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Stability and dynamical properties of the coexisting attractors
of an external-cavity semiconductor laser
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2Department of Physics, Bryn Mawr College, 101 North Merion Avenue, Bryn Mawr, Pennsylvania 19010-2899
~Received 30 June 1997!

Coexisting attractors, which arise from different external-cavity modes of the same longitudinal mode of the
solitary laser, retain distinct stability properties, particularly when the laser is biased far above threshold and
subjected to moderately strong optical feedback from a distant reflector. When the laser is modeled by the Lang
and Kobayashi equations with additional gain nonlinearity, the dynamics is limited to external-cavity attractors
that develop from the external-cavity modes which have a positive but not too large frequency shift with
respect to the solitary laser emission frequencyv0 . Although relaxation oscillations about these external-
cavity modes are the first to become undamped as the feedback intensity increases, the attractors that arise from
these modes remain stable over the largest range of feedback strengths. Stronger feedback destabilizes the
individual attractors, creating new solutions which form from their ruins. At the beginning of the merging, the
attractor ruins are not equally visited; the most visited ruins are those of the attractors last destabilized. We
explore and explain these results by examining the dynamics of the laser when operating on a single external-
cavity attractor.@S1050-2947~98!08101-3#

PACS number~s!: 42.55.Px, 05.45.1b, 42.65.Sf
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I. INTRODUCTION

Semiconductor lasers are very sensitive to back refl
tions from any surface. Even very low levels of reflecti
light ~power reflection rate'1024! can destabilize single
mode operation of a semiconductor laser causing it to ent
regime characterized by high-intensity noise and a v
broad linewidth. This behavior, termed ‘‘coherence c
lapse’’ @1#, has been identified as a form of chaotic dynam
@2#. Both intrinsic interest in this type of nonlinear dynami
and practical applications of laser diodes have spurred a w
range of studies, many of which have been reviewed rece
by Petermann@3# and van Tartwijk and Lenstra@4#.

Some recent studies have focused on reducing or con
ling the destabilizing effects of feedback@5–9#. Very weak
feedback from short external cavities~typically, for cavities
shorter than a few millimeters! can significantly reduce both
the intensity noise and lasing linewidth@10#. The emission
frequency can also be stabilized with phase-conjugate fe
back@11#. Variations of the feedback within the range whic
leads to chaotic operation can be used to encrypt informa
@12,13#. Feedback into a broad-area laser can bias the se
tion of a particular lateral mode, though this is sensitive
very small variations of the external-cavity length@14,15#.
Pulse-to-pulse jitter in spontaneously pulsing or externa
switched laser diodes can be reduced with weak optical fe
back, but the reduction is also extremely sensitive to sm
variations in the cavity length@16,17#.

Previous studies have considered short external cav
more than long external cavities, perhaps because for s
external cavities coherence collapse can be more ea
avoided and weak feedback can be used to improve
quency stability and reduce the laser intensity noise. Ho
ever, many applications of integrated electro-optical syste
involve optical feedback from more distant reflectors~typi-
571050-2947/98/57~2!/1313~10!/$15.00
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cally, from one to several meters!. In this paper we study the
transition to coherence collapse when the laser is biased
tively far above threshold, and when the feedback is from
distant reflector. The dynamics of a single-longitudinal-mo
laser diode with optical feedback often has been describe
the Lang and Kobayashi rate equations@18#. The external
cavity is described by two parameters: the feedback par
eterg, which is proportional to the strength of the feedbac
and the delay timet, which is proportional to the external
cavity length. Although the model does not include the m
tiple reflections in the external resonator, it describes
served laser behavior with high accuracy over a wide ra
of parameter values@2#.

An important exception to the success of the Lang a
Kobayashi model in describing experimentally observed
namical phenomena is what has been termed the l
frequency fluctuations~LFF! regime, which occurs for mod
erate feedback and when the laser is biased near the so
laser threshold (I ,1.221.4I th). In this regime the laser in-
tensity suddenly drops toward zero and then recovers gra
ally, only to drop out again after an apparently random del
The physical mechanism behind LFF is still not fully unde
stood, though several different explanations have been
posed. Mo”rk, Tromborg, and Christiansen@19# explained
LFF as the result of bistability among the steady-state so
tions introduced by the external cavity~the so-called
external-cavity modes, ECMs!. Hohl, van der Linden, and
Roy @20# showed that spontaneous emission noise plays
important role in the nature and the statistics of the dropo
Their experimental measurements agree with those of He
and Kazarinov@21#, in suggesting that spontaneous emiss
noise induces the dropout events. Sano@22# explained the
dropouts as resulting from a switching among distinct
gions of phase space. In this interpretation, the laser mo
toward the mode with most gain, but since in the neighb
1313 © 1998 The American Physical Society



d

in
v

a
h
in
0
n

w
u
v-
ilit

re
n
ig
ou

(
b

re
or
tin

ila

to
s

e
fe
p
re
y,

tio
e
ic
a

he
e
lly

in
ar
he
w-
b

ur
en
te
fo
e
ite
od

rs

rm
ere
he

-
by

y a
gth
lat-
es.
d
ack

ec-
h

the
ich
cies
ec.
e
IV

su-
ns,
ic
r

lus a
ted
d

are

ck

he-

1314 57C. MASOLLER AND N. B. ABRAHAM
hood of the maximum gain mode the modes and antimo
~i.e., unstable external-cavity modes! are very close, when
the trajectory approaches an antimode, it is expelled
another region of the phase space, and then starts mo
towards the maximum gain mode again@23,24#. As measure-
ments of LFF more recently have become more accurate
as they have been made with higher-speed electronics, t
is experimental evidence that the ‘‘power dropouts’’ are
the envelope of a series of short pulses, each lasting 10
or less@24#. Similar pulses have been found in the Lang a
Kobayashi model with high feedback@23,24#. Temporally
resolved optical spectra reveal that there is enhanced po
in several longitudinal modes during the power dropo
@25,26#. The full significance of this faster dynamical beha
ior, not discussed in earlier LFF papers, and the possib
that it may excite~or be caused by the excitation of! more
than one longitudinal mode will be an active area of futu
study. Recently, a different type of LFF have been fou
experimentally well above the laser threshold, with the s
nature of abrupt power increases instead of power drop
@27#.

When the laser is biased well above thresholdI
.1.4I th) the effects of spontaneous emission usually can
neglected. In the deterministic dynamics of the noise-f
Lang and Kobayashi model, for increasing feedback m
external-cavity modes appear and the previously exis
modes become unstable though Hopf bifurcations~the previ-
ously damped relaxation oscillations, at a frequency sim
to that of the solitary laser, become undamped! and quasi-
periodic routes to chaos occur in the sequence of attrac
that form near each mode as the feedback parameter i
creased further@28#.

Although the term coherence collapse is widely us
whenever the laser linewidth broadens drastically from a
MHz to several GHz, broadening does not necessarily im
chaotic dynamics. When the feedback is from a distant
flector, the round-trip time of the light in the external cavit
t, is much larger than the period,tR , of the relaxation oscil-
lations ~of the laser intensity and the carrier number! in the
solitary laser. In this case, the undamped periodic relaxa
oscillations create what appears at low resolution to b
broadband spectrum without representing chaotic dynam
Chaos in the attractor that evolves from a single extern
cavity mode develops for higher feedback, while even hig
feedback induces a deterministic merging of the ruins of s
eral single ECM attractors to form a more complex, typica
chaotic, attractor.

The dynamics has long and short time scales, as it
volves fast evolution on the weakly unstable ruins of a p
ticular ECM attractor interrupted by abrupt hopping into t
ruins of a different attractor. This hopping gives both lo
frequency and broad band contributions to the spectrum
it differs from the low-frequency fluctuations which occ
close to the solitary laser threshold. In the former the int
sity fluctuations are more fully randomized, while the lat
is characterized by random sudden drops in intensity
lowed by a deterministic stepwise buildup. In the LFF r
gime the evolution following a power dropout has a defin
direction in phase space towards the external-cavity m
with maximum gain~the buildup process!, while in the co-
herence collapsed regime the switching among attracto
es
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more random. Given these distinctions, we will use the te
coherence collapse to refer to the chaotic state in which th
is merging of the basins of attraction which surround t
individual external-cavity-mode solutions.

A similar transition from operation on the lowest line
width mode to coherence collapse was recently studied
Hirono, Kurosaki, and Fukuda@29#, who applied the injec-
tion locking model of Henry and Kazarinov@21#. In this
alternative model the back reflected field is replaced b
constant field. The authors derive conditions on the stren
of the feedback for the onset of coherence collapse, calcu
ing when the damping of the relaxation oscillations vanish
Our results differ from those of Hirono, Kurosaki, an
Fukuda, since we treat the full time dependence of the b
reflected field.

The remainder of this paper is organized as follows. S
tion II contains a brief description of the model. Throug
stability analysis and numerical solutions we show that
more stable of the external-cavity mode attractors wh
merge in the coherence collapsed state have frequen
slightly larger than the frequency of the solitary laser. In S
III we explain this result by examining the dynamics of th
laser when it operates in a single ECM attractor. Section
provides a summary and conclusions.

II. DYNAMICS FOR MODERATE FEEDBACK
AND LONG DELAY TIMES

Single-longitudinal-mode semiconductor lasers can u
ally be successfully modeled with two dynamical equatio
one for the evolution of the slowly varying complex electr
field amplitudeE(t), and one for the evolution of the carrie
populationN(t) ~the electron-hole plasma!. The Lang and
Kobayashi equations are the usual laser rate equations p
time-delayed term that takes into account the field reflec
from the external mirror. Writing the intracavity electric fiel
asE(t)exp$i@v0t1f(t)#%, whereE andf are real andv0 is
the emission frequency of the solitary laser, the equations

dE~ t !

dt
5

1

2 FG~N,E2!2
1

tp
GE~ t !

1gE~ t2t!cos@v0t1Df~ t !#, ~1!

df~ t !

dt
5

a

2 FG~N,E2!2
1

tp
G2g

E~ t2t!

E~ t !
sin@v0t1Df~ t !#,

~2!

dN~ t !

dt
5J2

N~ t !

ts
2G~N,E2!E~ t !2. ~3!

E(t) is normalized so thatVcE(t)2 is the total photon num-
ber in the solitary laser waveguide~whereVc is the volume
of the active region!. Df(t)5f(t)2f(t2t) is the phase
delay during the external-cavity round-trip timet. The feed-
back parameterg measures the strength of the light fed ba
into the laser cavity. Other parameters arets , the carrier
lifetime; tp , the photon lifetime;G, the gain per unit time
G5GN(N2N0)(12«E2), whereGN is the modal gain co-
efficient, N0 is the carrier density at transparency, and« is
the nonlinear gain coefficient which takes into account p
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57 1315STABILITY AND DYNAMICAL PROPERTIES OF THE . . .
nomenologically the effects of carrier heating and spec
hole burning@30,31#. a is the linewidth enhancement facto
@32,33# andJ is the current density in carriers per unit vo
ume and unit time. The frequently included Langevin no
terms that represent the effects of spontaneous recombin
and spontaneous emission are omitted here, since thes
fects usually play a negligible role when the laser intensity
strong. We have chosen to retain the nonlinear gain («Þ0)
since this more realistically models the experimental resu
including more moderate pulsations~than those found with
«50! which represent more confined trajectories in t
phase space. There is qualitative similarity between the
sults for«Þ0 and«50 but for these numerical simulation
we have opted for the more quantitatively realistic model.
course any approximate nonlinearity has limited validity, b
none of the solutions we report here leave that domain.

The stationary solutions of Eqs.~1!–~3! are called the
external-cavity modes and can be written asE(t)5Es,i ,
f(t)5(v i2v0)t, N(t)5Ns,i . The optical frequenciesv i
are the solutions of

f ~vt![vt2v0t1gtA11a2 sin~vt1arctana!50.
~4!

The carrier density and field amplitude of a given ECM a
found by solving

GN~Ns,i2N0!~12«Es,i
2 !51/tp22g cos~v it!, ~5!

and

J2Ns,i /ts2GN~Ns,i2N0!~12«Es,i
2 !Es,i

2 50. ~6!

In Fig. 1 we show the graphical solution of Eq.~4!, for
g51.23109 s21, t510 ns, a54.4, andv0t56 rad. Since
the amplitude of the sine term in Eq.~4! depends ong, and
the period depends ont, the number of steady-state solutio
increases as the value of eitherg or t increases. The value o
C5gtA11a2 determines this number. These solutions
called the external-cavity modes. For increasing feedb
these modes are created in pairs after saddle-node bifu
tions: for C,1 only one mode exists, which is the las
cavity mode minimally perturbed by the external cavi
while for C.1 there are 2n11 modes. If

FIG. 1. Graphical solution of Eq.~4! for g51.23109 s21, t
510 ns,a54.4, andv0t56.
l
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dv0

dv U
v i

511gA11a2 cos~v it1arctana!,0 ~7!

the solution is intrinsically unstable~a saddle point!, and is
called an antimode@2# @the antimodes are modes for whic
the slope off (v) is negative#. In Fig. 1 we see that forg
51.23109 s21, and t510 ns there are 17 modes and 1
antimodes.

Equations ~1!–~3! were integrated with a fourth-orde
Runge-Kutta method with an integration stepDt50.01 ns
and using the parameters given in Table I~the same as in
Ref. @34#, where it was found that the visibility in interfero
metric coherence measurement of a laser diode within
coherence collapsed regime is accurately reproduced by
Lang and Kobayashi model!. The external-cavity parameter
~g andt! are the free parameters of our study. The feedb
is varied from zero to well above the value for which attra
tor merging begins, and the delay time is kept greater tha
ns, corresponding to relatively large external cavit
(Lext.0.5 m).

For increasing feedback each stable ECM undergoe
Hopf bifurcation to periodic oscillations followed by a qua
siperiodic route to chaos. The time-dependent solutions
often localized in phase space near the steady-state solu
~ECMs!, indicating separated basins of attraction. The t
frequencies that appear in the route to chaos are, to a g
approximation, the same for all the attractors in the basin
attraction around the different modes, and are approxima
the relaxation oscillation frequency of the solitary las
@f RO5AGN(J2Jth)/2p, where Jth is the threshold curren
density# and the external-cavity-mode spacing frequen
( f ext), which is slightly lower than 1/t @2#.

Since the ECMs have optical frequenciesv i shifted posi-
tively and negatively with respect tov0 , it is not surprising
that the different chaotic attractors to which they evolve ha
different mean optical frequencies. When the chaotic attr
tors merge in the coherence collapsed regime, these
quency differences show up in the different characteris
rates of phase accumulation. A typical trajectory in t
merged regime is shown in Fig. 2~the circles indicate the
positions of the destabilized external-cavity modes, and
crosses, the positions of the antimodes!. We plot the trajec-
tory in the plane formed byDf(t)1v0t and the normalized
electric fieldE(t)/Esol ~whereEsol is the field amplitude of
the solitary laser!. The steady-state value ofDf(t)1v0t
when the laser operates in the external-cavity modei is v it

TABLE I. Laser parameters.

Photon lifetime tp 1.4 ps
Carrier lifetime ts 1 ns
Linewidth enhancement factor a 4.4
Threshold current Jth 2.0831033 m23 s21

Injected current J 2Jth

Modal gain coefficient GN 8.39310213 m3 s21

Carrier density at transparency N0 1.2331024 m3

Gain saturation parameter « 2310224 m3

Feedback phase v0t 6 rad
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1316 57C. MASOLLER AND N. B. ABRAHAM
~if i is not too large, the values ofv it are separated by
approximately 2p, see Fig. 1!.

Since f RO and f ext appear in the attractors that develo
from any of the modes~at least, for large external cavities fo
which f ext! f RO!, for moderate feedback the optical spectru
of the laser will show peaks spaced at the harmonics~and
linear combinations! of f RO and f ext, regardless of whethe
the laser is operating on an attractor near a single ECM o
it is switching among attractors near different ECMs. Th
makes it hard to distinguish the underlying nature of
dynamics just from the optical spectrum or the intens
power spectrum.

The optical spectrum of a multimode or pulsing laser
ode is asymmetric under many conditions@35#. This is due
principally to thea factor, which couples the modulus an
phase fluctuations of the complex electric field. However,
find that at the beginning of attractor merging, the opti
spectrum is not only asymmetric in the heights of the pe
spaced byf RO and f ext but usually the main peak is not at th
operating frequency of the solitary laser,v0 , but is shifted
positively. We show in Fig. 3 the optical spectrum for fo
different feedback levels. Figure 3~a! has the same paramet
values as Fig. 2 and corresponds to the beginning of attra
merging ~for these parameter values,f RO56.65 GHz and
f ext50.1 GHz!. These spectra have obvious asymmetr
about the major peaks, and two characteristic spacings
tween peaks. The central peak is shifted by one or m
multiples of the ECM frequency spacing towards posit
frequency, which is especially noticeable in Fig. 3~a!. For
increasing feedback the frequency shift gradually disapp
@Fig. 3~d!#.

The shift in the optical spectrum comes from the tende
of the laser to operate in attractors which originate fro
ECMs with v i>v0 , in spite of the fact that the ECMs ar
located symmetrically in frequency with respect tov0 ~as
shown in Fig. 1!. In Fig. 2, which corresponds to the sam
parameter values as Fig. 3~a!, the laser switches among th
attractor ruins originated from ECMs 0< i<3.

For increasing feedback the first ECM attractors to

FIG. 2. Trajectory at the beginning of coherence collapse~g
533109 s21, t510 ns!. Eighty round-trips in the external cavit
are shown. The evolution occurs in the attractor ruins of fo
external-cavity modes~i 50, 1, 2, and 3!.
if
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come ‘‘attractor ruins’’ are those with the largest round-tr
phase difference with respect to the solitary laser~i.e., with
mode numberi @0!. Trajectories with initial conditions tha
place them near these unstable attractors will evolve, aft
transient, to one of the remaining attractors near ECMs w
low positive mode number~typically, 0, i ,5!, which are
stable over a large feedback range. The ECMs withi !0,
which are often stable fixed points, have very tiny basins
attraction; trajectories with initial conditions in the vicinit
of these modes will also evolve to the attractors near EC
with low, positive mode number. When the last of the
ECM attractors has lost its stability, merging begins.

The merged attractors are not equally visited, as seen
the different densities in the zones of Fig. 2. The attrac
hopping dynamics can be characterized by the probability
visiting the different ECM attractor ruins as follows. W
recorded the trajectory for a long time and computed
Poincare´ section with the planeE5Esol. The probability
residency in the different attractor ruins was then estima
from the density of intersection points. Figures 4~a! and 4~b!
show the Poincare´ section and the corresponding probabili
residency, for the same parameters as for Fig. 2. The i
gration time is much longer than for the data shown in Fig
The trajectory briefly visits the attractor ruins of the ECM
i 521 and 4, and spends most of its time in the ruins
ECMs i 51 and 2. On the horizontal axis of Fig. 4~b! we
have indicated with a circle the location of the destabiliz
external-cavity modes, and with a cross the most proba
values~which are shifted to the right!.

In order to obtain good statistics, it is important to com
pute the trajectory for a long time, since at the beginning
attractor merging the jumps are not very frequent, and
trajectory spends a long time in one attractor before swit
ing to another. The accuracy of the probability distributio
was checked by calculating them over different trajector
~with different initial conditions!, typically by beginning in
different attractor ruins, including those not visited in th
merged attractors~that have not merged yet!. After a tran-
sient in which the trajectory evolved towards the merg

r

FIG. 3. Optical spectra at the beginning of coherence colla
t510 ns and~a! g53, ~b! g53.5, ~c! g54.0, and ~d! g54.5
(109 s21). The spectrum was calculated with 262 144 poin
sampled withDt50.01 ns, which span 262 round-trips in the e
ternal cavity. The parameters are the same as for Fig. 2.
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57 1317STABILITY AND DYNAMICAL PROPERTIES OF THE . . .
attractors, the shape of the probability distribution remain
unchanged in time.

Figure 5 shows that the number of visited ECM attrac
ruins increases and the relative residences shift as the f

FIG. 4. ~a! Poincare´ map for the same parameters as Fig.
100 000 points are shown. Since the oscillation periodtR is 0.15 ns,
in a round-trip time there are approximately 67 intersections of
Poincare´ plane. Therefore 100 000 points correspond to appro
mately 1500 round-trips.~b! Probability distribution obtained from
the Poincare´ map of ~a!.

FIG. 5. Probability distribution for four different feedback leve
within the coherence collapse regime.t510 ns, and~a! g53.0, ~b!
g53.5, ~c! g54.0, and~d! g54.53109 s21.
d

r
ed-

back changes~the parameters are the same as in Fig. 3!. In
Fig. 5~a! four attractors have merged, the probability dist
bution is clearly asymmetric, and the most visited ECM
tractor is i 52, centered at an optical frequency larger th
the solitary laser frequency. For increasing feedback@Figs.
5~b!–5~d!#, more neighboring attractors join the merged g
bal attractor. The jumps become more frequent, and as
number of attractors involved increases, the probability d
tribution becomes symmetric and more nearly centered
v0 . Consequently, the frequency shift in the optical sp
trum disappears for increasing feedback@Fig. 3~d!#.

Therefore we conclude that for moderately strong fe
back from a distant external reflector the laser tends to o
ate on attractors near the external-cavity modes with a p
tive but not too large frequency shift with respect to t
solitary laser state. The modes~and the attractors to which
they evolve! with large frequency shifts are highly unstab
~those with a positive shift! or have very narrow basins o
attraction ~those with a negative shift!. The laser is very
rarely observed to operate in the vicinity of these modes
the next section we examine the dynamics of the laser o
ating on an attractor near a single ECM.

III. DYNAMICS IN SINGLE ECM ATTRACTORS

In Fig. 6 we show the coexisting attractors for the para
eter values used in Fig. 2 but at a lower feedback level~the
feedback is the same as in Fig. 1, which is below the onse
attractor merging!. In the simulations the initial conditions
were taken to be the unstable steady-state solutions give
Eqs. ~4!–~6!, and transient evolution during the first roun
trips of the external cavity was discarded~typically 300
round-trips!.

In all for these conditions there are seven fixed poin
four limit cycles, and six quasiperiodic tori. The externa
cavity modes which exist with mode numberi<22 are all
stable, though only three are shown. The attractors wh
have developed from modes21< i<1 and 6< i<8 are tori,
and the attractors which have developed from modes 2< i
<5 are limit cycles.

.

e
i-

FIG. 6. Coexisting attractors for the same parameter value
Fig. 1. The external-cavity modesi<22 are fixed points~only
three are shown, represented with circles!. From the external-cavity
modes21< i<1 and 6< i<8 quasiperiodic tori develop, while
from the external-cavity modes 2< i<5 limit cycles develop.
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FIG. 7. ~a! Three-dimensional plot of the torus developed from the external-cavity modei 521 in the~Df, N/Nth21, E/Esol! space and
time evolution of the laser variablesE(t), f(t), N(t), andDf. Same parameters as Fig. 6. In the three-dimensional plot only one roun
is shown, while in the time series two round-trips are shown.~b! As in ~a! but of the limit cycle developed from the external-cavity mo
i 53. ~c! As in ~a! but of the torus developed from the external-cavity modei 56.
ta

e

as
du-
.

op-
ear
In Fig. 7 we show some of these attractors in more de
Figure 7~a! shows the torus developed from modei 521,
Fig. 7~b! the limit cycle developed from modei 53, and Fig.
7~c! the torus developed from modei 56. We show the at-
tractor in the (Df,N/Nth21,E/Esol) space~the circle indi-
cates the location of the destabilized external-cavity mod
and the crosses indicate the nearby antimodes!, and the time
evolution ofE, f, N, andDf.
il.

s,

Clearly, the dynamics in each of the quasiperiodic tori h
two different stages. The first stage consists of large mo
lation. We shall call this the ‘‘relaxation-oscillation’’ stage
The modulation affects all of the laser variables~intensity,
optical frequency, and carrier density!, which oscillate with
the same modulation frequency~which is very close tof RO!.
The oscillations are not large pulses in between power dr
outs~as occurs in the low-frequency fluctuations regime n
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FIG. 7 ~Continued!.
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the laser threshold! but moderate oscillations around the s
tionary stateEs,i , Ns,i , v it given by Eqs.~4!–~6! ~roughly
speaking DE/Esol<20%, DN/Nth<1.5%, and Df<v it
62.5!. In the relaxation-oscillation stage, the laser has
mean optical frequencyv1 that is positive and is approxi
mately the same for all the modes.

In the second stage, the laser evolves in the vicinity of
external-cavity-mode solution; the evolution is slow, the a
plitude of the modulation markedly decreases, and the la
has a mean optical frequencyv2 that depends on the particu
lar external-cavity mode.v2 is negative in what we shall ca
a type-I torus, and positive in a type-II torus. In the pha
space, the type-I tori are located between the fixed points
the limit cycles, while the type-II tori are located above t
limit cycles ~see Fig. 6!.

For those ECMs whosev i is close tov1 , the limit cycles
persist over the widest range of values ofg.

The type-I tori and the type-II tori are topologically dis
tinct. In the type-I tori, two pseudo fixed points exist~located
near the center of the tori!. Between these pseudo fixe
points the trajectory spirals in a channel~which is often ex-
tremely tiny! which connects the two sides of the torus~this
is what we previously called the second stage of the ev
tion!. Then, it evolves over the ‘‘outside’’ of the torus, in
‘‘pseudo’’ limit cycle ~this is what we previously called th
first stage of the evolution! before going back to the cente

In the type-II tori, only one pseudo fixed point exists. T
attractor resembles a cone~with the pseudo fixed point in its
vertex!, and the trajectory evolves over the ‘‘outside’’ of th
cone~first stage!, and then near the vertex~second stage!.

The topological differences between the type-I and
type-II tori probably arise from the location of the unstab
fixed points in the phase space. For the type-I tori~which
develop from ECMs with not too large mode numberi ! the
antimodes are located almost symmetrically with respec
the destabilized external-cavity mode from which the attr
-

a

e
-
er

e
nd

-

e

to
-

tor originated. For the type-II tori~which develop from
ECM’s with large, positivei ! one antimode is very close t
the destabilized external-cavity mode from which the attr
tor originated~see Fig. 1!.

There is a kind of phase matching condition~or ‘‘fre-
quency locking’’! in the dynamics. We refer to frequenc
locking as the situation where the phase differenceDf(t)
5f(t)2f(t2t) oscillates periodically with mean valu
close to the stationary value (v i2v0)t. We see in Fig. 7~a!
that for the quasiperiodic torusDf oscillates almost periodi-
cally for a while ~with frequency' f RO!, but since the sec-
ond frequency involved in the dynamics is not 1/t but is
slightly lower, at a certain pointDf becomes too large, the
phase matching breaks, and the laser adjusts by evol
close to the unstable external-cavity-mode solution. Then
initiates the mode locking process again. In type-II toriDf
decreases before the mode locking breaks@Fig. 7~c!#.

Figure 8 shows the optical spectrum of the three attrac
shown in Fig. 7. In these spectra the positive frequenc
close tov1 have relatively important peaks, even though t
torus of Fig. 7~a! develops from an external-cavity mod
with v i,v1 , and the torus of Fig. 7~c! from an external-
cavity mode withv i.v1 .

The type of attractor which develops from a particu
external-cavity mode depends on the location of the mod
the ~v, g! plane. In this plane, two curves are important. T
first is the curve where saddle-node bifurcations occur
pairs of fixed points are born, and the second is the cu
where Hopf bifurcations occur and the stable modes beco
limit cycles.

A saddle-node bifurcation occurs when

f ~v!5
d f~v!

dv
50. ~8!
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Therefore the critical feedback level at which a pair of mod
of frequencyv i

sn appears is

gsn5
21

tA11a2 cos@v i
snt1arctan~a!#

, ~9!

wherev i
sn is a solution of

v it2v0t5tan@v it1arctan~a!#. ~10!

~The set ofv i
snt values depends only on the value ofa and

for large mode number they are separated by approxima
2p.!

The feedback level above which a Hopf bifurcation o
curs and modei becomes unstable is@36#

FIG. 8. Optical spectrum of the attractors shown in Fig. 7.
s

ly

-

gH5
22lR

A11a2 cos@v it2arctan~a!#@12cos~vRt!#
,

~11!

where

lR5
1

2 S 1

ts
1GNEsol

2 1
Esol

2

tp
« D

is the damping rate of the solitary laser,vR52p f RO

5AGN(J2Jth), and v i is a solution of Eq.~4!. If vRt
'(2n11)p, a good approximation of Eq.~11! is

gH5
2lR

A11a2 cos@v it2arctan~a!#
. ~12!

In Fig. 9 we show the location of the saddle-node a
Hopf curves in the~vt, g! plane, for three different time
delays, andv0t fixed. ~Obviously the Hopf curve is located
above the saddle-node curve.! The saddle-node and Hop
curves are similar to hyperbole. The Hopf curve has its mi
mum shifted towards the modes with mode numberi .0 ~a
shift that increases ast increases!, while the saddle-node
curve is symmetric with respect to the solitary laser mo
~i 50, v0t56 rad!.

The two curves are almost parallel in thevt,v0t side of
the plane, and are tangent at some point in thevt.v0t side
of the plane. The relative positions of these two curves in
~vt, g! plane leads to the existence, for a given value og
above the minimum for any Hopf bifurcation, of four categ
ries of attractors:~1! The stable modes with mode numbe
i ,0 which have not undergone the Hopf bifurcation yet~for
these modes,gH.g!; the maximum gain mode and it
neighboring modes belong to this category, as discussed
Levineet al. in @37#; ~2! the modes situated to the left of th
minimum of the Hopf curve, which havegH,g ~they have
undergone a Hopf bifurcation!; these modes rapidly yield to
tori of type I; ~3! the modes situated on the bottom of th
Hopf curve, which usually yield to limit cycles for a very
large feedback range; these attractors are the most stable
they are the last to lose stability and the first to merge;~4! the
modes situated near but below the region where the sad
node and Hopf curves become tangent. These modes yie
limit cycles for a small range ofg but with increasing feed-
back they turn into tori of type II and then lose stability.
FIG. 9. Saddle-node~s! and Hopf~h! curves forg51.23109 s21, and~a! t52 ns, ~b! t55 ns, ~c! t510 ns.
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For the ECMs above the region where the saddle-n
and Hopf curves become tangent we could not find a
stable attractors~neither steady state, periodic, nor chao
attractor!. This region corresponds to modes with high po
tive mode number, which exist only for high feedback leve
Trajectories starting from initial conditions in these mod
leave and end up on the already merged attractors.

By contrast, for the ECMs with mode numberi !0
~which are also only created at high feedback levels!, nu-
merical simulations clearly show that they remain sta
fixed points until the Hopf bifurcation occurs.

Figure 9 offers an obvious analogy to the behavior o
semiconductor laser with external injection~see, e.g., Fig. 1
of @38#!. The frequency symmetry of the steady states a
the Hopf bifurcation threshold with a shifted minimum fr
quency are strikingly similar.

Conditions for the stability of the single ECM solution
cannot be determined analytically because the characte
equation is a complicated transcendental equation for
complex growth rate of small perturbations. Based on
numerical results, we speculate that the mode and antim
fixed points withi @0 are both unstable from the beginnin
Similar behavior typically occurs near a saddle-node-H
codimension two bifurcation point~on one side of the bifur-
cation point there is a supercritical saddle node followed
a supercritical Hopf bifurcation, and on the other side, a s
critical saddle node followed by a subcritical Hopf bifurc
tion @39#!.

Finally, let us discuss the effects of the relevant para
eters on the dynamics. Two important parameters are
pump currentJ and the gain saturation coefficient«. An
increase ofJ or « increases the dissipation, and diminish
the size of the ECM attractor~the two distinct stages of th
dynamics that we described before do not exist, or beco
less distinct, if either the laser is biased close to threshol
the nonlinear gain is neglected!. Increasinga or g increases
the instabilities and the size of the ECM attractor. An
crease oft leaves the attractor size relatively unchanged,
the ‘‘tunnel’’ in the center of the torus becomes more narr
~this behavior occurs for long delay times, since for short
these attractors are either fixed points or limit cycles!. There
are also very narrow regions of the delay time in which
kind of frequency locking occurs~between f ext'1/t and
f RO!, and the topological structure of the attractor chan
abruptly ~for instance, it becomes a fixed point!.

IV. SUMMARY AND CONCLUSIONS

We have studied in detail the dynamics of a single-mo
laser diode biased far from threshold and subjected to m
erately strong feedback from a distant reflector. In the h
ping dynamics~at the beginning of the merging of the attra
tors developed from the ECMs, which corresponds to
beginning of regime IV in the classification of the extern
cavity laser dynamics of@40#!, not all the merged attractor
are equally visited. The probability distribution of visitin
single ECM attractors~when very few attractors hav
merged! is highly asymmetric and centered on a frequen
slightly larger thanv0 . This leads to a positive frequenc
shift in the spectrum of the laser. For increasing feedback
more attractors merge, the probability distribution becom
e
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symmetric and more nearly centered onv0 , and the fre-
quency shift gradually disappears. In this regime~which cor-
responds to moderately strong feedback levels! the modes
with large positive frequency shift with respect to the solita
laser frequency are highly unstable, and the modes with la
negative frequency shift have very narrow basins of attr
tion. The laser is very rarely observed to operate in the
cinity of these modes. The different stability properties of t
ECM attractors can be understood from the dynamics of
laser when it operates in a single ECM attractor. The dyna
ics consist of two clearly distinguished stages. There
large amplitude fast oscillations of the laser variables, a
there is slow evolution~close to the external-cavity stead
state! in which the amplitude of the oscillations is marked
decreased. While the mean emission frequencyv2 in the
second stage depends on the particular ECM, the ave
frequencyv1 in the first stage is positive and approximate
the same for all the modes. The modes withv i close tov1
are the most stable. They lead to attractors which are li
cycles over a large feedback range. The attractors develo
from them are the last to lose stability, and the first to mer

It has been shown that when the ECMs are all stable fi
points, the dynamics of the mode hopping driven by spon
neous emission noise is governed by a potential model,
which the derived transition times are in surprisingly go
agreement with experiments@41–43#. In this model the in-
tensity of the light is assumed constant, which leaves
phase of the electric field as the only independent variabl
the system. According to this model, the dynamics is g
erned by the potential

V~Df!5D2f/2t2gA11a2 cos~Df1v0t1arctana!.
~13!

Figure 10 showsV(Df) for the same parameter values
Fig. 1. The modes and antimodes are located, respectivel
the local potential minima and maxima. In the potential
Eq. ~13!, the external-cavity mode with deepest valley is a
the mode with narrowest minima. Since the linewidth of
specific mode is inversely proportional to the square of
potential curvature at that point, the dominant mode is
mode with minimum linewidth~which is also the mode for
which the frequencyv i is closest tov0! @41,42#. In @44# the
inclusion of excited relaxation oscillations in the potent

FIG. 10. Potential of Eq.~13! for the same parameter values
Fig. 1. The circles indicate the position of the destabilized mod
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picture leads to a nonlocal potential, which improved t
predictions of the ‘‘old’’ model.

While the potential of Eq.~13! gives a reasonable descrip
tion of the steady-state properties and dynamics on long t
scales~for low feedback levels!, it fails to describe the tran
sient switch on of the laser. In@45# a time-dependent poten
tial was proposed but it was found that it leads to an inc
rect prediction of the final state selected.

Therefore, in terms of the phenomenological classificat
of Tkach and Chraplyvy@40#, the potential picture applies t
the stationary behavior in regimes I, II, and part of III. O
an

c-

ic

c-

m

.

h

.

n-

z

m

n

n

e

e

r-

n

results suggest the existence of an ‘‘effective potential’’ th
applies to the dynamical behavior in regimes III and beg
ning of IV, which has roughly the shape of the Hopf curv
i.e., it has its minimum shifted towards higher frequencie
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