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Simple analytical approximations for the gain and refractive index spectra
in quantum-well lasers

Salvador Balle
Departament de Bica Interdisciplinar, Instituto Meditefnraeo de Estudios Avanzados,
IMEDEA (CSIC-UIB), E-07071 Palma de Mallorca, Spain
(Received 21 May 1997

An analytical expression for the low-temperature optical susceptibility of quantum-well semiconductor
lasers is presented based on a simple parabolic band model. The optical susceptibility obtained keeps the
nonlinear dependence on the carrier density, providing both a broad gain spectrum and a dispersion curve, so
it can be used to analyze the dynamics of multimode devices or devices with large carrier density variations.
The resulting peak gain, differential peak gain, and linewidth enhancement factor are discussed. cw operation
of a single-mode laser is studied as a function of the frequency of the cavity resonance. An analytical approxi-
mation to the finite-temperature gain spectrum is also presented, although the refractive index spectrum must
be determined numericallyS1050-294{@8)07501-5

PACS numbeps): 42.55.Px, 78.66-w

I. INTRODUCTION asymmetric in semiconductof$—9]. Moreover, semicon-
ductor lasers usually exhibit a large degree of amplitude-
The analysis of the static and dynamical properties ofphase coupling at any operation waveleng@ifien described
semiconductor lasers requires a knowledge of the couplingy Henry’s linewidth enhancement factar[10]), while the
between the active semiconductor material and the opticdhaximum gain in the TLM always occurs at the wavelength
field within the active region. In a semiclassical approachwhere the carrier-induced refraction index change vanishes
[1], which constitutes the foundation for simpler descriptions(zero detuning hence the large amplitude-phase coupling
as the rate equatiofiRE) approximatiorn(2], the optical field observed in semiconductor lasers cannot be described in the

is described by means of Maxwell's equations, and its coud LM unless lasing very far away from the gain peak is arti-
ficially enforced.

ling to the material is described by the electrical suscepti- . . L
pnd y P Models for calculating the gain and refraction index spec-

bility of the active medium. The imaginary part of the elec- tra from the electronic structure of the semiconductor mate-
trical susceptibility describes the energy exchata®sortion rial have been developed, some neglecting many-body ef-

orh?tlmtulate? em;s(?ldnbgt)twe?hn tg? f|eld. and thef met(_jlum, fects[6—8,11,12 and some taking them into accoyrt3—
while its real part describes the dispersive effgefractive 15]. These microscopic theories describe individual

mdex' changkaccompanying such a proces. transitions by the occupation of the initial and final electronic
This .approach has been successfully undertaken for 98Fates, and the material polarization by superposing the con-
and solid-state lasers. In these systems, the active mediugiptions from each transition. A dynamical description of
can be described in an effective way as an ensemble of atongge lasing process then requires dealing with plenty of two-
(or moleculeg with only two levels among which stimulated |eyel-like systems, coupled among them by scattering pro-
emission takes placp4,5]. In this approximation, the rel- cesses and by the optical field. The complexity of such a
evant variables for describing the active medium are thejescription is so high that it requires intensive numerical
population inversion between these two levels, and the coreomputation.
responding nonlinear polarization. The optical Bloch equa- The complexity and high computational cost of micro-
tions for the evolution of these variables, together with Max-scopic theories has stimulated the search for simpler, analyti-
well's equations for the evolution of the optical field, cal approximations for both the optical gaisee[16] and
constitute the so-called two-level-mod@LM). The TLM references therejrand the electrical susceptibilifst 7,18 of
can be reduced to a RE description when the nonlinear pssemiconductor media. The models developedlin,1§ al-
larization can be adiabatically eliminated, but in general itlow one to incorporate some of the results from microscopic
explicitly considers the coherent coupling between the optitheories in an effective, direct way, while preserving the sim-
cal field and the active medium, hence allowing for largeplicity of the RE or TLM descriptions. The models for the
signal dynamics, multimode operation, four-wave-mixingelectrical susceptibility introduce additional parameters in
processes, etc., which makes the TLM a very valuable toolorder to obtain a dynamical evolution equation for the non-
Semiconductor media are conceptually similar to an enlinear polarization, thus limiting the range of validity of the
semble of two-level atoms, though with different transition model. For instance, ifil9] we used the model if18] to
energies as defined by the electronic band structure, arstudy the dynamics of mode hopping and multimode opera-
more important, with different occupation of the electroniction of a Fabry-Pet semiconductor laser; however, the
stateq6—8]. These two differences make the TLM inappro- model introduces an additional parametey, which limits
priate for semiconductor media. While the gain spectrum irthe range of validity and introduces some artificial excess
the TLM has a symmetric, Lorentzian shape, it is stronglygain that has to be corrected fidr9].
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A crucial assumption in all of these approximate theorieamodel suitable for describing strongly multimode systems or
is that the carriers have relaxed to a quasiequilibrium distrisystems where the carrier density has relatively large varia-
bution, hence the occupation probability of the electronictions from one point to the other. A first assessment of the
states is given by a Fermi-Dirac distribution with a quasi-potentiality of the model is achieved by analyzing the cw
equilibrium Fermi level. Since, following a perturbation, the Operation of a single-mode laser as a function of the fre-
carrier distribution in the band only approaches a quasiequiduency detuning between the cavity resonance and the nomi-
librium Fermi-Dirac distribution after some characteristic "al band gap.
time T, the approximate theories can be used for studying
dynamics only on time scales longer th@n[14]. Carrier- Il. OPTICAL RESPONSE OF SEMICONDUCTOR
carrier scattering and carrier-phonon scattering are two of the MEDIUM

most important mechanisms driving the approach to quasi- g gtical response of a semiconductor medium is deter-

equilibrium in semiconductors. For the high carrier densitieg,ineq by the complex electrical susceptibility, which in the

typical of semiconductor lasers, carrier-carrier scattering i?otating-wave approximation with perfedt conservation
the fastest relaxation mechanism, with characteristielow reads|13]

1 ps [20]. Carrier-phonon scattering, which leads to the

equilibration of the plasma and lattice temperatures, is a i 2 5
somewhat slower process with characterigtithat are quite Xel@)==—y |2 ; IMim(K)|
sensitive to the carrier density: for low carrier densities, orLm
carrier-phonon scattering has relaxation tiriiesf the order f1(K)— f (k)
. . " _ X - , 1
of 1 ps or longer, but for the high carrier densities character i[E;m(K)—frw]+7y(K) 1)

istic of QW lasers, it can be reduced to 1 ps or lower accord-

ing to theoretical estimatg21]. Therefore, one can use these whereV is the crystal volume, andm label the bands in the
approximate theories when studying dynamics on time scalegystal, E,,(k) = E,(k) — E,,(k) denotes the energy differ-
of several ps or longer, i.e., devices with photon lifetimesgnce between the electronic statéd, (k) is the electric
and round-trip times of several ps or longer, otherwise ongjipole element between the electronic statg) andf (k)
would not properly take into account intracavity and propa-are the occupation probabilities of the electronic states, and
gation effects because of the breaking of the quasiequilibthe summation runs over al vectors in the first Brillouin
rium approximation for the carrier density; for shorter scale;gne and all bandsy(k) denotes the width of each optical
dynamics, one must resort to microscopic dynamical theogransition, whose shape is assumed to be Lorentzian for the
nes. . S ~ sake of simplicity. It is known that a Lorentzian line shape
Nevertheless, even in the quasiequilibrium approximaieads to residual absortion for photon energies below the
tion, nonzero temperatures do not allow one to find approxigap, which has induced to use other line-shape functitmns
mate analytical expressions for the full optical susceptibility,3 thorough discussion on the effects of using a Lorentzian
imaginary part of the electrical susceptibility; the reason isqhe Lorentzian do not allow for analytical integration of the
that the Lorentzian shape of each transition is quite narrow agy|| electrical susceptibility.
compared to the thermal energy, hence it can be approxi- For finite temperature and realistic band structures, the
mated by a Dirac delta function. The real part of the suscepayaluation ofy(w) requires a numerical calculation; how-
tibility, which is also relevant to the lasing process since itever, some insight can be gained by considering a simple
affects the lasing frequencies through mode pulling or pushparapollic band structure. For the sake of simplicity, | con-
ing [4], and even the mode profiles for gain-guided devicesgiqer a single QW of widthV with only one electron and one
requires_ a numerical evaluation for fi_nite temperature. (heavy) hole band, although the procedure can be easily
In this paper | present an analytical expression for thejeneralized to multiple electron and hole bands. The situa-
electrical susceptibility of a quantum-we@QW) laser atlow o considered here is approximately the one occurring in a
temperature. As compared to my previous WHig], all the  girained, narrow QW, where only one electron and one
parameters in the model are determined from the band strugeayy-hole band are active until large carrier densities are
ture, except for band-gap renormalization. The analysis ifhjected into the QW. In the approximation of parabolic
based on a simple parabolic-band approach, since the prﬂ)‘ands,EC= E.+(h2k¥2m,) and E,= — (h2k2/2m,), where
mary aim is_ to develop an approximati_on for the sus_ce_ptibil-mc (m,) is the conduction-bandvalence-bany effective
ity that retains the key features of semiconductor méd®, 355 and, is the energy difference between the conduction
the right dependencies of the gain and refractive index specsnq valence band &=0. Rewriting ye() in terms of the
tra on carrier densifythus allowing one to study the dynam- electron and hole distribution function§,=f, and f,=1
ics of multimode devices and devices with an inhomoge-_¢ i E,=—E,, and assuming tha¥l.,(k)=M and
neous carrier density, and thereby accelerating computer, - . v c

k) =y are independent &, one finds
simulations. The gain spectrum is highly asymmetric, andY( )= P

the gain peak increases sublinearly with increasing carrier IM|2 2 fo(k)+fo(k)—1

density, while its position with respect to the normalized x(w)= e V Ek: riw—Eo (K +ifiy

band gap experiences a blueshift due to band-filling effects. 0 v

The linewdith enhancement factor is dependent on both the = Yol @)+ xp(@) = xp(w), 2

operation frequency and the carrier density, being different
from zero at the gain peak. These characteristics make th&here
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||\/||2 2 fe(m(K) ergy when no carriers are injected into the QW ande-
Xe(hy(@) = 0 V Ek: ho—E, (K +ihy’ (3)  scribes the band-gap shrinkage as a function of carrier den-
Ccv

and analogously for the last term,(w), except for the dis-
tribution function in the numeratoty,(w) can be analyti-
cally calculated, yielding
miM|?
Xb(w)_ W’iTSOhZIn

(4)

hkZ,
- 2mz )’
with z=w—E/A+iy, m=(m;*+m, )~ being the re-

duced mass of the electron-hole pair, dggdthe maximum
wave vector contained in the first Brillouin zone.

sity, which depends on both the material forming the active
layer and the operating conditions. Thus, | accordingly rede-
fine

w—EYh
=—+

W — Wo
u oDYV?= ——— + oD

with wo=E?/% being the normalized nominal transition fre-
quency, andr=sN¥(% y) describing the band-gap shrink-
age.

The above expressiofb) for the electrical susceptibility

In generalyo(w) and y,(w) cannot be evaluated analyti- 1S remarkably simple, allowing one to obtain several exact
cally, since they involve the carrier distribution in the bands."esults, which are next discussed.

In the presence of an optical field, the carrier distribution in
the band is usually not known until scattering processes have

A. Material gain spectrum

driven the system to the quasiequilibrium state. As com- The material gain spectrum is determined from the imagi-
mented above, the high carrier densities typical of QW Iaserﬁary part of the electrical susceptibility as

imply that carrier-carrier scatteringvith T~1 p9 are domi-

nant, although the slower carrier-phonon scattering mecha-
nism is responsible for the slower thermal effects observed in

9(w,N) = — —Im[ x(,N)]. %)
chn

many lasers. In this limit, the electron and hole densities are

described by their corresponding quasiequilibrium Fermirhe imaginary part of the electrical susceptibility can be
levels, F, and Fy,, respectively. Nevertheless, even in the itten as

guasiequilibrium approximation the electrical susceptibility

cannot be calculated analytically unless one considers very Im[y(w,N)]=—xo[2argu—D+i)—argu+i)
low temperature, where the Fermi-Dirac distributions closely

resemble step functions. In this case, one obtains

_ mM[? | WA Neg(n) 5
Xe(h)(w)_ W’JTSOhZ n mz ’ ( )
with  Ng=(m./Wmh?)(F.—E)®(F,—E) and N,

—argu—Db+i)]

n
~ — Xo| arctarfu) — 2arctatiu—D) — >

®

=(m./W=#?)F,0(F;) being the electron and hole densi- where argg) is the polar angle of the complex number
ties, respectively, and(x) the step function. Assuming The approximation comes from the fact tha1 andb

charge neutrality within the QWN.=N,=N, the electrical
susceptibility can then be written as

D b
X(w,N)Z—/\/O 2|n(1—m —|n(1—m ) (6)
where | have defined

_ m|m|? O wWhN_ N
XO_Wﬂ'soﬁz' T my N

Re(z) (w—E/h) hk2,

u: = , = —

Y Y 2my

>u, since the frequencies of interest are not too far away
from wy.

Figure 1 shows Iiny(w,N)] as a function ofw for dif-
ferent values ofN and two different values of the band-gap
renormalization parameterr=0.2 (solid lineg and o=2
(dashed lines It can be seen that the gain value is indepen-
dent of o, but not the location of the gain peak. As already
mentioned, some residual absorption below the band gap is
observed due to the slowly decaying tails of the Lorentzian
line shape that | have considered for the electronic transi-
tions. For high frequency-Im[ y(w,N)] saturates at the
value — 7y, because only one transition has been consid-
ered. As the carrier density increasedm[ x(«,N)] devel-
ops a peak whose height and full width at half maximum

In these expressions, band-gap renormalization effectimcrease; also, the position of the maximum experiences a
due to the screened Coulomb interaction between electroridueshift for increasing carrier density. The peak value be-
and holes have not been taken into account. However, thegomes positive folN>N;, henceN,=mv/(7wW#) is the
can be effectively implemented in a rigid band approxima-transparency carrier density; the transparency frequency is

tion by considering that the transition eneifgycorresponds

w=wy— oy, Which is the frequency corresponding to the

to the renormalized transition energy. The functional form ofrenormalized transition. The high-frequency wing of the
the band gap shrinkage with carrier density is still an operpeak decays quite fast, the reason being that, in the low-

question, and lineaf22], square-roof23], and cubic-root

temperature limit considered, the carrier distribution within

[24] dependencies have been proposed. This last form seerttee band vanishes above the quasi-Fermi level; as discussed

to be closest to experimental resul&t], henceforth | will
consider thaE,=E?—sN"3 whereE? is the transition en-

later in this section, for higher temperatures, the states above
the quasi-Fermi level have nonvanishing occupation prob-
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FIG. 1. Normalized imaginary part of the susceptibility as a  FIG. 2. Normalized peak gaifieft pane) and differential peak
function of the normalized frequency deviation from the nominalgain (right pane] as a function of the normalized carrier density
band-gap frequency,«— wg)/y, for increasing carrier densities N/N., for ¢=0.2 (star3 and c=2 (diamond$. The symbols are
N/N,= 1.2 (stap, 1.5(diamond, 1.8(triangle), 2.1(square, and 2.4  obtained numerically from the susceptibility as given by Eg),
(no symbo). Solid lines correspond te=0.2, while dashed lines while the solid lines are found from Eg4d.2) (left) and(13) (right).
correspond tar=2.

ability, thus reducing the absorption and leading to a  Jp=Jo|arctari—D+y2D*~1)~2 arctai—2D
smoother decay for high frequencies.

From Eq.(8) it is simple to show that positive gain can T
only be achieved fou<D, which is the Bernard-Duraffourg +y2D?~1)— 5| (12)
condition at zero temperature. Actually, the frequency do-

main where one has positive gdfor a fixed carrier densijy and the differential peak gain

is given by
— Jp?—1<u<D?—1. 9) dg9, 9o 1 13
dN  N;Dp(3D-2\2D%-1)
Obviously, there is positive gain only fd»>1, the trans-
parency frequency being=0, in agreement with the nu-  The peak gain and differential peak gain are shown in Fig.
merical results. 2, and—as expected—they do not dependoonit is clear
The frequency where the peak occurs is given by that the gain peak grows sublinearly with carrier density,

with a saturation valug,= mg, that corresponds to com-
Wy~ Wg plete inversion(again, this is a consequence of having taken
: =-D+y2D?~1-0¢D"% into account only one electron and one hole Dattdcan be
(10 seen(left pane) that the gain peak does not correspond to
maximum gain(in fact, minimum absorptionfor carrier
The first two contributions represent the blueshift of the pealélensities below transparency. In this case, the almost con-
position due to carrier band filling, partially compensated bystant gain peak value corresponds to the residual absorption
the third term, which describes the redshift of the peak frethat occurs below the transition energy. This is a conse-
quency due to the band-gap shrinkage. It is worth noticindluence of the already commented on smearing out of the
that the gain peak develops only for carrier densities largegain due to Lorentzian broadening. The differential peak
than N;/\/2; below this point, the Lorentzian broadening 9ain rapidly decreases from its maximum valgg/N; at
smears out the contribution of the carrier density in the steptransparency@=1) to only 20% aD =5. _
like absorption spectrum. The shape of both curves is very similar to those obtained
stricted to a narrow interval in the vicinity of the nominal Structureg(8], although these results correspond to ambient
transition frequency, we can approximate temperature and real band structures. However, the high-
temperature values fd¥, are quite higher and those fg,
- quite lower than those obtained from E6). Nevertheless, if
g(w,N)=gg| arctarfu) — 2arctariu—D) — 5| (11 one letsN; andgg be adjustable parameters, the result8in
can be nicely fitted to the above functional forms with better
L agreement for systems with a narrow, strained QW, which
with QOZXOE?/hcn being the material gain coefficient. By only possess one electron and one hole band active until
using Eq.(10), we can determine the peak gain, which readdarge carrier densities are injected.

u,=—D+2D*~1=
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An analytical approximation for the gain at ambient tem-ceptibility (see Fig. 3, which can be written as
peratures can be developglb] by considering that the in-
dividual transitions possess a linewidth much narrower than

Ju?+1{(u—b)?+1

the steplike decrease in the Fermi-Dirac distribution func- Re x(@,N)]= xoln (U—D)2+1
tions (typically, the width of individual transitions i% y
~6 meV, while at ambient temperatur@ '=kgT~25 ul+1
meV). From Eq.(2) we have ~ Xoln| b (U=D)%+1|’ (16)
2
—Im[x(w,N)]~ |M_| E 2 [fo(K)+fr(k)—1] where the approximation comes from the fact that lasing oc-
g0 VK curs for frequencies close to the nominal one, so we always

haveb>|u|. As a consequence, the main rolebois simply
x iy (14) to set the background value of the refraction index.

[ﬁw—ECv(k)]ZJr(ﬁy)Z’ From Fig. 3 we can see that as the carrier density in-
creases, the refractive index decreases for low frequencies

and assuming that the Fermi-Dirac distributions remain apwhile for high frequencies it increases. The bump in all
proximately constant withirk y and that the frequency is in curves corresponds to the frequency region just above that of
the vicinity of the nominal transition frequency, we find positive gain, and it experiences a blueshift as band filling
occurs. It is worth noticing that the shape of the real part of
the susceptibility is almost independent on the degree of
band-gap shrinkage, but not the value of the refractive index
change for fixed frequency. For large band-gap renormaliza-

e*P—1 N e®P—1 1 tion, the curves for different carrier densities cluster tightly

2D _ 14 g%l gD _ 14l ' together, since the band-filling contribution is more strongly
compensated by band-gap renormalization, thus leading to

(15 smaller index variationéfor fixed wavelengthas compared
to the case with small band-gap renormalization. As a con-

where agy=pghym/my,), and w/2+arctan@) is the ; S
(broadenefireduced density of states in the QW under the>€guence, one might expect a reduction in the value fair

assumption of a single electron and hole band. Sincé15). mc_rriaesllir:]ge vt\)/?:jr:ﬁ-gr?r?a?]r::relrr]rl::r?tefa@t;%;ielraneegtetﬂ\emr?jn'ine d as
can be rewritten as a combination of hyperbolic tangents,

g(w,N)~gg g+arctamu)

which have exactly the same first two terms in a Taylor Re(dy/oN)
expansion as an arctangent, E(fsl) and(15) can be made a= L, (17)
almost identical in some frequency interfafound the gain Im(dx/IN)

peak, say by proper choice of the scaling parameters, and

the peak gain and the differential gain at the peak can b@{hiCh Is now a function of bOth frequenpy and carrier den-
made virtually identical for the two approximations. The Sty (Se€ Fig. 4 For high carrier densitiesy develops a
main differences among the two are noticeable on the high?UmPp that has been observed in some cf28s As already

frequency wing, where the slowly decaying Fermi-Dirac dis_commented, it turns O,UI that IS extremel_y sens!tlve to
tribution reduces the absorption. band-gap renormalization, in agreement with previous work

[14]. However, it must be noted thatis rather sensitive not

B. Carrier-induced dispersion and linewidth enhancement
factor 10 [T

Another important characteristic of semiconductor lasers
is the strong dispersive effect accompanying material gain
which leads to a high degree of AM-FM coupling, usually
described by means of Henry’s linewidth enhancement fac
tor, @ [10]. The linewidth enhancement factor describes the
changes in the refractive index of the system that occur as
sociated to changes in the gain or absorption as the carri
density varies. It is rather often taken to be constant, despit
the existing evidence of its dependence on both frequenc
and carrier density14,16,25,27,2B

Refractive index changes influence lasing action in semi:
conductor lasers in two different ways: on one hand, they
induce mode pulling or pushing through the phase chang 0 ‘ e

. . . -10 -5 0 5 10
over one cavity round trip4]; on the other, the waveguide (& - wo)/¥
structure of the semiconductor laser may be substantially
modified, especially for weakly index-guided and gain- FIG. 3. Normalized real part of the susceptibility as a function
guided devices, thus changing the optical confinement factasf the normalized frequency deviation from the nominal band-gap
and the modal gain spectrufi29]. The refractive index frequency, (— wg)/y for the same carrier densities andvalues
change is associated with the real part of the electrical suss in Fig. 1.

Re()/Xo
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N/N,

FIG. 4. Linewidth enhancement facter as a function of the

normalized frequency deviation from the nominal band-gap fre- FIG. 5. Linewidth enhancement factor at the gain pesk, as
quency, — wg)/y, for carrier densitiesN/N,=1.17 (stap, 2.37  a function of the normalized carrier densiyN; . The symbols are
(diamond, 3.57 (triangle, 4.77 (squarg, and 5.97(no symbo). obtained numerically from the electrical susceptibility, while the
Solid lines correspond to=0.2, while dashed lines correspond to solid line corresponds to Eq.18).
o=2.

ther by direct integration of Eq(2) or by the Kramers-
only to the amount of band-gap renormalization, but also td<ronig transformation of Eq(15).
its functional dependence on the carrier density. The reason

is that, when band-gap shrinkage is taken into account, one [ll. STEADY-STATE OPERATION
has that OF A SINGLE-MODE LASER
P 106 au d A first assessment of the capabilities of the model devel-
— ==t == oped in the previous section for the gain and refraction index
N Nt(aD D au)’ P b g

can be achieved by analyzing its predictions for a single-
_ _ . ._mode laser, i.e., a single transverse-mode distributed feed-
so that the variation of band-gap shrinkage with increasing,,cy |ase(DFB) or a single-transverse mode vertical-cavity
carrier density comes into play. surface-emitting lasefVCSEL). In the slowly varying am-

The linewidth enhancement factor at the frequency of the, iy e approximation, the condition for cw operation reads
gain peak is given by

. C . Wo
o —I5wE=[— — ot i — x(wo+ dw,N)
@p=2D—\2D?~1- 7D (18) 2ngl % e
This is the value of the linewidth enhancement factor com- ~i{we=wo) 1K, (19

monly measured in Fabry-Re-type edge emitters, which

tend to operate in the vicinity of the gain peak due to its ) , C wp

intrinsic multilongitudinal mode character. We obsefsee 0=C—AN-BN°+|E| o enimix(@o+ dw,N) |,

Fig. 5 a monotonic increase af, with carrier density, and ’ (20)

also that the larger the band-gap renormalization, the smaller

the value ofa,. Accordingly, in Fabry-Pet-type edge whereE is the modal amplitude of the field normalized such

emitters, thea factor increases for increasing threshold that| E|? corresponds to photon density,is the carrier den-

gains, since in this case, larger carrier densities are requiregity in the active region, angl(w,N) is the electrical suscep-

for the threshold being reached. In connection with the distibility of the active region.C=1/eV is the carrier density

cussion on the differential gain, it turns out that operating thenjected per unit time into the active region whose volume is

system close to transparency is doubly beneficial, since oné (I neglect leakage currentA is the nonradiative recombi-

then achieves a larger differential gafwhich allows for nation rate,B is the bimolecular recombination coefficient

higher modulation bandwidth&nd a reduced factor. due to spontaneous emission, and | have neglected Auger
For finite temperatures, | could not work out an analyticalrecombination due to the low-temperature approximation

approximation for the refractive index change. The reason isnade.w, is the optical frequency corresponding to the cavity

that the Lorentzian line shape implies that the real part ofesonance, andw is the frequency deviation of the optical

each transition has slowly decaying tails that have to be corfield from w,, which | take as the carrier frequenaey(n,) is

volved with the Fermi-Dirac function in order to calculate the effective refractivégroup index atwg, andI’ is the field

the spectrum of the refractive index change. However, theonfinement factor to the active region. The total losses in

refractive index spectrum can be numerically determined eiEq. (19) are given by
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1 400 T T T T T T ]
Qot= At — E'n(rlrz),

thus including both the internal losses;{) and the cavity 30k
lossesaeng=L ~2In(ryr,) due to the facet reflectivities; and

r,, distributed over the effective length of the optical cavity,

L (for DFB lasersy; andr, are the effective reflectivities for
the left- and right-going waveéslt is worth noting that in ~ ~ *°
most single-mode devices at least one of the reflectivities i
frequency dependent due to the presence of a grating eith .
inside (DFB) or at the edgeg&he distributed Bragg reflectors 10F
of a VCSEL of the cavity; however, | shall consider that in

[T
I

I

a relatively broad frequency range around the cavity reso kS ]
nance the facet reflectivities can be taken as congtant oF ‘ ‘ L . ]
the lasing mode does not approach the edges of the stc 10 -5 0 5 10
band. (0 — wo)/¥

In order to reduce the number of parameters, | rescale _ _
Egs.(19)—(20) to FIG. 6. Normalized threshold current densih as a function

of the lasing frequency foo=0.2 (solid lineg and =2 (dashed
lines and different values of the modal gain=1 (triangle, 2/3

&
80 =— ERe[af(&Q,D)]-i—A, (21)  (diamond, and 1/2(stap.
0=1+a Im[f(5Q,D)], (22)  However, the asymmetry decreases for increasing band-gap
renormalization, since it contributes additional gain on the
P=J—rD-D?, (23)  red side of the minimum threshold. The asymmetry of these

curves will be barely the same for#0, although all the
where D=N/N;, 6Q=6d6w/y, A=(w;—wp)/y, a  curves will be shifted upwards due to the increase in thresh-

=I"xowo/(CNaye), £=Cai/(Ngy), r =A/BN; and old current density associated with the increased carrier re-
combination rate.
P=|E|2£ﬂﬂ The asymmetry of the threshold curve around its mini-
ng cn BNtz' mum is clearly noticeable in Fig. 7, which shows the cw
output power of the laser versus lasing frequetstarg and
Finally, the a factor at the operation poiritiamonds for two differ-

ent values of the modal gain. The injection currents have

been chosen to yield the same maximum output power. It can
' be observed that the asymmetry in the output power is more

noticeable for smalb [cases(a) and (c)] since, as already

b
f(6,D)=2In| 1- =Inl1-———F—
(D) ( ( 0+oD3+i

0+ oD 3+i

whereb has been defined just following E@). The first and
second equations determine the lasing frequeieyand the
threshold carrier density for this frequency, which then de-

b}

N

termines the output powd? for a given current injectiod. o o 4 Z %

It is worth noticing that the only role of is to redefine the o H
threshold currentand hence the output powebut it does r 4 %
not affect the threshold carrier density. In high-quality lasers 0

that are free from structural defects in the active region, bi-

molecular recombination dominates over nonradiative re (@ = wo)/y
combination. Hence for the sake of simplicity | will simply

considerr =0, because it will merely shift down the output 5179 . 5179 o
power for a given current density. ol . ***; ] . f ***

By using Eq.(6) for the electrical susceptibility of the © x M *
single quantum well, we can numerically solve the above se © ,| N e S @ =, * o 00000]
of equations by taking as a control parameter the normalize x ot .
detuning between the cavity resonance and the nomineé © - « 0 -
band-gap frequency. 0 o wary Iy A

Figure 6 shows the dependence of the threshold curreru
on the lasing frequency for different values of the modal gain  FG, 7. Normalized output poweP (star$ and « factor (dia-
a. All curves are asymmetric around the minimum thresholdmondg for cw operation of the laser as a function of the lasing
with smoother tails towards the blue side of the minimumfrequencyi(a) o=0.2 anda=1, (b) o=2 anda=1, (c) c=0.2 and
threshold frequency than towards its red side, in agreement=1/2, and(d) =2 anda=1/2. The pump current in caséa)
with the experimental results for VCSELSs with different cav- and (b) is J= 10, while in casegc) and (d) it is J=28.55, chosen
ity resonance$30] or in tunable external-cavity laser31]. such that the normalized output power is the same in all cases.
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(@ = @)/

FIG. 8. Normalized lasing frequencyw(- wq)/y as a function
of cavity detuningA =(w.— wg)/y, for modal gaina=1 andJ
=10. Stars correspond ®=0.2, and diamonds to=2.
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mode, the reason being the positive slope of the real part of
the susceptibility in the region of positive material gain.

It is worth noting, in connection with Figs. 7 and 8, that
the above results have been obtained by varying only the
cavity detuning, the other parameters remaining constant.
The inclusion of gain and dispersion spectra through the
electrical susceptibility of the QW allows one to reproduce
the variation of both the output power and thefactor as a
function of cavity detuning.

IV. SUMMARY

In summary, | have presented an analytical expression for
the optical susceptibility of a QW at low temperatures from
which several properties of the gain, differential gain, refrac-
tion index, andw factor of the active medium can be found.
The results are in qualitative agreement with those obtained
from more fundamental, microscopic theories, and also with
several experimental observations. For fixed threshold gain,
the threshold carrier density varies with detuning following
the spectral gain curve, and so do the output power and line-
width enhancement factor at the operation point. Therefore,

commented, larger band-gap renormalizations contribute adne model described improves the standard RE description
ditional gain to low frequencies. In addition, we can also Sy incorporating the gain and dispersion spectra of the QW

that the asymmetry is stronger for high modal gaiase(a)]

laser. The model can be useful for analyzing the lasing prop-

due to the reduced band-gap shrinkage that occurs in thigties of multimode and inhomogeneous devices without re-

case.

quiring one to use a fully microscopic theory, hence speed-

One can also see the dramatic influence that the Iasing]g up computer simulations. An analytical approximation

frequency and modal gain have on thdactor at the opera-

tion point: reduced threshold gaifisases(c) and (d)] yield

for the gain at finite temperature has also been presented,
although the refractive index spectrum requires a numerical

larger« factors at the operation point, while increased bandeyajyation. Generalization of this work to study the dynam-
gap renormalization coefficienfsases(b) and (d)] lead to jcs of such devices is in progress.

much reducedr factors at the operation point. In addition, it
can also be seen that, for low band-gap renormalization pa-
rameter, a noticeable reduction in the factor can be
achieved by operating the laser on the blue side of the mini- This work has been supported by Comision Interministe-
mum thresholdcases(a) and (c)], in agreement with the rial de Ciencia y TecnologidCICYT, Spain Project No.
experimental results if27,28. However, this effect van- TIC95-0563-CO5. | also acknowledge financial support from
ishes or may be even reversed when the system has largjge Human Capital and Mobility Program of the European
band-gap renormalization coefficigrstee caseb) and(d)]. Union, Contract No. FMRX-CT96-0066. Finally, | thank
Finally, in Fig. 8 | have plotted the operation frequency asProfessors M. San Miguel, J. R. Tredicce, P. Colet, E.
a function of detuning fom=1. It can be seen that the op- Hernandez-Gara, and N. B. Abraham for their support, use-
eration frequency is always a little bit higher than the cavityful discussions, and a critical reading of this manuscript.
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