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Theory of fault-tolerant quantum computation

Daniel Gottesman*
California Institute of Technology, Pasadena, California 91125
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In order to use quantum error-correcting codes to improve the performance of a quantum computer, it is
necessary to be able to perform operations fault-tolerantly on encoded states. I present a theory of fault-tolerant
operations on stabilizer codes based on symmetries of the code stabilizer. This allows a straightforward
determination of which operations can be performed fault-tolerantly on a given code. I demonstrate that
fault-tolerant universal computation is possible for any stabilizer code. I discuss a number of examples in more
detail, including the five-quantum-bit code.@S1050-2947~98!06501-9#

PACS number~s!: 03.67.Lx, 03.65.Bz, 89.80.1h
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The development of quantum error-correcting cod
@1–6# has stirred great hopes for conquering errors and
coherence in quantum computers. However, just the e
tence of codes, even very good codes, is not sufficient.
also necessary to be able to perform operations on enc
states without a catastrophic spread of existing errors. H
ever, until now, fault-tolerant implementations of a univer
set of gates were only known for a few codes@7–9#.

While most known quantum error-correcting codes can
described using thestabilizer formalism @4–6#, there is no
similar broadly applicable theory of fault-tolerant operation
A quantum gate, unlike a classical gate, can cause erro
spread both forwards and backwards through the gate.
goal of fault-tolerant operations is to prevent the spread
errors within a block, which could change a single corre
able error into two errors, which is perhaps more than
code could handle. Even if we use codes that correct m
than one error, the spread of errors within a block rapi
reduces the code’s tolerance for errors. Therefore, I defin
fault-tolerant operation to be one for which a single ope
tional error can only produce one error within a single e
coded block. The assumption is that storage errors on dif
ent qubits are independent and that gate errors can
affect quantum bits~qubits! which interact via that gate.

A transversaloperation, in which the operation acts ind
pendently on each qubit in the block, is a prototypical fau
tolerant operation. For instance, a bitwise controlled N
operation~i.e., u i &u j &→u i &u i % j &) from one block to anothe
is fault-tolerant, since errors can spread only between co
sponding qubits in the two blocks.

Unfortunately, for most codes, only a few transversal o
erations will map one valid codeword to another. I sho
below that a bitwise operation will transform the stabilizer
a code. If the stabilizer is rearranged, but otherwise left
changed, the operation will take codewords to codewo
This will give us a few basic operations on various cod
with which to start our analysis.

In the quest to perform universal quantum computati
we are not limited to unitary operations. We can also p
form measurements. In Sec. III, I analyze the behavior

*Electronic address: gottesma@t6-serv.lanl.gov
571050-2947/98/57~1!/127~11!/$15.00
s
e-
s-
is
ed
-

l

e

.
to

he
f
-
e
re
y
a

-
-
r-
ly

-

e-

-

f
-
s.
s

,
r-
f

certain states when a measurement is made. This allows
see what operations we can derive from the basic operat
by using ancillas and making partial measurements of
state. Ultimately, this will allow us to perform universa
computation on any stabilizer code. I also present a m
detailed analysis of the five-qubit code, a class of dista
two codes, and the code encoding three qubits in eight
bits.

Throughout this paper, I will confine my attention to st
bilizer codes. The results can be extended to stabilizer co
over k-state systems instead of two-state qubits, but mos
the results do not apply to nonstabilizer codes at all. I w
indicate those results which do apply more generally as t
are presented.

I. ENCODED NOT AND PHASE

Before I advance into the full theory of fault-tolerant o
erations, I will discuss how to perform encoded NOT a
phase gates on any stabilizer code. The behavior of th
gates under more general transformations will tell us w
those transformations actually do to the encoded states.

The stabilizerS of a code is an Abelian subgroup of th
groupG generated by the operations

I 5S 1 0

0 1D , X5S 0 1

1 0D , Z5S 1 0

0 21D ,

and

Y5X•Z5S 0 21

1 0 D ~1!

acting on each of then qubits of the code. I will sometimes
write Gn to explicitly indicate the number of qubits acted o
The codewords of the code are the statesuc& which are left
fixed by every operator inS and the coding space is the set
such states. Operators inG which anticommute with some
operator inS will take codewords from the coding space in
some orthogonal space. By making a measurement to di
guish the various orthogonal spaces, we can then determ
127 © 1998 The American Physical Society
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128 57DANIEL GOTTESMAN
what error has occurred and correct it. A quantum code
codingk qubits inn qubits will have a stabilizer withn2k
generators.

However, there are, in general, a number of operatorsG
that commute with all of the operators inS. The set of such
operators is thenormalizer N(S) of S in G.1 S is itself con-
tained in the normalizer, but in general the normalizer
larger than justS. If S contains 2n2k operators~so it hasn
2k generators!, the normalizer will be generated byn1k
operators. In the terminology of Calderbanket al. @5,6#,
N(S) is the dual codeS'. The setN(S)/S is the set of errors
the code cannot detect.

The elements of the normalizer will change one codew
to another, and therefore have a natural interpretation
terms of encoded operations on the code words. Suppos
extend the stabilizer into a maximal set ofn commuting
operators by choosingk independent commuting operato
Z1, . . . ,Zk from N(S)/S. Then consider those codeword
which, besides being11 eigenvectors of the stabilizer gen
erators, are also eigenvectors ofZ1, . . . ,Zk. These code-
words will be the basis codewords for our code, defining
encodedu0•••00&,u0•••01&, . . . ,u1•••11&. The state which
has eigenvalue11 for every Zi will be the encoded
u0•••0&, the state which has eigenvalue21 for Z1 and ei-
genvalue 11 for the other Zis will be the encoded
u0•••01&, and so on. With this definition,Zi acts as the
encodedZ operator on thei th encoded qubit. If there is jus
one encoded qubit, I will writeZ̄ instead ofZ1.

Now, the remaining elements ofN(S) will not commute
with all of the encodedZ operators. We can complete the s
of generators forN(S) by choosingk additional operators
Xi( i 51, . . . ,k) such thatXi commutes withZj when iÞ j ,
but Xi anticommutes withZi . Xi is then just the encoded b
flip operator on thei th encoded qubit. Again, I writeX̄ when
there is just one encoded qubit. An arbitrary element ofN(S)
is some other encoded operation and can be written as
product ofX̄s andZ̄s. If two elements ofN(S) differ by an
element of the stabilizer, they act the same way on any c
word ~since the stabilizer element just fixes the codewor!.
Therefore the actual set of encoded operations represent
N(S) is N(S)/S.

DiVicenzo and Shor showed how to perform syndrom
measurement and error correction fault-tolerantly on any
bilizer code@10#. Using the same methods, we can meas
the eigenvalue of any operator inG, even if it is not inS.
This also enables us to prepare the encoded zero state o
stabilizer code by performing error correction and measur
the eigenvalue of theZ̄ operators.

II. MORE GENERAL OPERATIONS

So far, we have only considered applying products ofX,
Y, and Z to the codewords. However, this is not the mo
general thing we could do. Suppose we have some tot

1Strictly speaking, this is the centralizer ofS, but in this case it is
equal to the normalizer, sinceG21MG56G21GM56M , and
not bothM and2M are inS.
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arbitrary unitary transformationU we wish to apply to our
codewords. How does this affect other operators, such as
elements ofS andN(S)?

UM uc&5UMU†Uuc&, ~2!

so uc& is an eigenvector ofM if and only if Uuc& is an
eigenvector ofUMU†. Furthermore, they have the same e
genvalue. Thus, by applyingU to uc&, we effectively trans-
form any operatorM of interest intoUMU† ~this fact is also
true for nonstabilizer codes!. In order for the stateuc& to
remain a codeword, the stateUuc& must still be in the coding
space, soUMU† must also fix all the codewordsuc& for
everyMPS. Let us consider a restricted set of possibleU ’s,
those for whichUMU† is actually inG @so U is in the nor-
malizerN(G) of G in U(n)#. N(G) is generated by Hadamar
rotations,p/2 phase rotations, and controlled NOT oper
tions @5,11# ~a proof of this fact appears in Appendix A!.
Calderbanket al. call N(G) the Clifford group. By the defi-
nition of the stabilizer and the coding space, we needUMU†

to actually be inS for all MPS. Therefore,U is actually in
the normalizer ofS in U(n). The same criterion was foun
previously by Knill @12#. Note that the normalizer ofS in
U(n) is not necessarily a subset ofN(G).

When we restrict our attention to operations that are
both the normalizer ofG in U(n) and the normalizer ofS in
U(n), it becomes straightforward to determine the operat
actually performed on the encoded states. First, note tha
X̄ and Z̄ operators transform into operators that also co
mute with everything inS. Thus, we can rewrite them a
products of the originalX̄’s, Z̄ ’s, and elements ofS. The
elements ofS just give us the equivalence between eleme
of N(S) discussed in Sec. I, so we have deduced a trans
mation of the encodedX and Z operators. Furthermore, w
know this encoded transformation also lies in the normali
of Gk .

Typically, we want to consider transversal operationsU,
which are equal to the tensor product of single-qubit ope
tions ~or operations that only affect one qubit per block!. For
the moment, we will only consider operations of this for
and see what collections of them will do to the stabiliz
Before launching into an analysis of which gates can be u
on which codes, I will present an overview of the gates t
are amenable to this sort of analysis.

For instance, one of the simplest and most common fa
tolerant operations is the Hadamard rotation

R5
1

A2
S 1 1

1 21D . ~3!

Let us see what this does toX, Y, andZ.

RXR†5
1

2S 1 1

1 21D S 1 21

1 1 D 5S 1 0

0 21D 5Z, ~4!

RZR†5
1

2S 1 1

1 21D S 1 1

21 1D 5S 0 1

1 0D 5X, ~5!

RYR†5
1

2S 1 1

1 21D S 21 1

1 1D 5S 0 1

21 0D 52Y. ~6!



th
en
.

on
y

re

th
o
o
ic

th
e

,
im

n-

a
r

c
f

ro

iva-
s of

a-

trix

re-
ion

ne
-
be

to

a-
of

this
ne
op-
for
y
for
m-

can

ode-

ults

57 129THEORY OF FAULT-TOLERANT QUANTUM COMPUTATION
Therefore, applyingR bitwise will switch all theX’s and all
theZ’s, and give a factor of21 for eachY. If we do this to
the elements of the stabilizer and get other elements of
stabilizer, this is a valid fault-tolerant operation. The sev
qubit code is an example of a code for which this is true

Another common bitwise operation is thei phase:

P5S 1 0

0 i D . ~7!

On the basic operationsX, Y, andZ it acts as follows:

PXP†5S 1 0

0 i D S 0 2 i

1 0 D 5S 0 2 i

i 0 D 5 iY, ~8!

PY P†5S 1 0

0 i D S 0 i

1 0D 5S 0 i

i 0D 5 iX, ~9!

PZP†5S 1 0

0 i D S 1 0

0 i D 5S 1 0

0 21D 5Z. ~10!

This switchesX andY, but with extra factors ofi , so there
must be a multiple of 4X’s and Y’s for this to be a valid
operation. Again, the seven-qubit code is an example of
where it is. Note that a factor ofi appears generically in an
operation that switchesY with X or Z, becauseY2521,
while X25Z2511. The operations inN(G) actually per-
mute sX5X, sZ5Z, andsY5 iY, but for consistency with
earlier publications I have retained the notation ofX, Y, and
Z. The most general single qubit operation inN(G) can be
viewed as a rotation of the Bloch sphere permuting the th
coordinate axes.

We can also consider two-qubit operations, such as
controlled NOT. Now we must consider transformations
the two involved blocks combined. The stabilizer group
the two blocks isS3S, and we must see how the bas
operationsX^ I , Z^ I , I ^ X, and I ^ Z transform under the
proposed operation. In fact, we will also need to know
transformation ofX^ Y and other such operators, but th
transformation induced onG3G is a group homomorphism
so we can determine the images of everything from the
ages of the four elements listed above.

It is straightforward to show that the controlled NOT i
duces the following transformation:

X^ I→X^ X,

Z^ I→Z^ I , ~11!

I ^ X→I ^ X,

I ^ Z→Z^ Z.

It is easy to see here how amplitudes are copied forwards
phases are copied backwards. The transformation laws foR,
P, and CNOT are also given in@5#.

There are a number of basic gates inN(G) beyond the
ones given above. As with the examples above, any gate
be characterized by its transformation of the generators oG
~or G3G for two-qubit operations, and so on!. The primary
constraint that must be met is to preserve the algebraic p
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erties of the operators. In fact, there is a complete equ
lence between the possible gates and the automorphism
D4 ~the group of products ofI , X, Y, andZ) or direct prod-
ucts of copies ofD4 ~for multiple-qubit gates! @13#.

Given any such automorphism, we first substituteiY for
Y to get the actual transformation. Then we note thatu0& is
the ‘‘encoded zero’’ for the ‘‘code’’ with stabilizer$I ,Z%.
We know howZ transforms underU, so u0& transforms to
the state fixed byUZU†. In addition, u1&5Xu0&, so Uu1&
5UXU†Uu0&. For instance, consider the cyclic transform
tion

T5X→ iY→Z→X. ~12!

SinceZ→X,

u0&→1/A2~ u0&1u1&). ~13!

Also, X→ iY, so

u1&→ i /A2Y~ u0&1u1&)52 i /A2~ u0&2u1&). ~14!

Thus, the matrix forT is

T5
1

A2
S 1 2 i

1 i D . ~15!

We can perform a similar procedure to determine the ma
corresponding to a multiple-qubit transformation.

The next question of interest is how much have we
stricted our computational power by restricting our attent
to the normalizer ofG? Again, the normalizer ofG is exactly
the group generated by the Hadamard transformR, the phase
P, and the controlled NOT. Unfortunately, this group alo
is of only limited interest. Knill@13# has shown that a quan
tum computer using only operations from this group can
simulated efficiently on a classical computer.2 However, the
addition of just the Toffoli gate to this group is sufficient
make the group universal@7#.

III. MEASUREMENTS

Now I will discuss what happens if we perform a me
surement on a stabilizer code. Measuring individual qubits
an actual code is not of great interest, but the results of
section will be quite helpful in determining what can be do
by combining measurements and specific fault-tolerant
erations. If the computer starts in a partially known state,
instance if the first qubit isu0&, it can often be described b
a stabilizer. The results of this section are most useful
analyzing the behavior of stabilizers used to describe co
puters with this sort of initial condition.

2The argument goes as follows: we start with ann-qubit stateu0&
which is the single state for the stabilizer code^Z1 , . . . ,Zn&. Each
operation transforms the state and the stabilizer as above. We
follow each transformation on a classical computer inO(n2) steps.
A measurement picks at random one of the basis kets in the c
word, which can also be chosen classically@4,14#. This still leaves
the question of partial measurement of the full state, but the res
of Sec. III show that this can also be classically simulated.
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130 57DANIEL GOTTESMAN
Now, using the method of DiVincenzo and Shor@10#, we
can measure any operatorA in G. There are three possibl
relationships betweenA andS. First of all, A could actually
be inS. Then measuringA tells us nothing about the state o
the system and does not change it at all. The result of
measurement will always be11 for a valid codeword. The
second possibility is forA to commute with everything inS
but not to actually be inS. ThenA is equivalent to a non-
trivial element ofN(S)/S and measuring it will give us in-
formation about the state of the system. This is usually in
visable.

The third possibility, thatA anticommutes with somethin
in S, is the most interesting. In this case, we can choose
generators ofS so thatA anticommutes with the first genera
tor M1 and commutes with the remaining generato
M2 , . . . ,Mn2k ~we can do this since if generatorM j anti-
commutes withA, we can replace it withM1M j , which
commutes!. Then measuringA does not disturb the eigenvec
tors ofM2 throughMn2k , so they still fix the new state, an
are in the new stabilizer. The eigenvectors ofM1 are dis-
turbed, however, andM1 no longer fixes the states. Measu
ing A applies one of the projection operatorsP1 or P2 ,
where

P65
1

2
~ I 6A!. ~16!

Then M1
†P2M15M1

†M1P15P1 , so if uc& is some code-
word,

M1
†P2uc&5M1

†P2M1uc&5P1uc&. ~17!

If the measurement result is11, we do nothing else, an
have thus appliedP1 . If the measurement result is21,
apply M1

†5M1, resulting in the overall application ofP1 .
Either way, the new state is a11-eigenvector ofA. The
system is thus in the space with stabilizer generated
A,M2 , . . . ,Mn2k . .From now on, I will often say ‘‘mea-
sure’’ when I mean ‘‘measure and correct for a result o
21.’’

Note that this construction works outside the framewo
of stabilizer codes. All we really need is a stateuc&, with
M uc&5uc& for some unitaryM . Then, as above, we ca
perform the projectionP1 for any operatorA satisfyingA2

51 and$M ,A%50.
We will want to know just where in the space a give

state goes. To do this, look at the elements ofN(S)/S. If
before the measurement, the state is an eigenvector oN
PN(S), it will also be an eigenvector ofN85MN for all
MPS; that is, for allN8 in the same coset asN in N(S)/S.
After measuringA, the state will no longer be an eigenvect
of N if N anticommutes withA, but it will still be an eigen-
vector of M1N, which commutes withA. Furthermore, the
eigenvalue ofM1N stays the same. Therefore, by measur
A ~and correcting the state if the result is21), we effec-
tively transform the operatorN into M1N. We could equally
well say it is transformed toMM1N instead, whereMPS
commutes withA, but this will produce the same transfo
mation of the cosets ofN(S)/S to N(S8)/S8 ~whereS8 is the
stabilizer after the measurement!. Of course, ifN commutes
with A, measuringA leavesN unchanged.
is

-

e

s

y

k

g

In summary, when we measure an operatorA, we perform
the following procedure on the stabilizer andX̄ and Z̄ op-
erators.

~1! Identify an elementM1PS that anticommutes withA.
~2! Rewrite the remaining generators ofS and theX̄ and

Z̄ operators by multiplying byM1 if the original operator
does not commute withA. The rewritten operators ar
equivalent to the old ones, but now they all commute withA.

~3! ReplaceM1 with A. We now have the new stabilize
and newX̄ and Z̄ operators.

Let us see how all this works with a simple, but ve
useful, example. Suppose we have two qubits, one in
arbitrary stateuc&, the other initialized tou0&. The space of
possible states then has stabilizerI ^ Z. Suppose we perform
a controlled NOT from the first qubit to the second. Th
transforms the stabilizer toZ^ Z. Now let us measure the
operatorI ^ iY ~we use the factor ofi to ensure that the resu
is 61). This anticommutes withZ^ Z, so if we get11, we
leave the result alone, and if we get21, we applyZ^ Z to
the state. The new state is in a11-eigenstate ofI ^ iY, that
is, uf&(u0&1 i u1&).

How is uc& related touf&? For the original ‘‘code,’’X̄
5X^ I and Z̄5Z^ I . After the CNOT, X̄5X^ X and Z̄
5Z^ I . X^ X does not commute withI ^ iY, but the equiva-
lent operatorY^ Y5(X^ X)(Z^ Z) does.Z^ I does com-
mute withI ^ iY, so it stays the same. Since the second qu
is guaranteed to be in the11 eigenstate ofiY, we might as
well ignore it. The effectiveX̄ and Z̄ operators for the first
qubit are thus2 iY andZ, respectively. This means we hav
transformedX̄→2 i X̄ Z̄ and Z̄→ Z̄. This is the operationP†.

This example is simple enough that it is easy to check

u00&→u00&5u0&
1

2
@~ u0&1 i u1&)1~ u0&2 i u1&)] ~18!

→u0&~ u0&6 i u1&), ~19!

→u0&~ u0&1 i u1&) ~20!

u10&→u11&5u1&
i

2
@2~ u0&1 i u1&)1~ u0&2 i u1&)] ~21!

→ i u1&~7u0&2 i u1&) ~22!

→6 i u1&~7u0&7 i u1&)52 i u1&~ u0&1 i u1&). ~23!

Thus, ignoring the second qubit givesu0&→u0& and u1&→
2 i u1&, which is P†.

This result is already quite interesting when coupled w
the observation thatP and CNOT suffice to produceR as
long as we can prepare and measure states in the basiu0&
6u1& @8#. To do this we start out with the stateuc& plus an
ancilla u0&1u1&. Thus, the initial stabilizer isI ^ X, X̄5X

^ I , and Z̄5Z^ I . Apply a CNOT from the second qubit to
the first. Now the stabilizer isX^ X, X̄5X^ I , and Z̄5Z
^ Z. Apply P to the second qubit, so the stabilizer isX

^ iY, X̄5X^ I , and Z̄5Z^ Z. MeasureI ^ X, performing
X^ iY if the result is21. This producesX̄5X^ I and Z̄
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57 131THEORY OF FAULT-TOLERANT QUANTUM COMPUTATION
5iY^X, so dropping the second qubit results in the transf
mationQ: X→X, Z→ iY. But R5PQ†P:

X→ iY→Z→Z, ~24!

Z→Z→2 iY→X. ~25!

Coupled with the previous result, which derivesP from
CNOT, this allows us to get any single qubit transformati
in the normalizer ofG provided we can perform a CNOT
operation.

Another interesting application is to gain a new viewpo
on quantum teleportation. Suppose we have three qu
which start in the stateuc&(u00&1u11&). The initial stabilizer
is I ^ X^ X andI ^ Z^ Z, X̄5X^ I ^ I , and Z̄5Z^ I ^ I . We
assume the third qubit is far away, so we can do no op
tions interacting it directly with the other two qubits. W
can, however, perform operations on it conditioned on
result of measuring the other qubits. We begin by perform
a CNOT from qubit one to two. The stabilizer is nowI ^ X

^ X and Z^ Z^ Z, X̄5X^ X^ I , and Z̄5Z^ I ^ I . Measure
X for qubit one and discard qubit one. If the measurem
result was11, we leave the state alone; if it was21, we
performZ on qubits two and three. The stabilizer is nowX

^ X, X̄5X^ I and Z̄5Z^ Z. Now measureZ for the new
first qubit. If the result is11, we leave the final qubit alone
if it is 21, we applyX to the last qubit. This results inX̄
5X and Z̄5Z, both acting on the last qubit. We have su
cesfully teleported the stateuc&. The operations conditione
on measurement results needed for teleportation arise
naturally as the corrections to the stabilizer for alternate m
surement results. The formalism would have told us jus
easily what operations were necessary if we had begun
a different Bell state or a more complicated entangled s
~as long as it can still be described by a stabilizer!.

The methods of this section and the previous one w
allow us to construct a universal set of gates for any sta
lizer code, but they are also useful in a wide variety of oth
circumstances. As one application, Appendix A gives a pr
that N(G) is generated byR, P, and CNOT. The above
analysis of teleportation is another example. In general,
system involving only measurements and gates fromN(G)
can be profitably analyzed using these methods.

IV. OPERATIONS ON CSS CODES

In this section, I will finally begin to look at the problem
of which gates can be applied to specific codes. One of
best classes of codes for fault-tolerant computation are
Calderbank-Shor-Steane~CSS! codes@2,3#, which are con-
verted from certain classical codes. These codes have a
bilizer which can be written as the direct product of tw
sectors, one of which is formed purely fromX’s and one
formed just fromZ’s. These two sectors correspond to t
two dual classical codes that go into the construction of
code.

Shor @7# showed that a punctured doubly even self-d
CSS code could be used for universal computation. An
ample of such a code is the seven-qubit code, whose s
lizer is given in Table I. From the stabilizer, we can no
understand why such codes allow the fault-tolerant imp
r-
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mention of the Hadamard rotation, thep/2 rotation, and the
controlled NOT.

The Hadamard rotation switchesX and Z. For a CSS
code, this is a symmetry of the stabilizer if and only if theX
sector of the stabilizer is the same as theZ sector. Therefore
the two classical codes had to be identical, and the quan
code must be derived from a classical code that contain
own dual. As we can see, this works for the seven-qu
code. In order to understand what the Hadamard rota
does to the encoded states, we must look at what it doe
the encodedX and Z operations. For a punctured self-du
CSS code, theX̄ and Z̄ operations can again be taken to
the same, so the Hadamard rotation will just switch them
is therefore an operation which switches encodedX with
encodedZ, and is thus an encoded Hadamard rotation.

Similarly, for a self-dual code, thep/2 rotation will con-
vert theX generators into the product of allY’s. This just
converts anX generator into its product with the correspon
ing Z generator, so this is a valid fault-tolerant operatio
provided the overall phase is correctly taken care of. Ther
a factor ofi for eachX, so there must be a multiple of fou
X’s in each element of the stabilizer for that to work out
general. This will only be true of adoubly evenCSS code,
which gives us the other requirement for Shor’s metho
Again, we can see that the seven-qubit code meets this
quirement. Such a code will have three mod 4X’s in the X̄

operation, so the bitwisep/4 convertsX̄ to 2 i Ȳ . This is thus
an encoded2p/2 rotation.

Finally, we get to the controlled NOT. This can be pe
formed bitwise onanyCSS code. We must look at its oper
tion on M ^ I and I ^ M . In the first case, ifM is an X
generator, it becomesM ^ M . Since both the first and secon
blocks have the same stabilizer, this is an element ofS3S. If
M is aZ generator,M ^ I becomesM ^ I again. Similarly, if
M is anX generator,I ^ M becomesI ^ M , and if M is a Z
generator,I ^ M becomesM ^ M , which is again inS3S.
For an arbitrary CSS code, theXi operators are formed from
the product of allX’s and theZi operators are formed from
the product of allZ’s. Therefore,

Xi ^ I→Xi ^ Xi ,

Zi ^ I→Zi ^ I , ~26!

I ^ Xi→I ^ Xi ,

TABLE I. The stabilizer and encodedX and Z for the seven-
qubit code.

M1 X X X X I I I
M2 X X I I X X I
M3 X I X I X I X
M4 Z Z Z Z I I I
M5 Z Z I I Z Z I
M6 Z I Z I Z I Z

X̄ I I I I X X X

Z̄ I I I I Z Z Z
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I ^ Zi→Zi ^ Zi .

Thus, the bitwise CNOT produces an encoded CNOT
every encoded qubit in the block.

In fact, we can now easily prove that codes of the gene
CSS form are the only codes for which bitwise CNOT is
valid fault-tolerant operation. Let us take a generic elem
of the stabilizer and write it asMN, whereM is the product
of X’s and N is the product ofZ’s. Then under bitwise
CNOT, MN^ I→MN^ M , which impliesM itself is an el-
ement of the stabilizer. The stabilizer is a group, soN is also
an element of the stabilizer. Therefore, the stabilizer bre
up into a sector made solely fromX’s and one made solely
from Z’s, which means the code is of the CSS type.

V. THE FIVE-QUBIT CODE

One code of particular interest is the five-qubit co
@11,15#, which is the smallest possible code to correc
single error. Until now, there were no known fault-tolera
operations that could be performed on this code except
simple encodedX and encodedZ. One presentation@5# of
the five-qubit code is given in Table II. This presentation h
the advantage of being cyclic, which simplifies somewhat
analysis below.

This stabilizer is invariant under the transformati
T:X→ iY→Z→X bitwise. For instance,

M15X^ Z^ Z^ X^ I→2Y^ X^ X^ Y^ I 5M3M4 .
~27!

By the cyclic property of the code,M2 throughM4 also get
transformed into elements of the stabilizer, so this is a va
fault-tolerant operation. It transforms

X̄→ i Ȳ→ Z̄. ~28!

Therefore, this operation performed bitwise performs an
coded version of itself. Operations which have this prope
are particularly useful because they are easy to apply to
catenated codes@8,9,16#.

There is no nontrivial two-qubit operation in the norma
izer of G that can be performed transversally on this co
However, there is a three-qubit transformationT3 that leaves
S3S3S invariant:

X^ I ^ I→ iX ^ Y^ Z

Z^ I ^ I→ iZ ^ X^ Y

I ^ X^ I→ iY ^ X^ Z, ~29!

TABLE II. The stabilizer and encodedX and Z for the five-
qubit code.

M1 X Z Z X I
M2 I X Z Z X
M3 X I X Z Z
M4 Z X I X Z

X̄ X X X X X

Z̄ Z Z Z Z Z
r

al
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I ^ Z^ I→ iX ^ Z^ Y,

I ^ I ^ X→X^ X^ X,

I ^ I ^ Z→Z^ Z^ Z.

On operators of the formM ^ I ^ I or I ^ M ^ I , this transfor-
mation applies cyclic transformations as above to the ot
two slots. OperatorsI ^ I ^ M just becomeM ^ M ^ M ,
which is clearly in S3S3S. The matrix of T3 is ~up to
normalization!

T351
1 0 i 0 i 0 1 0

0 21 0 i 0 i 0 21

0 i 0 1 0 21 0 2 i

i 0 21 0 1 0 2 i 0

0 i 0 21 0 1 0 2 i

i 0 1 0 21 0 2 i 0

21 0 i 0 i 0 21 0

0 1 0 i 0 i 0 1

2 .

~30!

As with T, this operation performs itself on the encod
states. A possible network to produce this operation~based
on the construction in Sec. III! is given in Fig. 1.

If we add in the possibility of measurements, this thre
qubit operation along withT will allow us to perform any
operation in the normalizer ofG. I will describe how to do
this on unencoded qubits, and sinceT and T3 bitwise just
perform themselves, this will tell us how to do the sam
operations on the encoded qubits.

To performP, first prepare two ancilla qubits in the sta
u00& and use the data qubit as the third qubit. The origi
stabilizer is Z^ I ^ I and I ^ Z^ I , X̄5I ^ I ^ X, and Z̄5I
^ I ^ Z. Now applyT3, so that the stabilizer isiZ ^ X^ Y and
iX ^ Z^ Y, X̄5X^ X^ X, and Z̄5Z^ Z^ Z. MeasureZ for
the second and third qubits. The resultingX̄5 iY ^ I ^ Z and
Z̄5Z^ Z^ Z. Dropping the last two qubits, we haveX→ iY
and Z→Z, which is P. Again, Q5T†P and R5PQ†P, so
we can perform any single qubit operation.

To get a two-qubit operation, prepare a third qubit in t
state u0& and applyT3. This results in the stabilizerZ^ Z
^ Z, X15 iX ^ Y^ Z, X25 iY ^ X^ Z, Z15 iZ ^ X^ Y, and
Z25 iX ^ Z^ Y. MeasureX for the second qubit and throw i
out. This leaves the transformation

X^ I→ iY ^ I ,

I ^ X→ iY ^ Z, ~31!

FIG. 1. Network to perform theT3 gate.
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Z^ I→ iZ ^ Y,

I ^ Z→ iY ^ X.

This operation can be produced by applyingQ to the second
qubit ~switching Z and iY), then a CNOT from the secon
qubit to the first one, thenP to the first qubit andT2 to the
second qubit. Therefore, we can also get a CNOT by p
forming this operation with the appropriate one-qubit ope
tions. This allows us to perform any operation we desire
the normalizer ofG. Note that Sec. VI provides us with an
other way to get these operations. Having two methods av
able broadens the choices for picking the most effici
implementations.

In order to perform universal computation on the fiv
qubit code, we must know how to perform a Toffoli gat
Shor @7# gave a method for producing a Toffoli gate th
relied on the ability to perform the gate

ua&ub&uc&→~21!a~bc!ua&ub&uc&, ~32!

whereua& is eitheru0•••0& or u1•••1& and ub& and uc& are
encoded 0’s or 1’s. For the codes Shor considered, this
could be performed by applying it bitwise, because the c
ditional sign could be applied bitwise. All of the qubits in th
first block are either 0 or 1, so a controlled conditional si
from the first block will produce a conditional sign on th
second two blocks whenever the first block is 1.

For the five-qubit code, this gate is not quite as straig
forward, but is still not difficult. To perform the two-qub
conditional sign gate on the five-qubit code, we need to p
form a series of one- and three-qubit gates and meas
ments. However, if we perform each of these gates and m
surements conditional on the value ofa, we have performed
the conditional sign gate onub&uc& if and only if the first
block is 1. To do this, we perform the part of each acting
the i th qubit conditioned on thei th qubit of ua&. A single
qubit error inua& will therefore only result in a single qubi
error in the state after the operation.

Performing measurements conditioned onua& requires
some care, but it can be done. The DiVincenzo and S
method of performing a measurement is to perform a tra
versal CNOT to an ancilla in a superposition of all ev
parity states. The parity of the ancilla tells us the measu
ment result. If the ancilla instead begins in the superposi
of all states, evenandodd, performing the CNOTs and mea
suring the ancilla does nothing at all to the original state a
gives no information. Therefore, to perform a measurem
conditioned on the value ofa, we should prepare the ancill
to hold the measurement result in the sum of even pa
states whena51 and the sum of all states whena50. As
with the usual measurement procedure, we must caref
verify this ancilla to avoid the possibility of correlated erro
entering the data.

After this, the rest of Shor’s construction of the Toffo
gate carries over straightforwardly. It involves a number
measurements and operations from the normalizer ofG. We
have already discussed how to do all of those. The one
maining operation that is necessary is

ua&ud&→~21!adua&ud&, ~33!
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where ud& is an encoded state andua& is againu0•••0& or
u1•••1&. However, this is justZ̄ applied toud& conditioned
on the value ofa, which we can do as before, using at mo
one two-qubit gate on each qubit in the block. Therefore,
can perform universal fault-tolerant computation on the fiv
qubit code.

Note that there was nothing particularly unique about
five-qubit code that made the construction of the Toffoli ga
possible. The only property we needed was the ability
perform an encoded conditional sign gate.

VI. GATES FOR ANY STABILIZER CODE

Consider the following transformation:

X^ I ^ I ^ I→X^ X^ X^ I ,

I ^ X^ I ^ I→I ^ X^ X^ X,

I ^ I ^ X^ I→X^ I ^ X^ X,

I ^ I ^ I ^ X→X^ X^ I ^ X, ~34!

Z^ I ^ I ^ I→Z^ Z^ Z^ I ,

I ^ Z^ I ^ I→I ^ Z^ Z^ Z,

I ^ I ^ Z^ I→Z^ I ^ Z^ Z,

I ^ I ^ I ^ Z→Z^ Z^ I ^ Z.

A possible gate array to perform this operation is given
Fig. 2. This operation takesM ^ I ^ I ^ I to M ^ M ^ M ^ I ,
and cyclic permutations of this, so ifMPS, the image of
these operations is certainly inS3S3S3S. This therefore is
a valid transversal operation onany stabilizer code. The en
coded operation it performs is just itself. There is a family
related operations for any even number of qubits~the two-
qubit case is trivial!, but we only need to concern ourselve
with the four-qubit operation.

Suppose we have two data qubits. Prepare the third
fourth qubits in the stateu00&, apply the above transforma
tion, and then measureX for the third and fourth qubits. The
resulting transformation on the first two qubits is then

X^ I→X^ X,

I ^ X→I ^ X, ~35!

Z^ I→Z^ I ,

I ^ Z→Z^ Z.

FIG. 2. Network to perform the four-qubit gate.



ec
in
de
e

es
e
e
tu

p-

i
le
od

er
e

s
fo

nc
a
d

n
ed
de
r
o
g
ic
i

, a
bl
du
ac
s
a
i

th
re
tw
u
th
o
it
o

ra
t-
an
e

y
ap
m

e
ing

3,
t 2,

B
ap
nd
not
all

rror
k,
bits,

S
s in
the

-
hes
n
des

is
his

ble
e

rst

te.

by

ta
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This is precisely the controlled NOT. Since I showed in S
III that the CNOT was sufficient to get any operation
N(G), we can get any such operation for any stabilizer co
In fact, using the Toffoli gate construction from Sec. V, w
can perform universal computation.

Actually, this only gives universal computation for cod
encoding a single qubit in a block, since if a block encod
multiple qubits, this operation performs the CNOT betwe
corresponding encoded qubits in different blocks. To ac
ally get universal computation, we will want to perform o
erations between qubits encoded in the same block. To
this, we need a few more tools, which will be presented
the next section. I will also consider a few more examp
where we have tools beyond the ones available for any c

VII. DISTANCE TWO CODES

There is a large class of distance two codes with a v
simple form. The stabilizer for these codes has just two g
erators, one a product of allX’s and one a product of allZ’s.
The total number of qubitsn must be even. These code
encoden22 qubits, and therefore serve as a good model
block codes encoding multiple qubits. While these dista
two codes cannot actually correct a general error, they m
be useful in their own right nonetheless. A distance two co
can be used for error detection@17#. If we encode our com-
puter using distance two codes, we will not be able to fix a
errors that occur, but we will know if an error has invalidat
our calculation. A better potential use of distance two co
is to fix located errors@18#. Suppose the dominant erro
source in our hardware comes from qubits leaving the n
mal computational space. In principle, without any codin
we can detect not only that this has happened, but in wh
qubit it has occurred. We can then use this information
conjunction with a distance two code to correct the state
with a usual quantum error-correcting code. A final possi
use of distance two codes is to concatenate them to pro
codes that can correct multiple errors. Since the limiting f
tor in the computational threshold for concatenated code
the time to do error correction, this offers potentially a gre
advantage. However, there is a significant complication
this program, since the codes given here encode more
one qubit, which complicates the concatenation procedu

Because of the simple structure of these distance
codes, we can immediately see a number of possible fa
tolerant operations. The bitwise Hadamard rotation and
bitwise CNOT are both permissible. If the total number
qubits is a multiple of 4, theP gate and the other single qub
operations are allowed, as well. What is less clear is h
these various operations affect the encoded data.

TheXi operators for these codes areX1Xi 11, wherei runs
from 1 to n22. The Zi operators areZi 11Zn . Therefore,
swapping the (i 11)th qubit with the (j 11)th qubit will
swap the i th encoded qubit with thej th encoded qubit.
Swapping two qubits in a block is not a transversal ope
tion, but if performed carefully, it can still be done faul
tolerantly. One advantage of the swap operation is that
errors in one qubit will not propagate to the other, since th
are swapped as well. However, applying the swap directl
the two qubits allows the possibility of an error in the sw
gate itself producing errors in both qubits. We can circu
.
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vent this by introducing a third ancilla qubit. Suppose w
wish to swap A and B, which are in spots 1 and 2, us
ancilla C, in spot 3. First swap the qubits in spots 1 and
then 1 and 2, and finally 2 and 3. Then A ends up in spo
B ends up in spot 1, and C ends up in spot 3, but A and
have never interacted directly. We would need two sw
gates to go wrong in order to introduce errors to both A a
B. Note that while the state C does not matter, it should
be something important, since it is exposed to error from
three swap gates. Also note that we should perform e
correction before interacting this block with another bloc
since errors could then spread between corresponding qu
which have changed.

The action of the CNOT is simple. As for other CS
codes, it just produces a CNOT from each encoded qubit
the first block to the corresponding encoded qubit in
second block. The Hadamard rotation convertsXi to Z1Zi 11,
which is equivalent ~via multiplication by M2) to
Z2•••ZiZi 12•••Zn . This is equal toZ1•••Zi 21Zi 11•••

Zn22. Similarly, Zi becomesX1•••Xi 21Xi 11•••Xn22. For
instance, for the smallest case,n54,

X1→Z2,

Z1→X2, ~36!

X2→Z1,

Z2→X1.

The Hadamard rotation forn54 performs a Hadamard rota
tion on each encoded qubit and simultaneously switc
them. For largern, it performs the Hadamard rotation o
each qubit, and performs a variation of the class of co
discussed in Sec. VI.

For n54, theP gate acts as follows:

X1→2Y1Y252X1Z2,

X2→2Y1Y352X2Z1, ~37!

Z1→Z1,

Z2→Z2.

A consideration of two-qubit gates allows us to identify th
as a variant of the conditional sign gate. Specifically, t
gate gives a sign of21 unless both qubits areu0&.

When we allow measurement, a trick becomes availa
that is useful for any multiple-qubit block code. Given on
data qubit, prepare a second ancilla qubit in the stateu0&
1u1&, then apply a CNOT from the second qubit to the fi
qubit and measureZ for the first qubit. The initial stabilizer
is I ^ X; after the CNOT it isX^ X. Therefore the full opera-
tion takesX^ I to I ^ X and Z^ I to Z^ Z. We can discard
the first qubit and the second qubit is in the initial data sta
However, if we prepare the ancilla in the stateu0&, then
apply a CNOT, the original state is unaffected. Therefore,
preparing a block with all but thej th encoded qubit in the
state u0&, and with the j th encoded qubit in the stateu0&
1u1&, then applying a CNOT from the new block to a da
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block and measuring thej th encoded qubit in the data block
we can switch thej th encoded qubit out of the data bloc
and into the new, otherwise empty block.

This trick enables us to perform arbitrary operations
qubits from the same block for the distance two codes.
switch the qubits of interest into blocks of their own, u
swap operations to move them into corresponding spots,
perform whole block operations to interact them. Then
can swap them back and switch them back into place in t
original blocks.

The step that is missing for arbitrary stabilizer codes is
ability to move individual encoded qubits to different plac
within a block. Since the gate in Sec. VI gives us a blo
CNOT, we can perform the switching operation into
empty block. By using switching and whole block oper
tions, we can perform an arbitrary one-qubit operation
any single encoded qubit within a block. The only remaini
operation necessary is the ability to swap an encoded q
from the i th place to thej th place. We can do this usin
quantum teleportation. All that is required is an otherw
empty block with thei th and j th encoded qubits in the en
tangled stateu00&1u11&. Then we need only perform single
qubit operations and a CNOT between the qubits in thei th
places, both of which we can do. To prepare the entang
state, we simply start with the11-eigenstate ofZi and Zj ,
then measure the eigenvalue ofXiXj ~and correct if the resul
is 21). This is just an operator inG, so we know how to do
this. The state stays in an eigenvector ofZiZj , which com-
mutes withXiXj , so the result will be the desired encod
Bell state. We can then teleport thei th qubit in one otherwise
empty block to thej th qubit in the block originally contain-
ing the Bell state. This was all we needed to allow univer
computation on any stabilizer code.

VIII. THE EIGHT QUBIT CODE

There is a code correcting one error encoding three qu
in eight qubits@4,5,19#. The stabilizer is given in Table III
There are no transversal operations that leave this stabi
fixed except the automatic ones inN(S). However, when we
allow swaps between the constituent qubits, a numbe
possibilities become available.

One possible operation is to swap the first four qubits w
the second four qubits. This leavesM1, M2, and M4 un-

TABLE III. The stabilizer and encodedX’s and Z’s for the
eight-qubit code.

M1 X X X X X X X X
M2 Z Z Z Z Z Z Z Z
M3 X I X I Z Y Z Y
M4 X I Y Z X I Y Z
M5 X Z I Y I Y X Z

X1 X X I I I Z I Z

X2 X I X Z I I Z I

X3 X I I Z X Z I I

Z1 I Z I Z I Z I Z

Z2 I I Z Z I I Z Z

Z3 I I I I Z Z Z Z
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changed.M3 becomes insteadM1M2M3, and M5 becomes
M1M5. On the encoded qubits, this induces the transform
tion

X^ I ^ I→X^ I ^ Z,

I ^ X^ I→I ^ X^ I ,

I ^ I ^ X→Z^ I ^ X, ~38!

Z^ I ^ I→Z^ I ^ I ,

I ^ Z^ I→I ^ Z^ I ,

I ^ I ^ Z→I ^ I ^ Z.

This is just a conditional sign on the first and third qubi
with the second encoded qubit unaffected. Through sing
qubit transformations, we can convert this to a control
NOT, and using this perform a swap between the first a
third encoded positions.

Another operation is to swap qubits one and two w
three and four and qubits five and six with seven and eig
This leavesM1, M2, andM3 unchanged, and convertsM4 to
M2M4 andM5 to M1M5. On the encoded qubits, it induce
the transformation

X^ I ^ I→X^ Z^ Z,

I ^ X^ I→Z^ X^ Z,

I ^ I ^ X→Z^ Z^ X, ~39!

Z^ I ^ I→Z^ I ^ I ,

I ^ Z^ I→I ^ Z^ I ,

I ^ I ^ Z→I ^ I ^ Z.

We could also switch the odd numbered qubits with the e
numbered qubits. That leavesM1 andM2 unchanged, while
turning M3 into M1M3, M4 into M1M4, and M5 into
M1M2M5. On the encoded qubits it induces

X^ I ^ I→X^ I ^ Z,

I ^ X^ I→I ^ X^ Z,

I ^ I ^ X→Z^ Z^ X, ~40!

Z^ I ^ I→Z^ I ^ I ,

I ^ Z^ I→I ^ Z^ I ,

I ^ I ^ Z→I ^ I ^ Z.

This is just a conditional sign between the first and th
places followed by a conditional sign between the seco
and third places. Combined with the first operation, it giv
us a conditional sign between the second and third pla
which we can again convert to a swap between the sec
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136 57DANIEL GOTTESMAN
and third encoded positions. This allows us to swap any
encoded qubits in the block, which is sufficient to give
universal computation.

In this case, the symmetries of the code naturally beca
allowed transformations of the stabilizer. This is likely
hold true in many other cases as well. As with the five-qu
code, we now have two protocols for universal computati
but multiple methods again allow us more freedom in cho
ing efficient methods.

IX. SUMMARY AND DISCUSSION

I have presented a general theory for understanding w
it is possible to apply a given operation transversally to
given quantum error-correcting code, and for understand
the results of making a measurement on a stabilizer co
These results clarify the advantages of the doubly even s
dual CSS codes used by Shor@7#. They also provide proto-
cols for performing universal computation on any stabiliz
code. In many cases, the protocols described here call f
number of steps to perform most simple operations, so m
efficient protocols for specific codes are desirable, and I
pect the methods described in this paper will be quite help
when searching for these protocols.

Efficient use of space is also important. Existing metho
of fault-tolerant computation use space very inefficient
and being able to use more efficient codes~such as those
encoding multiple qubits in a block! could be very helpful in
reducing the space requirements.
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APPENDIX: PROOF THAT R, P, AND CNOT
GENERATE N„G…

I claimed before that products ofR, P, and CNOT actu-
ally gave us all of the elements ofN(G). The proof in this
appendix provides a neat application of the formalism p
sented in Secs. II and III. The proof is constructive, and
quite useful for finding networks to perform multiple-qub
operations inN(G). The one-qubit operations inN(G) corre-
spond to the six automorphisms ofD4 given byR, P, Q, T,
T2, and of course the identity. We have already seen
Q5P†RP†. Also, T5PQ†, so all one-qubit operations ar
covered.

We can also perform all two-qubit operations. Every a
tomorphism ofD43D4 can be produced by a composition
controlled NOT and single-qubit operations. For instan
take

Z^ I→X^ X,

I ^ Z→Z^ Z, ~A1!
o

e

it
,
-

en
a
g
e.
lf-

r
a

re
x-
ul

s
,

t
y

-
s

at

-

,

X^ I→ iY ^ X,

I ^ X→ iZ ^ Y.

This permutation can be produced by performing the cyc
permutationX→ iY→Z→X on the first qubit and a phas
rotationX→ iY on the second qubit, and then performing
standard controlled NOT from the first qubit to the seco
qubit. It is straightforward to consider the other possibiliti
and show that they too can be written using a CNOT a
one-qubit gates.

I will show that the larger gates can be made this way
induction on the number of qubits. Suppose we know this
be true for alln-qubit gates, and we have an (n11)-qubit
gateU. On an arbitrary input stateu0&uc&1u1&uf& ~where
uc& and uf& aren-qubit states!, the output state will be

~ u0&uc1&1u1&uc2&)1~ u0&uf1&1u1&uf2&). ~A2!

Suppose that under the applied transformation,M5U(Z^ I
^ ••• ^ I )U† anticommutes withZ^ I ^ ••• ^ I . If it does
not, we can apply a one-qubit transformation and/or re
range qubits so thatM5X^ M 8, where M 8 is an n-qubit
operation. Suppose we applyU to u0&uc&. If we were then to
measureZ for the first qubit, we would get either 0, in whic
case the other qubits are in stateuc1&, or 1, in which case the
remaining qubits are in stateuc2&. The above analysis o
measurements shows thatuc1& anduc2& are therefore related
by the application ofM 8. DefineU8 by U8uc&5uc1&. Then

U~ u0&uc&)5~ I 1M !~ u0& ^ U8uc&). ~A3!

Let N5U(X^ I ^ ••• ^ I )U†. Again, we can apply a one
qubit operation so that eitherN5Z^ N8 or N5I ^ N8. We
can always putM and N in their required forms simulta-
neously. Then

U~ u1&uf&)5NU~ u0&uf&) ~A4!

5N~ I 1M !~ u0& ^ U8uf&)
~A5!

5~ I 2M !N~ u0& ^ U8uf&)
~A6!

5~ I 2M !~ u0& ^ N8U8uf&),
~A7!

using the above form ofN and the fact that$M ,N%50.
Now, U8 is ann-qubit operation, so we can build it out o

R, P, and CNOT. To applyU, first applyU8 to the lastn
qubits. Now applyN8 to the lastn qubits conditioned on the
first qubit being 1. We can do this with just a series
CNOTs and one-qubit operations. Now apply a Hadam
transform to the first qubit. This puts the system in the st

~ u0&1u1&) ^ U8uc&1~ u0&2u1&) ^ N8U8uf&. ~A8!
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Now, applyM 8 to the lastn qubits conditioned on the firs
qubit. Again, we can do this with just CNOTs and one-qu
operations. This leaves the system in the state

u0& ^ U8uc&1u1& ^ M 8U8uc&1u0& ^ N8U8uf&

2u1& ^ M 8N8U8uf&, ~A9!
A

A

n
,

t

t
5u0& ^ U8uc&1M ~ u0& ^ U8uc&)1u0& ^ N8U8uf&

2M ~ u0& ^ N8U8uf&) ~A10!

5~ I 1M !~ u0& ^ U8uc&)1~ I 2M !~ u0& ^ N8U8uf&),
~A11!

which we can recognize as the desired end state after ap
ing U.
.
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