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Coexisting attractors, which arise from different external-cavity modes of the same longitudinal mode of the
solitary laser, retain distinct stability properties, particularly when the laser is biased far above threshold and
subjected to moderately strong optical feedback from a distant reflector. When the laser is modeled by the Lang
and Kobayashi equations with additional gain nonlinearity, the dynamics is limited to external-cavity attractors
that develop from the external-cavity modes which have a positive but not too large frequency shift with
respect to the solitary laser emission frequelagy. Although relaxation oscillations about these external-
cavity modes are the first to become undamped as the feedback intensity increases, the attractors that arise from
these modes remain stable over the largest range of feedback strengths. Stronger feedback destabilizes the
individual attractors, creating new solutions which form from their ruins. At the beginning of the merging, the
attractor ruins are not equally visited; the most visited ruins are those of the attractors last destabilized. We
explore and explain these results by examining the dynamics of the laser when operating on a single external-
cavity attractor[S1050-29478)08101-3

PACS numbe(s): 42.55.Px, 05.45:b, 42.65.5f

[. INTRODUCTION cally, from one to several metgrsn this paper we study the
transition to coherence collapse when the laser is biased rela-

Semiconductor lasers are very sensitive to back reflectively far above threshold, and when the feedback is from a
tions from any surface. Even very low levels of reflection distant reflector. The dynamics of a single-longitudinal-mode
light (power reflection rate~10" %) can destabilize single- laser diode with optical feedback often has been described by
mode operation of a semiconductor laser causing it to enter the Lang and Kobayashi rate equatidi$]. The external
regime characterized by high-intensity noise and a vengcavity is described by two parameters: the feedback param-
broad linewidth. This behavior, termed ‘“coherence col-etervy, which is proportional to the strength of the feedback,
lapse”[1], has been identified as a form of chaotic dynamicsand the delay time, which is proportional to the external-
[2]. Both intrinsic interest in this type of nonlinear dynamics cavity length. Although the model does not include the mul-
and practical applications of laser diodes have spurred a widiple reflections in the external resonator, it describes ob-
range of studies, many of which have been reviewed recentlgerved laser behavior with high accuracy over a wide range
by Peterman3] and van Tartwijk and Lenstrigd]. of parameter valueg2].

Some recent studies have focused on reducing or control- An important exception to the success of the Lang and
ling the destabilizing effects of feedbafk—9]. Very weak  Kobayashi model in describing experimentally observed dy-
feedback from short external cavitiétypically, for cavities namical phenomena is what has been termed the low-
shorter than a few millimetergan significantly reduce both frequency fluctuationéLFF) regime, which occurs for mod-
the intensity noise and lasing linewidfi0]. The emission erate feedback and when the laser is biased near the solitary
frequency can also be stabilized with phase-conjugate feedaser threshold1(<1.2—1.4,). In this regime the laser in-
back[11]. Variations of the feedback within the range which tensity suddenly drops toward zero and then recovers gradu-
leads to chaotic operation can be used to encrypt informatioally, only to drop out again after an apparently random delay.
[12,13. Feedback into a broad-area laser can bias the sele®he physical mechanism behind LFF is still not fully under-
tion of a particular lateral mode, though this is sensitive tostood, though several different explanations have been pro-
very small variations of the external-cavity lendtt¥4,15.  posed. Mok, Tromborg, and Christiansefil9] explained
Pulse-to-pulse jitter in spontaneously pulsing or externalhFF as the result of bistability among the steady-state solu-
switched laser diodes can be reduced with weak optical feedions introduced by the external cavitfthe so-called
back, but the reduction is also extremely sensitive to smaléxternal-cavity modes, ECNIsHohl, van der Linden, and
variations in the cavity lengthl6,17). Roy [20] showed that spontaneous emission noise plays an

Previous studies have considered short external cavitiegnportant role in the nature and the statistics of the dropouts.
more than long external cavities, perhaps because for shoftheir experimental measurements agree with those of Henry
external cavities coherence collapse can be more easignd Kazarino\y21], in suggesting that spontaneous emission
avoided and weak feedback can be used to improve frenoise induces the dropout events. S4@8@] explained the
guency stability and reduce the laser intensity noise. Howdropouts as resulting from a switching among distinct re-
ever, many applications of integrated electro-optical systemgions of phase space. In this interpretation, the laser moves
involve optical feedback from more distant reflecténgpi-  toward the mode with most gain, but since in the neighbor-
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hood of the maximum gain mode the modes and antimodesiore random. Given these distinctions, we will use the term
(i.e., unstable external-cavity modeare very close, when coherence collapse to refer to the chaotic state in which there
the trajectory approaches an antimode, it is expelled intés merging of the basins of attraction which surround the
another region of the phase space, and then starts movingdividual external-cavity-mode solutions.

towards the maximum gain mode agf#8,24. As measure- A similar transition from operation on the lowest line-
ments of LFF more recently have become more accurate arfidth mode to coherence collapse was recently studied by
as they have been made with higher-speed electronics, theféirono, Kurosaki, and Fukudg29], who applied the injec-

is experimental evidence that the “power dropouts” are intion locking model of Henry and Kazarinoj21]. In this

the envelope of a series of short pulses, each lasting 100 fdternative model the back reflected field is replaced by a
or less[24]. Similar pulses have been found in the Lang andconstant field. The authors derive conditions on the strength
Kobayashi model with high feedbad3,24. Temporally _of the feedback for_the onset of coht_erence _coll_apse, calculat-
resolved optical spectra reveal that there is enhanced pow g when the d_amplng of the relaxatlo_n oscillations va_mlshes.
in several longitudinal modes during the power dropout ur resuIFs differ from those .Of Hirono, Kurosaki, and
[25,26. The full significance of this faster dynamical behav- Fukuda, since we treat the full time dependence of the back
ior, not discussed in earlier LFF papers, and the possibilityefiected field. _ , _

that it may excite(or be caused by the excitation)ahore The remainder of this paper is organized as follows. Sec-

than one longitudinal mode will be an active area of futurelion I contains a brief description of the model. Through

study. Recently, a different type of LFF have been foundstability analysis and numerical solutions we show that the

experimentally well above the laser threshold, with the sig—more st_able of the external-cavity mode attractors wh|c_h
erge in the coherence collapsed state have frequencies

nature of abrupt power increases instead of power dropouts, .
[27]. PtP P P slightly larger than the frequency of the solitary laser. In Sec.

Il we explain this result by examining the dynamics of the
éaser when it operates in a single ECM attractor. Section IV
rovides a summary and conclusions.

When the laser is biased well above threshold (
>1.4,) the effects of spontaneous emission usually can b
neglected. In the deterministic dynamics of the noise-fred’
Lang and Kobayashi model, for increasing feedback more
external-cavity modes appear and the previously existing Il. DYNAMICS FOR MODERATE FEEDBACK
modes become unstable though Hopf bifurcatitihe previ- AND LONG DELAY TIMES

ously damped relaxation oscillations, at a frequency similar Single-longitudinal-mode semiconductor lasers can usu-

raIIy be successfully modeled with two dynamical equations,
that form near each mode as the feedback parameter is iocl—ne for thg evolution of the slowly varying.complex elecfcric
creased furthef28] Reld amphtudeE(t), and one for the evolution of the carrier
Although the térm coherence collapse is widely use opulationN(t) (the electron-hole plasmaThe Lang and
obayashi equations are the usual laser rate equations plus a

whenever the laser linewidth broadens drastically from a fev‘fime-delayed term that takes into account the field reflected

MHz to several GHz, broadening does not necessarily impl : o ; . L
chaotic dynamics. When the feedback is from a distant r(gfrom the external mirror. Writing the intracavity electric field

P S - “asE(t)expli[wgt+ @(t) ]}, whereE and ¢ are real andvg is
fle_ctor, the round-trip time of t_he light in the exte_rnal caylty, the emission frequency of the solitary laser, the equations are
7, Is much larger than the periodg, of the relaxation oscil-

lations (of the laser intensity and the carrier numbir the dE(t) 1
solitary laser. In this case, the undamped periodic relaxation — ==
oscillations create what appears at low resolution to be a dt 2
broadband spectrum without representing chaotic dynamics. + yE(t—7)cod wor+ A p(1)], 1)
Chaos in the attractor that evolves from a single external-

cavity mode develops for higher feedback, while even highea(ﬁ(t) o [

E(t)

1
G(N,E*)— —
p

E(t-7) _
—y g Sty AK)]

feedback induces a deterministic merging of the ruins of sev- =— |G(N,E?)— i

eral single ECM attractors to form a more complex, typically 2 Tp

chaotic, attractor. @
The dynamics has long and short time scales, as it in-

volves fast evolution on the weakly unstable ruins of a par- dN(t) —J— &t)—G(N E2)E(t)2 3)

ticular ECM attractor interrupted by abrupt hopping into the dt Ts ’ '

ruins of a different attractor. This hopping gives both low-

frequency and broad band contributions to the spectrum buE(t) is normalized so tha¥E(t)? is the total photon num-

it differs from the low-frequency fluctuations which occur ber in the solitary laser waveguidehereV, is the volume
close to the solitary laser threshold. In the former the intenof the active region A ¢(t)=¢(t)— ¢(t—7) is the phase
sity fluctuations are more fully randomized, while the latterdelay during the external-cavity round-trip timeThe feed-

is characterized by random sudden drops in intensity folback parametey measures the strength of the light fed back
lowed by a deterministic stepwise buildup. In the LFF re-into the laser cavity. Other parameters atg the carrier
gime the evolution following a power dropout has a definitelifetime; 7, the photon lifetimeG, the gain per unit time
direction in phase space towards the external-cavity mod&=Gy(N—Ng)(1—&eE?), whereGy is the modal gain co-
with maximum gain(the buildup procegswhile in the co-  efficient, Ny is the carrier density at transparency, angs
herence collapsed regime the switching among attractors the nonlinear gain coefficient which takes into account phe-
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150 : S . , , TABLE |. Laser parameters.
100 |- a Photon lifetime Tp 1.4 ps
Carrier lifetime Ts 1ns
50 r Linewidth enhancement factor « 4.4
- il ﬂ (\ [\(\ | Threshold current Jin 2.08x103¥ m3s7!
g 0 v v U T Injected current J 23
\/U U U v Modal gain coefficient Gy 8.39x10 ¥ mist
—90 \/ i Carrier density at transparency  Ng 1.23x 104 m®
100 I | Gain saturation parameter € 2x10 % m?
/ Feedback phase woT 6 rad
0 o 40 20 0 20 40 60 80
0T
dwo
FIG. 1. Graphical solution of Eq4) for y=1.2x10° s7%, 7 do| “1trVlte cofwjT+arctana)<0  (7)

w:

=10ns,a=4.4, andwy7=6. i

nomenologically the effects of carrier heating and spectr

hole burning[30,3]]. a is the Iine\_/vid_th enh_ancement factor called an antimodg2] [the antimodes are modes for which
[32,33 andJ is the current density in carriers per unit vol- slope off(w) is negativé. In Fig. 1 we see that foy

ume and unit time. The frequently included Langevin noise:1 2%10° s 1 and r=10ns there are 17 modes and 16
terms that represent the effects of spontaneous recombinatign. '

and spontaneous emission are omitted here, since these e
fects usually play a negligible role when the laser intensity iqQ
strong. We have chosen to retain the nonlinear gai# @)
since this more realistically models the experimental result
including more moderate pulsatiofithan those found with

a{he solution is intrinsically unstabl@ saddle point and is

timodes.

"Equations(1)—(3) were integrated with a fourth-order
unge-Kutta method with an integration st&p=0.01 ns

and using the parameters given in Tablé&He same as in
SRef. [34], where it was found that the visibility in interfero-

. X X L metric coherence measurement of a laser diode within the
e=0) which represent more confined trajectories in theqqparence collapsed regime is accurately reproduced by the
phase space. There is qualitative S|m|Iar|t3_/ between t_he r‘Tang and Kobayashi modelThe external-cavity parameters
sults fore #0 ande =0 but for these numerical simulations (. 514 1) are the free parameters of our study. The feedback
we have opted for the more quantitatively realistic model. Ofig \ aried from zero to well above the value for which attrac-

course any apprqximate nonlinearity has limited validit_y, but,, merging begins, and the delay time is kept greater than 3
none of the. solutions we report here leave that domain. ns, corresponding to relatively large external cavities
The stationary solutions of Eq$l)—(3) are called the (Loy>0.5m).
external-cavity modes and can be written Bft)=E;;, For increasing feedback each stable ECM undergoes a
¢(1) =(w;—wo)t, N(t)=Ns;. The optical frequencies; ot pifurcation to periodic oscillations followed by a qua-
are the solutions of siperiodic route to chaos. The time-dependent solutions are
. . often localized in phase space near the steady-state solutions
fon)=w7=wer+y7V1l+a® siffw7+arctana) =0. 4  (ECMs), indicating separated basins of attraction. The two
) frequencies that appear in the route to chaos are, to a good
The carrier density and field amplitude of a given ECM arePProximation, the same for all the attractors in the basins of
found by solving attraction around the different modes, and are approximately
the relaxation oscillation frequency of the solitary laser
GN(Ns,i_NO)(l_SEii):llTp_zy codw;7), (5) [fRO=_ VGN(I— ) 27, where\]lth is the threshold current
’ density] and the external-cavity-mode spacing frequency
and (fexp, Which is slightly lower than ¥ [2].
Since the ECMs have optical frequenciesshifted posi-
J—Ngi/7s— Gn(Ng;—Ng)(1— SEi,i)Eg,i =0. (6) tively and negatively with respect wg, it is not surprising
that the different chaotic attractors to which they evolve have
In Fig. 1 we show the graphical solution of E@), for  different mean optical frequencies. When the chaotic attrac-
y=1.2x10° s}, =10 ns, a=4.4, andw,r=6 rad. Since tors merge in the coherence collapsed regime, these fre-
the amplitude of the sine term in E@) depends ony, and  quency differences show up in the different characteristic
the period depends on the number of steady-state solutions rates of phase accumulation. A typical trajectory in the
increases as the value of eithgor rincreases. The value of merged regime is shown in Fig. @he circles indicate the
C=yr\1+ a? determines this number. These solutions arepositions of the destabilized external-cavity modes, and the
called the external-cavity modes. For increasing feedbackrosses, the positions of the antimodé&/e plot the trajec-
these modes are created in pairs after saddle-node bifurctsry in the plane formed by ¢(t) + wo7 and the normalized
tions: for C<1 only one mode exists, which is the laser electric fieldE(t)/Eg, (WhereEg, is the field amplitude of
cavity mode minimally perturbed by the external cavity,the solitary laser The steady-state value @ ¢(t)+ wgr
while for C>1 there are 2+1 modes. If when the laser operates in the external-cavity miodew; 7
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FIG. 2. Trajectory at the beginning of coherence collapge FIG. 3. Optical spectra at the beginning of coherence collapse

=3x10° s, 7=10n9. Eighty round-trips in the external cavity rzoglo_rlls and@ y=3, (b) y=35, (c) y=4.0, and(d) y=4.5
are shown. The evolution occurs in the attractor ruins of four(10" S ). The spectrum was calculated with 262 144 points
external-cavity mode§ =0, 1, 2, and & sampled withAt=0.01 ns, which span 262 round-trips in the ex-

ternal cavity. The parameters are the same as for Fig. 2.

(if i is not too large, the values ab;r are separated by come “attractor ruins” are those with the largest round-trip
approximately zr, see Fig. 1 phase difference with respect to the solitary lager., with

Since fro and fq appear in the attractors that develop mode numbeis0). Trajectories with initial conditions that
from any of the modegat least, for large external cavities for place them near these unstable attractors will evolve, after a
which f < fro), for moderate feedback the optical spectrumtransient, to one of the remaining attractors near ECMs with
of the laser will show peaks spaced at the harmotérsl  low positive mode numbettypically, 0<i<5), which are
linear combinationsof fro and fe, regardless of whether stable over a large feedback range. The ECMs Wwit0,
the laser is operating on an attractor near a single ECM or #vhich are often stable fixed points, have very tiny basins of
it is switching among attractors near different ECMs. Thisattraction; trajectories with initial conditions in the vicinity
makes it hard to distinguish the underlying nature of theof these modes will also evolve to the attractors near ECMs
dynamics just from the optical spectrum or the intensitywith low, positive mode number. When the last of these
power spectrum. ECM attractors has lost its stability, merging begins.

The optical spectrum of a multimode or pulsing laser di- The merged attractors are not equally visited, as seen by
ode is asymmetric under many conditiqi@]. This is due the different densities in the zones of Fig. 2. The attractor
principally to thea factor, which couples the modulus and hopping dynamics can be characterized by the probability of
phase fluctuations of the complex electric field. However, weyisiting the different ECM attractor ruins as follows. We
find that at the beginning of attractor merging, the opticalrecorded the trajectory for a long time and computed its
spectrum is not only asymmetric in the heights of the peak®oincaresection with the planEE=E,,. The probability
spaced byf o andf,; but usually the main peak is not at the residency in the different attractor ruins was then estimated
operating frequency of the solitary laserg, but is shifted from the density of intersection points. Figurgg)4and 4b)
positively. We show in Fig. 3 the optical spectrum for four show the Poincarsection and the corresponding probability
different feedback levels. Figuréa has the same parameter residency, for the same parameters as for Fig. 2. The inte-
values as Fig. 2 and corresponds to the beginning of attractgration time is much longer than for the data shown in Fig. 2.
merging (for these parameter value$ro=6.65 GHz and The trajectory briefly visits the attractor ruins of the ECMs
fex—=0.1 GH2. These spectra have obvious asymmetries=—1 and 4, and spends most of its time in the ruins of
about the major peaks, and two characteristic spacings b&CMsi=1 and 2. On the horizontal axis of Fig(b} we
tween peaks. The central peak is shifted by one or mor@ave indicated with a circle the location of the destabilized
multiples of the ECM frequency spacing towards positiveexternal-cavity modes, and with a cross the most probable
frequency, which is especially noticeable in Fida)3 For  values(which are shifted to the right
increasing feedback the frequency shift gradually disappears In order to obtain good statistics, it is important to com-
[Fig. 3d)]. pute the trajectory for a long time, since at the beginning of

The shift in the optical spectrum comes from the tendencyattractor merging the jumps are not very frequent, and the
of the laser to operate in attractors which originate fromtrajectory spends a long time in one attractor before switch-
ECMs with w;=wg, in spite of the fact that the ECMs are ing to another. The accuracy of the probability distributions
located symmetrically in frequency with respectdg (as  was checked by calculating them over different trajectories
shown in Fig. 1. In Fig. 2, which corresponds to the same (with different initial conditions, typically by beginning in
parameter values as Fig(aB, the laser switches among the different attractor ruins, including those not visited in the
attractor ruins originated from ECMs<0i <3. merged attractorgthat have not merged yetAfter a tran-

For increasing feedback the first ECM attractors to besient in which the trajectory evolved towards the merged
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100 000 points are shown. Since the oscillation petigds 0.15 ns,

in a round-trip time there are approximately 67 intersections of th
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FIG. 6. Coexisting attractors for the same parameter values as
Fig. 1. The external-cavity moddss—2 are fixed pointsonly
three are shown, represented with cirglésom the external-cavity
modes—1<i<1 and 6<i<8 quasiperiodic tori develop, while
from the external-cavity modes<2<5 limit cycles develop.

back change$the parameters are the same as in Fjg.Ir3

Fig. 5a) four attractors have merged, the probability distri-
bution is clearly asymmetric, and the most visited ECM at-
tractor isi=2, centered at an optical frequency larger than
the solitary laser frequency. For increasing feedbfd€lgs.
5(b)—5(d)], more neighboring attractors join the merged glo-
bal attractor. The jumps become more frequent, and as the
number of attractors involved increases, the probability dis-
tribution becomes symmetric and more nearly centered on
wqy. Consequently, the frequency shift in the optical spec-
trum disappears for increasing feedbdEkg. 3(d)].

Therefore we conclude that for moderately strong feed-
back from a distant external reflector the laser tends to oper-
ate on attractors near the external-cavity modes with a posi-
tive but not too large frequency shift with respect to the
solitary laser state. The modéand the attractors to which

attractors, the shape of the probability distribution remaineqhey evolve with large frequency shifts are highly unstable

unchanged in time.

(those with a positive shiftor have very narrow basins of

[Figure 5 shows that the number of visited ECM attractoragraction (those with a negative shift The laser is very
ruins increases and the relative residences shift as the feeFjaIrely observed to operate in the vicinity of these modes. In

0.04

(a) (b)

0.03

P(ag)

0.02 -

0.01 -

0.00
0.04

(d)

s,

-20 0 20
Ad

(c)
0.03 -

0.02

P(ag)

0.01

Ll

-20 0 20
Ad

0.00
—40

40-40 40

FIG. 5. Probability distribution for four different feedback levels
within the coherence collapse regime= 10 ns, anda) y= 3.0, (b)
y=3.5,(c) y=4.0, and(d) y=4.5x10° s,

the next section we examine the dynamics of the laser oper-
ating on an attractor near a single ECM.

[II. DYNAMICS IN SINGLE ECM ATTRACTORS

In Fig. 6 we show the coexisting attractors for the param-
eter values used in Fig. 2 but at a lower feedback I¢tred
feedback is the same as in Fig. 1, which is below the onset of
attractor merging In the simulations the initial conditions
were taken to be the unstable steady-state solutions given by
Egs. (4)—(6), and transient evolution during the first round-
trips of the external cavity was discardétypically 300
round-trips.

In all for these conditions there are seven fixed points,
four limit cycles, and six quasiperiodic tori. The external-
cavity modes which exist with mode numbies —2 are all
stable, though only three are shown. The attractors which
have developed from modesl<i<1 and 6<i<8 are tori,
and the attractors which have developed from modes 2
<5 are limit cycles.
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FIG. 7. (a) Three-dimensional plot of the torus developed from the external-cavity medel in the(A¢, N/Ny,— 1, E/Eg,) space and
time evolution of the laser variabl&{(t), ¢(t), N(t), andA¢. Same parameters as Fig. 6. In the three-dimensional plot only one round-trip
is shown, while in the time series two round-trips are shoflsnAs in (a) but of the limit cycle developed from the external-cavity mode
i=3. (c) As in (a) but of the torus developed from the external-cavity modé.

In Fig. 7 we show some of these attractors in more detail. Clearly, the dynamics in each of the quasiperiodic tori has
Figure {a shows the torus developed from motke —1,  two different stages. The first stage consists of large modu-
Fig. 7(b) the limit cycle developed from mode=3, and Fig. lation. We shall call this the “relaxation-oscillation” stage.
7(c) the torus developed from mode=6. We show the at- The modulation affects all of the laser variabl@stensity,
tractor in the A ¢,N/Ny,—1,E/Eg,) space(the circle indi-  optical frequency, and carrier dengityvhich oscillate with
cates the location of the destabilized external-cavity modeghe same modulation frequengyhich is very close td go).
and the crosses indicate the nearby antimpdew the time  The oscillations are not large pulses in between power drop-
evolution ofE, ¢, N, andAdg. outs(as occurs in the low-frequency fluctuations regime near
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FIG. 7 (Continued.

the laser threshojdbut moderate oscillations around the sta-tor originated. For the type-Il toriwhich develop from
tionary stateEg;, Ng;, w;7 given by Eqs.(4)—(6) (roughly  ECM's with large, positivé)) one antimode is very close to
speaking AE/E¢,=<20%, AN/Ny,=<1.5%, and A¢<w;7  the destabilized external-cavity mode from which the attrac-
+2.95). In the relaxation-oscillation stage, the laser has aor originated(see Fig. 1
mean optical frequencw, that is positive and is approxi-  There is a kind of phase matching conditi¢or “fre-
mately the same for all the modes. quency locking’ in the dynamics. We refer to frequency
In the second stage, the laser evolves in the vicinity of th%cking as the situation where the phase differedes(t)
external-cavity-mode solution; the evolution is slow, the am-_ #(t)— ¢(t— 1) oscillates periodically with mean value
plitude of the m_odulation markedly decreases, and thg las&lipse to the stationary valua(— wg) 7. We see in Fig. &)
has a mean optical frequenay that depends on the particu- ¢ or the quasiperiodic toruse oscillates almost periodi-
lar extelr nal-cavity dmOd@.Z IS negative 'ﬂ what wle S?]a" Cr?” cally for a while (with frequency~fgc), but since the sec-
a type-| torus, and positive in a type-ll torus. In the phase d frequency involved in the dynamics is not- But is

. ' . 0
space, the type-I tori are located between the fixed points angﬁghtly lower, at a certain poinh¢ becomes 100 large, the
phase matching breaks, and the laser adjusts by evolving

the limit cycles, while the type-Il tori are located above the
close to the unstable external-cavity-mode solution. Then, it

limit cycles (see Fig. &.
For those ECMs whose; is close towq, the limit cycles ; .
persist over the widest range of valuesof initiates the mode locking process again. In type-Il e
The type-I tori and the type-ll tori are topologically dis- deC(eases before the mO‘F'e locking brejdkg. 7(c)].
tinct. In the type-I tori, two pseudo fixed points exikicated Flgur.e 8 shows the optical spectrum of th('e.three attractprs
near the center of the tori Between these pseudo fixed shown in Fig. 7. In f[hese_ spectra the positive frequencies
points the trajectory spirals in a chanrfalhich is often ex- close tOwllhave relatively important peaks, even though the
tremely tiny which connects the two sides of the tortisis ~ ©°US of Fig. 7@ develops from an external-cavity mode
is what we previously called the second stage of the evolulith @i<w1, and the torus of Fig. (€) from an external-
tion). Then, it evolves over the “outside” of the torus, in a caVity mode withw;>w;. ,
“pseudo” limit cycle (this is what we previously called the ~ 1h€ type of attractor which develops from a particular
first stage of the evolutigrbefore going back to the center. external-cavity mode_ depends on the Iocatlor! of the mode in
In the type-II tori, only one pseudo fixed point exists. The the (@, 7) plane. In this plane, two curves are important. The
attractor resembles a cofwith the pseudo fixed point in its f|r§t is thg curve.where saddle-node blfurcatlon$ occur and
vertex, and the trajectory evolves over the “outside” of the P&irs of fixed points are born, and the second is the curve
cone(first stage, and then near the vertdsecond stage vyhgre Hopf bifurcations occur and the stable modes become
The topological differences between the type-l and thdimit cycles. _ _
type-Il tori probably arise from the location of the unstable A Saddle-node bifurcation occurs when
fixed points in the phase space. For the type-l farich
develop from ECMs with not too large mode numlgthe
antimodes are located almost symmetrically with respect to
the destabilized external-cavity mode from which the attrac-

B df(w) 3
flw)= do =0. (8)
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FIG. 8. Optical spectrum of the attractors shown in Fig. 7.
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~ —2)\g
T J1+a? co§ wjr—arctaria)][1—cog wr7)]’
(11)
where
1(1 E2,
)\RZE E+GNE§O|+T_S:8

is the damping rate of the solitary laseag=27fgq

=Gy(J—Jy), and w; is a solution of Eq.(4). If wgrr
~(2n+ 1), a good approximation of Eq11) is

AN cod w;T—arctara)]

(12

In Fig. 9 we show the location of the saddle-node and
Hopf curves in the(wr, y) plane, for three different time
delays, andv,7 fixed. (Obviously the Hopf curve is located
above the saddle-node curyelhe saddle-node and Hopf
curves are similar to hyperbole. The Hopf curve has its mini-
mum shifted towards the modes with mode numbeb (a
shift that increases as increaseg while the saddle-node
curve is symmetric with respect to the solitary laser mode
(i=0, wyr=6rad.

The two curves are almost parallel in the<<wq 7 side of
the plane, and are tangent at some point indhe> wy7 side

Therefore the critical feedback level at which a pair of modesy the plane. The relative positions of these two curves in the
of frequencyw;" appears is

wherew?" is a solution of

-1
= : C)
Yo it a2 cod w"r+arctarfa)|
w;T— woT=tan w;7+arctarfa)]. (10

(The set ofw;"r values depends only on the value®find
for large mode number they are separated by approximatelynodes situated near but below the region where the saddle-

21.)

(w7, ) plane leads to the existence, for a given valueyof
above the minimum for any Hopf bifurcation, of four catego-
ries of attractors(l) The stable modes with mode number

i <0 which have not undergone the Hopf bifurcation ¢fet
these modes,;y>y); the maximum gain mode and its
neighboring modes belong to this category, as discussed by
Levineet al.in [37]; (2) the modes situated to the left of the
minimum of the Hopf curve, which have, <y (they have
undergone a Hopf bifurcatignthese modes rapidly yield to
tori of type I; (3) the modes situated on the bottom of the
Hopf curve, which usually yield to limit cycles for a very
large feedback range; these attractors are the most stable, i.e.,
they are the last to lose stability and the first to mefgethe

node and Hopf curves become tangent. These modes yield to

The feedback level above which a Hopf bifurcation oc-limit cycles for a small range of but with increasing feed-
curs and modé becomes unstable [86]

back they turn into tori of type Il and then lose stability.
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FIG. 9. Saddle-nodé€D) and Hopf(0) curves fory=1.2x10° s %, and(a) r=2ns, (b) 7=5ns, (c) 7=10 ns.



57 STABILITY AND DYNAMICAL PROPERTIES OF THE . .. 1321

For the ECMs above the region where the saddle-node 400.0 . < .
and Hopf curves become tangent we could not find any
stable attractorgneither steady state, periodic, nor chaotic 300.0

attractoy. This region corresponds to modes with high posi-

tive mode number, which exist only for high feedback levels. 2000

Trajectories starting from initial conditions in these modes =
leave and end up on the already merged attractors. §

By contrast, for the ECMs with mode numbér0 100.0
(which are also only created at high feedback leyetsi- ,
merical simulations clearly show that they remain stable 0.0
fixed points until the Hopf bifurcation occurs.

Figure 9 offers an obvious analogy to the behavior of a 1000 , ‘ ,
semiconductor laser with external injectitsee, e.g., Fig. 1 '280.0 -40.0 0.0 40.0 80.0
of [38]). The frequency symmetry of the steady states and Ap+®T
the Hopf bifurcation threshold with a shifted minimum fre-
guency are strikingly similar. FIG. 10. Potential of Eq(13) for the same parameter values as

Conditions for the stability of the single ECM solutions Fig. 1. The circles indicate the position of the destabilized modes.
cannot be determined analytically because the characteristic
equation is a complicated transcendental equation for theymmetric and more nearly centered ag, and the fre-
complex growth rate of small perturbations. Based on oufiuency shift gradually disappears. In this regitwaich cor-
numerical results, we speculate that the mode and antimod&sponds to moderately strong feedback levéte modes
fixed points withi >0 are both unstable from the beginning. With large positive frequency shift with respect to the solitary
Similar behavior typically occurs near a saddle-node-Hopfaser frequency are highly unstable, and the modes with large
codimension two bifurcation poirfon one side of the bifur- Negative frequency shift have very narrow basins of attrac-
cation point there is a supercritical saddle node followed byfion. The laser is very rarely observed to operate in the vi-

a supercritical Hopf bifurcation, and on the other side, a subcinity of these modes. The different stability properties of the
critical saddle node followed by a subcritical Hopf bifurca- ECM attractors can be understood from the dynamics of the

tion [39)). laser when it operates in a single ECM attractor. The dynam-

Finally, let us discuss the effects of the relevant paramics consist of two clearly distinguished stages. There are
eters on the dynamics. Two important parameters are th@rge amplitude fast oscillations of the laser variables, and
pump current] and the gain saturation coefficient An  there is slow evolutior(plose to the external-cavity steady
increase of] or ¢ increases the dissipation, and diminishesstate in which the amplitude of the oscillations is markedly
the size of the ECM attractdthe two distinct stages of the decreased. While the mean emission frequengyin the
dynamics that we described before do not exist, or becomgecond stage depends on the particular ECM, the average
less distinct, if either the laser is biased close to threshold oifequencye; in the first stage is positive and approximately
the nonlinear gain is neglectedncreasinga or y increases the same for all the modes. The modes withclose tow;
the instabilities and the size of the ECM attractor. An in-are the most stable. They lead to attractors which are limit
crease ofr leaves the attractor size relatively unchanged, bugycles over a large feedback range. The attractors developed
the “tunnel” in the center of the torus becomes more narrowfrom them are the last to lose stability, and the first to merge.
(this behavior occurs for long delay times, since for short It has been shown that when the ECMs are all stable fixed
these attractors are either fixed points or limit cycld@here  points, the dynamics of the mode hopping driven by sponta-
are also very narrow regions of the delay time in which an€ous emission noise is governed by a potential model, for
kind of frequency locking occurgbetweenf.~1/7 and which the derived transition times are in surprisingly good

fro), and the topological structure of the attractor changeggreement with experimenfd1-43. In this model the in-
abruptly (for instance, it becomes a fixed point tensity of the light is assumed constant, which leaves the

phase of the electric field as the only independent variable of
the system. According to this model, the dynamics is gov-

IV. SUMMARY AND CONCLUSIONS erned by the potential
We have studied in detail the dynamics of a single-mode \/(A 4)=A24/27— vy/1+ a2 coS A b+ +arctan
laser diode biased far from threshold and subjected to mod- (4¢) pler=y a” COSA g+ wor a()1'3)

erately strong feedback from a distant reflector. In the hop-

ping dynamicdqat the beginning of the merging of the attrac- Figure 10 showd/(A ¢) for the same parameter values as
tors developed from the ECMs, which corresponds to the~ig. 1. The modes and antimodes are located, respectively, in
beginning of regime IV in the classification of the external-the local potential minima and maxima. In the potential of
cavity laser dynamics df40]), not all the merged attractors Eq. (13), the external-cavity mode with deepest valley is also
are equally visited. The probability distribution of visiting the mode with narrowest minima. Since the linewidth of a
single ECM attractors(when very few attractors have specific mode is inversely proportional to the square of the
merged is highly asymmetric and centered on a frequencypotential curvature at that point, the dominant mode is the
slightly larger thanw,. This leads to a positive frequency mode with minimum linewidth(which is also the mode for
shift in the spectrum of the laser. For increasing feedback, aghich the frequency; is closest towg) [41,42. In [44] the
more attractors merge, the probability distribution becomesénclusion of excited relaxation oscillations in the potential
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picture leads to a nonlocal potential, which improved theresults suggest the existence of an “effective potential” that
predictions of the “old” model. applies to the dynamical behavior in regimes Il and begin-
While the potential of Eq(13) gives a reasonable descrip- ning of IV, which has roughly the shape of the Hopf curve,
tion of the steady-state properties and dynamics on long timge ., it has its minimum shifted towards higher frequencies.
scales(for low feedback levels it fails to describe the tran-
sient switch on of the laser. [@45] a time-dependent poten-
tial was proposed but it was found that it leads to an incor- ACKNOWLEDGMENTS
rect prediction of the final state selected.
Therefore, in terms of the phenomenological classification This work was supported by Project No. 47 of the BID-
of Tkach and Chraplyvy40], the potential picture applies to CONICYT, the Comision Sectorial de Investigacion Cienti-
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[1] D. Lenstra, B. H. Verbeek, and A. J. den Boef, IEEE J. Quan{23] G. H. M. van Tarwijk, A. M. Levine, and D. Lenstra, IEEE J.

tum Electron.QE-21, 674 (1985. Sel. Top. Quantum Electron, 466 (1995.
[2] J. Mo&rk, B. Tromborg, and J. Mark, IEEE J. Quantum Elec- [24] I. Fischer, G. H. M. van Tartwijk, A. M. Levine, W. Elsaer,
tron. 28, 93 (1992. E. Goel, and D. Lenstra, Phys. Rev. Let, 220(1996.
[3] K. Petermann, IEEE J. Sel. Top. Quantum Electrbn480 [25] M. Giudici, C. Green, G. Giacomelli, U. Nespolo, and J. R.
(1995. Tredicce(unpublishegl
[4] G. H. M. van Tartwijk and D. Lenstra, Quantum Semiclassic.[26] G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, and J.
Opt. 7, 87 (1995. R. Tredicce(unpublishe@t G. Huyet, S. Hegarty, M. Giudici,
[5] A. T. Ryan and G. P. Agrawal, IEEE J. Quantum Electi®®). B. de Bruyn, and J. G. Mclnerngunpublishegl
668 (1994). [27] M. Pan, B. Shi, and G. R. Gray, Opt. Le®2, 166 (1997).
[6] B. W. Liby and D. Statman, IEEE J. Quantum Electr@a, [28] C. Masoller, Phys. Rev. A0, 2569(1994).
835(1996. [29] T. Hirono, T. Kurosaki, and M. Fukuda, IEEE J. Quantum
[7] N. Kikuchi, Y. Liu, and J. Ohtsubo, IEEE J. Quantum Elec- Electron.32, 829(1996.
tron. 33, 56 (1997. [30] J. E. Bowers, Solid-State Electrod0, 1 (1987.
[8] S. I. Turovets, J. Dellunde, and K. A. Shore, J. Opt. Soc. Am.[31] M. Willatzen, A. Uskov, J. Mok, H. Olesen, B. Tromborg,
B 14, 200(1997. and A. P. Jauho, IEEE Photonics Technol. L8}t606(1991).
[9] J. Wieland, C. R. Mirasso, and D. Lenstra, Opt. L8, 469  [32] H. Haug and H. Haken, Z. Phy204, 262 (1967).
(1997. [33] C. H. Henry, IEEE J. Quantum ElectroQE-18, 259 (1982.
[10] Y. Kitaoka, H. Sato, K. Mizuuchi, K. Yamamoto, and M. [34] C. Masoller, C. Cabeza, and A. Sicardi Schifino, IEEE J.
Kato, IEEE J. Quantum ElectroB2, 822 (1996. Quantum Electron31, 1022(1995.
[11] P. Kurz and T. Mukai, Opt. Lett21, 1369(1996. [35] G. P. Agrawal and N. K. Duttal.ong-Wavelength Semicon-
[12] C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Pho-  ductor LasergVan Nostrand Reinhold, New York, 1986
tonics Technol. Lett8, 299(1996. [36] A. Ritter and H. Haug, J. Opt. Soc. Am. B), 130(1993; 10,
[13] V. Annovazzi-Lodi, S. Donati, and A. SCir¢EEE J. Quantum 145 (1993.
Electron.33, 953 (1996. [37] A. M. Levine, G. H. M. van Tartwijk, D. Lenstra, and T.
[14] J. Martin-Regalado, G. H. M. van Tartwijk, S. Balle, and M. Erneux, Phys. Rev. A2, R3436(1995.
San Miguel, Phys. Rev. A4, 5386(1996. [38] W. A. van der Graaf, A. M. Levine, and D. Lenstra, IEEE J.
[15] M. Homar, J. V. Moloney, and M. San Miguel, IEEE J. Quan- Quantum Electron33, 434 (1997).
tum Electron.32, 553(1996. [39] J. Guckenheimer and P. Holmdspnlinear Oscillations, Dy-
[16] J. Dellunde, M. C. Torrent, C. R. Mirasso, E. Hernandez- namical Systems, and Bifurcations of Vector Figl@pringer-
Garcia, and J. M. Sancho, Opt. Commui5, 523(1995. Verlag, New York, 1983
[17] G. H. M. van Tartwijk and M. San Miguel, IEEE J. Quantum [40] R. W. Tkach and A. R. Chraplyvy, IEEE J. Lightwave Tech-
Electron.32, 1191(1996. nol. LT-4, 1655(1986.
[18] R. Lang and K. Kobayashi, IEEE J. Quantum ElectrQt- [41] J. Mé&rk and B. Tromborg, IEEE Photonics Technol. L&t21
16, 347(1980. (1990.
[19] J. Mork, B. Tromborg, and P. L. Christiansen, IEEE J. Quan-[42] J. Mé&rk, M. Semkow, and B. Tromborg, Electron. Lef6,
tum Electron.24, 123(1988. 609 (1990.
[20] A. Hohl, H. J. C. van der Linden, and R. Roy, Opt. L6, [43] D. Lenstra, Opt. Commurg1, 209 (1991).
2396(1995. [44] G. H. M. van Tartwijk and D. Lenstra, Phys. Rev5@, R2837
[21] C. H. Henry and R. F. Kazarinov, IEEE J. Quantum Electron. (19949.
QE-22, 294(1986. [45] E. Hernandez-Garcia, N. B. Abraham, M. San Miguel, and F.

[22] T. Sano, Phys. Rev. A0, 2719(1994. De Pasquale, J. Appl. Phyg2, 1225(1992.



