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Hartree-Fock treatment of the two-component Bose-Einstein condensate
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We present a numerical study of a trapped binary Bose-condensed gas by solving the corresponding Hartree-
Fock equations. The density profile of the binary Bose gas is solved with a harmonic trapping potential as a
function of temperature in two and three dimensions. We find a symmetry breaking in the two-dimensional
case where the two condensates separate. We also present a phase diagram in the three-dimensional case of the
different regions where the binary condensate becomes a single condensate and eventually an ordinary gas as
a function of temperature and the interaction strength between the atoms.@S1050-2947~98!06502-0#

PACS number~s!: 03.75.Fi, 05.30.Jp
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I. INTRODUCTION

The recent realization of Bose-Einstein condensation
dilute gases of trapped alkali-metal atoms has provided
opportunity to investigate macroscopic quantum effects
recently developed systems@1–3#. The second generation o
experiments on condensates in Rb and Na vapors@4–8# give
detailed information about the condensate long-range or
which distinguishes them from an ordinary gas. These ato
are known to have a positive scattering length, i.e., the at
experience a repulsive force between them. Recent exp
ments with Li @9# show that for a limited range of particl
densities even particles with negative scattering length
form a condensate. In a recent experiment Myattet al. have
been able to trap atoms of two different spin states and c
them below the condensate transition point@8#. These experi-
ments give us knowledge about the condensation in a w
different dynamical regime.

Much work on the density distribution of the condensa
has been carried out for a single condensate and lately
for the two-component condensate@10–12#. These calcula-
tions have been valid mainly at the temperaturesT50. In
our earlier paper we solved the Hartree-Fock equations f
single condensate@13#. In this paper we derive and solv
numerically the Hartree-Fock equations for a two-compon
gas trapped in harmonic external potentials at a finite te
perature. We solve for the density in two and three dim
sions for the case with simple harmonic potentials. T
Hartree-Fock~HF! equations give a phase transition at t
onset of condensation, but they do not take into account
critical fluctuations. It is possible, however, to obtain a qua
tative picture of the features of the Bose-Einstein phase t
sition using the HF approach.

In a real experiment, the different potentials experienc
by the two components make them respond differently
gravity. This separates the condensed clouds in space, bu
assume this effect to be compensated by technical mean
this way we can investigate the intrinsic effects determin
by the physically more essential interactions. The two co
ponents of the condensate repell each other, and if they f
exactly on top of each other, the more weakly trapped on
pushed to expand away from the center. This is found to l
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to a condensate component that has a minimum at its ce
This situation is still not optimal because energy can be lo
ered by separating the condensates. In a symmetric trap
implies a breaking of the symmetry; the two peaks a
shifted in a direction not fixed by the external potentials. W
investigate this symmetry breaking in a two-dimension
model trap because solving for the asymmetric conden
proves to be numerically demanding. The calculations
found to verify the intuitive picture described.

If the two components did not interact, the condensa
would form and disappear independently, thus showing t
different transition temperatures. With condensate inter
tions, the presence of one condensate will affect the form
tion of the other one. This will shift the transition temper
tures depending on the strength of the interaction betw
the two components. In particular, we expect a repulsive
teraction to work against the simultaneous formation of b
condensates. Thus we expect to see a modification of
phase diagram in the plane of temperature and interac
between the components. In order to keep the numerica
fort manageable, we investigate this effect in a spherica
symmetric three-dimensional trap. We find that the inter
tion shifts the boundary between the two- and on
condensate regions. We even find a case where there i
formation of a single-condensate region.

The organization of the paper is as follows. Section
reviews the HF equations that we solve numerically. In S
III we briefly go through the numerical methods that ha
been used. The results of the calculations are presente
Sec. IV, where various situations are compared. Finally, S
V comments on the calculations and their results.

II. HARTREE-FOCK EQUATIONS
FOR THE TWO-COMPONENT CONDENSATE

The Hamiltonian for an interacting Bose gas of two d
ferent kinds of atoms can be written in the form

Ĥ5Ĥ11Ĥ21Ĥ3 , ~1!

where
1272 © 1998 The American Physical Society
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Ĥ15E dr c1
†~r !F2

\2

2m1
¹21U1~r !Gc1~r !

1
1

2E drE dr 8c1
†~r 8!c1

†~r !V1~r2r 8!c1~r !c1~r 8!,

Ĥ25E dr c2
†~r !F2

\2

2m2
¹21U2~r !Gc2~r !

1
1

2E drE dr 8c2
†~r 8!c2

†~r !V2~r2r 8!c2~r !c2~r 8!,

~2!

Ĥ35
1

2E drE dr 8c1
†~r 8!c2

†~r !Vint~r2r 8!c1~r !c2~r 8!,

and c1 ,c1
† ,c2, and c2

† are the Boson field operators th
obey the commutation rule

@c i~r !,c j
†~r 8!#5d i j d~r2r 8!. ~3!

U1(r ) and U2(r ) are the two different external traps th
confine the atoms. We are here going to use the short-ra
approximation for the interaction both between the partic
of the same kind and between the two different kinds
particles. This gives us the interaction potentials (i 51,2)

Vi~r2r 8!5v id~r2r 8!, ~4!

Vint~r2r 8!5wd~r2r 8!, ~5!

where

v i5
4p\2ai

mi
, w5

4p\2a12

Am1m2

, ~6!

with the s-wave scattering lengthsa1 ,a2, anda12. Our goal
is to calculate the temperature dependence of the two ga
We therefore introduce the thermodynamic free ene
V(T,m), which is defined as

e2bV5Tr@e2b~Ĥ2m i N̂
~ i !!#, ~7!

where$m1 ,m2% are the chemical potentials andm i N̂
( i ) is a

sum over the two different gases. We then use a thermo
namic variational principle

V~Ĥ !<V~Ĥt!1^~Ĥ2Ĥt!& t , ~8!

where

^Â& t[
Tr@eb~Ĥt2m i N̂

~ i !!Â#

Tr@eb~Ĥt2m i N̂
~ i !!#

~9!

and Ĥt is a single-particle trial Hamiltonian
ge
s
f

es.
y

y-

Ĥt5Ĥ1
t 1Ĥ2

t 5(
a

$Ea
~1!aa

†aa1Ea
~2!ba

†ba%

5(
a

E dr $Ea
~1!uwa~r !u2aa

†aa1Ea
~2!ufa~r !u2ba

†ba%.

~10!

This gives for the thermodynamic potential

V~Ĥ !<V~Ĥ1
t !1V~Ĥ2

t !1^Ĥ12Ĥ1
t & t1^Ĥ22Ĥ2

t & t1^Ĥ3& t .

~11!

The single-particle stateswa and fa are to be determined
such that they minimize the thermodynamic free energyV.
We now expand our field operators

c1~r !5(
a

wa~r !aa , ~12!

c2~r !5(
a

fa~r !ba . ~13!

Inserting this expansion into Eq.~1! gives the Hamiltonians

Ĥ15E dr(
a

wa* ~r !F2
\2

2m1
¹21U1~r !Gwa~r !aa

†aa

1
1

2
v1E dr (

a,b,g,d
wa* ~r !wb* ~r !wg~r !wd~r !aa

†ab
†agad ,

~14!

Ĥ25E dr(
a

fa* ~r !F2
\2

2m2
¹21U2~r !Gfa~r !ba

†ba

1
1

2
v2E dr (

a,b,g,d
fa* ~r !fb* ~r !fg~r !fd~r !ba

†bb
†bgbd ,

~15!

Ĥ35wE dr (
a,b,g,d

wa* ~r !fb* ~r !fg~r !wd~r !aa
†bb

†bgad .

~16!

We can now use the single-particle Hamiltonians and rew
the thermodynamic free energy as

V5V1
t 1V2

t 1E dr Ṽ~r !, ~17!

where (i 51,2)

V i
t52

1

b(
a

ln@12e2b~Ea
~ i !

2m i !# ~18!

and Ṽ5 Ṽ11 Ṽ21 Ṽ3 with
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Ṽ1~r !5(
a

wa* ~r !F2
\2

2m1
¹21U1~r !2Ea

~1!Gwa~r !^Na
~1!& t

1
v1

2 (
a

uwa~r !u4^Na
~1!~Na

~1!21!& t

1v1 (
aÞb

uwa~r !u2uwb~r !u2^Na
~1!Nb

~1!& t , ~19!

Ṽ2~r !5(
a

fa* ~r !F2
\2

2m2
¹21U2~r !2Ea

~2!Gfa~r !^Na
~2!& t

1
v2

2 (
a

ufa~r !u4^Na
~2!~Na

~2!21!& t

1v2 (
aÞb

ufa~r !u2ufb~r !u2^Na
~2!Nb

~2!& t , ~20!

Ṽ3~r !5w(
a,b

uwa~r !u2ufb~r !u2^Na
~1!Nb

~2!& t . ~21!

Here we have used the independent-particle properties oĤ1
t

and Ĥ2
t with Na

(1)5aa
†aa , Na

(2)5ba
†ba , and ^aa

†aabb
†bb& t

5^Na
(1)& t^Nb

(2)& t . In order to calculate the single-partic
stateswa andfa that minimizes the free energyV we have
to calculate the functional derivatives

d

dwa* ~r !
E dr Ṽ@wa* ~r !,fa* ~r !#50, ~22!

d

dfa* ~r !
E dr Ṽ@wa* ~r !,fa* ~r !#50. ~23!

For theṼ1 andṼ2 parts we can use the results for the sing
condensate@15,14#. From Eqs.~22! and~23! we then get the
equations

F2
\2

2m1
¹21U1~r !2Ea

~1!Gwa~r !^Na
~1!& t

1v1H uwa~r !u2^Na
~1!~Na

~1!21!& t

1(
b

^Nb
~1!& tuwb~r !u2^Na

~1!&J wa~r !

1w(
b

ufb~r !u2^Nb
~2!& t^Na

~1!& twa~r !50, ~24!

F2
\2

2m2
¹21U2~r !2Ea

~2!Gfa~r !^Na
~2!& t

1v2H ufa~r !u2^Na
~2!~Na

~2!21!& t

1(
b

^Nb
~2!& tufb~r !u2^Na

~2!& tJ fa~r !

1w(
b

uwb~r !u2^Nb
~1!& t^Na

~2!& tfa~r !50. ~25!
We also keep in mind the difference between the conden
phase and the normal phase concerning the single-par
averages~see Ref.@13#!

^Na
~ i !Nb

~ i !& t5^Na
~ i !& t^Nb

~ i !& t , aÞa0 ,i 51,2 ~26!

^Na
~ i !~Na

~ i !21!& t52^Na
~ i !& t

2 , aÞa0 ,i 51,2 ~27!

^Na0

~ i !~Na0

~ i !21!& t5N0
~ i !~N0

~ i !21!'N0
~ i !2

. ~28!

We can now have three different regions depending on
parameters: two condensates, a condensed phase and
mal phase, or finally two normal phases. The following a
the three sets of equations.

A. Two condensates

The temperature is now below the critical temperatureT1
c

andT2
c for both gases and we have

F2
\2

2m1
¹21U1~r !1v1@2rn

1~r !1r0
1~r !#1wG1~r !Gwa0

~r !

5Ea0

~1!wa0
~r !, ~29!

F2
\2

2m1
¹21U1~r !12v1@rn

1~r !1r0
1~r !#1wG1~r !Gwa~r !

5Ea
~1!wa~r !, ~30!

F2
\2

2m2
¹21U2~r !1v2@2rn

2~r !1r0
2~r !#1wG2~r !Gfa0

~r !

5Ea0

~2!fa0
~r !, ~31!

F2
\2

2m2
¹21U2~r !12v2@rn

2~r !1r0
2~r !#1wG2~r !Gfa~r !

5Ea
~2!fa~r !, ~32!

where

rn
1~r !5 (

aÞa0

^Na
~1!& tuwa~r !u2, ~33!

r0
1~r !5Na0

~1!uwa0
~r !u2, ~34!

rn
2~r !5 (

aÞa0

^Na
~2!& tufa~r !u2, ~35!

r0
2~r !5Na0

~2!ufa0
~r !u2, ~36!

G1~r !5Na0

~2!ufa0
~r !u21 (

aÞa0

^Na
~2!& tufa~r !u2, ~37!

G2~r !5Na0

~1!uwa0
~r !u21 (

aÞa0

^Na
~1!& tuwa~r !u2, ~38!

^Na
~ i !& t51/~eb~Ea

~ i !
2m i !21!, i 51,2. ~39!
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B. A condensed phase and a normal phase

The temperature is now below one of the critical tempe
tures. We give here the equations with system~1! in the
condensed phase. Then the system to be solved consis
Eqs.~29! and ~30! and in the noncondensed phase

F2
\2

2m2
¹21U2~r !12v2r2~r !1wG2~r !Gfa~r !

5Ea
~2!fa~r !, ~40!

with r2(r )5r0
2(r )1rn

2(r ).

C. Two normal phases

The temperature is here above the critical temperature
both gases and the equations are

F2
\2

2m1
¹21U1~r !12v1r1~r !1wG1~r !Gwa~r !

5Ea
~1!wa~r !, ~41!

F2
\2

2m2
¹21U2~r !12v2r2~r !1wG2~r !Gfa~r !

5Ea
~2!fa~r !, ~42!

with r i(r )5r0
i (r )1rn

i (r ). The chemical potentialsm1 and
m2 are calculated from the particle numbers

N~ i !5(
a

1

eb~Ea
~ i !

2m i !21
, i 51,2. ~43!

In the condensed phase we havem15Ea0

(1) andm25Ea0

(2) .

III. NUMERICAL METHODS

The numerical methods have been thoroughly explai
in Ref. @13#. We are here only going to give the gener
ideas. The equations are highly nonlinear and therefore h
to be solved iteratively. This means that we start by guess
the densities and solving the ordinary differential equatio
The resulting eigenvalues and eigenstates are then use
obtain new densities. This procedure is then iterated until
have a self-consistent solution. In the experiments w
Bose-condensed gases the trapping potential has been
proximately harmonic. The two gases have different exter
potentials because they are trapped in different spin sta
This then gives us the two different external potentials

Ui~x,y,z!5
1

2
mi~Vxi

2 x21Vyi

2 y21Vzi

2 z2!, i 51,2.

~44!

Because of the harmonic external potentials, a natural
proach would be to expand the solutions in the harmon
oscillator eigenfunctions

w~r !5(
i

aiF i
HO . ~45!
-

of

or

d
l
ve
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to

e
h
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-

The problem then reduces to an eigenvalue problem for
expansion coefficientsai . In the actual calculations we hav
at most four coupled equations that have to be solved sim
taneously. This is not a problem since we have basically
same situation as in the single-condensate case. The
drawback is the computing time, which is doubled compa
to the calculations in Ref.@13#.

The method of expansion in harmonic-oscillator eige
functions is especially good in asymmetric environmen
However, if we have a spherically symmetric geometry,
can easily discretize our solutions on a lattice,w(r )→w i ,
and the derivatives turn into differences, which then gives
a tridiagonal eigenvalue problem whose solutions direc
gives the desired quantities. This method works best in s
ations where the problem is effectively one dimensional.

IV. RESULTS

In this paper we calculate the density of the tw
component condensate in a harmonic trap in two and th
dimensions including asymmetry in the two-dimension
case. We also present a phase diagram for a th
dimensional spherically symmetric trap. The equations
put into dimensionless form by the scaling

r 5
\1/2

@m1m2V1V2#1/4r 8 ~46!

andx5lx8,y5ly8 with

l5
\1/2

@m1m2#1/2@Vx1
Vx2

Vy1
Vy2

#1/8 . ~47!

This gives us the dimensionless energies scaled to

1
2 \~Vx1

Vx1
Vy1

Vy2
!1/4Am2 /m1

and

FIG. 1. Spherically symmetric density of the two condensat
The two condensates hardly ‘‘see’’ each other atw50.012. The
inset shows the excited part. The temperature is hereT53.33 and
the interactionsv150.02 andv250.01 with N(1)51000 andN(2)

51000. The numbers in all figures are expressed in harmo
oscillator units according to Eqs.~46! and ~47!.
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1
2 \~Vx1

Vx1
Vy1

Vy2
!1/4Am1 /m2.

A. Density calculations

The most natural thing to calculate from the Hartree-Fo
equations are the densities. In the spherically symmetric c
we have the external potentials

Ui~r !5
1

2
miV i

2r 2, i 51,2. ~48!

Throughout the calculations in this paper we have chosen
ratio betweenm1 and m2 to be m1 /m251 and the interac-
tions v1 andv2 to bev150.02 andv250.01. In our scaled
units these correspond closely to the realistic values. In
1 we show the spherically symmetric density for the tw
condensates withN51000 particles in both gases and t
interaction strength between the different particles is se
w50.012 withV1 /V252.0. Here we can see that the tw
different particles hardly ‘‘know’’ anything about each othe
The inverse temperature is hereb50.3. In Fig. 2 we have
increased the interaction strengthw to w50.05. The conden-
sate of the more weakly interacting particles is pushed a
from the center of the trap and is forming a shell around
particles in the center of the trap. These results were obta
by spherically symmetric eigensolutions, which means t
we can say nothing about the existence of states with lo
energy that could possess an asymmetric geometry. This
gests to look for a solution of an asymmetric two-compon
condensate.

It is extremely time and memory consuming to solve t
full three-dimensional asymmetric case. We therefore c
centrate on the two-dimensional two-component condens
We then have the external potentials

Ui~x,y!5
1

2
mi~Vxi

2 x21Vyi

2 y2!, i 51,2. ~49!

In the two-dimensional calculations we have chosen
asymmetry of the trap to be

FIG. 2. Same situation as in Fig. 1, but with a stronger mut
interactionw50.05. Here we can see that theN(2) particles are
pushed away from the center.
k
se

he

g.

to

y
e
ed
t

er
g-
t

-
te.

e

Vxi

Vyi

5A8, i 51,2 ~50!

with Va1
/Va2

51/A2 andN(1)5N(2)5100. In Figs. 3–5 we
show the density of the two condensates at the inverse t
peratureb51.0. If we start the iteration by setting the initia
densities to, for instance,x51,y51 and x51,y521, we
end the iteration with two separated condensates aligne
the weaker trap direction. In Fig. 3 we have usedw50.1 and
in Fig. 4 we have increased the interaction tow50.3, where
we can see that the two condensates get pushed further
from each other with increasing interaction strength. Ho
ever, if we start by putting both condensates at the cente
the trap, we get a stable solution that is symmetric also in
weaker trap direction and does not show a separation
two displaced condensates. This is shown in Fig. 5. T
ground-state energy for this case is higher than in the pu
asymmetric situation, which suggests that the spontane
symmetry breaking occurs. This is more clearly seen if
look at the two-dimensional rotationally symmetric potenti
Starting the iteration with the initial densities away from t
center gives us two condensates separated into two dis
peaks, where the weaker trapped condensate is slig
wrapped around the other one. This is shown in Fig. 6 w
b51.0 andw50.2. In Fig. 7 we have the same situation, b
now we start the iteration with the densities at the cente
the trap. The calculation converges nicely and the stable
lution shows a condensate peak in the center and a
formed by the weaker trapped atoms around it.

l

FIG. 3. Two-dimensional asymmetric case where the cond
sates have formed two separate peaks around the center of the
The interaction is herew50.1 with Vx /Vy5A8, Va1

/Va2

51/A2, and the temperatureT51.0. The iteration is here starte
away from the center with two Gaussian condensate densitie
~1,1! and (1,21). The ground-state energies areE0

(1)53.082 and
E0

(2)53.584.

FIG. 4. Same situation as in Fig. 3, but with the stronger int
actionw50.3. The two condensates are pushed further away f
each other because of their stronger repulsive interaction.
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B. Phase diagram

The Hartree-Fock equations do not describe exactly
transition region between an ordinary gas and a Bo
condensed one, but they do suggest a general view of wh
going on. If we define the critical temperature as the te
perature where the number of particles in the conden
goes to zero, we can calculate this number of particles w
the equations forT,Tc at different temperatures until w
reach the point where all particles in the condensate h
been depleted. In Fig. 8 we show three phase diagrams
function of temperature and interaction strengthw, with
fixed numbers of particlesN(1)5100 andN(2) varying be-
tween 100 and 728. We see that three regions need t
covered. We first solve the equations for two condensa
with a fixedw and increase the temperature until one of
condensates disappears, where we find our phase trans
Increasing the temperature even more means that we a
the one-condensed-phase–one-normal-phase region an
have to use Eqs.~29!, ~30!, and~40!. Increasing the tempera
ture further finally destroys the remaining condensate and
have found our second transition point. This kind of calc
lation has been repeated for different interaction streng
and particle numbers. Adjusting the particle numbers so
the two transition lines almost coincide, we find that the
exists a region where one can go from two condensate
normal gases by lowering the temperature. This situatio
shown in Fig. 8~b!. The phenomena exhibited in our pha
diagrams may not give an accurate picture of the real s
tems, but they can be believed to suggest the trends expe
in the actual experiments.

FIG. 5. Same situation as in Fig. 3. The iteration is here sta
with the condensates in the center of the trap withw50.1 andT
51.0. The condensates sit on top of each other. The ground-
energy is higher than in the asymmetric formation, withE0

(1)

53.241 andE0
(2)53.677; cf. the values given in Fig. 3.

FIG. 6. Two-dimensional spherically symmetric situation w
w50.2, where we find two separate density peaks with the gro
state energiesE0

(1)53.465 andE0
(2)53.596. One can clearly see th

wrap around effect by the more weakly trapped condensate.
iteration is started away from the center.
e
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V. CONCLUSIONS

In this paper we have presented density calculations
two-component condensate as a function of temperature.
have found symmetry breaking in the two-dimensional ca
where the two-component condensates sitting at the cent
the trap on top of each other possess a higher energy tha
situation where the two condensates have separated and
two individual peaks. This is a case of spontaneous sym
try breaking. We also present a phase diagram that desc
the different regions with a two-component condensate,
single condensate, and finally no condensate as a functio
temperature and the interaction strength between the two
ferent atoms. The phase diagram has been presented for
different pairs of particle numbers and calculated in th
dimensions with spherical symmetric external potentia
This means that we cannot see the symmetry breaking
we saw in the two-dimensional calculations, which in fa
gave an asymmetric solution in the symmetrical situati
The Hartree-Fock equations do not describe the transi
region well because they neglect all critical fluctuation
They do, however, give us an idea of what may be happen
around the transition point. At some critical particle numb
we find a region where it is possible, by changing the te
perature at fixed interaction strengthw, to go from a two-
component condensate to two noncondensed gases.

In these calculations, we have only used a few hund
particles. Increasing the number of particles to realistic v
ues (;106) is beyond the capacity of available compute
So is a full treatment of totally asymmetric thre
dimensional traps. With this small number of particles, t
interaction strengthw needs to be chosen unrealistical
large to bring out the observed features. The small numbe
particles may give rise to finite-size effects as, for instan
regions with an inconsistent fraction of condensate partic
calculated from the two-component condensate equat
and the single-condensate equations. With increasing par
number, we may expect the inconsistency to disappear
give a crossing from a two-component condensate int
phase with two normal components for all interacti
strengthsw.

The numerics was performed with a grid method in t
three-dimensional spherically symmetric case. This is a v
stable and fast method. The only drawback is that it can
practice only be used in situations where the problem is
fectively reduced to a one-dimensional one. The expans

d
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FIG. 7. Two condensates situated in the center of the trap on
of each other. The iteration is started with two Gaussian dens
positioned at the center of the trap. The ground-state energy in
case is found to be slightly higher than the off-center iteration
Fig. 6. The energies are hereE0

(1)53.779 andE0
(2)53.607.



o
n

t

try

eri-
has
er

ion
of

he
the

er-
the

dif-
able
on
orm

en-
sity,

s if
on-
the
nds
al
the

ental

our
m-
F
e-

close
ch

the
e in-
ay
ran-
be

ity
the
der

ives
nd

-
the
s
ity,
in
r a
me

ical
als
it

n,
.
nge
lly
wo

o

wo

ss
a
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method, on the other hand, is very fragile in the tw
dimensional calculations and great care has to be take
order not to get runaway iterations that do not converge
physically stable solutions.

What about the possibility of observing the symme

FIG. 8. Phase diagram described for three different pairs
particle numbers. In~a! we haveN(1)5100 andN(2)5100. Here we
can see that the transition line between regions II and III~one con-
densate and no condensate! is not sensitive to changes inw. In
region II theN(1) particles are condensed and theN(2) particles are
in the normal phase. In~b! we haveN(1)5100 andN(2)5617 and
we find a region where we have a transition between a t
component condensate~I! and no condensate~III !. In ~c! we have
increased the relative particle number toN(1)5100 andN(2)5728.
Region I with the two-component condensate is strongly suppre
as a function ofw, whereas the transition between one condens
and no condensate~II and III! is not sensitive to changes inw. In
this case, for region II, theN(2) particles are condensed and theN(1)

particles are in the normal phase.
-
in
o

breaking in the laboratory? We notice that such an exp
ment poses tremendous technical difficulties. The sample
to be situated in a perfectly symmetric environment in ord
to avoid all technically induced asymmetries. The interact
potentialsv1 andv2 we have used are of realistic orders
magnitude~in our scaled units!; the mutual interactionw is
expected to be of similar strength. In order to display t
symmetry-breaking effects clearly, we have increased
mutual interaction up to 30 times its realistic value; oth
wise the effects are minute and unobservable. No doubt
symmetry breaking occurs then too, but both the energy
ferences and the separations are so small that no conceiv
method is likely to observe them. However, the influence
condensate 1 by condensate 2 is given by terms of the f
wNa0

(2)ufa0
u2 ~and vice versa!; see Eqs.~29!–~32!. This

shows that if the traps could be designed such that cond
sate 2, say, would greatly exceed condensate 1 in den
then this could compensate for a weakerw; the reverse effect
would then be negligible. Condensate 2 would remain a
condensate 1 did not exist, but its presence would push c
densate 2 out from the center of the trap, thus affecting
symmetry breaking. How big a difference is needed depe
on the sensitivity of the method of observation. In the re
experiments, however, the atomic parameters determine
ratio between the condensates and some novel experim
technique is needed if this is to be varied.

Finally, we speculate on some features observed in
numerical computations. They may be due only to shortco
ings of the numerical approach or limitations of the H
method, but they point to interesting possibilities in the b
havior of the real systems.

First we look at situations like in Fig. 8~b!. There the
two-condensate and no-condensate boundaries are very
to each other; they may in fact be found to cross. In su
regions, we find that the critical temperatures found from
two-condensate and from the single-condensate sides ar
consistent. If we could trust the HF calculations, this m
indicate a hysteresis signaling a change to a first-order t
sition for one of the components. No such conclusion can
proven from the HF approach, but it points to the possibil
that the change of one component can qualitatively affect
behavior of the other one even to the extent that its or
may change.

Second, the use of too few states in the calculations g
a distorted and asymmetric solution. In two dimensions a
for not too high temperatures (b51.0), we get smooth den
sities for about ten states in each direction. Because of
unrealistically large values forw used, the two condensate
repel each other strongly. This shows up as a drift instabil
which eventually develops into an oscillational instability
the solution if the computer iteration is continued well afte
stable solution is found. It seems that this can be overco
by increasing the number of states involved. The phys
contents of our numerical observation may be that it sign
the breakup of a solution only locally stable. Thus we find
to occur much more readily for the symmetric situatio
whereas the asymmetric solutions are much more stable

We have thus found our numerics to indicate the cha
of order of the transition and the instability of some loca
stable solutions owing to the interaction between the t
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condensates. Admittedly neither our numerical method
our theoretical formulation~HF! allows any claims to the
reality of the effects. They do, however, offer challengi
possibilities for further experimental and theoretical inves
gations.

Unfortunately, it seems to be difficult to approach the
problems from the two-component Gross-Pitaevskii eq
an

et

n,
tt.

E

n,

e

n,
r

-

e
-

tions. As these omit the atoms above the condensate,
difficult to compute the effects on one condensate by
properties of the other one. On the other hand, any ph
transition theory superior to the HF approach appears to o
unsurmountable computational difficulties. What progre
can be achieved on these difficult questions remains to
seen.
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