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Electromagnetically induced grating: Homogeneously broadened medium
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A strong coupling standing wave, interacting with three-levelL-type ~or ladder-type! atoms, can diffract a
weak probe field~propagating along a direction normal to the standing wave! into high-order diffractions, a
phenomenon which we name electromagnetically induced grating~EIG!. We develop in this work a theory for
studying EIG in a homogeneously broadened medium consisting of three-levelL-type atoms. We show that by
taking advantage of the absorption and dispersion properties of electromagnetically induced transparency one
can create an atomic grating that can effectively diffract light into the first-order direction.
@S1050-2947~98!03902-X#
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I. INTRODUCTION

It is commonly believed that a weak probe beam will
strongly absorbed at its resonance frequency if most of
atoms are in the lower level. However, recent studies sh
that by coupling additional coherent fields with other atom
transitions, one can form coherent population trapping~CPT!
@1,2# states that render a medium transparent to the w
probe radiation. This phenomenon is known as electrom
netically induced transparency~EIT! @3–5#. CPT and EIT are
the principal mechanisms behind many recent applicatio
such as lasing without population inversion@6–12#, enhance-
ment of second- and third-order nonlinear processes@13–
15#, velocity selective laser cooling@16–18#, atomic mirrors
@19–20#, matching pulses@21,22#, electromagnetically in-
duced focusing@23#, and elimination of optical self-focusing
@24#. In this paper we explore a new possibility of their a
plication: electromagnetically induced grating~EIG!.

Consider a system as shown in Fig. 1~a!. It consists of two
strong coupling fields of frequencyvc and wave numberkc ,
a weak probe field of frequencyvp and wave numberkp ,
and an atomic sample. The atomic sample hosts three-l
L-type ~or ladder-type! atoms whose energy diagram
shown in Fig. 1~b!. As usual, the coupling fields drive th
2↔3 atomic transition~which has a transition frequenc
V23 and a dipole momentm23!, while the probe field induces
the 2↔1 atomic transition~which has a transition frequenc
V21 and a dipole momentm21!; the 3↔1 atomic transition is
a dipole forbidden one. Here, the two coupling fields, wh
being symmetrically displaced with respect toz, are incident
upon the atomic sample at such angles that they intersec
form a standing wave inside the medium. Because of
weak nature of the probe field, levels 2 and 3 remain vir
ally empty no matter what the intensities of the coupli
fields are. As a result, the standing wave has an amplit
and space period that are immune to the interaction of l
with the atoms. Since the absorption and dispersion co
cients of the probe field depend on the strength of the c
pling fields, they are expected to change periodically as
standing wave changes from nodes to antinodes acrox
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dimension. Such a medium will exert both amplitude a
phase modulations across the probe beam profile in much
same way that a hybrid~amplitude and phase! grating does
to the amplitude and phase of an electromagnetic wave.
name this phenomenon EIG.

The principal mechanism behind EIG is EIT. To illustra
this point, we compare in Fig. 2 the absorption and disp
sion in the absence of the coupling field~dashed curves! with
the ones in the presence of a strong resonant coupling
~solid curves!. We further assume that the intensity of th
coupling field~used for producing the solid curve in Fig. 2!
corresponds to the peak intensity of a standing wave. Th
the dashed curves are what the probe field at nodes ‘‘se
and the solid curves are what the probe field at antino
‘‘sees.’’ The medium within the EIT window, while being
quite opaque to the probe field at nodes, is almost transpa
to the probe fields at antinodes as shown in Fig. 2~a!. This

FIG. 1. ~a! A sketch of a prototype experimental setup.~b! The
energy diagram of three-levelL-type atoms.
1338 © 1998 The American Physical Society
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57 1339ELECTROMAGNETICALLY INDUCED GRATING: . . .
can lead to a substantial amplitude modulation across
probe beam. The dispersion within the EIT window is po
tive to the probe field at nodes but negative to the probe fi
at antinodes, or vice versa@Fig. 2~b!#. This opens the possi
bility of a large phase modulation across the probe beam

In what follows, we present a theoretical analysis of EI
and show how these novel properties within the EIT wind
can be utilized to produce an atomic grating that can eff
tively diffract light into the first-order direction.

II. THEORETICAL MODEL

Our analysis begins with the mathematical representat
for the electromagnetic fields inside the medium. The pro
field is expressed as

Fp~x,z,t !5 1
2 Fpe2 ivpt1 ikpz1c.c., ~1!

whereFp is a slowly varying function of timet and distance
z, and c.c. stands for complex conjugate operation. The
coupling fields have wave vectors that are composed of ax
componentkcx ~or 2kcx! and a z componentkcz , where
kcx

2 1kcz
2 5kc

2. They form, in the overlap region, a standin
wave ~alongx dimension! with a mathematical expression

Fc~x,z,t !5 1
2 Fc sin~px/Lcx!e

2 ivct1 ikczz1c.c., ~2!

whereFc is assumed to be a real constant for simplicity, a
Lcx(5p/kcx) represents the space period.Lcx can be made
arbitrarily larger than the wavelength of the coupling fiel

FIG. 2. ~a! Absorption spectrum and~b! dispersion spectrum
The dashed curves are produced without the coupling field.
solid ones are produced with a strong resonant coupling field.
units and parameters are arbitrary.
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by varying the angle between the two wave vectors of
corresponding coupling fields. The response of the med
to the fields is governed by the density-matrix equatio
which, in the interaction picture, takes the form

]r8

]t
52

i

\
@HI8 ,r8#1Lr8, ~3!

wherer8 stands for the density-matrix operator,Lr8 sum-
marizes the effects due to the interaction of atoms with r
dom fluctuations, andHI8 is the interaction Hamiltonian. In
the Hilbert space spanned by the bare states~u1&,u2&,u3&! and
under the rotational wave approximation,HI8 can be repre-
sented by

HI852\$@Epe2 iDpt1 ikpzu2&^1u

1Ec sin~px/Lcx!e
2 iDct1 ikczzu2&^3u#1c.c.%, ~4!

where

Ep5
1

2

m21Fp

\
, Ec5

1

2

m23Fc

\
~5!

are the Rabi frequencies of the corresponding fields,
Dp(5vp2V21) and Dc(5vc2V23) are the frequency de
tunings of probe and coupling fields. By expanding Eq.~3! in
terms of the newly defined density-matrix elements

r215r218 eiDPt2 ikpz, r235eiDct2 ikcz
z r238 ,

~6!

r315ei ~Dp2Dc!t2 i ~kp2kcz!zr318 , r i i 5r i i8 ,

we can easily arrive at their equations of motion:

]r11

]t
5G21r221G31r331 iEp* r212 iEpr12, ~7a!

]r33

]t
5G23r222G31r331 iEcsin~px/Lcx!r23

2 iEcsin~px/Lcx!r32, ~7b!

]r21

]t
5~2g211 iDp!r231 iEp~r112r22!

1 iEcsin~px/Lcx!r31, ~7c!

]r23

]t
5~2g231 iDp!r231 iEpr13

1 iEcsin~px/Lcx!~r332r22!, ~7d!

]r31

]t
5@2g311 i ~Dp2Dc!#r31

1 iEcsin~px/Lcx!r212 iEpr32, ~7e!

r i j 5~r j i !* , iÞ j , ~7f!

r111r221r3351, ~7g!

e
e
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where G i j is the population decay rate from levelsi to j
while g i j is the dephasing rate between levelsi and j . In
deriving Eq.~7!, the atomic system has been assumed to
closed. The interaction of atoms with fields induces a po
ization that oscillates at the frequency of the weak pro
field:

Pp~x,z,t !5 1
2 Ppe2 ivp11 ikpz1c.c., ~8!

wherePp is the slowly varying polarization. By performing
quantum average of the dipole moment over an ensemb
homogeneously broadened atoms, we find

Pp52Nm12r21, ~9!

whereN is the atomic density. This polarization becomes
term on the right side of Maxwell’s equation for the pro
field, which reduces to

2 i
1]2Fp

2kp]x2 1
]Fp

]z
5 i

kp

2e0
Pp , ~10!

under the slowly varying amplitude approximation and
steady state. To obtain a self-consistent equation forEp , we
ob
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first follow the method in Ref.@25# to obtain, from Eq.~7!, a
solution tor21 correct to all orders of the coupling field, bu
linear order of the weak probe. We then substitute thisr21
into Eq. ~9!, and replacePp in Eq. ~10! with the newly de-
rived expression. To present the results in a unitless form,
chooseg21 as the unit for all the decay rates, frequency d
tunings, and Rabi frequencies,Lcx as the unit forx, andz0
as the unit forz, where

z05
2\g21e0

Nkpm21
2 ~11!

is the resonant~amplitude! absorption distance ate21 in the
absence of the coupling fields. Finally, the wave equation
the probe field, in a self-consistent and unitless form,
comes

2 i
1]2Ep

NF]x2 1
]Ep

]z
5~a r1 ia i !Ep , ~12!

where
a r~x!52
@g31

2 1~Dp2Dc!
2#1g31I csin2~px!

~11Dp
2!@g31

2 1~Dp2Dc!
2#12@g312Dp~Dp2Dc!#I csin2~px!1I c

2sin4~px!
, ~13!

a i~x!5
2Dp@g31

2 1~Dp2Dc!
2#1~Dp2Dc!I csin2~px!

~11Dp
2!@g31

2 1~Dp2Dc!
2#12@g312Dp~Dp2Dc!#I csin2~px!1I c

2sin4~px!
, ~14!
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-

e

pe-
er
with

I c5Ec
2,

are the absorption and dispersion coefficients of the pr
field, and

NF5
~2ApLcx!

2

lpz0
~15!

is the Fresnel number of a slit of a width 2ApLcx at a
distancez0 . Note that since no ambiguity is likely to occu
the same symbols are used for the scaled variables.
transverse term~the second-order derivative of the field wi
respect tox! in Eq. ~12! makes the probe field nonlocal in th
sense that the field atx will affect the field at differentx as it
propagates alongz inside the medium. This will complicate
the interpretation of the physics involved in the EIG form
tion. In this work, to focus on the main features of EIG, w
eliminate the transverse term by working in a parameter
gime whereNF@1. Such a requirement can be realized
increasing atomic density orLcx . Under this condition, Eq.
~12! can be solved analytically to obtain the transmiss
function for a medium of thicknessL ~alongz!:

T~x!5ear ~x!Leia i ~x!L. ~16!
e

he

-

-

n

The far-field distribution~Fraunhofer diffraction! over the
diffraction angleu ~with respect toz direction! is propor-
tional to the Fourier transformation of the product of t
input probe field amplitudeE0(x) and the transmission func
tion:

Ep~u!5C E
2`

1`

E0~x!T~x!exp~2 i2pLcxx sinu/lp!dx,

~17!

where C is the proportionality. Assuming the input prob
field is a plane wave having an amplitudeE0 uniform across
a beam of a width ofN times Lcx and definingI p(u) as
uEp(u)u2 normalized to (CE0N)2, we find from Eq.~17! that

I p~u!5uEp
1~u!u2

sin2~NpLcxsinu/lp!

N2sin2~pLcxsinu/lp!
, ~18!

where

Ep
1~u!5E

0

1

T~x!exp~2 i2pLcxx sinu/lp!dx ~19!

represents the Fraunhofer diffraction of a single space
riod. Since we will be mainly interested in the first-ord
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57 1341ELECTROMAGNETICALLY INDUCED GRATING: . . .
diffraction, we calculateI p(u) along the first-order diffrac-
tion angle determined by the grating equation, sinu1
5lp /Lcx, with the result

I p~u1!5uEp
1~u1!u2, ~20!

where

Ep
1~u1!5E

0

1

T~x!exp~2 i2px!dx. ~21!

III. RESULTS AND DISCUSSIONS

In this section, the equations outlined in Sec. II are u
to investigate the diffraction power of the EIG under vario
parameters. Let us begin our study with a case in wh
both Dp and Dc are zero. A simple inspection of Eq.~14!
reveals thata i vanishes, implying that no phase modulati
takes place. The transmission function@Eq. ~16!# is therefore
simplified to exp(arL), where

a r52
1

11I c /g31sin2~px!
. ~22!

Figure 3 displays two typical transmission functions. T
two curves share all the parameters exceptI c ; the I c for the
dashed curve is ten times as large as the one for the s
one. At the transverse locations around the nodes~of the
standing wave!, the coupling field intensity is very weak, an
the probe field is absorbed according to the usual Beer
In contrast, at the transverse locations around the antino
the coupling field intensity is quite strong, and the probe fi
is absorbed much less because of the EIT. This leads
periodic amplitude modulation across the beam profile of
probe field, a phenomenon reminiscent of the amplitude g
ing. Figure 4 displays the corresponding Fraunhofer diffr
tion patterns. To illustrate the efficiency of the first-ord
diffraction of this grating, we use Eq.~20! to calculateI p(u1)
and display the result as a function ofI c /g31 in Fig. 5. At
small I c , it increases almost linearly withI c . This is within
our expectation because asI c increases, EIT will gradually
open up the individual antinodes, making more light ava

FIG. 3. The transmission function as a function ofx when both
Dc and Dp are zero, andI c52.0 ~solid curve! and 10 ~dashed
curve!. Other parameters areg3150.1, andL54.
d

h

lid

w.
es,
d

a
e
t-
-

r

-

able for diffraction into the first order. However, it peaks a
certainI c , beyond which it fades away. This seemingly co
tradictory effect can be resolved by the following consid
ation. A strong coupling field can render most of a sing
period of the grating transparent, as clearly demonstrated
the dashed curve in Fig. 2. Such a wide opening single
riod is known to possess a diffraction envelope highly co
centrated along the forward direction, limiting the chances
light to stray into the first order. This explains why th
dashed curve in Fig. 4, while it enjoys a much increas
center maximum, has a weaker first-order peak~around
sinu50.25! compared to the solid curve. In summary, t
first-order diffraction attainable by this pure amplitude gr
ing is very limited.

To increase the efficiency of the first-order diffraction, w
must move into a parameter regime where the phase m
lation is significant. Ideally, we wish to create a medium th
is completely transparent to the probe field, but has a ph

FIG. 4. The normalized diffraction intensityI p(u) as a function
of sin(u) when bothDc andDp are zero, andI c52 ~solid curve! and
10 ~dashed curve!. Other parameters areg3150.1, L54, Lcx /lp

54, andN55.

FIG. 5. The normalized first-order diffraction intensityI p(u1) as
a function ofI c /g31 when bothDc andDp are zero, andL54.



e
os
gr
-
in
el
th
e
so
d

e
od
tt

is

on
the
out
m
oca-
and,

apid
t
eal,
orp-
nd,
s is

rn

we
the
the

her
on
re-
ter
rve
on.
r
-
der
,

dif-

the
ho-
l

tion
be
nce
he
ude
n
ost
gle
en-
r-
n.
the
e

nce

,
n
ad-

igh

1342 57HONG YUAN LING, YONG-QING LI, AND MIN XIAO
modulation on the order ofp across the probe beam. Th
diffraction power of a phase grating plus the fact that no l
of energy takes place inside the medium makes such a
ing highly efficient in diffracting light into high-order direc
tions. Although it is impossible to realize this ideal grating
our model, we will be in search of parameters that can yi
a grating as close as possible to the ideal one. In light of
discussion, we decide to work in a parameter regime wh
the coupling fields have a high intensity and are on re
nance with the 2↔3 transition, but the weak probe is tune
away from the 2↔1 transition but still operates within th
EIT window. The former condition is aimed to keep a go
level of transparency across the beam profile while the la
one is designed to introduce a nonzeroa i @Eq. ~14!#, there-
fore, a phase modulation of the probe field. Figure 6 d
plays, over a single period, the absorptionuT(x)u ~solid
curve! and phaseF (5a iL) ~dashed curve! produced when

FIG. 7. The normalized diffraction intensityI p(u) as a function
of sin(u) whenDp50 ~dashed curve! and 2.2~solid curve!. Other
parameters areg3150.1, L54, Dc50, I c520, Lcx /lp54, andN
55.

FIG. 6. The amplitude of the transmission functionuT(x)u ~solid
curve! and the phase of the transmission functionF ~dashed curve!
as a function ofx within a single space period wheng3150.1, L
54, Dc52.2, andI c520.
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I c520 andDp52.2. In this figure, the nodes are located
both ends of the curves while the antinode is located in
middle. At nodes, both absorption and dispersion are ab
0.5 ~far from zero! because the probe is tuned away fro
resonance. The maximum absorptions are reached at l
tions where the probe detuning matches the Rabi sideb
that is, I csin2(px)5Dp

2, which yields twox values: 0.16 and
0.84. Both the absorption and phase experience a r
change aroundx50.16 and 0.84, but remain relatively fla
around the antinode. These curves, although far from id
bear some traits of the ideal phase grating. First, the abs
tion is close to one across most of the single period. Seco
the difference between the minimum and maximum phase
on the order ofp. Figure 7 compares the diffraction patte
in this case whereDp is 2.2~solid curve! with the one where
Dp is zero~dashed curve! ~other parameters are the same!. It
shows that the amount of light in the first order is, as
predict, considerably increased. To illustrate the role of
phase modulation, we present in Fig. 8 two figures; one is
Fraunhofer diffraction ofuT(x)u ~solid curve!, and the other
is the Fraunhofer diffraction of exp(iF) ~dashed curve!. It
clearly shows that the amplitude modulation tends to gat
light to the center maximum while the phase modulati
tends to disperse light into the high-order directions. The
fore we conclude that the transfer of light from the cen
maximum to the first order, demonstrated by the solid cu
in Fig. 7, is mainly accomplished by the phase modulati
The next question is how farDp should be detuned in orde
to yield an optimum first-order diffraction. Figure 9 is pro
duced to answer this question. It shows that the first-or
diffraction increases asDp until it reaches a maximum value
beyond which it decreases asDp . WhenDp is too large, the
diffraction power is reduced because a largeDp , although it
makes the medium more transparent, weakens the key
fraction player: dispersion.

IV. CONCLUSION

In this paper we have developed a theory for studying
phenomenon of electromagnetically induced grating in a
mogeneously broadened medium consisting of three-leveL-
type atoms under the condition thatNF@1 @Eq. ~15!#. We
have used this theory to investigate the transmission func
of the medium and the Fraunhofer diffraction of the pro
field when both coupling and probe fields are on resona
with their corresponding atomic transitions. We find that t
atomic medium under this condition serves as an amplit
grating to the probe field with a very limited diffractio
power. This is because a strong coupling field renders m
of a single period of this grating transparent. Such a sin
period creates a diffraction envelope that is highly conc
trated along the forward direction, leaving very little oppo
tunity for light to propagate along the first-order directio
We have also investigated the transmission function and
diffraction power of the medium in the parameter regim
where the probe frequency is tuned away from resona
~but still within the EIT window! and the coupling field in-
tensity remains high. A highI c reduces the loss of light
while a nonzeroDp introduces a periodic phase modulatio
across the probe beam. We find that this scheme takes
vantage of the two features of EIT: transparency and h
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57 1343ELECTROMAGNETICALLY INDUCED GRATING: . . .
dispersion in the EIT window, and results in an atomic gr
ing that can effectively diffract light into the first-order di
fraction.

This theory is applicable to atomic beams, or atomic ce
where the atomic density is so high that collisions beco
the dominate linewidth-broadening mechanism@3#. This
grating may be utilized as a beam splitter for fields who
frequencies are out of reach by the gratings commerci
available. Both the direction and the amount of the split lig
can be controlled by the coupling field. We note that in
atomic beam experiment, the probe diffraction pattern w
be shifted if the velocity of the atomic beam changes. A
result, this diffraction pattern may provide insight into n
only the internal~atomic energy levels and decay rates! but
also the external~velocity! atomic variables.

The phenomenon of EIT in the presence of Dopp
broadening is evident from several recent experiments@4#.
Although the experimental arrangements for EIG are diff

FIG. 8. Fraunhofer diffractions ofuT(x)u ~solid curve! and F
~dashed curve! as functions of sin(u) when Dp52.2, andI c520.
The other parameters areg3150.1, L54, Dc50, Lcx /lp54, and
N55.
-

tt.
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ent from those for EIT, the main mechanism leading to E
is still EIT. As a result, we believe that EIG will be obser
able in similar experiments, although the diffraction patte
will be less pronounced. In order to extract the main phys
we have assumed that the optical beams are plain wave
practice, they have a Gaussian profile. Thus our theory
plies only to optical beams whose width is much larger th
the grating period. When the finite extent of a Gaussian p
file is taken into account, the grating efficiency is expected
be reduced. The details of these practical concerns are
yond the scope of this work, and will be left to a futu
study.
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FIG. 9. The first-order diffractionI (u1) as a function ofDp

when I c5 ~a! 10, ~b! 20, and~c! 50. Other parameters areDc50,
g3150.1, L54, andN55.
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