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Hartree-Fock treatment of the two-component Bose-Einstein condensate
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We present a numerical study of a trapped binary Bose-condensed gas by solving the corresponding Hartree-
Fock equations. The density profile of the binary Bose gas is solved with a harmonic trapping potential as a
function of temperature in two and three dimensions. We find a symmetry breaking in the two-dimensional
case where the two condensates separate. We also present a phase diagram in the three-dimensional case of the
different regions where the binary condensate becomes a single condensate and eventually an ordinary gas as
a function of temperature and the interaction strength between the dt®h0-294708)06502-7

PACS numbd(s): 03.75.Fi, 05.30.Jp

[. INTRODUCTION to a condensate component that has a minimum at its center.
This situation is still not optimal because energy can be low-

The recent realization of Bose-Einstein condensation irered by separating the condensates. In a symmetric trap this
dilute gases of trapped alkali-metal atoms has provided atinplies a breaking of the symmetry; the two peaks are
Opportunity to investigate macroscopic quantum effects |r§h|fted in a direction not fixed by the external potentials. We
recently developed systerfis—3]. The second generation of investigate this symmetry breaking in a two-dimensional
experiments on condensates in Rb and Na vapb§] give =~ model trap because solving for the asymmetric condensate
detailed information about the condensate long-range ordeProves to be numerically demanding. The calculations are
which distinguishes them from an ordinary gas. These atomiund to verify the intuitive picture described.
are known to have a positive scattering length, i.e., the atoms If the two components did not interact, the condensates
experience a repulsive force between them. Recent expenvould form and disappear independently, thus showing two
ments with Li[9] show that for a limited range of particle different transition temperatures. With condensate interac-
densities even particles with negative scattering length caions, the presence of one condensate will affect the forma-
form a condensate. In a recent experiment Mgathl. have tion of the other one. This will shift the transition tempera-
been able to trap atoms of two different spin states and codHres depending on the strength of the interaction between
them below the condensate transition p§8it These experi- the two components. In particular, we expect a repulsive in-
ments give us know|edge about the condensation in a Who|@racti0ﬂ to work against the simultaneous formation of both
different dynamical regime. condensates. Thus we expect to see a modification of the

Much work on the density distribution of the condensatephase diagram in the plane of temperature and interaction
has been carried out for a single condensate and lately ald¥tween the components. In order to keep the numerical ef-
for the two-component condensdtE0—17. These calcula- fort manageable, we investigate this effect in a spherically
tions have been valid mainly at the temperatufes0. In  symmetric three-dimensional trap. We find that the interac-
our earlier paper we solved the Hartree-Fock equations for Hon shifts the boundary between the two- and one-
single condensatfl3]. In this paper we derive and solve condensate regions. We even find a case where there is no
numerically the Hartree-Fock equations for a two-componentormation of a single-condensate region.
gas trapped in harmonic external potentials at a finite tem- The organization of the paper is as follows. Section II
perature. We solve for the density in two and three dimenreviews the HF equations that we solve numerically. In Sec.
sions for the case with simple harmonic potentials. Thell we briefly go through the numerical methods that have
Hartree-Fock(HF) equations give a phase transition at thebeen used. The results of the calculations are presented in
onset of condensation, but they do not take into account an§€c. IV, where various situations are compared. Finally, Sec.
critical fluctuations. It is possible, however, to obtain a quali-V comments on the calculations and their results.
tative picture of the features of the Bose-Einstein phase tran-
sition using the HF approach.

In a real experiment, the different potentials experienced
by the two components make them respond differently to
gravity. This separates the condensed clouds in space, but we The Hamiltonian for an interacting Bose gas of two dif-
assume this effect to be compensated by technical means. farent kinds of atoms can be written in the form
this way we can investigate the intrinsic effects determined
by the physically more essential interactions. The two com-
ponents of the condensate repell each other, and if they form
exactly on top of each other, the more weakly trapped one is
pushed to expand away from the center. This is found to leawhere

II. HARTREE-FOCK EQUATIONS
FOR THE TWO-COMPONENT CONDENSATE

H:|:I1+H2+H3, (1)
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H =J dr z/;{(r){—zﬁ—rivzjtul(r)}wl(r) Hi=H+ Eal Yala,+E@b!b,}
+%J drfdr'¢1(r’>¢l<r>vl<r—r'wl(r)wl(r’), =2 fdr{E&”|<pa(r>|2aLaa+E<3>|¢a<r>|2bzba}-
~ h? (10
:f ar ¢£(r){—2—sz2+U2(r)}¢2(r) (2)  This gives for the thermodynamic potential
*%f erd“'¢5(f')¢5(r>vz(“‘"Wz(”%(f’% Q)= QAL + QAL +(Fy = A (A= AL ().
(11)

1 R ; The single-particle stateg, and ¢, are to be determined
H3:§f dff dr’ i (r) (1) Vind(r=r") i (r) (1), such that they minimize the thermodynamic free eneigy
We now expand our field operators

and ¢, ,1,, and ¢ are the Boson field operators that

obey the commutation rule %(UZE ea(r)a,, (12)
L4i(r), ] (r)]=8;8(r=r"). 3)
U,(r) and U,(r) are the two different external traps that ‘ﬁz(r):; Po(r)b, . (13

confine the atoms. We are here going to use the short-range
approximation for the interaction both between the particle
of the same kind and between the two different kinds o
particles. This gives us the interaction potentials {,2)

1ﬁnserting this expansion into E¢l) gives the Hamiltonians

dr N — =—V2+Uq(r ra'a,
Vit =1") =0, 8(1—1"), @ P )[ - 1(N|a(r)al
’ ! 1
Vin(r=r")=wé(r—r’), ©) +§Ulf draﬁzyé @Z(r)wz(r)<py(r)<p5(r)alafsayaa,
where (14
477'712ai 47Th2a12 ~
vi= , W= , 6 Hzfdr *r[—V%Ur}arbT
= o 6)  Ho= | dr ¢5(n)| 5 (1) | balr)
with the s-wave scattering lengthes, ,a,, anda;,. Our goal + Evzf dr X $E(NGE(N G, (1) s(r)bibib by,
is to calculate the temperature dependence of the two gases. a.p.y.6
We therefore introduce the thermodynamic free energy (15)
Q(T,u), which is defined as
e Ao =T e AH-mN), 7) H3=wf draBEM ek (NgE(N G (Nesralbib.as.

. (16)
where{u,,u,} are the chemical potentials apdN® is a

sum over the two different gases. We then use a thermodype can now use the single-particle Hamiltonians and rewrite
namic variational principle the thermodynamic free energy as

QR)=QHY+((H-AY), ®) ~
Q=Q§+Qt2+f dr Q(r), a7
where
where (=1,2)
. Tr[eﬁ(ﬁt*MiN(i))A] 1 .
(A= Tr[eﬁ(p't’”i'(‘(i))] €) Q}:_E; |n[1_e*ﬁ(Eg)*Mi)] (18)

andH' is a single-particle trial Hamiltonian and Q= Q, + Q,+ Q4 with
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+ 23 loalDIANPND - 1)),
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02N =2 (D) = 5 V2 Ua() = EZ | (NG,

+ 52 |uMIANP(NE - 1),

+02 2 |Bal)2]Bp(NANENG),, (20)
a# B

ﬁg(r>=w2ﬁ|<pa(r>|2|¢5(r>|2<N53>N;§>>t. (21)

Here we have used the independent-particle propertiet of
and H} with N=ala,, N?=blb,, and(ala,blbs),
=(NSY(NE), . In order to calculate the single-particle

statese, and ¢, that minimizes the free enerdy we have
to calculate the functional derivatives

o fd Qe* *(r)]=0 22
S (1) r QLo (r),é5(r)]=0, (22

fdr QL5 (r), ¢5(r)]=0. (23

S (r)
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We also keep in mind the difference between the condensed
phase and the normal phase concerning the single-particle
averagessee Ref[13))

(NONDY=(NDY(NGY,  a#api=12 (26)
(NDIND=1)),=2(NIV2,  a#agi=12 (27)
(NGNS = 1)) =Ny (N’ —1)~Ng’ (28)

We can now have three different regions depending on the
parameters: two condensates, a condensed phase and a nor-
mal phase, or finally two normal phases. The following are
the three sets of equations.

A. Two condensates

The temperature is now below the critical temperaflife
andT$ for both gases and we have

ﬁ2
—mvuul<r>+ul[2pﬁ<r>+pé(r)]+wr1(r>}%0(r>

=E 0a (1), (29)

ﬁZ
{——2 V2+u1<r>+2v1[pﬁ(r>+pé<r>]+wr1<r>}%<r>
my

_r
_E(a)

®o(r), (30)

hZ
[— 2—2V2+ Uz(r)+v2[2pﬁ(r)+p§(r)]+sz(T)}¢a0(f)

For the?)l and Qz parts we can use the results for the single

condensat¢l5,14). From Egs.(22) and(23) we then get the
equations

hZ
_ 2 _ @)
Zle +Uq(r)—E;

}@a(r)<N(al)>t
+v1{|<oa<r>|2<Ngl><N9>—1>>t
+3 <N<ﬁl>>t|goﬁ<r>|2<Ngl>>}%m

+w§ | s IANEYUND ) ,(1)=0, (24)

hZ
[— 2—sz2+uz<r>—ES>}¢a(r><N§>>t

+0,0 [u(NANP(NZ - 1)),

+§ <N;§>>t|¢ﬁ(r>|2<Nf>>t] ba(r)

+w§ @ (DIANGY(NP )b, (r)=0. (25)

=EZ (1), (31)
ﬁ2
— —V2+Uy(r)+2v [p2<r>+p2<r>]+wr2<r>}¢>a<r>
2m 2LFPn 0
=E@ ¢,(1), (32
where
pa(N= 2 (NIHleanl? (33
pa(N=Nea (N7, (34)
p2(r)= 2 (NP (D)2, (35)
Ck Dto
PoN=NZ by (DI?, (36)
)=NZ| (1) + 2 (NPY[ga(DI? (37
Lo(n) =N @, (N> + E (NDY [@u(n)]2  (39)
(ND)=1/(eBE-w)—1), i=12. (39
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B. A condensed phase and a normal phase

The temperature is now below one of the critical temper
tures. We give here the equations with systéipin the
condensed phase. Then the system to be solved consists
Egs.(29) and(30) and in the noncondensed phase

ﬁZ
IR v 2]

2m2v +U

=E@ (1),

with p?(r) = p5(r)+pa(r).

2(1)+205p%(r) WL 5(r) | (1)

(40

C. Two normal phases
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The problem then reduces to an eigenvalue problem for the

aEXpansion coefficients; . In the actual calculations we have

at most four coupled equations that have to be solved simul-
tgpeously. This is not a problem since we have basically the
same situation as in the single-condensate case. The only
drawback is the computing time, which is doubled compared

to the calculations in Ref13].

The method of expansion in harmonic-oscillator eigen-
functions is especially good in asymmetric environments.
However, if we have a spherically symmetric geometry, we
can easily discretize our solutions on a lattigdy)— ¢;,
and the derivatives turn into differences, which then gives us
a tridiagonal eigenvalue problem whose solutions directly
gives the desired quantities. This method works best in situ-
ations where the problem is effectively one dimensional.

The temperature is here above the critical temperature for

both gases and the equations are

IV. RESULTS

2 . .
[_ h Vz+Ul(r)Jrzvlpl(r)Jrer(r)}(Pa(r) In this paper we cglculate the_densny of the two-
2m component condensate in a harmonic trap in two and three
_g® 41 dimensions including asymmetry in the two-dimensional
=E. @a(r), (42) case. We also present a phase diagram for a three-
52 dimensional spherically symmetric trap. The equations are
[_ - V2+Uz(r)+2u2p2(r)+wl“2(r)}¢a(r) put into dimensionless form by the scaling
2 hl/Z
=E@ g (1), 42 r=————— ' 46
o ¢a( ) ( ) [mlm20192]14 ( )
with p'(r)=pp(r) +ph(r). The c.hemical potentialg, and andx=\x’,y=\y’ with
M, are calculated from the particle numbers
hl/Z
. 1 . A= . (47
N(')=§ W, i=1,2. (43 [m1m2]1/2[Qlex29y19y2]1/8

This gives us the dimensionless energies scaled to

H(Qy 0y Oy Q) My My

In the condensed phase we have= Ef}o) and u,= EE,Z;).

. NUMERICAL METHODS

The numerical methods have been thoroughly explaineélnd
in Ref. [13]. We are here only going to give the general
ideas. The equations are highly nonlinear and therefore have
to be solved iteratively. This means that we start by guessing
the densities and solving the ordinary differential equations.
The resulting eigenvalues and eigenstates are then used tc
obtain new densities. This procedure is then iterated until we
have a self-consistent solution. In the experiments with
Bose-condensed gases the trapping potential has been apP(r ) 100
proximately harmonic. The two gases have different external
potentials because they are trapped in different spin states.
This then gives us the two different external potentials

200

condensate | ——
condensate 2

150 |

excited ] —
excited 2

50 |

1
Ui(x,y,2) = Emi(Qiix2+Q§iy2+ Qgizz), i=1,2.
(49

Because of the harmonic external potentials, a natural ap-
proach would be to expand the solutions in the harmonic
oscillator eigenfunctions

FIG. 1. Spherically symmetric density of the two condensates.
The two condensates hardly “see” each othemat 0.012. The
inset shows the excited part. The temperature is fier@.33 and
the interactions);=0.02 andv,=0.01 with N®®=1000 andN®
=1000. The numbers in all figures are expressed in harmonic-

N=> a®"°,
@(r) Z e oscillator units according to Eq$46) and (47).

(45)
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2 ' ' ' ' ' ' ' condensate 1 ——

condensate 1 —— condensate 2 -
40

condensate 2 -

: p(xy) 20
excited | —

excited2 —- 0

150

p(r) 100

7 -1 y
50 ¢ FIG. 3. Two-dimensional asymmetric case where the conden-
- sates have formed two separate peaks around the center of the trap.
4 § 8 The interaction is herew=0.1 with Q,/Q,=\8, Q, /Q,,
! ! : =1/y/2, and the temperaturé=1.0. The iteration is here started
away from the center with two Gaussian condensate densities at
(1,1 and (1-1). The ground-state energies d§"=3.082 and

S - . E{?=3.584
FIG. 2. Same situation as in Fig. 1, but with a stronger mutual—0 e
interactionw=0.05. Here we can see that thé? particles are
pushed away from the center. Qxi .
— =8, i=12 (50)
Qyi

18(Q, 0, O, Q)Y Im,.
177 X17 Y1 Y2 . .
with Q, /1Q,,=1//2 andN®=N®=100. In Figs. 3-5 we
show the density of the two condensates at the inverse tem-
peratureB=1.0. If we start the iteration by setting the initial
The most natural thing to calculate from the Hartree-Fockdensities to, for instancex=1y=1 andx=1y=—1, we
equations are the densities. In the spherically symmetric casend the iteration with two separated condensates aligned in

A. Density calculations

we have the external potentials the weaker trap direction. In Fig. 3 we have used 0.1 and
in Fig. 4 we have increased the interactiontter 0.3, where
_ E 2.2 i we can see that the two condensates get pushed further away
Ui(r)=zmQr i=1,2. (48) - o e )
2 from each other with increasing interaction strength. How-

ever, if we start by putting both condensates at the center of
Throughout the calculations in this paper we have chosen thiie trap, we get a stable solution that is symmetric also in the
ratio betweerm; andm, to bem;/m,=1 and the interac- weaker trap direction and does not show a separation into
tionsv, andv, to bev;=0.02 andv,=0.01. In our scaled two displaced condensates. This is shown in Fig. 5. The
units these correspond closely to the realistic values. In Figground-state energy for this case is higher than in the purely
1 we show the spherically symmetric density for the twoasymmetric situation, which suggests that the spontaneous
condensates wittN=1000 particles in both gases and the symmetry breaking occurs. This is more clearly seen if we
interaction strength between the different particles is set tdook at the two-dimensional rotationally symmetric potential.
w=0.012 withQ,/Q,=2.0. Here we can see that the two Starting the iteration with the initial densities away from the
different particles hardly “know” anything about each other. center gives us two condensates separated into two distinct
The inverse temperature is hefe=0.3. In Fig. 2 we have peaks, where the weaker trapped condensate is slightly
increased the interaction strengttito w=0.05. The conden- Wrapped around the other one. This is shown in Fig. 6 with
sate of the more weakly interacting particles is pushed away= 1.0 andw=0.2. In Fig. 7 we have the same situation, but
from the center of the trap and is forming a shell around thenow we start the iteration with the densities at the center of
particles in the center of the trap. These results were obtaingfie trap. The calculation converges nicely and the stable so-
by spherically symmetric eigensolutions, which means thatution shows a condensate peak in the center and a ring
we can say nothing about the existence of states with lowefiormed by the weaker trapped atoms around it.
energy that could possess an asymmetric geometry. This sug-
gests to look for a solution of an asymmetric two-component condensate 1 ——
condensate. 40 condensate 2 -

It is extremely time and memory consuming to solve the o(xy) 20
full three-dimensional asymmetric case. We therefore con- ’
centrate on the two-dimensional two-component condensate. Of=g
We then have the external potentials

— 1 QZ 2 QZ 2 i=1.2 4 2
Ui(XaY)—Emi( XiX + yiy )1 I1=1,Z ( 9) y
_ _ _ FIG. 4. Same situation as in Fig. 3, but with the stronger inter-
In the two-dimensional calculations we have chosen thectionw=0.3. The two condensates are pushed further away from
asymmetry of the trap to be each other because of their stronger repulsive interaction.
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condensate 1 —— condensate 1 ——
40 condensate 2 - 40 condensate 2

p(xy) 20

-1
-2 y -2 y

FIG. 5. Same situation as in Fig. 3. The iteration is here started FIG. 7. Two condensates situated in the center of the trap on top
with the condensates in the center of the trap with 0.1 andT of each other. The iteration is started with two Gaussian densities
=1.0. The condensates sit on top of each other. The ground-stafsitioned at the center of the trap. The ground-state energy in this
energy is higher than in the asymmetric formation, wig" case is found to be slightly higher than the off-center iteration in
=3.241 andEP=3.677; cf. the values given in Fig. 3. Fig. 6. The energies are hel§” =3.779 andE{? =3.607.

B. Phase diagram V. CONCLUSIONS

The Hartree-Fock equations do not describe exactly the , . .
transition region between an ordinary gas and a Bose- In this paper we have presented densﬂy calculations of a
condensed one, but they do suggest a general view of what wo-component condensate asa function Of. temperature. We
going on. If we define the critical temperature as the tem{12Ve found symmetry breaking in the two-dimensional case,
perature where the number of particles in the condensa here the two-component condensates sitting at the center of
goes to zero, we can calculate this number of particles witt€ {rap on top of each other possess a higher energy than the
the equations folT <T, at different temperatures until we S|tuqt|on yvhere the two qoqdensates have separated and form
reach the point where all particles in the condensate havi¥'© individual peaks. This is a case of spontaneous symme-
been depleted. In Fig. 8 we show three phase diagrams as’y br_eakmg. We also present a phase diagram that describes
function of temperature and interaction strength with the different regions with a two-component condensate, one
fixed numbers of particledl®™=100 andN® varyi}lg be- Single condensate, and finally no condensate as a function of

tween 100 and 728. We see that three regions need to gmperature and the interaction strength between the two dif-
covered. We first solve the equations for two condensate rent atoms. The phase diagram has been presented for three

with a fixedw and increase the temperature until one of the !fferen_t pa|rs_of partlcl_e numbers a_nd calculated in three
mensions with spherical symmetric external potentials.

condensates disappears, where we find our phase transitio%.s means that we cannot see the svmmetrv breaking that
Increasing the temperature even more means that we are ! : we : ym y oreaxing

the one-condensed-phase—one-normal-phase region and We saw in the two-dimensional calculations, which in fact
have to use Eq€29), (30), and(40). Increasing the tempera- gave an asymmetric sol.utlon in the symmetrlcal situation.
ture further finally destroys the remaining condensate and wghef‘ Hartree-Fock equations do not desc_:r_lbe the transition
have found our second transition point. This kind of calcy-region well because they neglect all critical fluctuations.

lation has been repeated for different interaction strengthlhey do, however, give us an idea of what may be happening

and particle numbers. Adjusting the particle numbers so tha§round the transition point. At some critical particle number

the two transition lines almost coincide, we find that thereWe find a region where it is possible, by changing the tem-

exists a region where one can go from two condensates ferature at fixed interaction strength to go from a two-
normal gases by lowering the temperature. This situation igomponent condensate to two noncondensed gases.
shown in Fig. 8b). The phenomena exhibited in our phase In these calcu!at|ons, we have only gsed a fewlhl'mdred
diagrams may not give an accurate picture of the real Sys;:_>art|cles(.)6ln(_:reasmg the number_of partlcl_es to realistic val-
tems, but they can be believed to suggest the trends expectgaS (-10°) is beyond the capacity of available computers.

in the actual experiments. 0 is a full treatment _of totally asymmetric_ three-
dimensional traps. With this small number of particles, the

condensate 1 —— interaction strengthw needs to be chosen unrealistically
40 condensate 2~ large to bring out the observed features. The small number of

particles may give rise to finite-size effects as, for instance,
regions with an inconsistent fraction of condensate particles
calculated from the two-component condensate equations
and the single-condensate equations. With increasing particle
number, we may expect the inconsistency to disappear and
give a crossing from a two-component condensate into a
phase with two normal components for all interaction
strengthsw.

FIG. 6. Two-dimensional spherically symmetric situation with ~ 1he numerics was performed with a grid method in the
w=0.2, where we find two separate density peaks with the groundhree-dimensional spherically symmetric case. This is a very
state energieEél)=3_465 ancE82)=3_596_ One can clearly see the stable and fast method. The only drawback is that it can in
wrap around effect by the more weakly trapped condensate. Thpractice only be used in situations where the problem is ef-
iteration is started away from the center. fectively reduced to a one-dimensional one. The expansion

-2
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breaking in the laboratory? We notice that such an experi-
ment poses tremendous technical difficulties. The sample has
to be situated in a perfectly symmetric environment in order
to avoid all technically induced asymmetries. The interaction
potentialsv,; andv, we have used are of realistic orders of
magnitude(in our scaled unifs the mutual interactionv is
expected to be of similar strength. In order to display the
symmetry-breaking effects clearly, we have increased the
mutual interaction up to 30 times its realistic value; other-
wise the effects are minute and unobservable. No doubt the
symmetry breaking occurs then too, but both the energy dif-
ferences and the separations are so small that no conceivable
method is likely to observe them. However, the influence on
condensate 1 by condensate 2 is given by terms of the form
wafO)|d>%|2 (and vice versp see Egs.(29—(32). This

shows that if the traps could be designed such that conden-
sate 2, say, would greatly exceed condensate 1 in density,
then this could compensate for a weakerthe reverse effect
would then be negligible. Condensate 2 would remain as if
condensate 1 did not exist, but its presence would push con-
densate 2 out from the center of the trap, thus affecting the
symmetry breaking. How big a difference is needed depends
on the sensitivity of the method of observation. In the real
experiments, however, the atomic parameters determine the
ratio between the condensates and some novel experimental
technique is needed if this is to be varied.

Finally, we speculate on some features observed in our
numerical computations. They may be due only to shortcom-
ings of the numerical approach or limitations of the HF
method, but they point to interesting possibilities in the be-
havior of the real systems.

First we look at situations like in Fig.(B). There the
two-condensate and no-condensate boundaries are very close
to each other; they may in fact be found to cross. In such
regions, we find that the critical temperatures found from the
two-condensate and from the single-condensate sides are in-
consistent. If we could trust the HF calculations, this may
indicate a hysteresis signaling a change to a first-order tran-
sition for one of the components. No such conclusion can be
proven from the HF approach, but it points to the possibility
that the change of one component can qualitatively affect the

FIG. 8. Phase diagram described for three different pairs ofyehavior of the other one even to the extent that its order

particle numbers. Ifia) we haveN® =100 andN® = 100. Here we
can see that the transition line between regions Il an¢blie con-
densate and no condensaie not sensitive to changes iw. In
region Il theN™® particles are condensed and & particles are

in the normal phase. Ith) we haveN¥ =100 andN(®=617 and
we find a region where we have a transition between a two
component condensat®) and no condensatgll). In (c) we have
increased the relative particle numberN6Y =100 andN(®=728.

may change.

Second, the use of too few states in the calculations gives
a distorted and asymmetric solution. In two dimensions and
for not too high temperatureg3& 1.0), we get smooth den-
sities for about ten states in each direction. Because of the

unrealistically large values fow used, the two condensates
repel each other strongly. This shows up as a drift instability,

Region | with the two-component condensate is strongly suppresse\(‘fhICh e\{entgally develops '_nto a,n O_SC'”at'(?nal instability in
as a function ofv, whereas the transition between one condensatdN€ solution if the computer iteration is continued well after a

and no condensati@l and Ill) is not sensitive to changes . In
this case, for region II, thBl® particles are condensed and k¢

particles are in the normal phase.

stable solution is found. It seems that this can be overcome
by increasing the number of states involved. The physical
contents of our numerical observation may be that it signals
the breakup of a solution only locally stable. Thus we find it

method, on the other hand, is very fragile in the two-to occur much more readily for the symmetric situation,
dimensional calculations and great care has to be taken vhereas the asymmetric solutions are much more stable.
order not to get runaway iterations that do not converge to We have thus found our numerics to indicate the change

physically stable solutions.

of order of the transition and the instability of some locally

What about the possibility of observing the symmetrystable solutions owing to the interaction between the two
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condensates. Admittedly neither our numerical method notions. As these omit the atoms above the condensate, it is
our theoretical formulationfHF) allows any claims to the difficult to compute the effects on one condensate by the
reality of the effects. They do, however, offer challengingproperties of the other one. On the other hand, any phase
possibilities for further experimental and theoretical investi-transition theory superior to the HF approach appears to offer
gations. unsurmountable computational difficulties. What progress

Unfortunately, it seems to be difficult to approach thesecan be achieved on these difficult questions remains to be
problems from the two-component Gross-Pitaevskii equaseen.
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