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Simple analytical approximations for the gain and refractive index spectra
in quantum-well lasers

Salvador Balle
Departament de Fı´sica Interdisciplinar, Instituto Mediterra´neo de Estudios Avanzados,

IMEDEA (CSIC-UIB), E-07071 Palma de Mallorca, Spain
~Received 21 May 1997!

An analytical expression for the low-temperature optical susceptibility of quantum-well semiconductor
lasers is presented based on a simple parabolic band model. The optical susceptibility obtained keeps the
nonlinear dependence on the carrier density, providing both a broad gain spectrum and a dispersion curve, so
it can be used to analyze the dynamics of multimode devices or devices with large carrier density variations.
The resulting peak gain, differential peak gain, and linewidth enhancement factor are discussed. cw operation
of a single-mode laser is studied as a function of the frequency of the cavity resonance. An analytical approxi-
mation to the finite-temperature gain spectrum is also presented, although the refractive index spectrum must
be determined numerically.@S1050-2947~98!07501-5#

PACS number~s!: 42.55.Px, 78.66.2w
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I. INTRODUCTION

The analysis of the static and dynamical properties
semiconductor lasers requires a knowledge of the coup
between the active semiconductor material and the op
field within the active region. In a semiclassical approa
@1#, which constitutes the foundation for simpler descriptio
as the rate equation~RE! approximation@2#, the optical field
is described by means of Maxwell’s equations, and its c
pling to the material is described by the electrical susce
bility of the active medium. The imaginary part of the ele
trical susceptibility describes the energy exchange~absortion
or stimulated emission! between the field and the medium
while its real part describes the dispersive effect~refractive
index change! accompanying such a process@3#.

This approach has been successfully undertaken for
and solid-state lasers. In these systems, the active me
can be described in an effective way as an ensemble of a
~or molecules! with only two levels among which stimulate
emission takes place@4,5#. In this approximation, the rel
evant variables for describing the active medium are
population inversion between these two levels, and the
responding nonlinear polarization. The optical Bloch eq
tions for the evolution of these variables, together with Ma
well’s equations for the evolution of the optical field
constitute the so-called two-level-model~TLM !. The TLM
can be reduced to a RE description when the nonlinear
larization can be adiabatically eliminated, but in genera
explicitly considers the coherent coupling between the o
cal field and the active medium, hence allowing for lar
signal dynamics, multimode operation, four-wave-mixi
processes, etc., which makes the TLM a very valuable to

Semiconductor media are conceptually similar to an
semble of two-level atoms, though with different transiti
energies as defined by the electronic band structure,
more important, with different occupation of the electron
states@6–8#. These two differences make the TLM inappr
priate for semiconductor media. While the gain spectrum
the TLM has a symmetric, Lorentzian shape, it is stron
571050-2947/98/57~2!/1304~9!/$15.00
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asymmetric in semiconductors@6–9#. Moreover, semicon-
ductor lasers usually exhibit a large degree of amplitu
phase coupling at any operation wavelength~often described
by Henry’s linewidth enhancement factora @10#!, while the
maximum gain in the TLM always occurs at the waveleng
where the carrier-induced refraction index change vanis
~zero detuning!; hence the large amplitude-phase coupli
observed in semiconductor lasers cannot be described in
TLM unless lasing very far away from the gain peak is ar
ficially enforced.

Models for calculating the gain and refraction index spe
tra from the electronic structure of the semiconductor ma
rial have been developed, some neglecting many-body
fects @6–8,11,12# and some taking them into account@13–
15#. These microscopic theories describe individu
transitions by the occupation of the initial and final electron
states, and the material polarization by superposing the c
tributions from each transition. A dynamical description
the lasing process then requires dealing with plenty of tw
level-like systems, coupled among them by scattering p
cesses and by the optical field. The complexity of such
description is so high that it requires intensive numeri
computation.

The complexity and high computational cost of micr
scopic theories has stimulated the search for simpler, ana
cal approximations for both the optical gain~see@16# and
references therein! and the electrical susceptibility@17,18# of
semiconductor media. The models developed in@17,18# al-
low one to incorporate some of the results from microsco
theories in an effective, direct way, while preserving the si
plicity of the RE or TLM descriptions. The models for th
electrical susceptibility introduce additional parameters
order to obtain a dynamical evolution equation for the no
linear polarization, thus limiting the range of validity of th
model. For instance, in@19# we used the model in@18# to
study the dynamics of mode hopping and multimode ope
tion of a Fabry-Pe´rot semiconductor laser; however, th
model introduces an additional parametera0, which limits
the range of validity and introduces some artificial exce
gain that has to be corrected for@19#.
1304 © 1998 The American Physical Society
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A crucial assumption in all of these approximate theor
is that the carriers have relaxed to a quasiequilibrium dis
bution, hence the occupation probability of the electro
states is given by a Fermi-Dirac distribution with a qua
equilibrium Fermi level. Since, following a perturbation, th
carrier distribution in the band only approaches a quasie
librium Fermi-Dirac distribution after some characteris
time T, the approximate theories can be used for study
dynamics only on time scales longer thanT @14#. Carrier-
carrier scattering and carrier-phonon scattering are two of
most important mechanisms driving the approach to qu
equilibrium in semiconductors. For the high carrier densit
typical of semiconductor lasers, carrier-carrier scattering
the fastest relaxation mechanism, with characteristicT below
1 ps @20#. Carrier-phonon scattering, which leads to t
equilibration of the plasma and lattice temperatures, i
somewhat slower process with characteristicT that are quite
sensitive to the carrier density: for low carrier densitie
carrier-phonon scattering has relaxation timesT of the order
of 1 ps or longer, but for the high carrier densities charac
istic of QW lasers, it can be reduced to 1 ps or lower acco
ing to theoretical estimates@21#. Therefore, one can use the
approximate theories when studying dynamics on time sc
of several ps or longer, i.e., devices with photon lifetim
and round-trip times of several ps or longer, otherwise o
would not properly take into account intracavity and prop
gation effects because of the breaking of the quasiequ
rium approximation for the carrier density; for shorter sc
dynamics, one must resort to microscopic dynamical th
ries.

Nevertheless, even in the quasiequilibrium approxim
tion, nonzero temperatures do not allow one to find appro
mate analytical expressions for the full optical susceptibil
but only for the material gain@16# since it just involves the
imaginary part of the electrical susceptibility; the reason
that the Lorentzian shape of each transition is quite narrow
compared to the thermal energy, hence it can be appr
mated by a Dirac delta function. The real part of the susc
tibility, which is also relevant to the lasing process since
affects the lasing frequencies through mode pulling or pu
ing @4#, and even the mode profiles for gain-guided devic
requires a numerical evaluation for finite temperature.

In this paper I present an analytical expression for
electrical susceptibility of a quantum-well~QW! laser at low
temperature. As compared to my previous work@18#, all the
parameters in the model are determined from the band s
ture, except for band-gap renormalization. The analysis
based on a simple parabolic-band approach, since the
mary aim is to develop an approximation for the suscepti
ity that retains the key features of semiconductor media~i.e.,
the right dependencies of the gain and refractive index sp
tra on carrier density! thus allowing one to study the dynam
ics of multimode devices and devices with an inhomo
neous carrier density, and thereby accelerating comp
simulations. The gain spectrum is highly asymmetric, a
the gain peak increases sublinearly with increasing car
density, while its position with respect to the normaliz
band gap experiences a blueshift due to band-filling effe
The linewdith enhancement factor is dependent on both
operation frequency and the carrier density, being differ
from zero at the gain peak. These characteristics make
s
i-
c
-

i-

g

e
i-
s
is

a

,

r-
-

es
s
e
-
-

-

-
i-
,

s
as
i-

p-
t
-
,

e

c-
is
ri-
l-

c-

-
er
d
er

s.
e
t

he

model suitable for describing strongly multimode systems
systems where the carrier density has relatively large va
tions from one point to the other. A first assessment of
potentiality of the model is achieved by analyzing the c
operation of a single-mode laser as a function of the f
quency detuning between the cavity resonance and the n
nal band gap.

II. OPTICAL RESPONSE OF SEMICONDUCTOR
MEDIUM

The optical response of a semiconductor medium is de
mined by the complex electrical susceptibility, which in th
rotating-wave approximation with perfectk conservation
reads@13#

xE~v!52
i

«0

2

V (
l ,m

(
k

uMlm~k!u2

3
f l~k!2 f m~k!

i @Elm~k!2\v#1\g~k!
, ~1!

whereV is the crystal volume,l andm label the bands in the
crystal, Elm(k)5El(k)2Em(k) denotes the energy differ
ence between the electronic states,Mlm(k) is the electric
dipole element between the electronic states,f l(k) and f m(k)
are the occupation probabilities of the electronic states,
the summation runs over allk vectors in the first Brillouin
zone and all bands.g(k) denotes the width of each optica
transition, whose shape is assumed to be Lorentzian for
sake of simplicity. It is known that a Lorentzian line sha
leads to residual absortion for photon energies below
gap, which has induced to use other line-shape functions~for
a thorough discussion on the effects of using a Lorentz
line shape, see@12#!. Unfortunately, line shapes other tha
the Lorentzian do not allow for analytical integration of th
full electrical susceptibility.

For finite temperature and realistic band structures,
evaluation ofxE(v) requires a numerical calculation; how
ever, some insight can be gained by considering a sim
parabollic band structure. For the sake of simplicity, I co
sider a single QW of widthW with only one electron and one
~heavy-! hole band, although the procedure can be ea
generalized to multiple electron and hole bands. The sit
tion considered here is approximately the one occurring i
strained, narrow QW, where only one electron and o
heavy-hole band are active until large carrier densities
injected into the QW. In the approximation of parabo
bands,Ec5Et1(\2k2/2mc) and Ev52(\2k2/2mv), where
mc (mv) is the conduction-band~valence-band! effective
mass andEt is the energy difference between the conduct
and valence band atk50. RewritingxE(v) in terms of the
electron and hole distribution functions,f e5 f c and f h51
2 f v , with Eh52Ev , and assuming thatMcv(k)5M and
g(k)5g are independent ofk, one finds

x~v!5
uM u2

«0

2

V (
k

f e~k!1 f h~k!21

\v2Ecv~k!1 i\g

[xe~v!1xh~v!2xb~v!, ~2!

where
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xe~h!~v!5
uM u2

«0

2

V (
k

f e~h!~k!

\v2Ecv~k!1 i\g
, ~3!

and analogously for the last term,xb(v), except for the dis-
tribution function in the numerator.xb(v) can be analyti-
cally calculated, yielding

xb~v!52
muM u2

Wp«0\2lnS 12
\km

2

2mz D , ~4!

with z5v2Et /\1 ig, m5(mc
211mv

21)21 being the re-
duced mass of the electron-hole pair, andkm the maximum
wave vector contained in the first Brillouin zone.

In general,xe(v) andxh(v) cannot be evaluated analyt
cally, since they involve the carrier distribution in the ban
In the presence of an optical field, the carrier distribution
the band is usually not known until scattering processes h
driven the system to the quasiequilibrium state. As co
mented above, the high carrier densities typical of QW las
imply that carrier-carrier scattering~with T;1 ps! are domi-
nant, although the slower carrier-phonon scattering mec
nism is responsible for the slower thermal effects observe
many lasers. In this limit, the electron and hole densities
described by their corresponding quasiequilibrium Fe
levels, Fe and Fh , respectively. Nevertheless, even in t
quasiequilibrium approximation the electrical susceptibil
cannot be calculated analytically unless one considers
low temperature, where the Fermi-Dirac distributions clos
resemble step functions. In this case, one obtains

xe~h!~v!52
muM u2

Wp«0\2 lnS 12
pW\Ne~h!

mz D , ~5!

with Ne5(mc /Wp\2)(Fe2Et)Q(Fe2Et) and Nh
5(mc /Wp\2)FhQ(Fh) being the electron and hole dens
ties, respectively, andQ(x) the step function. Assuming
charge neutrality within the QW,Ne5Nh5N, the electrical
susceptibility can then be written as

x~v,N!52x0F2lnS 12
D

u1 i D2 lnS 12
b

u1 i D G , ~6!

where I have defined

x05
muM u2

Wp«0\2 , D5
pW\

mg
N[

N

Nt
,

u5
Re~z!

g
5

~v2Et /\!

g
, b5

\km
2

2mg
.

In these expressions, band-gap renormalization eff
due to the screened Coulomb interaction between elect
and holes have not been taken into account. However,
can be effectively implemented in a rigid band approxim
tion by considering that the transition energyEt corresponds
to the renormalized transition energy. The functional form
the band gap shrinkage with carrier density is still an op
question, and linear@22#, square-root@23#, and cubic-root
@24# dependencies have been proposed. This last form se
to be closest to experimental results@24#, henceforth I will
consider thatEt5Et

02sN1/3, whereEt
0 is the transition en-
.
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ergy when no carriers are injected into the QW ands de-
scribes the band-gap shrinkage as a function of carrier d
sity, which depends on both the material forming the act
layer and the operating conditions. Thus, I accordingly re
fine

u5
v2Et

0/\

g
1sD1/3[

v2v0

g
1sD1/3,

with v05Et
0/\ being the normalized nominal transition fre

quency, ands5sNt
1/3/(\g) describing the band-gap shrink

age.
The above expression~6! for the electrical susceptibility

is remarkably simple, allowing one to obtain several ex
results, which are next discussed.

A. Material gain spectrum

The material gain spectrum is determined from the ima
nary part of the electrical susceptibility as

g~v,N!52
v

c n̄
Im@x~v,N!#. ~7!

The imaginary part of the electrical susceptibility can
written as

Im@x~v,N!#52x0@2arg~u2D1 i !2arg~u1 i !

2arg~u2b1 i !#

'2x0Farctan~u!22arctan~u2D !2
p

2 G ,
~8!

where arg(z) is the polar angle of the complex numberz.
The approximation comes from the fact thatb@1 and b
@u, since the frequencies of interest are not too far aw
from v0.

Figure 1 shows Im@x(v,N)# as a function ofv for dif-
ferent values ofN and two different values of the band-ga
renormalization parameter,s50.2 ~solid lines! and s52
~dashed lines!. It can be seen that the gain value is indepe
dent ofs, but not the location of the gain peak. As alrea
mentioned, some residual absorption below the band ga
observed due to the slowly decaying tails of the Lorentz
line shape that I have considered for the electronic tra
tions. For high frequency2Im@x(v,N)# saturates at the
value 2px0, because only one transition has been cons
ered. As the carrier density increases,2Im@x(v,N)# devel-
ops a peak whose height and full width at half maximu
increase; also, the position of the maximum experience
blueshift for increasing carrier density. The peak value
comes positive forN.Nt , henceNt5mg/(pW\) is the
transparency carrier density; the transparency frequenc
v5v02sg, which is the frequency corresponding to th
renormalized transition. The high-frequency wing of t
peak decays quite fast, the reason being that, in the l
temperature limit considered, the carrier distribution with
the band vanishes above the quasi-Fermi level; as discu
later in this section, for higher temperatures, the states ab
the quasi-Fermi level have nonvanishing occupation pr
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ability, thus reducing the absorption and leading to
smoother decay for high frequencies.

From Eq.~8! it is simple to show that positive gain ca
only be achieved foru<D, which is the Bernard-Duraffourg
condition at zero temperature. Actually, the frequency
main where one has positive gain~for a fixed carrier density!
is given by

2AD221<u<AD221. ~9!

Obviously, there is positive gain only forD.1, the trans-
parency frequency beingu50, in agreement with the nu
merical results.

The frequency where the peak occurs is given by

up52D1A2D221⇒vp2v0

g
52D1A2D2212sD1/3.

~10!

The first two contributions represent the blueshift of the pe
position due to carrier band filling, partially compensated
the third term, which describes the redshift of the peak f
quency due to the band-gap shrinkage. It is worth notic
that the gain peak develops only for carrier densities lar
than Nt /A2; below this point, the Lorentzian broadenin
smears out the contribution of the carrier density in the st
like absorption spectrum.

Since in most cases the region of positive gain is
stricted to a narrow interval in the vicinity of the nomin
transition frequency, we can approximate

g~v,N!5g0Farctan~u!22arctan~u2D !2
p

2 G , ~11!

with g05x0Et
0/\c n̄ being the material gain coefficient. B

using Eq.~10!, we can determine the peak gain, which rea

FIG. 1. Normalized imaginary part of the susceptibility as
function of the normalized frequency deviation from the nomin
band-gap frequency, (v2v0)/g, for increasing carrier densitie
N/Nt51.2 ~star!, 1.5~diamond!, 1.8~triangle!, 2.1~square!, and 2.4
~no symbol!. Solid lines correspond tos50.2, while dashed lines
correspond tos52.
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gp5g0Farctan~2D1A2D221!22 arctan~22D

1A2D221!2
p

2 G , ~12!

and the differential peak gain,

dgp

dN
5

g0

Nt

1

D~3D22A2D221!
. ~13!

The peak gain and differential peak gain are shown in F
2, and—as expected—they do not depend ons. It is clear
that the gain peak grows sublinearly with carrier densi
with a saturation valuegp5pg0 that corresponds to com
plete inversion~again, this is a consequence of having tak
into account only one electron and one hole band!. It can be
seen~left panel! that the gain peak does not correspond
maximum gain~in fact, minimum absorption! for carrier
densities below transparency. In this case, the almost c
stant gain peak value corresponds to the residual absorp
that occurs below the transition energy. This is a con
quence of the already commented on smearing out of
gain due to Lorentzian broadening. The differential pe
gain rapidly decreases from its maximum valueg0 /Nt at
transparency (D51) to only 20% atD55.

The shape of both curves is very similar to those obtain
experimentally @25–27# or calculated from realistic band
structures@8#, although these results correspond to ambie
temperature and real band structures. However, the h
temperature values forNt are quite higher and those forg0
quite lower than those obtained from Eq.~6!. Nevertheless, if
one letsNt andg0 be adjustable parameters, the results in@8#
can be nicely fitted to the above functional forms with bet
agreement for systems with a narrow, strained QW, wh
only possess one electron and one hole band active u
large carrier densities are injected.

l
FIG. 2. Normalized peak gain~left panel! and differential peak

gain ~right panel! as a function of the normalized carrier densi
N/Nt , for s50.2 ~stars! and s52 ~diamonds!. The symbols are
obtained numerically from the susceptibility as given by Eq.~6!,
while the solid lines are found from Eqs.~12! ~left! and~13! ~right!.
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1308 57SALVADOR BALLE
An analytical approximation for the gain at ambient te
peratures can be developed@16# by considering that the in
dividual transitions possess a linewidth much narrower t
the steplike decrease in the Fermi-Dirac distribution fu
tions ~typically, the width of individual transitions is\g
;6 meV, while at ambient temperature,b215kBT;25
meV!. From Eq.~2! we have

2Im@x~v,N!#'
uM u2

«0

2

V (
k

@ f e~k!1 f h~k!21#

3
\g

@\v2Ecv~k!#21~\g!2
, ~14!

and assuming that the Fermi-Dirac distributions remain
proximately constant within\g and that the frequency is in
the vicinity of the nominal transition frequency, we find

g~v,N!'g0Fp2 1arctan~u!G
3S eacD21

eacD211eacu
1

eavD21

eavD211eavu
21D ,

~15!

where ac(v)[b\gm/mc(v) , and p/21arctan(u) is the
~broadened! reduced density of states in the QW under t
assumption of a single electron and hole band. Since Eq.~15!
can be rewritten as a combination of hyperbolic tange
which have exactly the same first two terms in a Tay
expansion as an arctangent, Eqs.~11! and ~15! can be made
almost identical in some frequency interval~around the gain
peak, say! by proper choice of the scaling parameters, a
the peak gain and the differential gain at the peak can
made virtually identical for the two approximations. Th
main differences among the two are noticeable on the h
frequency wing, where the slowly decaying Fermi-Dirac d
tribution reduces the absorption.

B. Carrier-induced dispersion and linewidth enhancement
factor

Another important characteristic of semiconductor las
is the strong dispersive effect accompanying material g
which leads to a high degree of AM-FM coupling, usua
described by means of Henry’s linewidth enhancement
tor, a @10#. The linewidth enhancement factor describes
changes in the refractive index of the system that occur
sociated to changes in the gain or absorption as the ca
density varies. It is rather often taken to be constant, des
the existing evidence of its dependence on both freque
and carrier density@14,16,25,27,28#.

Refractive index changes influence lasing action in se
conductor lasers in two different ways: on one hand, th
induce mode pulling or pushing through the phase cha
over one cavity round trip@4#; on the other, the waveguid
structure of the semiconductor laser may be substant
modified, especially for weakly index-guided and ga
guided devices, thus changing the optical confinement fa
and the modal gain spectrum@29#. The refractive index
change is associated with the real part of the electrical
-
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ceptibility ~see Fig. 3!, which can be written as

Re@x~v,N!#5x0lnFAu211A~u2b!211

~u2D !211
G

'x0lnFbA u211

~u2D !211G , ~16!

where the approximation comes from the fact that lasing
curs for frequencies close to the nominal one, so we alw
haveb@uuu. As a consequence, the main role ofb is simply
to set the background value of the refraction index.

From Fig. 3 we can see that as the carrier density
creases, the refractive index decreases for low frequen
while for high frequencies it increases. The bump in
curves corresponds to the frequency region just above tha
positive gain, and it experiences a blueshift as band fill
occurs. It is worth noticing that the shape of the real part
the susceptibility is almost independent on the degree
band-gap shrinkage, but not the value of the refractive in
change for fixed frequency. For large band-gap renormal
tion, the curves for different carrier densities cluster tigh
together, since the band-filling contribution is more strong
compensated by band-gap renormalization, thus leadin
smaller index variations~for fixed wavelength! as compared
to the case with small band-gap renormalization. As a c
sequence, one might expect a reduction in the value ofa for
increasing band-gap shrinkage, in agreement with@14#.

The linewidth enhancement factora can be determined a

a5
Re~]x/]N!

Im~]x/]N!
, ~17!

which is now a function of both frequency and carrier de
sity ~see Fig. 4!. For high carrier densities,a develops a
bump that has been observed in some cases@28#. As already
commented, it turns out thata is extremely sensitive to
band-gap renormalization, in agreement with previous w
@14#. However, it must be noted thata is rather sensitive no

FIG. 3. Normalized real part of the susceptibility as a functi
of the normalized frequency deviation from the nominal band-g
frequency, (v2v0)/g for the same carrier densities ands values
as in Fig. 1.
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57 1309SIMPLE ANALYTICAL APPROXIMATIONS FOR THE . . .
only to the amount of band-gap renormalization, but also
its functional dependence on the carrier density. The rea
is that, when band-gap shrinkage is taken into account,
has that

]

]N
5

1

Nt
S ]

]D
1

]u

]D

]

]uD ,

so that the variation of band-gap shrinkage with increas
carrier density comes into play.

The linewidth enhancement factor at the frequency of
gain peak is given by

ap52D2A2D2212
s

3
D1/3. ~18!

This is the value of the linewidth enhancement factor co
monly measured in Fabry-Pe´rot-type edge emitters, which
tend to operate in the vicinity of the gain peak due to
intrinsic multilongitudinal mode character. We observe~see
Fig. 5! a monotonic increase ofap with carrier density, and
also that the larger the band-gap renormalization, the sm
the value of ap . Accordingly, in Fabry-Pe´rot-type edge
emitters, thea factor increases for increasing thresho
gains, since in this case, larger carrier densities are requ
for the threshold being reached. In connection with the d
cussion on the differential gain, it turns out that operating
system close to transparency is doubly beneficial, since
then achieves a larger differential gain~which allows for
higher modulation bandwidths! and a reduceda factor.

For finite temperatures, I could not work out an analytic
approximation for the refractive index change. The reaso
that the Lorentzian line shape implies that the real part
each transition has slowly decaying tails that have to be c
volved with the Fermi-Dirac function in order to calcula
the spectrum of the refractive index change. However,
refractive index spectrum can be numerically determined

FIG. 4. Linewidth enhancement factora as a function of the
normalized frequency deviation from the nominal band-gap
quency, (v2v0)/g, for carrier densitiesN/Nt51.17 ~star!, 2.37
~diamond!, 3.57 ~triangle!, 4.77 ~square!, and 5.97~no symbol!.
Solid lines correspond tos50.2, while dashed lines correspond
s52.
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ther by direct integration of Eq.~2! or by the Kramers-
Kronig transformation of Eq.~15!.

III. STEADY-STATE OPERATION
OF A SINGLE-MODE LASER

A first assessment of the capabilities of the model dev
oped in the previous section for the gain and refraction ind
can be achieved by analyzing its predictions for a singl
mode laser, i.e., a single transverse-mode distributed fe
back laser~DFB! or a single-transverse mode vertical-cavit
surface-emitting laser~VCSEL!. In the slowly varying am-
plitude approximation, the condition for cw operation read

2 idvE5H c

2ng
F2a tot1 iG

v0

cn
x~v01dv,N!G

2 i ~vc2v0!J E, ~19!

05C2AN2BN21uEu2
c

ng

v0

cn
Im@x~v01dv,N!#,

~20!

whereE is the modal amplitude of the field normalized suc
that uEu2 corresponds to photon density,N is the carrier den-
sity in the active region, andx(v,N) is the electrical suscep-
tibility of the active region.C5I /eV is the carrier density
injected per unit time into the active region whose volume
V ~I neglect leakage current!, A is the nonradiative recombi-
nation rate,B is the bimolecular recombination coefficien
due to spontaneous emission, and I have neglected Au
recombination due to the low-temperature approximatio
made.vc is the optical frequency corresponding to the cavi
resonance, anddv is the frequency deviation of the optica
field from v0, which I take as the carrier frequency.n(ng) is
the effective refractive~group! index atv0, andG is the field
confinement factor to the active region. The total losses
Eq. ~19! are given by

- FIG. 5. Linewidth enhancement factor at the gain peak,ap , as
a function of the normalized carrier densityN/Nt . The symbols are
obtained numerically from the electrical susceptibility, while th
solid line corresponds to Eq.~ 18!.
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a tot5a int2
1

L
ln~r 1r 2!,

thus including both the internal losses (a int) and the cavity
lossesaend5L21ln(r1r2) due to the facet reflectivities,r 1 and
r 2, distributed over the effective length of the optical cavi
L ~for DFB lasers,r 1 andr 2 are the effective reflectivities fo
the left- and right-going waves!. It is worth noting that in
most single-mode devices at least one of the reflectivitie
frequency dependent due to the presence of a grating e
inside~DFB! or at the edges~the distributed Bragg reflector
of a VCSEL! of the cavity; however, I shall consider that
a relatively broad frequency range around the cavity re
nance the facet reflectivities can be taken as constant~i.e.,
the lasing mode does not approach the edges of the
band!.

In order to reduce the number of parameters, I resc
Eqs.~19!–~20! to

dV52
«

2
Re@a f~dV,D !#1D, ~21!

0511a Im@ f ~dV,D !#, ~22!

P5J2rD 2D2, ~23!

where D5N/Nt , dV5dv/g, D5(vc2v0)/g, a
5Gx0v0 /(cna tot), «5ca tot /(ngg), r 5A/BNt and

P5uEu2
c

ng

v0

cn

x0

BNt
2 .

Finally,

f ~u,D !52lnS 12
D

u1sD1/31 i
D 2 lnS 12

b

u1sD1/31 i
D ,

whereb has been defined just following Eq.~6!. The first and
second equations determine the lasing frequencydV and the
threshold carrier density for this frequency, which then d
termines the output powerP for a given current injectionJ.
It is worth noticing that the only role ofr is to redefine the
threshold current~and hence the output power!, but it does
not affect the threshold carrier density. In high-quality las
that are free from structural defects in the active region,
molecular recombination dominates over nonradiative
combination. Hence for the sake of simplicity I will simpl
considerr 50, because it will merely shift down the outpu
power for a given current density.

By using Eq.~6! for the electrical susceptibility of the
single quantum well, we can numerically solve the above
of equations by taking as a control parameter the normal
detuning between the cavity resonance and the nom
band-gap frequency.

Figure 6 shows the dependence of the threshold cur
on the lasing frequency for different values of the modal g
a. All curves are asymmetric around the minimum thresho
with smoother tails towards the blue side of the minimu
threshold frequency than towards its red side, in agreem
with the experimental results for VCSELs with different ca
ity resonances@30# or in tunable external-cavity lasers@31#.
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However, the asymmetry decreases for increasing band
renormalization, since it contributes additional gain on t
red side of the minimum threshold. The asymmetry of the
curves will be barely the same forrÞ0, although all the
curves will be shifted upwards due to the increase in thre
old current density associated with the increased carrier
combination rate.

The asymmetry of the threshold curve around its mi
mum is clearly noticeable in Fig. 7, which shows the c
output power of the laser versus lasing frequency~stars! and
thea factor at the operation point~diamonds! for two differ-
ent values of the modal gain. The injection currents ha
been chosen to yield the same maximum output power. It
be observed that the asymmetry in the output power is m
noticeable for smalls @cases~a! and ~c!# since, as already

FIG. 6. Normalized threshold current densityJth as a function
of the lasing frequency fors50.2 ~solid lines! and s52 ~dashed
lines! and different values of the modal gaina51 ~triangle!, 2/3
~diamond!, and 1/2~star!.

FIG. 7. Normalized output powerP ~stars! and a factor ~dia-
monds! for cw operation of the laser as a function of the lasi
frequency:~a! s50.2 anda51, ~b! s52 anda51, ~c! s50.2 and
a51/2, and~d! s52 anda51/2. The pump current in cases~a!
and ~b! is J510, while in cases~c! and ~d! it is J528.55, chosen
such that the normalized output power is the same in all cases
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commented, larger band-gap renormalizations contribute
ditional gain to low frequencies. In addition, we can also s
that the asymmetry is stronger for high modal gain@case~a!#
due to the reduced band-gap shrinkage that occurs in
case.

One can also see the dramatic influence that the las
frequency and modal gain have on thea factor at the opera-
tion point: reduced threshold gains@cases~c! and ~d!# yield
largera factors at the operation point, while increased ban
gap renormalization coefficients@cases~b! and ~d!# lead to
much reduceda factors at the operation point. In addition,
can also be seen that, for low band-gap renormalization
rameter, a noticeable reduction in thea factor can be
achieved by operating the laser on the blue side of the m
mum threshold@cases~a! and ~c!#, in agreement with the
experimental results in@27,28#. However, this effect van-
ishes or may be even reversed when the system has l
band-gap renormalization coefficient@see cases~b! and~d!#.

Finally, in Fig. 8 I have plotted the operation frequency
a function of detuning fora51. It can be seen that the op
eration frequency is always a little bit higher than the cav

FIG. 8. Normalized lasing frequency (v2v0)/g as a function
of cavity detuningD5(vc2v0)/g, for modal gaina51 and J
510. Stars correspond tos50.2, and diamonds tos52.
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mode, the reason being the positive slope of the real par
the susceptibility in the region of positive material gain.

It is worth noting, in connection with Figs. 7 and 8, th
the above results have been obtained by varying only
cavity detuning, the other parameters remaining const
The inclusion of gain and dispersion spectra through
electrical susceptibility of the QW allows one to reprodu
the variation of both the output power and thea factor as a
function of cavity detuning.

IV. SUMMARY

In summary, I have presented an analytical expression
the optical susceptibility of a QW at low temperatures fro
which several properties of the gain, differential gain, refra
tion index, anda factor of the active medium can be foun
The results are in qualitative agreement with those obtai
from more fundamental, microscopic theories, and also w
several experimental observations. For fixed threshold g
the threshold carrier density varies with detuning followi
the spectral gain curve, and so do the output power and l
width enhancement factor at the operation point. Therefo
the model described improves the standard RE descrip
by incorporating the gain and dispersion spectra of the Q
laser. The model can be useful for analyzing the lasing pr
erties of multimode and inhomogeneous devices without
quiring one to use a fully microscopic theory, hence spe
ing up computer simulations. An analytical approximati
for the gain at finite temperature has also been presen
although the refractive index spectrum requires a numer
evaluation. Generalization of this work to study the dyna
ics of such devices is in progress.
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