
been discussed extensively in recent years@1–11#.

There are always at least two prerequisites associated
a reconstruction: The first one concerns the preparation
the system under investigation. To gain sufficient inform
tion about the quantum state, it has to be prepared not
once but rather frequently in a reproducible way. The sec
prerequisite is a set of linearly independent Hermitian ope
tors for which expectation values can be determined by m
surements. Each set contains a certain amount of informa
about the quantum state and therefore fixes a so-called‘‘ob-
servation level’’ @2#. The complete observation level, con-
taining the full information on any arbitrary state, requires
many cases aninfinite number of observables. For this re
son it is in practice often inevitable to restrict oneself to
partial reconstruction.

A partial reconstruction of a quantum state has been
formed through its quasiprobabilities@3#. The density matrix
for the squeezed vacuum has also been partially rec
structed in Fock representation@4#. These reconstruction
schemes of light field states are based on the homodyne
surement. It has recently been suggested that the direct
ton statistics can also serve as a tool to probe the field s
@5–8#.

In this paper we deal with the single-mode microwa
field inside a high-Q cavity, which shall be the system und
investigation. However, this system itself evades a direct
servation because of the lack of single microwave pho
detectors, and, moreover, the destruction of the required
tremely high quality factor, which would be the consequen
of any attempt at a direct field measurement. But fortuna
there exists a much more adequate procedure via the d
tion of atoms after their interaction with the field mod

*On leave from Department of Physics, Sogang Univers
C.P.O. Box 1142, Seoul, Korea.
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Two-level atoms are resonantly coupled to a single mode
the cavity. Before the interaction the atoms are prepare
one of the two levels. The subsequent temporal evolution
the combined atom-field system is—because of the ca
damping time for a typical experimental situation being thr
orders of magnitude larger than the interaction time—an
most reversibleprocess, described by the Jaynes-Cummin
model @12#. After the interaction the atoms are detected
state-selective field-ionization techniques in either the up
or lower level, as is well known from theone-atom-maser
operation@13–15#.

There have been theoretical studies on reconstructing
micromaser state by probing it with two-level atoms@9#. In
these investigations, the atoms have to be prepared in aco-
herent superpositionbetween the upper and lower levels.
the present suggestion, however, we restrict ourselves to
initial atomic preparation in an energy eigenstate, and
moreover completely independent of the information ab
the superpositionphaseat any time. For this reason, we d
not have to worry about the destruction of the coherence
the atomic superposition that can easily occur in the prese
of week electric stray fields, for example, in the cavity e
trance holes.

For the investigation of quantized atomic motion t
Jaynes-Cummings model has been introduced, and se
schemes have been proposed for the reconstruction
quantum-mechanical vibrational states of a trapped a
@10#. Leibfried et al. showed experimentally that the vibra
tional mode can be reconstructed in the number state bas
well as in terms of the Wigner function@11#. In their experi-
ment, an initial state is coherently displaced along a circle
phase space, and the statistics of the atomic inversion
measured for various interaction times. The time-depend
statistics are converted into the phonon number distribu
of the displaced states. Using the relation between the p
non number statistics of the displaced state and the den
matrix @7,8# or the Wigner function@16#, respectively, they
found the original motional quantum state in these two r
resentations. In this paper, we use a related approach in o
to probe the micromaser field. However, instead of collect
the atomic statistics for various interaction times, we lea
this parameter fixed. This method is more robust against c
ity decay, and experimentally more feasible for probing t
micromaser field. Moreover, we avoid the method via t
,
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1372 57BODENDORF, ANTESBERGER, KIM, AND WALTHER
displaced photon number distribution for the reconstruct
of the density matrix and perform a rather straightforwa
method, which makes the numerical calculation more sta

II. ATOMIC EMISSION PROBABILITY FOR DISPLACED
FIELD STATES

The experimentally observable system isnot the state of
the cavity field itself but rather the atoms after their intera
tion with the field. In this section we will investigate th
atomic inversion in combination with a displacement of t
initial field state.

We start with the single-mode radiation field inside a ca
ity initially prepared in a state represented by a density m
trix r, which shall be reconstructed. Possible prepara
techniques are discussed below. Now we perform a displ
ment of the initial state in phase space by applying a unit
transformationD(a)rD†(a), with the displacement opera
tor

D~a!5exp~aa†2a* a!. ~1!

Here a and a† are the annihilation and creation operato
anda is a complex number characterizing the amplitude a
phase of the shift. Experimentally this operation is carr
out by coupling a resonant classical oscillator to the cav
field. The time evolution~in an interaction picture rotating
with the cavity frequency! of the driven cavity field is then
determined by the HamiltonianHosc5\( f a†1 f * a) @17#,
with f being a scaled classical field amplitude. Replacinga
by 2 i f t in Eq. ~1! leads immediately to the unitary tim
evolution of the driven cavity. However, the duration r
quired for the shift has to be chosen small compared to
cavity damping timetcav, a condition that can always b
fulfilled, if only u f u is chosen large enough.

Now we inject an atom prepared in one of its two cons
ered energy levels, e.g., the upper oneue&. ~Atoms usually
begin from an opening in a thermal oven, and therefore h
random Poisson distributed arrival times. So the atomic fl
must be large enough to keep the average temporal spa
of the atoms small compared totcav. If the waiting time for
the next atom should still be unexpectedly long, we can
disregard these single events.! During the atom-field interac
tion time t, dissipation can again be disregarded in a v
good approximation, because oft typically being much
smaller thantcav. This leads to a Jaynes-Cummings-type
teraction@12# resulting in a new density matrix

S~a,t!5U†~t!@D~a!rD†~a! ^ ue&^eu#U~t!, ~2!

with the unitary time evolution operatorU(t). In this en-
tangledatom-field state, we ask for the probabilitypg to find
the atom in the lower stateug&, or, in other words, for the
expectation value of the projection operatorug&^gu ~opera-
tors of one of the two subspacesalone are looked upon as
extended by the unity operator of the other subspace!:

pg~a,t!5 Tr$S~a,t!ug&^gu%

5 trf$D~a!rD†~a!^euU~t!ug&^guU†~t!ue&%.

~3!
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Tr denotes the complete trace, whereas trf relates only to the
field. For the sake of simplification, we assume exact re
nance between atoms and the cavity field, and rewrite
Jaynes-Cummings time evolution operator@12# U(t)
5exp$2ilt(sa†1s†a)% (s and s† are the atomic ‘‘spin-
flip’’ operators, and l stands for the dipole coupling
strength! in the following way@18#:

U~t!5cos~ltAn̂11!ue&^eu1cos~ltAn̂!ug&^gu

2 i
sin~ltAn̂11!

An̂11
aue&^gu2 i

sin~ltAn̂!

An̂
a†ug&^eu,

~4!

with the photon number operatorn̂5a†a. Substituting this
expression into Eq.~3!, we arrive at

pg~a,t!5 trf$rD†~a!sin2~An̂11lt!D~a!%. ~5!

This is obviously the expectation value of the opera

D†(a)sin2(An̂11lt)D(a) expressed in terms of theinitial
field stater. Without the application of the displaceme
operatorD(a) this observable would merely be a function
n̂, and therefore supplyno phase information. Only the com-
bination with the displacement leads to aphase-sensitiveob-
servable.

For further calculations, the trace is performed in the Fo
base:

pg~a,t!5 (
n50

`

^nuD~a!rD†~a!un&sin2~An11lt!. ~6!

We recognize the photon number distribution of the shif
field state or, from another point of view, the overlap
shifted Fock states with the initial field state entering th
formula. We will in contrast to other calculations@11#, not
solve Eq.~6! for these numbers. For analyzing Eq.~6!, we
express the operatorsr andD(a) in number states

r5 (
n50

`

rn
~0!un&^nu1H (

k51

`

(
n50

`

rn
(k)un&^n1ku1 H.c.J ,

~7!

D~a!5 (
n,m50

`

dnm~a!un&^mu, ~8!

where H.c. stands for the Hermitian conjugate. The ma
elementsdnm of the displacement operator~depending on
a5r eif expressed in polar coordinates with real parame
r andf) are given by@19,20#

dnm~a!

5HAm!

n!
e21/2r 2

r n2m ei ~n2m!fLm
n2m~r 2! for n>m

dmn* ~2a! for n<m,
~9!
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57 1373QUANTUM-STATE RECONSTRUCTION IN THE ONE- . . .
with the associated Laguerre polynomials,Lm
n (x). Substitut-

ing Eqs.~7! and~8! into Eq. ~6! yields the following expres-
sion for the atomic emission probability:

pg~r ,f!5 (
n,m50

`

sin2~Am11lt! Xmn
~0!~r ! rn

~0!

12 Re(
k51

`

(
n,m50

`

sin2~Am11lt!

3Xmn
~k!~r ! rn

~k! eikf. ~10!

In this paper the interaction time is assumed to be fixed
the argumentt has been dropped to simplify the notatio
Moreover, we introduced the definition

Xmn
~k!~r ! eikf5dmn~a! d~n1k!m~2a!, ~11!

whereXmn
(k)(r ) turns out to be areal number.

Equation ~10! shows that the observablepg depends in
principle onall matrix elements of the initial field stater.
From a mathematical point of view, one could simply det
mine a sufficient number of atomic emission probabilities
different displacements, and solve the emerging system
linear equations for the unknownsrn

(k) in a reasonably trun-
cated Fock space. However, this method has little pract
use because these systems of equations are frequently
to singularity and very sensible to noisy data. That is wh
will be a task of Sec. III to find equations which separate
matrix elements for each diagonal specified by the integek.

III. RECONSTRUCTION AND ANALYSIS

We realize Eq.~10! to be a Fourier sum forpg looked
upon as a 2p-periodic function inf with fixed amplituder .
Turning to the Fourier amplitudes of the oscillationseikf,
defined by

q~k8!~r !5
1

2pE0

2p

pg~r ,f! e2 ik8fdf ~12!

(k850,1, . . . ),yields, with the help of the Fourier represe
tation of the Kroneckerd symbol

dk,k85
1

2pE0

2p

ei ~k2k8!fdf, ~13!

the following expression~we replacek8 by k):

q~k!~r !5 (
n,m50

`

sin2~Am11lt! Xmn
~k!~r ! rn

~k!

5 (
n50

`

Yn
~k!~r ! rn

~k! . ~14!

The sum over m has been summarized a
(m50

`sin2(Am11lt) Xmn
(k)(r )5Yn

(k)(r ).
We recognize that the discrete spectrum of the ato

emission probability, regarded as a function off on a circle
o

-
r
of

al
ose
it
e

ic

with radiusr in phase space, separates the single diago
of r. The amplitude of thekth harmonic oscillation depend
only on thekth diagonal@21#.

Integrals like Eq.~12!, already requiring in principle an
infinite number of probabilities, are mathematical rather th
physical constructions. In reality we will have to restrict ou
selves to a finite numberL of anglesf l5(2p/L) l with l
P$0,1, . . . ,L21%, and replace Eq.~12! by a discreteFou-
rier transform labeled with the additional parameterL:

qL
~k8!~r !5

1

L (
l 50

L21

pg~r ,f l ! e2 ik8f l. ~15!

Applying this transform to Eq.~10! no longer yields Eq.
~13!, but rather

1

L (
l 50

L21

ei ~k2k8!f l. ~16!

This expression still behaves like the Kroneckerd symbol, at
least if k2k8 is not an integer multiple ofL. However, for
k2k856sL with s51,2, . . . , weobtain an additional ‘‘1’’
instead of a ‘‘zero.’’ For this reason, the approximated Fo
rier transform Eq.~15! leads to Eq.~14! plus some residual
terms:

qL
~k!~r !5q~k!~r !1 (

n,m50

`

sin2~Am11lt!

3H (
s51

`

Xmn
~qL1k!rn

~qL1k!1 (
sL2k.0

Xmn
~sL2k!

3~rn
~sL2k!!* 1 (

2sL1k.0
Xmn

~2sL1k!rn
~2sL1k!J .

~17!

Let us illuminate this expression in combination with
truncated Fock space, and assume thatrn

(k)'0 for n1k.N.
N is the highest photon number still taken into account. I
inevitable to add somea priori information for a reasonable
choice of it. If we demand the conditionL2k>N11, then
all matrix elements ofr in the additional terms of Eq.~17!
are already beyond the restricted Fock space, and there
considered to be zero. This holds for all Fourier amplitud
in the truncated Fock space if we setk5N. Therefore the
adapted number of anglesL for the (N11)-dimensional
Fock space is

L>2N11. ~18!

If the field state is really~not just approximately! limited to
N photons, then a phase discretization fulfilling Eq.~18! does
not lead to any error at all. This is in agreement with t
result derived by Opartny´ et al. @8# for the unbalanced ho
modyne measurement.

Now we turn back to Eq. ~14!, rewritten for a
(N11)-dimensional Fock space withL discrete angles:

qL
~k!~r j !5 (

n50

N2k

Yn
~k!~r j ! rn

~k! . ~19!
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For any practical calculation, them sum in Eq.~14! will also
be truncated at a maximum photon numberM adapted to the
displaced field state. @M can be estimated asM5(c r j

1AN11)2 with a constant numberc in the order of 3.#
Equation~19! represents a system of linear equations

the N112k unknownrn
(k)’s of the kth diagonal of the den-

sity matrix. For a unambiguous solution, at least the sa
number of independent equations is required. Therefore
choosej 51, . . . ,N112k ~or more! different radiir j . @We
recall that the Fourier amplitudesqL

(k)(r ,t) still depend on
the interaction timet. So it would in principle also be pos
sible to restrict oneself to one single radius and choosN
112k different timest i . We believe, however, that from
the experimental point of view it is more convenient to
one single interaction time for the whole reconstruction,
cause a variation oft in a large regime results in a rathe
small atomic flux for the extreme interaction times due to
~modified! thermal velocity distribution@22# of the atomic
beam.# For each radius, measurements for at leastN111k
angles are necessary~see above!. Thus the determination o
all matrix elements of akth diagonal requires the measur
ment of (N112k)(N111k)5(N11)22k2 emission
probabilities. However, for the complete reconstruction~in
the restricted Fock space! 2N11 angles@Eq. ~18!# on N
11 radii, and thus

~N11!21N21N ~20!

measured probabilities are necessary. On the other h
there are (N11)2 unknowns whereby the complex of
diagonals are counted twice.

IV. ERROR ESTIMATION AND NUMERICAL METHODS

We now turn to the problem of how to solve Eq.~19! for
the matrix elementsrn

(k) . For convenience we shall first re
write it in the familiar matrix notation

qW~k!5Y~k! rW ~k!. ~21!

The coefficientsY jn
(k) of theJ3(N112k) matrix Y(k) ~with

J>N11 different radii r j ) are related to Eq.~19! via Y jn
(k)

[Yn
(k)(r j ). The vectorsrW (k) and qW(k) contain the unknowns

rn
(k) and the Fourier amplitudes qj

(k)[qL
(k)(r j ), respectively.

To simplify the notation we drop the index (k).
The solution of Eq.~21! is not unique as soon as the

exist nontrivial solutions to the homogeneous equationY rW

50W . However, the vectorrW min with the smallest normurW minu
among all possible solutions is unique. ThepseudoinverseȲ
of the matrixY is defined via the equation@23,24#

rW min5Ȳ qW. ~22!

Now we wish to take into consideration that the expe
mentally determined data are never exact but rather sub
to various measurement errors. Most of these errors ap
via the measured probabilitiespg in the Fourier amplitudes
qL in Eq. ~15!. For this reason it is of particular interest
examine the errorDrW min due to a perturbationDqW in the
modified equation qW1DqW5Y(rW 1DrW ). This yields
r

e
e

-

e

d,

-
ct
ar

DrW min5Ȳ DqW. ~23!

For further diagnosis and error estimation, the method
singular value decomposition@23,24# provides a powerful
set of tools. It is based on the possibility of decomposing a
arbitrary matrixY into a product of three matrices in th
form

Y5UWVT. ~24!

U is in our case aJ3(N112k) column-orthogonal,W an
(N112k)3(N112k) diagonal, andV an (N112k)
3(N112k) orthogonal matrix. The uniquely determine
diagonal elementsWnn[wn ~singular values! are the posi-
tive square roots of the eigenvalues of the matrixYTY. The
pseudo inverseȲ can explicitly be expressed asȲ5VW̄UT

with the matrix elementsW̄nm5(1/wn)dnm if wnÞ0. If van-
ishing singular values occur, the respectiveW̄nn are equated
to zero.

By means of the smallest not vanishing and the larg
singular valuewmin andwmax the absolute and relative erro
can be estimated as@24#

uDrW minu<
1

wmin
uDqWu ~25!

and

uDrW minu

urW minu
<

wmax

wmin

uDqWu

uPmap~Y! qWu
. ~26!

Here Pmap (Y) denotes the projection into the range ofY.
Equation~26! is governed by the ratiowmax/wmin which is a
possible~not unique but up to our experience especially u
ful! definition of thecondition number.

A frequently appearing problem is that of ‘‘ill-
conditioned’’ matrices: Tiny perturbations are intensified
an extremely high condition number and lead to huge err
In this caseȲ can be replaced by aregularizedmatrix Ȳreg

that arises fromȲ by zeroing all diagonal elements ofW̄ that
go beyond a certain parameter of regularization. This way
arrive at a solutionrW min

reg5ȲregqW for an approximation qW

5Yreg rW reg of Eq. ~21!, with an improved condition. Thus th
sensitivity to perturbations decreases as expressed in
~25! and~26!. But there is a price to pay: A systematic err
is added, which isnot covered by these equations. In th
regularized problem the number of free parameters~which is
equal to the number of nonzeroW̄nn’s! is reduced. This leads
to a tendency of the solution vector to become smaller
magnitude but much more stable to perturbations. In our
perience, in a ‘‘well-regularized’’ problem the dependence
the solution on the exact number of removed singularitie
only weak. The systematic error can be estimated by sim
substituting the vectorrW min

reg back into the initial Eq.~21!.
In Sec. V we will deal with an overdetermined syste

(J.N11) in combination with noisy data. In this case w
do not expect that there is an exact solution of Eq.~21! at all,
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because noisy data is contradictory. Thus we look for
best approximation in the sense of minimizing the express
@25#

x25uqW2Y rW u2. ~27!

Singular value decomposition already provides the right
swer; it is still given by Eq.~22!. In combination with regu-
larization,x2 increases for each singular value that is zero
because of the additional systematic error.~If this is not the
case, then the rounding error in the numerical calculat
becomes relevant.! Due to the reduction of free paramete
the noisy data are no longer fitted in too many details
rather smoothly. This is exactly what we want.

We will now briefly discuss possible errors arising fro
nonideal experimental conditions. The statistical error due
a finite number of measurements is especially fundamen
Let Z be the number of measurements for the determina
of each probabilitypg . Then the standard deviationDpg is
given by Dpg5Apg(12pg)/Z<1/(2AZ). Thus the Fourier
amplitudes qL

(k) are affected with a standard deviatio
DqL

(k)5(1/AL)Dpg<1/(2ALZ). In Sec. V the effect of this
statistical error will be calculated for the example of a sim
lated reconstruction.

The interaction timet is also a very important paramete
The method of oblique excitation takes advantage of
Doppler effect and combines a high atomic flux with a ve
good velocity selection. A typical value forDt/t is 2%. If
necessary, the control of this parameter can be even
proved by decreasing the angle between atoms and
beam which will however reduce the atomic flux.

Errors could also occur due to mechanical vibrations
the cavity. This would lead to a detuning and thus to
inaccuracy in the displacement.

Systematic errors appear because of the finite detecto
ficiencies~typically less than1

2!, the truncation of the Fock
space and the discretization of angles in the Fourier tra
form Eq.~15!, as calculated in Eq.~17!. The best way to find
a reasonable ‘‘cutoff photon number’’N is probably just to
try a few different choices. IfN is sufficiently large, the
result of the reconstruction is almost independent of it. I
becomes too large, the error increases. This is how we
with this problem in the simulation~Sec. V!.

Spontaneous decays of the atoms into deeper-lying s
are another source of inaccuracy. However, the lifetime
high-lying Rydberg states is quite large compared to the
evant time constants of the experiment.

V. COMPUTER SIMULATION

We would like to show the usefulness of our reconstr
tion scheme by performing a computer simulation in cons
eration of measurement errors. Therefore we first turn b
to the problem of preparing the initial field state.

It is likely to start with the so-called ‘‘stationary micro
maser state,’’ that builds up after a successive interactio
many inverted two-level atoms with the cavity field@13–15#.
This state shows several nonclassical features, the
known of which is probably the sub-Poissonian photon nu
ber distribution appearing in a wide regime of operation.
off-diagonal elementsrn

(k) for k.0 are equal to zero, which
e
n

-

d

n

t

to
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n
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means that no preferred field phase exists. In other words
phase-space distributions~e.g.,P, Q, or Wigner function! are
radially symmetric. The emission probabilitypg(r ,f) in Eq.
~10! becomes consequently independent of the anglef, and
we further findqL

(0)(r )5pg(r ) andqL
(k)(r )50 for k.0 @Eq.

~15!#. Therefore Eq.~19! as well as Eq.~10! simply reduce to

pg~r j !5 (
n50

N

Yn
~0!~r j ! rn

~0! . ~28!

Thus we arrive at a nice method for the reconstruction of
photon number distribution: We just need to measureN11
~or more! probabilitiespg at different radiir j , and solve for
the valuesrn

(0) . Measurements on the photon statistics ins
a high-Q cavity were performed by Bruneet al. @26#. Instead
of shifting the field state, they observed the atomic R
oscillations in dependence on the interaction time.

The reconstruction scheme unfolds its usefulness c
pletely for field states without the radial symmetry. A phas
dependent state could simply be built up by coupling
cavity to a weak classical oscillator which will afterward
perform the displacement. This yields the preparation o
‘‘shifted’’ thermal state which approaches for the cavity tem
peratureT→0 asymptotically to the well-known coheren
state.

A more interesting situation arises if both, the atom
pumping and a weak coupling to the classical oscillator,
combined. Therefore, we first prepare the cavity field in
stationary micromaser state characterized by the ‘‘effec
pumping rate’’Nex5rt cav510 (r is the atomic rate! and the
‘‘pumping parameter’’ Q5ANex lt53. This state has a
mean photon number^n&55.2. For a quantitative measure o
the non-Poissonian characteristic of the photon number
tribution, the normalized varianceQ5(^n2&2^n&2)/^n&21
is frequently used. For a state with Poissonian photon sta
tics, we findQ50 whereas a sub-Poissonian state is ch
acterized by negative-Q values. The micromaser state in o
example yieldsQ520.56. Now weadditionally drive the

FIG. 1. Density-matrix elementsrnm[rn
(k5m2n) of the seeded

micromaser field in the Fock representation. The field is genera
in the micromaser cavity by simultaneous atomic pumping and c
pling to a classical oscillator. This way, a sub-Poissonian pho
number distribution is combined with a well-defined field pha
The parameters areNex510, u53, ^nosc&54u f u2tcav

2 56.25, T
5500 mK, ^n&57.4, andQ520.42.
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field with the classical oscillator. The irreversible time ev
lution of the field state is therefore governed by the follo
ing linear quantum master equation

]

]t
r5~rM01L!r2

i

\
@Hosc,r#. ~29!

M0 denotes the operator describing the pumping effec
the atoms arriving at random with rater , while L stands for
the Liouville operator that estimates the decay toward
thermal state. The explicit expressions for these operators
found in Ref.@27# ~we use the same nomenclature as the!.
The additional commutator, with the HamiltonianHosc intro-
duced in Sec. II, describes the effect of the coupling betw
cavity field and classical oscillator.

We numerically integrate Eq.~29! to find the new station-
ary solution, which we call theseeded micromaser state. The
outcoming density matrix in the Fock representation is p
sented in Fig. 1. We recognize off-diagonal elements aris
they indicate that coherences between number states
up. To gain more graphic insight into the characteristics o

FIG. 2. Same state as in Fig. 2 inQ representation.

FIG. 3. Dependence of the condition numberwmax/wmin on the
scaled interaction timelt for the example of the main diagonal o
the density matrix. Large interaction times improve the condit
dramatically.
-
-

f

e
re

n

-
g;
ild
a

quantum state, quasiprobability distributions in phase sp
such as theQ, Wigner, orP function @19# are useful. TheQ
function, simply defined asQ(a)5^aurua&/p, is shown in
Fig. 2 for the seeded micromaser state. The field takes
phase of the classical oscillator, while the sub-Poisson
characteristics of the stationary micromaser state is ha
affected@28#. We now find^n&57.4 andQ520.42.

For the reconstruction, we took advantage of themirror
symmetryin phase space with respect to an axis, which c
~without restriction of generality! be defined as the real on
@Re(a)#. In this case it can easily be shown that all mat
elementsrn

(k) are real numbers, and thus the number of u
knowns reduces to (N11)(N12)/2. Moreover, a mirror
symmetric state displaced by an amounta is identical to the
one arising from a displacement characterized bya* , except
their phases, which donot affect the atomic emission prob
ability ~see above!. This yieldspg(a)5pg(a* ), and causes

FIG. 4. Estimation of the statistical error according to Eq.~23!

for the regularized problem. The perturbationDqW equals the stan-
dard deviation due to a number of 2500 measurements for the
termination of each probabilitypg . The condition number is in the
order of 100 for the main diagonal and less for the off-diago
elements.

FIG. 5. Result of a reconstruction of the field state depicted
Fig. 1. Measurement errors are considered by adding a Gab-
distributed noise to the calculated probabilitiespg with a standard
deviation of 0.01. Displacements are performed to 16 locati
along 30 semicircles with radii that increase by a step of 0.4. T
scaled interaction timelt is 3.16, and the Fock space is restrict
to N513 photons.
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the Fourier components@Eq. ~15!# to becomereal numbers.
Thus it is sufficient to restrict the displacements to locatio
alongsemicircles in phase space with only positive~or only
negative! imaginary parts ofa. Consequently the minimum
number of probabilitiespg to be measured@Eq. ~20!# reduces
to (N11)2 and (N11)21(N11)/2 for odd andevennum-
bersL of discrete angles, respectively.~In the first case we
have only one displacement withreal a, whereas in the sec
ond case there are two such events, which causes the d
ence.!

Now we simulate displacements to 16 locations ea
along 30 semicircles with radii that increase by steps of 0
The Fock space is restricted toN513 photons~see Sec. IV
for an estimation of the numberN). Before we carry out the
reconstruction, we consider the condition~Sec. IV! of this
problem. Figure 3 shows that there is a very strong dep
dence of the condition number on the scaled interaction t
lt. It decreases approximately exponentially with increas
lt up to a value oflt'5.5. In our simulation we make
compromise between good condition and experiment
well feasible parameters, and chooselt53.16. Most of the
possible errors discussed in Sec. IV are strongly depen
on the details of an experimental realization, and are c
rently hard to estimate. We will therefore restrict ourselves
the statistical error, which is a general property. We choos
number ofZ52500 measurements for the determination
each probabilitypg , and obtain a GauX-distributed noise
with a standard deviation of 0.01 which is added to the c
culated values. Equation~26! signifies that the condition
number should not exceed the order of 100 too much in o
to obtain reasonable results. A detailed estimation of the
tistical error for the individual matrix elements is given
Fig. 4. It showsDrW min according to Eq.~23! for the regular-
ized problem. The perturbation is estimated by setting
components ofDqW equal to the standard deviationDqL

(k) ~see
Sec. IV!.

The reconstructed density matrix is plotted in Fig. 5. F
ure 6 shows the deviation between exact and reconstru
values of the matrix elements. We find a satisfactory agr

FIG. 6. Deviation between exact and reconstructed values o
density matrix.
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ment between them. This is also confirmed by theQ repre-
sentation of the quantum state calculated from the rec
structed density matrix, as shown in Fig. 7. However, so
slight negative values occur in the reconstructedQ function
even though theQ function of a physical state is certainl
always positive.

VI. CONCLUSION

In this paper we showed how to reconstruct the quant
state of a single-mode microwave field inside a high-Q cav-
ity with the method of coherent displacements in pha
space, and subsequent probing by two-level atoms. We
tentionally did not use atomic coherences or the variation
additional parameters such as the interaction time to keep
method as easily feasible as possible. The displacement
performed to several points along circles of different rad
We pointed out a relation between the spectrum of
atomic emission probability and the single diagonals of
field density matrix. This relation yields a system of line
equations for each diagonal, that can easily be inverted
find the matrix elements. The reconstruction scheme w
demonstrated with the example of a seeded micromaser s

Finally we would like to remark that the decay of th
Fourier componentq(1)(r ,t), in Eq. ~14!, is well suited for
the observation of the phase diffusion. The time depende
of Eq. ~14! is strongly related to that of the expectation val
of the electric-field strength, and therefore to themicromaser
spectrum@29#.
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FIG. 7. Q representation for the reconstructed field.~Parameters
as in Fig. 5!.
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