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Quantum-state reconstruction in the one-atom maser
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We propose a reconstruction scheme for the quantum-mechanical state of a field inside a microwave cavity
in the Fock representation. It will be shown that two experimental steps are required for this puiptiee:
guantum state under consideration has to be shifted in phase spadd) dnbas to be examined by state-
selective detection of two-level atoms after a resonant interaction with the field. The method is examined in a
computer simulation including measurement errp81.050-294{®8)04802-1

PACS numbsg(s): 42.50.Dv, 42.50.Ct, 84.40.1k

I. INTRODUCTION Two-level atoms are resonantly coupled to a single mode of
the cavity. Before the interaction the atoms are prepared in

In quantum mechanics all physical properties of a systenone of the two levels. The subsequent temporal evolution of
are contained in the state vector; once it is known, the maxithe combined atom-field system is—because of the cavity
mum information that quantum mechanics allows us to gairdamping time for a typical experimental situation being three
is at hand. However, the state itselfista measurable quan- orders of magnitude larger than the interaction time—an al-
tity. Nevertheless it is possible teconstruct” a quantum  mostreversibleprocess, described by the Jaynes-Cummings
state based on a suitable set of measurements. This topic ha®del[12]. After the interaction the atoms are detected by
been discussed extensively in recent ygars11]. state-selective field-ionization techniques in either the upper

There are always at least two prerequisites associated wiihr lower level, as is well known from thene-atom-maser
a reconstruction: The first one concerns the preparation ajperation[13—15.
the system under investigation. To gain sufficient informa- There have been theoretical studies on reconstructing the
tion about the quantum state, it has to be prepared not onlghicromaser state by probing it with two-level atofd. In
once but rather frequently in a reproducible way. The seconthese investigations, the atoms have to be prepareccm a
prerequisite is a set of linearly independent Hermitian operaherent superpositiobetween the upper and lower levels. In
tors for which expectation values can be determined by meahe present suggestion, however, we restrict ourselves to the
surements. Each set contains a certain amount of informatianitial atomic preparation in an energy eigenstate, and are
about the quantum state and therefore fixes a so-called  moreover completely independent of the information about
servation level”[2]. The complete observation leyeton-  the superpositiophaseat any time. For this reason, we do
taining the full information on any arbitrary state, requires innot have to worry about the destruction of the coherence of
many cases amfinite number of observables. For this rea- the atomic superposition that can easily occur in the presence
son it is in practice often inevitable to restrict oneself to aof week electric stray fields, for example, in the cavity en-
partial reconstruction. trance holes.

A partial reconstruction of a quantum state has been per- For the investigation of quantized atomic motion the
formed through its quasiprobabiliti¢8]. The density matrix Jaynes-Cummings model has been introduced, and several
for the squeezed vacuum has also been partially recorschemes have been proposed for the reconstruction of
structed in Fock representatidd]. These reconstruction quantum-mechanical vibrational states of a trapped atom
schemes of light field states are based on the homodyne mef@0]. Leibfried et al. showed experimentally that the vibra-
surement. It has recently been suggested that the direct phtienal mode can be reconstructed in the number state basis as
ton statistics can also serve as a tool to probe the field statgell as in terms of the Wigner functigd. 1]. In their experi-
[5-8]. ment, an initial state is coherently displaced along a circle in

In this paper we deal with the single-mode microwavephase space, and the statistics of the atomic inversion are
field inside a highQ cavity, which shall be the system under measured for various interaction times. The time-dependent
investigation. However, this system itself evades a direct obstatistics are converted into the phonon number distribution
servation because of the lack of single microwave photorf the displaced states. Using the relation between the pho-
detectors, and, moreover, the destruction of the required exron number statistics of the displaced state and the density
tremely high quality factor, which would be the consequencematrix [7,8] or the Wigner functior{16], respectively, they
of any attempt at a direct field measurement. But fortunatelfound the original motional quantum state in these two rep-
there exists a much more adequate procedure via the dete@sentations. In this paper, we use a related approach in order
tion of atoms after their interaction with the field mode. to probe the micromaser field. However, instead of collecting

the atomic statistics for various interaction times, we leave

this parameter fixed. This method is more robust against cav-

*On leave from Department of Physics, Sogang University,ity decay, and experimentally more feasible for probing the
C.P.O. Box 1142, Seoul, Korea. micromaser field. Moreover, we avoid the method via the
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displaced photon number distribution for the reconstructiorilr denotes the complete trace, whereagsétates only to the
of the density matrix and perform a rather straightforwardfield. For the sake of simplification, we assume exact reso-
method, which makes the numerical calculation more stablenance between atoms and the cavity field, and rewrite the
Jaynes-Cummings time evolution operatpt2] U(7)
IIl. ATOMIC EMISSION PROBABILITY FOR DISPLACED =exp{—iA1(oa’+o'a)} (o and o' are the atomic “spin-
FIELD STATES flip” operators, and\ stands for the dipole coupling

strength in the following way[18]:
The experimentally observable systermist the state of

the cavity field itself but rather the atoms after their interac- _ [~ -
= + +
tion with the field. In this section we will investigate the U()=codr7Vn+1)|e){e| COS()\T\/EHg)(g'

_at_o_mic_ inversion in combination with a displacement of the sin(A 7 /ﬁ+1) sin()\r\/g)

initial field state. —i———aleXg|-i————a|g)(e],
We start with the single-mode radiation field inside a cav- VA+1 \/ﬁ

ity initially prepared in a state represented by a density ma-

trix p, which shall be reconstructed. Possible preparation 4

techniques are discussed below. Now we perform a displace- .
ment of the initial state in phase space by applying a unitaryVith the photon number operator=a'a. Substituting this
transformationD («) pD (), with the displacement opera- €Xpression into Eq(3), we arrive at
tor
py(a,7)= tr{pDT(a)siP(Vn+1N7)D(a)}. (5
D(a)=expaa'—a*a). (1)

This is obviously the expectation value of the operator
Herea anda' are the annihilation and creation operators,D(a)sir?(yn+ 1\ 7)D(«) expressed in terms of thgitial
andea is a complex number characterizing the amplitude andield statep. Without the application of the displacement
phase of the shift. Experimentally this operation is carriedoperatorD («) this observable would merely be a function of
out by coupling a resonant classical oscillator to the cavityy and therefore supplyo phase informationOnly the com-
field. The time evolution(in an interaction picture rotating - pjnation with the displacement leads tpbase-sensitiveb-
with the cavity frequencyof the driven cavity field is then ggryaple.
determined by the Hamiltoniai =7 (fa'+f*a) [17], For further calculations, the trace is performed in the Fock
with f being a scaled classical field amplitude. Replacing pase:
by —ift in Eq. (1) leads immediately to the unitary time
evolution of the driven cavity. However, the duration re- *
quired for the shift has to be chosen small compared to the py(a,7)= 2 (n|D(a)pDT(a)|n>sin2( JYn+1N7). (6)
cavity damping timet.,,, a condition that can always be n=0

fulfilled, if only |f| is chosen large enough. . o .
Now we inject an atom prepared in one of its two Consid_We recognize the photon numb.er d|str|.but|on of the shifted
field state or, from another point of view, the overlap of

ered energy levels, e.g., the upper deg (Atoms usually . : . : .
begin from an opening in a thermal oven, and therefore hav hifted Fock states with the initial field state entering this
ormula. We will in contrast to other calculatiop&1], not

random Poisson distributed arrival times. So the atomic flu ve Ea.(6) for th b = Vi

must be large enough to keep the average temporal spaci ve Eq.(6) for these num ers. For analyzing HG). we
of the atoms small compared tg,,. If the waiting time for express the operatopsandD(«) in number states
the next atom should still be unexpectedly long, we can just

d_|sregard the;e .smgle eveﬂt.ur!ng the gtom—ﬂeld ||jterac— p= 2 p<n°)|n><n|+ Z 2 pﬁk)|n><n+k|+ H.c.p,
tion time 7, dissipation can again be disregarded in a very n=0 k=1 n=0
good approximation, because of typically being much (7)

smaller thart.,,. This leads to a Jaynes-Cummings-type in-
teraction[12] resulting in a new density matrix ”

D(a)= 2 dnnm(@)|n)(m], ®)
S(a,)=UT(n)[D(@)pD (a)e|e)elU(r), (2 e

. . . ) . where H.c. stands for the Hermitian conjugate. The matrix
with the unitary time evolution operatdd(7). In this en-  gjementsd, - of the displacement operatdédepending on
tangledatom-field state, we ask for the probabilfiy to find , _ gi¢ expressed in polar coordinates with real parameters
the atom in the lower statg), or, in other words, for the | ,n4 ) are given by[19,20

expectation value of the projection operatgi(g| (opera-
tors of one of the two subspacefone are looked upon as ¢ (4)
extended by the unity operator of the other subspace

Po(a,7)= Tr{S(a,7)|g)(al} BER /r:_l! e~ V2% pn-m gln-mérn-m2)  forn=m
= tri{D(a)pD'(a)(elU(7)|g)(g|UT()[e)}. d* (—a) for n<m,
() 9
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with the associated Laguerre polynomiaf$,(x). Substitut-  with radiusr in phase space, separates the single diagonals
ing Egs.(7) and(8) into Eq.(6) yields the following expres- of p. The amplitude of thé&th harmonic oscillation depends
sion for the atomic emission probability: only on thekth diagonal[21].

Integrals like Eq.(12), already requiring in principle an
infinite number of probabilities, are mathematical rather than
pe(r )= > sif(Ym+1n7) X2 (r) p¥ physical constructions. In reality we will have to restrict our-

nm=0 selves to a finite number of angles¢,=(2/L)l with |
e{0,1,... -1}, and replace Eq12) by adiscreteFou-

©

+2 Rez 2 sir(\m+1\7) rier transform labeled with the additional parameter
k= n,m=0
L 1
X A1) oy €. (10 a(r)= 2 py(r. ) & 1. (15

In this paper the interaction time is assumed to be fixed, so
the argumentr has been dropped to simplify the notation.
Moreover, we introduced the definition

Applying this transform to Eq(10) no longer yields Eq.
(13), but rather

L-1
. 1 H ’
AT €*=dmn(@) dpriom( — @), (12) =3 ellkon, (16
=0
where X)(r) turns out to be aeal number.
Equation(10) shows that the observablg, depends in
principle onall matrix elements of the initial field state.

This expression still behaves like the Kroneckesymbol, at
least ifk—k’ is not an integer multiple of. However, for

From a mathematical point of view, one could simply deter-k tk d+st with Sfé'z’t'h'.' ' weobta![r;] an addltl_onatl le
mine a sufficient number of atomic emission probabilities for. INS eta Of a zgro.l (I)r dlstregsori,‘l el approxima ?d lou-
different displacements, and solve the emerging system err ransform Eq(15) leads to Eq{(14) plus some residua

linear equations for the unknowpd® in a reasonably trun- © S

cated Fock space. However, this method has little practical o
use because these systems of equations are frequently close q{¥(r)=q®(r)+ > sid(Vm+1n7)
to singularity and very sensible to noisy data. That is why it n,m=0
will be a task of Sec. Il to find equations which separate the
matrix elements for each diagonal specified by the int&ger 2 X(qL+k) (qL+k + E ‘X(n?rl;_k)
sL—k>0
IIl. RECONSTRUCTION AND ANALYSIS
sL—k)\x sL+k sL+k
We realize Eq.(10) to be a Fourier sum fop, looked (P +_S;k>0 A oy
upon as a zr-periodic function in¢ with fixed amplituder.
Turning to the Fourier amplitudes of the oscillatioel§?, 17
defined by

Let us illuminate this expression in combination with a
1 2n truncated Fock space, and assume =0 for n+k>N.
q<k’)(r): _ Py(r, &) e—ik’¢d¢, (12) N is the highest photon number still taken into account. It is
2mJo inevitable to add soma priori information for a reasonable
choice of it. If we demand the conditidn—k=N+1, then
(k"=0,1,...),yields, with the help of the Fourier represen- g|| matrix elements op in the additional terms of Eq17)

tation of the Kroneckep symbol are already beyond the restricted Fock space, and therefore
considered to be zero. This holds for all Fourier amplitudes
Suus= ifzwei(k‘k')‘f’d(ﬁ (13) in the truncated Fock space if we detN. Therefore the
Kk 27 o ’ adapted number of anglds for the (N+1)-dimensional

Fock space is
the following expressiortwe replacek’ by k):

L=2N+1. (18
K (py— ir?(Jm+ 1x X(k) If the field state is reallynot just approximatelylimited to
) n,;:o sinF(ym 7 (" p N photons, then a phase discretization fulfilling Etp) does

not lead to any error at all. This is in agreement with the
=S 39(r) o (14) result derived by Opartnet al. [8] for the unbalanced ho-
= n P modyne measurement.
Now we turn back to Eq.(14), rewritten for a
The sum over m has been summarized as (N-+1)-dimensional Fock space withdiscrete angles:

S oo Si(Vm+ Ia7) A(r) =249(r). N—k
We recognize that the discrete spectrum of the atomic q(Lk)(rj): Z y(k)(rj) pl0 (19
n n -

emission probability, regarded as a functiongobn a circle
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For any practical calcglatlon, tha sum in Eq.(14) will also A;;mm: TAG. (23)
be truncated at a maximum photon numbgiadapted to the

d|splaced2f|el_d state.[M can be e_stimated am=(cr; For further diagnosis and error estimation, the method of
+VN+ 1) with a constant numbex in the order of 3| singular value decompositiof23,24 provides a powerful

Equation(19) represents a system of linear equations forget of tools. It is based on the possibility of decomposing any

k ) H
theN+1—k unknownp s of thekth diagonal of the den-  apitrary matrix into a product of three matrices in the
sity matrix. For a unambiguous solution, at least the samgyrm

number of independent equations is required. Therefore we

choosgj=1,... N +.1—k (or. morek()jifferent .radiirj . [We Y=UWVT. (24)

recall that the Fourier amplitudeg)(r,7) still depend on

ot o s s e oy U 1 o caso (N 110 column-orhogonal n
. ) X +1-Kk)X(N+1- i , +1-

+1—k different timesr;. We believe, however, that from (N+1-k)x(N+1~k) diagonal, andV an (N+1-k)

the experimental point of view it is more convenient to fix

one single Interaction time for the whole reconstruction, be'tive square roots of the eigenvalues of the ma¥ffxy. The
cause a variation of in a large regime results in a rather

small atomic flux for the extreme interaction times due to thePSeudo inverse’ can explicitly be expressed as=VWU'
(modified thermal velocity distributior{22] of the atomic ~ With the matrix elementV,,,,= (1MW) 6y if W, #0. If van-
beam] For each radius, measurements for at I&&stl+k  ishing singular values occur, the respectivig,, are equated
angles are necessafyee above Thus the determination of to zero.

all matrix elements of &th diagonal requires the measure- By means of the smallest not vanishing and the largest
ment of (N+1—-k)(N+1+k)=(N+1)2—k?® emission singular valuew,,, andw,,,, the absolute and relative error
probabilities. However, for the complete reconstruction  can be estimated 424

the restricted Fock spac@N+1 angles[Eq. (18)] on N

X (N+1—k) orthogonal matrix. The uniquely determined
diagonal element®V,,=w, (singular value§ are the posi-

+1 radii, and thus R 1 -
|Apmin|sw ] |Aq| (25
(N+1)2+N2+N (20) min
measured probabilities are necessary. On the other handnd
there are K+1)? unknowns whereby the complex off-
diagonals are counted twice. | Apminl _ Wina |Aq| 06
- ] = W . ]
IV. ERROR ESTIMATION AND NUMERICAL METHODS [P min |[Prapy)

We now turn to thEkE problem of how to solve EQ9) for  Here Py, (v, denotes the projection into the range 6f
the matrix element;svf1 ). For convenience we shall first re- Equation(26) is governed by the ratio/, ./ Win Which is a

write it in the familiar matrix notation possible(not unique but up to our experience especially use-
. . ful) definition of thecondition number
ql=y® p0, (22) A frequently appearing problem is that of “ill-

o § o conditioned” matrices: Tiny perturbations are intensified by
The coefficientsy () of the Jx (N+1—k) matrix Y® (with  an extremely high condition number and lead to huge errors.

- . ik . EA : e
J=N+1 different radiir;) are related to Eq(19) via Y{§)  |n this caseY can be replaced by egularizedmatrix Y™

E%k)(fj)- The vectorsp™® and d¥) coEtain the unknowns  that arises fronY by zeroing all diagonal elements @f that
pg) and the Fourier amplitudeﬁkl]zqf )(r]-), respectively. go beyond a certain parameter of regularization. This way we

>

To simplify the notation we drop the index arrive at a solutionp'®3=Y™% for an approximation g

. . . min
The solution of Eq.(21) is not unique as soon as there —yreg Eregof Eq. (21), with an improved condition. Thus the

exist nontrivial solutions to the homogeneous equalop  sensitivity to perturbations decreases as expressed in Egs.
=0. However, the vectop,,, with the smallest nornhpmii (25) and(26). But there is a price to pay: A systematic error

among all possible solutions is unique. Tpweudoinvers&y  is added, which isot covered by these equations. In the

of the matrixY is defined via the equatiof23,24] regularized problem the numbgr of free parametetsch is
R . equal to the number of nonzewd,,,,'s) is reduced. This leads
Pmin=Y 0. (22 to a tendency of the solution vector to become smaller in

_ _ _ _ ~magnitude but much more stable to perturbations. In our ex-

Now we wish to take into consideration that the experi-perience, in a “well-regularized” problem the dependence of
mentally determined data are never exact but rather subjegte solution on the exact number of removed singularities is
to various measurement errors. Most of these errors appeghly weak. The systematic error can be estimated by simply
V|a.the measured pr(.)bab|llt|q:~;,3.|n. the Fou'ner amplltudes substituting the vectop'?, back into the initial Eq(21).
g, in Eq. (15). For tr1|s reason it is of partlcularalnterest 0 |nh sec. V we will deal with an overdetermined system
examine the errol\ py, due to a perturbatioq in the  (J>N+1) in combination with noisy data. In this case we
modified equation ¢ Ag=Y(p+ Ap). This yields do not expect that there is an exact solution of 4) at all,
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because noisy data is contradictory. Thus we look for the
best approximation in the sense of minimizing the expression
[25]

X*=[a-Y p|>. (27)

Singular value decomposition already provides the right an-
swer; it is still given by Eq(22). In combination with regu-
larization, x? increases for each singular value that is zeroed
because of the additional systematic erftfrthis is not the
case, then the rounding error in the numerical calculation
becomes relevantDue to the reduction of free parameters
the noisy data are no longer fitted in too many details but
rather smoothly. This is exactly what we want.

We will now briefly d|scu_s_s possible errors arising from FIG. 1. Density-matrix elements,.=p®=™" of the seeded
nonideal experimental conditions. The statistical error due tg . o n e
a finite number of measurements is especially fundamentawcrome}ser field in th(_a Fock_representatlon. T_he field is generated

.. —In the micromaser cavity by simultaneous atomic pumping and cou-

Let Z be the number of measurements for the determinatio

. o ) r[3Iing to a classical oscillator. This way, a sub-Poissonian photon
of each probabilityp, . Then the standard deviatiaipg IS mper distribution is combined with a well-defined field phase.

given by Apy= \/pg(l_pg)lzgll(z\/z)- Thus the Fourier  The parameters arée,=10, §=3, (no)=4/f|2%,=6.25, T
amplitudes g are affected with a standard deviation =500 mK,(n)=7.4, andQ = —0.42.
Aq¥=(1WL)Apyg=<1/(2\LZ). In Sec. V the effect of this
statistical error will be calculated for the example of a simu-means that no preferred field phase exists. In other words, the
lated reconstruction. phase-space distributiofs.g.,P, Q, or Wigner function are

The interaction timer is also a very important parameter. radially symmetric. The emission probabilipy(r, ¢) in Eq.
The method of oblique excitation takes advantage of th€10) becomes consequently independent of the aggland
Doppler effect and combines a high atomic flux with a verywe further findg{®(r)=py(r) andq®(r)=0 fork>0 [Eq.
good velocity selection. A typical value fax7/7 is 2%. If ~ (15)]. Therefore Eq(19) as well as Eq(10) simply reduce to
necessary, the control of this parameter can be even im-

proved by decreasing the angle between atoms and laser N

beam which will however reduce the atomic flux. py(ri) =2 V2(ry pi¥. (28)
Errors could also occur due to mechanical vibrations of n=0

the cavity. This would lead to a detuning and thus to an . ) )

inaccuracy in the displacement. Thus we arrive at a nice method for the reconstruction of the

Systematic errors appear because of the finite detector ghoton number distribution: We just need to measirel
ficiencies(typically less than}), the truncation of the Fock (0Or more probabilitiesp, at different radiir;, and solve for
space and the discretization of angles in the Fourier tranghe value”. Measurements on the photon statistics inside
form Eq.(15), as calculated in Eq17). The best way to find @ highQ cavity were performed by Bruret al.[26]. Instead
a reasonable “cutoff photon numbe is probably just to  Of shifting the field state, they observed the atomic Rabi
try a few different choices. IN is sufficiently large, the oscillations in dependence on the interaction time.
result of the reconstruction is almost independent of it. If it The reconstruction scheme unfolds its usefulness com-
becomes too large, the error increases. This is how we de&letely for field states without the radial symmetry. A phase-
with this problem in the simulatiofSec. \J. dependent state could simply be built up by coupling the

Spontaneous decays of the atoms into deeper-lying stat€@vity to a weak classical oscillator which will afterwards
are another source of inaccuracy. However, the lifetime operform the displacement. This yields the preparation of a
high-lying Rydberg states is quite large compared to the rel-shifted” thermal state which approaches for the cavity tem-
evant time constants of the experiment. peratureT—0 asymptotically to the well-known coherent
state.

A more interesting situation arises if both, the atomic
pumping and a weak coupling to the classical oscillator, are

We would like to show the usefulness of our reconstruc-combined. Therefore, we first prepare the cavity field in a
tion scheme by performing a computer simulation in consid-stationary micromaser state characterized by the “effective
eration of measurement errors. Therefore we first turn backumping rate”Ng,=rt.,,~= 10 (r is the atomic rateand the
to the problem of preparing the initial field state. “pumping parameter”’ ® = \/Ng, A7=3. This state has a

It is likely to start with the so-called “stationary micro- mean photon numbén)=5.2. For a quantitative measure of
maser state,” that builds up after a successive interaction ahe non-Poissonian characteristic of the photon number dis-
many inverted two-level atoms with the cavity figttB—15.  tribution, the normalized variand®= ({n%)—(n)?)/(n)—1
This state shows several nonclassical features, the bestfrequently used. For a state with Poissonian photon statis-
known of which is probably the sub-Poissonian photon numtics, we findQ=0 whereas a sub-Poissonian state is char-
ber distribution appearing in a wide regime of operation. All acterized by negativ® values. The micromaser state in our
off-diagonal elementp(¥ for k>0 are equal to zero, which example yieldsQ=—0.56. Now weadditionally drive the

V. COMPUTER SIMULATION
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FIG. 4. Estimation of the statistical error according to EZf)
for the regularized problem. The perturbatiAxi equals the stan-
dard deviation due to a number of 2500 measurements for the de-
FIG. 2. Same state as in Fig. 2 (a representation. termination of each probabilitp, . The condition number is in the

] ] ) . ) ) . order of 100 for the main diagonal and less for the off-diagonal
field with the classical oscillator. The irreversible time evo- elements.

lution of the field state is therefore governed by the follow-
ing linear quantum master equation

quantum state, quasiprobability distributions in phase space
: such as th&, Wigner, orP function[19] are useful. Th&)
_ function, simply defined aQ(a)=(a|p|a)/m, is shown in
(r Mo+ £)p= 7 [ Hosep . 29 Fig. 2 for the seeded micromase<r state>. The field takes the
phase of the classical oscillator, while the sub-Poissonian
M, denotes the operator describing the pumping effect otharacteristics of the stationary micromaser state is hardly
the atoms arriving at random with ratewhile £ stands for  affected[28]. We now find(n)=7.4 andQ= —0.42.
the Liouville operator that estimates the decay toward the For the reconstruction, we took advantage of thieror
thermal state. The explicit expressions for these operators agymmetryin phase space with respect to an axis, which can
found in Ref.[27] (we use the same nomenclature as there (without restriction of generalifybe defined as the real one
The additional commutator, with the Hamiltoniéhs.intro-  [Re(a)]. In this case it can easily be shown that all matrix
duced in Sec. Il, describes the effect of the coupling betweemememspgk) arereal numbers, and thus the number of un-
cavity field and classical oscillator. knowns reduces toN+1)(N+2)/2. Moreover, a mirror
We numerically integrate E¢29) to find the new station-  symmetric state displaced by an amounis identical to the
ary solution, which we call theeeded micromaser stafthe  one arising from a displacement characterizedby except
outcoming density matrix in the Fock representation is pretheijr phases, which doot affect the atomic emission prob-

sented in Fig. 1. We recognize off-diagonal elements arisingapility (see above This yieldspy(a) =py(a*), and causes
they indicate that coherences between number states build

up. To gain more graphic insight into the characteristics of a
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FIG. 5. Result of a reconstruction of the field state depicted in
AT Fig. 1. Measurement errors are considered by adding aBGau
distributed noise to the calculated probabilitigs with a standard
FIG. 3. Dependence of the condition humbef,, /Wy, on the  deviation of 0.01. Displacements are performed to 16 locations
scaled interaction time 7 for the example of the main diagonal of along 30 semicircles with radii that increase by a step of 0.4. The
the density matrix. Large interaction times improve the conditionscaled interaction tima 7 is 3.16, and the Fock space is restricted
dramatically. to N=13 photons.
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0.03
0.02

0.01

-0.01

[rec]
Pam ]“pnm

-0.02

-0.03

FIG. 6. Deviation between exact and reconstructed values of the
density matrix.

the Fourier componen{&£q. (15)] to becomereal numbers.
Thus it is sufficient to restrict the displacements to locations
alongsemgircles in phase space with only positiv@r only FIG. 7. Q representation for the reconstructed fig¢Rarameters
negative imaginary parts ofr. Consequently the minimum as in Fig. 5.

number of probabilitiep, to be measurefEq. (20)] reduces

hem. This is al fi -
o (N+1)% and (N+1)2+ (N+1)/2 for odd and evennum- ment between them is is also confirmed by theepre

, . . sentation of the quantum state calculated from the recon-
bersL of d|scret_e angles, resp_ectlvel(yn the flrs_t CaS€ W strycted density matrix, as shown in Fig. 7. However, some
have only one displacement withal c, whereas in the S€C” slight negative values occur in the reconstruo@dunction

ond case there are two such events, which causes the d|ffeé§/en though the function of a physical state is certainly

ence) .
. . . always positive.

Now we simulate displacements to 16 locations each ysp

along 30 semlcwaes Wlt_h radii that increase by steps of 0.4. VI. CONCLUSION

The Fock space is restricted k=13 photong(see Sec. IV

for an estimation of the numbé¥). Before we carry out the In this paper we showed how to reconstruct the quantum

reconstruction, we consider the conditié®ec. IV) of this  state of a single-mode microwave field inside a higlcav-
problem. Figure 3 shows that there is a very strong deperity with the method of coherent displacements in phase
dence of the condition number on the scaled interaction timepace, and subsequent probing by two-level atoms. We in-
A 7. It decreases approximately exponentially with increasingentionally did not use atomic coherences or the variation of
A7 up to a value of\ 7~5.5. In our simulation we make a additional parameters such as the interaction time to keep the
compromise between good condition and experimentallynethod as easily feasible as possible. The displacements are
well feasible parameters, and choose=3.16. Most of the performed to several points along circles of different radii.
possible errors discussed in Sec. IV are strongly dependeiYe pointed out a relation between the spectrum of the
on the details of an experimental realization, and are curatomic emission probability and the single diagonals of the
rently hard to estimate. We will therefore restrict ourselves tdield density matrix. This relation yields a system of linear
the statistical error, which is a general property. We choose gquations for each diagonal, that can easily be inverted to
number ofZ= 2500 measurements for the determination offind the matrix elements. The reconstruction scheme was
each probabilityp,, and obtain a Ggi+distributed noise demonstrated with the example of a seeded micromaser state.
with a standard deviation of 0.01 which is added to the cal- Finally we would like to remark that the decay of the
culated values. Equatiof26) signifies that the condition Fourier componeng®(r,t), in Eq. (14), is well suited for
number should not exceed the order of 100 too much in ordethe observation of the phase diffusion. The time dependence
to obtain reasonable results. A detailed estimation of the steef Eq. (14) is strongly related to that of the expectation value
tistical error for the individual matrix elements is given in of the electric-field strength, and therefore to theromaser

Fig. 4. It showsAp, according to Eq(23) for the regular- ~ SPectrumi29].

ized problem. The perturbation is estimated by setting all

components ofAq equal to the standard deviatiarg( (see

Sec. V. G.A. and C.T.B. thank G. Raithel and S. Wallentowitz for
The reconstructed density matrix is plotted in Fig. 5. Fig-inspiring discussions, and A. Prinz for reading the manu-

ure 6 shows the deviation between exact and reconstructextript. M.S.K. thanks the Alexander von Humboldt Founda-

values of the matrix elements. We find a satisfactory agreetion for support.
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