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In order to use quantum error-correcting codes to improve the performance of a quantum computer, it is
necessary to be able to perform operations fault-tolerantly on encoded states. | present a theory of fault-tolerant
operations on stabilizer codes based on symmetries of the code stabilizer. This allows a straightforward
determination of which operations can be performed fault-tolerantly on a given code. | demonstrate that
fault-tolerant universal computation is possible for any stabilizer code. | discuss a number of examples in more
detail, including the five-quantum-bit codé&s1050-294{@8)06501-9

PACS numbgs): 03.67.Lx, 03.65.Bz, 89.8&-h

The development of quantum error-correcting codescertain states when a measurement is made. This allows us to
[1-6] has stirred great hopes for conquering errors and desee what operations we can derive from the basic operations
coherence in quantum computers. However, just the exiddy using ancillas and making partial measurements of the
tence of codes, even very good codes, is not sufficient. It istate. Ultimately, this will allow us to perform universal
also necessary to be able to perform operations on encodé@mputation on any stabilizer code. | also present a more
states without a catastrophic spread of existing errors. Howdetailed analysis of the five-qubit code, a class of distance
ever, until now, fault-tolerant implementations of a universaltwo codes, and the code encoding three qubits in eight qu-
set of gates were only known for a few cod&s-9|. bits.

While most known quantum error-correcting codes can be Throughout this paper, | will confine my attention to sta-
described using thetabilizer formalism [4—6], there is no  bilizer codes. The results can be extended to stabilizer codes
similar broadly applicable theory of fault-tolerant operations.over k-state systems instead of two-state qubits, but most of
A quantum gate, unlike a classical gate, can cause errors the results do not apply to nonstabilizer codes at all. | will
spread both forwards and backwards through the gate. Thgdicate those results which do apply more generally as they
goal of fault-tolerant operations is to prevent the spread ofire presented.
errors within a block, which could change a single correct-
able error into two errors, which is perhaps more than the | ENCODED NOT AND PHASE
code could handle. Even if we use codes that correct more

than one error, the spread of errors within a block rapidly Before | advance into the full theory of fault-tolerant op-

reduces the code’s tolerance for errors. Therefore, | define &ations. | will discuss how to perform encoded NOT and

ffault-tolerant operation to be one for Wh'c.h a smg!e Opera'phase gates on any stabilizer code. The behavior of these
tional error can only produce one error within a single en-

ded block. Th motion is that stor. rrors on diff rgates under more general transformations will tell us what
g?]t equbi?sc ére ienggzgn dper?t ai d ?hast Oggtg: grrgrz ?:an Oif;r)ose transformations actually do to the encoded states.
affect quantum bitgqubitg which interact via that gate. The stabilizerS of a code is an Abelian subgroup of the

A transversaloperation, in which the operation acts inde- groupg generated by the operations
pendently on each qubit in the block, is a prototypical fault-
tolerant operation. For instance, a bitwise controlled NOT :<1 0) X:(O 1 Z:(l 0 )
operation(i.e., |i}|j)—|i)|i®j)) from one block to another 0 1)’ 1 0/’ 0o -1)°
is fault-tolerant, since errors can spread only between corre-
sponding qubits in the two blocks. and
Unfortunately, for most codes, only a few transversal op-
erations will map one valid codeword to another. | show
below that a bitwise operation will transform the stabilizer of Y=X.-Z= (
a code. If the stabilizer is rearranged, but otherwise left un-
changed, the operation will take codewords to codewords.
This will give us a few basic operations on various codesacting on each of the qubits of the code. | will sometimes
with which to start our analysis. write G, to explicitly indicate the number of qubits acted on.
In the quest to perform universal quantum computation,The codewords of the code are the staigswhich are left
we are not limited to unitary operations. We can also perdixed by every operator i§ and the coding space is the set of
form measurements. In Sec. lll, | analyze the behavior okuch states. Operators @ which anticommute with some
operator inS will take codewords from the coding space into
some orthogonal space. By making a measurement to distin-
*Electronic address: gottesma@t6-serv.lanl.gov guish the various orthogonal spaces, we can then determine

@

0 -1
1 0

1050-2947/98/5@)/127(11)/$15.00 57 127 © 1998 The American Physical Society



128 DANIEL GOTTESMAN 57

what error has occurred and correct it. A quantum code enarbitrary unitary transformatiok we wish to apply to our
codingk qubits inn qubits will have a stabilizer witm—k  codewords. How does this affect other operators, such as the

generators. elements ofS andN(S)?
However, there are, in general, a number of operatos in "
that commute with all of the operators $1 The set of such UM|[#)=UMU"U|y), 2

operators is th@ormalizer NS) of Sin G.! Sis itself con-
tained in the normalizer, but in general the normalizer i
larger than jusS. If S contains 2~ operators(so it hasn
—k generatorg the normalizer will be generated by+k
operators. In the terminology of Calderbaek al. [5,6],
N(S) is the dual cod&". The setN(S)/S is the set of errors
the code cannot detect.

The elements of the normalizer will change one codewor
to another, and therefore have a natural interpretation i
terms of encoded operations on the code words. Suppose
extend the stabilizer into a maximal set nfcommuting
operators by choosing independent commuting operators
Z4, ... Z, from N(S)/S. Then consider those codewords
which, besides being-1 eigenvectors of the stabilizer gen- nition of the stabilizer and the coding space, we negadu

erators, are also eigenvectors By, ... Zy. These g:o_de- to actually be inS for all M € S. ThereforeU is actually in
words will be the basis codewords for our code, defining the[he normalizer ofS in U(n). The same criterion was found

encod§d0~ +-00),[0---01), ... [1-- '_11>' The state which previously by Knill [12]. Note that the normalizer o in

has eigenvalue+1 for every Z; will be the encoded U(n) is not necessarily a subset N{G).

|0---0), the state which has eigenvaluel for Z; and ei- When we restrict our attention to operations that are in
genvalue +1 for the other Z;s will be the encoded both the normalizer of in U(n) and the normalizer o8 in
|0---01), and so on. With this definitionZ; acts as the U(n), it becomes straightforward to determine the operation
encodedZ operator on théth encoded qubit. If there is just actually performed on the encoded states. First, note that the

one encoded qubit, | will writeZ instead ofz;. X and Z_operators transform into operators that also com-
Now, the remaining elements &f(S) will not commute  mute with everything inS. Thus, we can rewrite them as
with all of the encoded operators. We can complete the setproducts of the originaX’s, Z's, and elements o8. The

of generators foN(S) by choosingk additional operators elements ofS just give us the equivalence between elements
Xi(i=1,... k) such thatX; commutes withZ; wheni#j,  of N(S) discussed in Sec. I, so we have deduced a transfor-
but X; anticommutes wittZ;. X; is then just the encoded bit mation of the encodeX andZ operators. Furthermore, we

flip operator on théth encoded qubit. Again, | writX when  know this encoded transformation also lies in the normalizer

there is just one encoded qubit. An arbitrary elemenit (3) of Gy. _ _ _
is some other encoded operation and can be written as the Typically, we want to consider transversal operatiohs
product ofXs andZs. If two elements oN(S) differ by an which are equal to the tensor product of single-qubit opera-

element of the stabilizer, they act the same way on any cod ons (or operatlons_hhat :)nly aff%ct one quplt per PI)?]QROfr
word (since the stabilizer element just fixes the codeword t ed momenr:, we YIVI only C?nﬁ' er o_rl)le(rjatlonsho t |sb_|_0rm
Therefore the actual set of encoded operations represented see what collections of them will do to the stabilizer.
N(S) is N(S)/S. efore launching into an analysis of which gates can be used

DiVicenzo and Shor showed how to perform syndromeon which codes, | will present an overview of the gates that
measurement and error correction fault-tolerantly on any std™® amenable to this sort of .analy5|s.
For instance, one of the simplest and most common fault-

bilizer code[10]. Using the same methods, we can measure . : .
the eigenvalue of any operator & even if it is not inS. tolerant operations is the Hadamard rotation

This also enables us to prepare the encoded zero state of any 1/1 1

stabilizer code by performing error correction and measuring R= _< ) ] 3

the eigenvalue of thé_operators. V2l1 -1

SO |) is an eigenvector oM if and only if U|y) is an
eigenvector olUMU. Furthermore, they have the same ei-
genvalue. Thus, by applying to | ), we effectively trans-
form any operatoM of interest intotUMU (this fact is also
true for nonstabilizer codgsin order for the statéy) to
remain a codeword, the stdth ) must still be in the coding
Fhace, saUMUT must also fix all the codewordsy) for
veryM e S. Let us consider a restricted set of possibls,
ose for whichUMUT is actually inG [so U is in the nor-
malizerN(G) of G in U(n)]. N(G) is generated by Hadamard
rotations, /2 phase rotations, and controlled NOT opera-
tions [5,11] (a proof of this fact appears in Appendix).A
Calderbanket al. call N(G) the Clifford group. By the defi-

Let us see what this does ¥ Y, andZ.
II. MORE GENERAL OPERATIONS

.1 1 1\/1 -1 1 0
So far, we have only considered applying productXpf RXR=31, _1/l1 1/7lo —1/7% @
Y, andZ to the codewords. However, this is not the most
general thing we could do. Suppose we have some totally ) 1/1 1 1 1 0 1
RZIR=311 —1/l-1 171 o7 ©

Istrictly speaking, this is the centralizer 8f but in this case it is 11 11 0o 1
equal to the normalizer, sinc€ *MG=+G 'GM==M, and RYREE _ ——Y. (6
not bothM and—M are inS. 211 -1/ 1 1 '
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Therefore, applyindR bitwise will switch all theX’s and all ~ erties of the operators. In fact, there is a complete equiva-
theZ’s, and give a factor of- 1 for eachY. If we do thisto  lence between the possible gates and the automorphisms of

the elements of the stabilizer and get other elements of thB, (the group of products df, X, Y, andZ) or direct prod-
stabilizer, this is a valid fault-tolerant operation. The seven-ucts of copies oD, (for multiple-qubit gates[13].

qubit code is an example of a code for which this is true. Given any such automorphism, we first substititefor
Another common bitwise operation is thehase: Y to get the actual transformation. Then we note tBatis
the “encoded zero” for the “code” with stabilizefl,Z}.
p— ( 1 0) ) We know howZ transforms undel, so|0) transforms to
0 i/ the state fixed byJZU". In addition, |1)=X|0), so U|1)
=UXU'U|0). For instance, consider the cyclic transforma-
On the basic operations, Y, andZ it acts as follows: tion
1 0\/0 —i 0 —i =X=iY—oZ—
Pxp*z(o )(1 0):<_ 0)=iY, @ T=X—iY—=Z—X. (12)
I I SinceZ—X,
1 0\/0 i 0 i
f— - —i 0)—1/\/2(|0)+|1)). 13
PYP (0 i)(l 0) (i 0) iX, 9) 0)—1/12(]0)+ (1)) (13)

Also, X—iY, so
(1 0y(1 o (1 0
PZPz(O i)(o i>=<0 _1)=z. (10 |1)—i/V2Y(|0)+|1))=—i/y2(]0)—|1)).  (19)

This switchesX andY, but with extra factors of, so there Thus, the matrix foiT is

must be a multiple of 4X's and Y’s for this to be a valid 1/1 —i
operation. Again, the seven-qubit code is an example of one T= _( . ) (15)
where it is. Note that a factor afappears generically in any J2\1 i

operation that switche¥ with X or Z, becauseY?=—1, o ] )
while X2=72=+1. The operations ilN(G) actually per- We can perform a similar procedure to determine the matrix
mute ox=X, o,=2Z, andoy=iY, but for consistency with corresponding to a multiple-qubit transformation.
earlier publications | have retained the notatiorXofy, and The next question of interest is how much have we re-
Z. The most general single qubit operationNifiG) can be ~ Stricted our computational power by restricting our attention
viewed as a rotation of the Bloch sphere permuting the thre&? the normalizer ofi? Again, the normalizer of is exactly
coordinate axes. the group generated by the Hadamard transfBirthe phase
We can also consider two-qubit operations, such as thE, and the controlled NOT. Unfortunately, this group alone
controlled NOT. Now we must consider transformations ofiS Of only limited interest. Knil[13] has shown that a quan-
the two involved blocks combined. The stabilizer group oftum computer using only operations from this group can be
the two blocks isSxS, and we must see how the basic Simulated efficiently on a classical computddowever, the
operationsX®1, Z®1, 1®X, andl®Z transform under the @addition of just the Toffoli gate to this group is sufficient to
proposed operation. In fact, we will also need to know theMake the group universg].
transformation ofX®@Y and other such operators, but the
transformation induced oGX G is a group homomorphism, 1. MEASUREMENTS
so we can determine the images of everything from the im-
ages of the four elements listed above.
It is straightforward to show that the controlled NOT in-
duces the following transformation:

Now | will discuss what happens if we perform a mea-
surement on a stabilizer code. Measuring individual qubits of
an actual code is not of great interest, but the results of this
section will be quite helpful in determining what can be done

X@1 XX, by combining measurements and specific fault-tolerant op-
erations. If the computer starts in a partially known state, for
o1 =71, (11)  instance if the first qubit i$0), it can often be described by
a stabilizer. The results of this section are most useful for
I@X—=1®X, analyzing the behavior of stabilizers used to describe com-
puters with this sort of initial condition.
1®Z—ZQZ.
It is easy to see here how amplitudes are copied forwards andThe argument goes as follows: we start withrequbit state|0)
phases are copied backwards. The transformation lawR,for which is the single state for the stabilizer cad, . . ., Z.). Each
P, and CNOT are also given ifb]. operation transforms the state and the stabilizer as above. We can

There are a number of basic gatesNi(G) beyond the follow each transformation on a classical compute®ifn?) steps.
ones given above. As with the examples above, any gate caxmeasurement picks at random one of the basis kets in the code-
be characterized by its transformation of the generatos of word, which can also be chosen classic@ftyl4]. This still leaves
(or GX G for two-qubit operations, and so priThe primary the question of partial measurement of the full state, but the results
constraint that must be met is to preserve the algebraic prof Sec. Ill show that this can also be classically simulated.
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Now, using the method of DiVincenzo and Sha0], we In summary, when we measure an opera#tpwe perform

can measure any operatdrin G. There are three possible the following procedure on the stabilizer adxdand Z op-
relationships betweeA andS. First of all, A could actually  grators.
be inS. Then measuring tells us nothing about the state of (1) |dentify an elemenM; e S that anticommutes wit/.

the system and does not change it at all. The result of this (2) Rewrite the remaining generators $fand thex and
measurement will always be¢ 1 for a valid codeword. The —

second possibility is foA to commute with everything S g operattors by mtumpl};'&; tfl_%‘]/ll if thgttorlglnal o?erator
but not to actually be irS. ThenA is equivalent to a non- 0€s not commute withA. € rewrntten operators are

trivial element ofN(S)/S and measuring it will give us in- equivalent to the Old. ones, but now they all commute ";"‘fth
formation about the state of the system. This is usually inad- 3 ReplaceM, with A. We now have the new stabilizer
visable. and newX and Z operators.

The third possibility, thaf anticommutes with something ~ Let us see how all this works with a simple, but very
in S, is the most interesting. In this case, we can choose theseful, example. Suppose we have two qubits, one in an
generators o8 so thatA anticommutes with the first genera- arbitrary statgy), the other initialized td0). The space of

tor M; and commutes with the remaining generatorsPOssible states then has stabiliterZ. Suppose we perform
M,, ... ,M,_y (we can do this since if generatt; anti- @ controlled NOT from the first qubit to the second. This

commutes withA, we can replace it wittVi;M;, which transforms the stabilizer td®Z. Now let us measure the
commutes Then measuring does not disturb the eigenvec- OPeratol @iY (we use the factor dfto ensure that the result
tors of M, throughM,,_, so they still fix the new state, and iS *1). This anticommutes witd®Z, so if we get+1, we
are in the new stabilizer. The eigenvectors\df are dis- eave the result alone, and if we getl, we applyZ&Z to
turbed, however, antfl; no longer fixes the states. Measur- the state. The new state is inal -eigenstate of®iY, that

ing A applies one of the projection operatdes. or P_, IS, [#)(|0)+i[1)). -
where How is |¢) related to|#)? For the original “code,”X
=X®I| and Z=Z®]I. After the CNOT,X=X®X and Z

P. :E“ +A). (16) =Z®Il. X®X does not commute with® Y, but the equiva-

-2 lent operatorY® Y= (X®X)(Z®Z) does.Z®| does com-

+ + ] ) mute withl ®iY, so it stays the same. Since the second qubit
ThenM;P_M;=MiM;P. =P, so if [¢) is some code- s guaranteed to be in the 1 eigenstate ofY, we might as
word, well ignore it. The effectiveX and Z operators for the first

MIP,|1,//>= MIP,M1| W) =P.|p). (17) qubit are thu_s—iY andZ, rei)ec_tively. This means we have
transformedX — —iX Z andZ— Z. This is the operatiof".
If the measurement result i$ 1, we do nothing else, and This example is simple enough that it is easy to check:
have thus applied®, . If the measurement result is 1, .
apply MJ{=M1, resulting in the overall application d?, . 00 — 100y =10Y =1 (10 +il13) + (10Y—il1 18
Either way, the new state is & 1-eigenvector ofA. The 100)~[00)=| >2[(| yTIM 0= (9
system is thus in the space with stabilizer generated by

AM,, ... M, . >From now on, | will often say “mea- —|0)(|0)=i[1)), (19
sure” when | mean “measure and correct for a result of .
-1 —[0)(|0)+i[1)) (20)

Note that this construction works outside the framework
of stabilizer codes. All we really need is a statg), with
M|¢)y=|y) for some unitaryM. Then, as above, we can
perform the projectiorP . for any operatoA satisfyingA2

|10>H|11>=|1>|§[—(|0>+i|1>)+(|0>—i|1>)] (21)

=1 and{M,A}=0. —i|1)(F]0)—i|1)) (22
We will want to know just where in the space a given
state goes. To do this, look at the elementsNgE)/S. If — *+i[1)(F|0)Fi]1))=—i]1)(|0)+i]1)). (23)

before the measurement, the state is an eigenvectdf of

eN(S), it will also be an eigenvector di’=MN for all ~ Thus, ignoring the second qubit givéd)—|0) and|1)—

M e S; that is, for allN’ in the same coset d¢ in N(S)/S. —i|1), which isPT.

After measuringA, the state will no longer be an eigenvector  This result is already quite interesting when coupled with
of N if N anticommutes wittA, but it will still be an eigen- the observation thaP and CNOT suffice to producB as
vector of M;N, which commutes withA. Furthermore, the long as we can prepare and measure states in the [8&sis
eigenvalue oM N stays the same. Therefore, by measuring=|1) [8]. To do this we start out with the stal¢) plus an

A (and correcting the state if the result is1), we effec-  ancilla |0)+|1). Thus, the initial stabilizer i$®X, X=X

tively transform the operatdd into M;N. We could equally — ;
o ! ®l,andZ=2Z®]I. Apply a CNOT from the second qubit to
ell say it is transformed t& M N instead, whereMl € S . . . > —
W y it 1 | W “ the first. Now the stabilizer iX®@X, X=X®I, andZ=Z

commutes withA, but this will produce the same transfor- . . )
mation of the cosets d(S)/Sto N(S')/S’ (whereS' isthe ~ ©Z- APPly P to the second qubit, so the stabilizer Xs
stabilizer after the measuremgn®f course, ifN commutes  ®1Y, X=X®l, and Z=Z®Z. Measurel ® X, performing
with A, measuringA leavesN unchanged. X®iY if the result is—1. This produceX=X®I| and Z
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=iY®X, so dropping the second qubit results in the transfor- TABLE I. The stabilizer and encoded and Z for the seven-

mationQ: X—X, Z—iY. But R=PQ'P: qubit code.
X—iY—=Z—2Z, (249 M, X X X X [ [ |
) M, X X | | X X I
Z—7Z——iY—=X. (25 Ms X | X I X [ X
. . . . M z z 4 4 | I |
Coupled with the previous result, which deriv&s from 4 7 7 | | 7 7 |
CNOT, this allows us to get any single qubit transformationM5 7 | 7 | 2 | 7

in the normalizer ofG provided we can perform a CNOT ¢

operation. X | I I | X X X
Another interesting application is to gain a new viewpoint>- | | | | z z z

on gquantum teleportation. Suppose we have three qubits
which start in the statpy)(]00) +|11)). The initial stabilizer

islexXeXandl®ZeZ, X=Xalel, andZ=2a1®1. We  mantion of the Hadamard rotation, theé2 rotation, and the
assume the third qubit is far away, so we can do no operasgntrolied NOT.

tions interacting it directly with the other two qubits. We 1o Hadamard rotation switche¢ and Z. For a CSS

can, however, perform operations on it conditioned on theqqe this js a symmetry of the stabilizer if and only if e
result of measuring the other qubits. We begin by performingse .o of the stabilizer is the same as heector. Therefore

a CNOT from qubit one to two. The stabilizer is nd®X  he o classical codes had to be identical, and the quantum
@X andZeZeZ, X=XeX®l, andZ=Z®I®I|. Measure  code must be derived from a classical code that contains its
X for qubit one and discard qubit one. If the measuremenbwn dual. As we can see, this works for the seven-qubit
result was+1, we leave the state alone; if it wasl, we  code. In order to understand what the Hadamard rotation
performZ on qubits two and three. The stabilizer is ndv  does to the encoded states, we must look at what it does to
®@X, X=X®| and Z=Z®Z. Now measureZ for the new the encodedX andZ operations. For a punctured self-dual

first qubit. If the result ist 1, we leave the final qubit a|0_l’le; CSS code, theTandZ_operations can again be taken to be
if it is —1, we applyX to the last qubit. This results iX  the same, so the Hadamard rotation will just switch them. It
—X andZ=2Z, both acting on the last qubit. We have suc-iS therefore an operation which switches encodedvith

cesfully teleported the statey). The operations conditioned €ncodedZ, and is thus an encoded Hadamard rotation.

on measurement results needed for teleportation arise here Similarly, for a self-dual code, the/2 rotation will con-
naturally as the corrections to the stabilizer for alternate mealert the X generators into the product of aff's. This just
surement results. The formalism would have told us just a§Onverts arX generator into its product with the correspond-
easily what operations were necessary if we had begun with'd Z generator, so this is a valid fault-tolerant operation,

a different Bell state or a more complicated entangled stat@rovided the overall phase is correctly taken care of. There is
(as long as it can still be described by a stabilizer a factor ofi for eachX, so there must be a multiple of four

The methods of this section and the previous one willX’s in each element of the stabilizer for that to work out in
allow us to construct a universal set of gates for any stabigeneral. This will only be true of doubly evenCSS code,
lizer code, but they are also useful in a wide variety of othethich gives us the other requirement for Shor's methods.
circumstances. As one application, Appendix A gives a proofAgain, we can see that the seven-qubit code meets this re-
that N(G) is generated byR, P, and CNOT. The above quirement. Such a code will have three mo&’4 in the X

analysis of teleportation is another example. In general, angperation, so the bitwise/4 convertsX to —iY. This is thus
system involving only measurements and gates fio(g) an encoded- 7/2 rotation.

can be profitably analyzed using these methods. Finally, we get to the controlled NOT. This can be per-
formed bitwise orany CSS code. We must look at its opera-
IV. OPERATIONS ON CSS CODES tion on M®| and I®M. In the first case, ifM is an X

generator, it becomdd ® M. Since both the first and second

. ; o blocks have the same stabilizer, this is an eleme®>08. If
of which gates can be applied to specific codes. One of thﬁ/l is aZ generatorM ® | becomesM | again. Similarly, if

best classes of codes for fault-tolerant computation are the, . ; .
Calderbank-Shor-Steanl€S9 codes[2,3], which are con- M is anx generator] ®M becomed M, and 'fM Isaz
verted from certain classical codes. These codes have a St%e_znerator,l.@M becomesM®M, which is again in5X S.
bilizer which can be written as the direct product of two FOF @n arbitrary CSS code, th& operators are formed from
sectors, one of which is formed purely frokis and one the product of allX’s and theZ; operators are formed from
formed just fromZ’s. These two sectors correspond to thethe product of allZ’s. Therefore,

two dual classical codes that go into the construction of the o o

code. Xi®l—=X;®X|,

Shor[7] showed that a punctured doubly even self-dual
CSS code could be used for universal computation. An ex-
ample of such a code is the seven-qubit code, whose stabi-
lizer is given in Table I. From the stabilizer, we can now o o
understand why such codes allow the fault-tolerant imple- [®X;—1®X;,

In this section, | will finally begin to look at the problem

Z®l-Z,8l, (26)
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TABLE Il. The stabilizer and encoded and Z for the five-

qubit code. S D — Q& %
S—b & "Tg‘l—@ D Z

M, X z z X | i

M, | X z z X R

Ms X | X z z

My z X | X z FIG. 1. Network to perform th@; gate.

x X X X X X IRZRI—=IX®ZRY

7 z z z z z ©LBI=IR®LBY,

IRIRIX—=XRIX®X,
|®Z_i—>Z®Z.

I®I®Z—-ZR7Z17Z.

Thus, the bitwise CNOT produces an encoded CNOT for
every encoded qubit in the block. On operators of the forMM ® 1 ®1 or I® M®1, this transfor-

In fact, we can now easily prove that codes of the generdmation applies cyclic transformations as above to the other
CSS form are the only codes for which bitwise CNOT is atwo slots. Operators @@ M just becomeM®M&M,
valid fault-tolerant operation. Let us take a generic elemenwhich is clearly inSxSxS. The matrix of T3 is (up to
of the stabilizer and write it abIN, whereM is the product normalization
of X’s and N is the product ofZ’'s. Then under bitwise

CNOT, MN®|—MN®M, which impliesM itself is an el- 10 i 0 i 0 0
ement of the stabilizer. The stabilizer is a groupNss also 0O -1 O i 0 i -1
an element of the stabilizer. Therefore, the stabilizer breaks
. ; 0 i 0 0o -1 —I
up into a sector made solely froXis and one made solely
from Z’s, which means the code is of the CSS type. T [ 0 -1 1 0 —-i O
¥l o i 0 -1 0 1 0 -i
V. THE FIVE-QUBIT CODE i 0 1 0 . 0
One code of particular interest is the five-qubit code -1 0 | | 0 -1 0
[11,15, which is the smallest possible code to correct a )
single error. Until now, there were no known fault-tolerant 0 1 0 ! 0 ! 0 1
operations that could be performed on this code except the (30)

simple encodeX and encoded@. One presentatiofi5] of

the five-qubit code is given in Table II. This presentation hadS With T, this operation performs itself on the encoded

the advantage of being cyclic, which simplifies somewhat thetates. A possib_le n_etwork to P“?°'“°¢ thi_s operafipased
analysis below. on the construction in Sec. )lis given in Fig. 1.

This stabilizer is invariant under the transformation If. we add' in the poss.|b|I|ty'of measurements, this three-
T:X—iY—2Z—X bitwise. For instance, qubit qper_atlon along V\{|tﬁ' will aII(_)w us t(_) perform any
operation in the normalizer df. | will describe how to do
M;=X®ZZIX®| = —YRIX®X®Y®|I=M3M,. this on unencoded qubits, and sinteand T5 bitwise just
(27)  perform themselves, this will tell us how to do the same
) operations on the encoded qubits.
By the cyclic property of the codéd, throughM, also get To performP, first prepare two ancilla qubits in the state
transformed into elements of the stabilizer, so this is a validog) and use the data qubit as the third qubit. The original
fault-tolerant operation. It transforms stabilizer isZ®I®l and 19Z®l, X=I1®I®X, and Z=|
®1®Z. Now applyTs,, so that the stabilizer iZ ® X®Y and
IX®ZQY, X=X@X®X, andZ=20Z®Z. MeasureZ for
Therefore, this operation performed bitwise performs an enthe second and third qubits. The resultDTgtiY@l@Z and
coded version of itself. Operations which have this propertyy — 70707, Dropping the last two qubits, we have—iY
are particularly useful because they are easy to apply to CONing Z— 7. which is P. Again, Q=T'P andR=PQ'P, so

catenated code$,9,16. we can perform any single qubit operation.

. There is no nontrivial two-qubit operation in the nprmal- To get a two-qubit operation, prepare a third qubit in the
izer of G that can be performed transversally on this COdestate@ and applyTs. This results in the stabilizeZ®Z

However, there is a three-qubit transformatibnthat leaves 87, X,=IX8Y®Z, Xp=iY&X8Z, Z_1= iZoX®Y, and

SX SX S invariant: . . .
nvarl Z,=iX®Z®Y. MeasureX for the second qubit and throw it
X1l —iXeYeZ out. This leaves the transformation

X—iY—=Z. (28)

2RI Q1 —iZXRY X1 —iY®I,

IoX® | —iYOX®Z, (29 l@X—iY®Z, (31)
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ZR1—iZ®Y,

I®Z—iY®X.

Fan
3/
Fany
AV g
FanY
A\ >4

NgS

Fany
\V
fany
A\ g

This operation can be produced by applyi@go the second
qubit (switchingZ andiY), then a CNOT from the second
qubit to the first one, the® to the first qubit andr? to the
second qubit. Therefore, we can also get a CNOT by per-
forming this operation with the appropriate one-qubit opera-
tions. This allows us to perform any operation we desire in . . .
the normalizer ofG. Note that Sec. VI provides us with an- where|d) is an enco@e.d .statiaﬂud} is again|0- - '_(,)> or
other way to get these operations. Having two methods availl" - - 1). However, this is jusZ applied to|d) conditioned

able broadens the choices for picking the most efficienfn the value of, which we can do as before, using at most
implementations. one two-qubit gate on each qubit in the block. Therefore, we

In order to perform universal computation on the five- €&n perform universal fault-tolerant computation on the five-

qubit code, we must know how to perform a Toffoli gate. dubit code. _ , ,
Shor[7] gave a method for producing a Toffoli gate that  Note that there was nothing particularly unique about the

a
WV

FIG. 2. Network to perform the four-qubit gate.

relied on the ability to perform the gate five-qubit code that made the construction of the Toffoli gate
possible. The only property we needed was the ability to
|a)|b)|c)— (—1)2P9|a)|b)|c), (32)  perform an encoded conditional sign gate.
where|a) is either|0---0) or |1---1) and|b) and|c) are VI. GATES FOR ANY STABILIZER CODE

encoded 0’'s or 1's. For the codes Shor considered, this gate

could be performed by applying it bitwise, because the con- Consider the following transformation:

ditional sign could be applied bitwise. All of the qubits in the X21®12l—XeXoXal,
first block are either 0 or 1, so a controlled conditional sign
from the first block will produce a conditional sign on the IOX2I®1 =1 XXX,
second two blocks whenever the first block is 1.

For the five-qubit code, this gate is not quite as straight- Q1 XR1 =X ®XDX,
forward, but is still not difficult. To perform the two-qubit
conditional sign gate on the five-qubit code, we need to per- 191 21aX—=XoXI®X, (34)
form a series of one- and three-qubit gates and measure-
ments. However, if we perform each of these gates and mea- 7212101 —-ZZ8ZaI,
surements conditional on the valueafwe have performed
the conditional sign gate ofb)|c) if and only if the first 1920181 —10Z0Z8Z,
block is 1. To do this, we perform the part of each acting on
the ith qubit conditioned on théth qubit of |a). A single IR1RZ81 201027,
qubit error in|a) will therefore only result in a single qubit
error in the state after the operation. II®I0Z—Z0ZRIQZ.

Performing measurements conditioned (&) requires
some care, but it can be done. The DiVincenzo and ShoA possible gate array to perform this operation is given in
method of performing a measurement is to perform a transFig. 2. This operation takeM ®I®1®| to MEMM®I,
versal CNOT to an ancilla in a superposition of all evenand cyclic permutations of this, so M S, the image of
parity states. The parity of the ancilla tells us the measurethese operations is certainly 8x Sx Sx S. This therefore is
ment result. If the ancilla instead begins in the superpositiom valid transversal operation @my stabilizer code. The en-
of all states, eveandodd, performing the CNOTs and mea- coded operation it performs is just itself. There is a family of
suring the ancilla does nothing at all to the original state andelated operations for any even number of qukite two-
gives no information. Therefore, to perform a measuremengubit case is trivigl but we only need to concern ourselves
conditioned on the value &, we should prepare the ancilla with the four-qubit operation.
to hold the measurement result in the sum of even parity Suppose we have two data qubits. Prepare the third and
states whera=1 and the sum of all states wher=0. As  fourth qubits in the stat¢00), apply the above transforma-
with the usual measurement procedure, we must carefulljion, and then measu¢ for the third and fourth qubits. The

verify this ancilla to avoid the possibility of correlated errors resulting transformation on the first two qubits is then
entering the data.

After this, the rest of Shor's construction of the Toffoli X1 —-X®X,
gate carries over straightforwardly. It involves a number of
measurements and operations from the normaliz&f. &Ve I@X—1®X, (35
have already discussed how to do all of those. The one re-
maining operation that is necessary is I3l —7Z3l,

|ay|dy—(—1)29a)|d), (33 |9Z—Z8QZ.
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This is precisely the controlled NOT. Since | showed in Secvent this by introducing a third ancilla qubit. Suppose we
[l that the CNOT was sufficient to get any operation in wish to swap A and B, which are in spots 1 and 2, using
N(G), we can get any such operation for any stabilizer codeancilla C, in spot 3. First swap the qubits in spots 1 and 3,
In fact, using the Toffoli gate construction from Sec. V, wethen 1 and 2, and finally 2 and 3. Then A ends up in spot 2,
can perform universal computation. B ends up in spot 1, and C ends up in spot 3, but A and B
Actually, this only gives universal computation for codeshave never interacted directly. We would need two swap
encoding a single qubit in a block, since if a block encodegates to go wrong in order to introduce errors to both A and
multiple qubits, this operation performs the CNOT betweenB. Note that while the state C does not matter, it should not
corresponding encoded qubits in different blocks. To actube something important, since it is exposed to error from all
ally get universal computation, we will want to perform op- three swap gates. Also note that we should perform error
erations between qubits encoded in the same block. To deoorrection before interacting this block with another block,
this, we need a few more tools, which will be presented insince errors could then spread between corresponding qubits,
the next section. | will also consider a few more examplesvhich have changed.
where we have tools beyond the ones available for any code. The action of the CNOT is simple. As for other CSS
codes, it just produces a CNOT from each encoded qubits in
the first block to the corresponding encoded qubit in the
second block. The Hadamard rotation conve&it$o Z,Z; , 4,
There is a large class of distance two codes with a veryhich is equivalent (via multiplication by M,) to
simple form. The stabilizer for these codes has just two genz,...z,Z,,,---Z,. This is equal tOZ_l' ZiqZieq
erators, one a product of 8i's and one a product of all's. 7 Similarly, Z; becomesX;- - - X;_1Xi+1- - - X_. FOr
The total number of qubits must be even. These codes jnstance, for the smallest case=4,
encoden—2 qubits, and therefore serve as a good model for

VII. DISTANCE TWO CODES

block codes encoding multiple qubits. While these distance x1_>z_2,

two codes cannot actually correct a general error, they may

be useful in their own right nonetheless. A distance two code z_l_>>(_2 (36)
can be used for error detectiph7]. If we encode our com-

puter using distance two codes, we will not be able to fix any X_2—>Z_1

errors that occur, but we will know if an error has invalidated

our calculation. A better potential use of distance two codes Z_2—>X_1

is to fix located errord18]. Suppose the dominant error
source in our hardware comes from qubits leaving the norThe Hadamard rotation far=4 performs a Hadamard rota-
mal computational space. In principle, without any coding,tion on each encoded qubit and simultaneously switches
we can detect not only that this has happened, but in whickhem. For largem, it performs the Hadamard rotation on
qubit it has occurred. We can then use this information ineach qubit, and performs a variation of the class of codes
conjunction with a distance two code to correct the state, adiscussed in Sec. VI.

with a usual quantum error-correcting code. A final possible Forn=4, theP gate acts as follows:

use of distance two codes is to concatenate them to produce

codes that can correct multiple errors. Since the limiting fac- Xi——=Y1Yo,=—X 25,
tor in the computational threshold for concatenated codes is .
the time to do error correction, this offers potentially a great Xo— =Y Y3=—X,Z;, (37
advantage. However, there is a significant complication in
this program, since the codes given here encode more than Z, 74,
one qubit, which complicates the concatenation procedure.
Because of the simple structure of these distance two Z,—Z,.

codes, we can immediately see a number of possible fault-
tolerant operations. The bitwise Hadamard rotation and the consideration of two-qubit gates allows us to identify this
bitwise CNOT are both permissible. If the total number ofas a variant of the conditional sign gate. Specifically, this
qubits is a multiple of 4, th® gate and the other single qubit gate gives a sign of- 1 unless both qubits al@).
operations are allowed, as well. What is less clear is how When we allow measurement, a trick becomes available
these various operations affect the encoded data. that is useful for any multiple-qubit block code. Given one
TheX; operators for these codes atgX; , ;, wherei runs  data qubit, prepare a second ancilla qubit in the sf@je
from 1 ton—2. The Z; operators areZ;,,Z,. Therefore, +1), then apply a CNOT from the second qubit to the first
swapping the i(+ 1)th qubit with the {+1)th qubit will  qubit and measurg for the first qubit. The initial stabilizer
swap theith encoded qubit with thgth encoded qubit. is|®X; after the CNOT it isX® X. Therefore the full opera-
Swapping two qubits in a block is not a transversal operation takesX®1 to I® X andZ®| to Z®Z. We can discard
tion, but if performed carefully, it can still be done fault- the first qubit and the second qubit is in the initial data state.
tolerantly. One advantage of the swap operation is that anflowever, if we prepare the ancilla in the std@®, then
errors in one qubit will not propagate to the other, since theyapply a CNOT, the original state is unaffected. Therefore, by
are swapped as well. However, applying the swap directly tg@reparing a block with all but th¢th encoded qubit in the
the two qubits allows the possibility of an error in the swapstate|0), and with thejth encoded qubit in the sta{®)
gate itself producing errors in both qubits. We can circum-+|1), then applying a CNOT from the new block to a data
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TABLE Ill. The stabilizer and encodeX’s and Z's for the =~ changedMj; becomes insteatfl;M,M3, and M5 becomes

eight-qubit code. M;Ms. On the encoded qubits, this induces the transforma-
tion

M, X X X X X X X X

M, z z z Z z z z z XNl —-X1e2Z,

M, X [ X | z Y z Y

M, X | Y z X [ Y z Xl —1@Xal,

Mg X z | Y [ Y X z

X » X | | | 2 | 2 IRIX—=ZRI®X, (38

X, x boxooz bz Zelel -2,

X3 X [ | z X z [ |

Z; | z ' z ' z | z 19ZRl—10Zal,

Z, | [ z z [ | z z

Zs | | | | z z z z IR1®Z—1Q1QZ.

This is just a conditional sign on the first and third qubits,
block and measuring thigh encoded qubit in the data block, with the second encoded qubit unaffected. Through single-
we can switch thgth encoded qubit out of the data block qubit transformations, we can convert this to a controlled
and into the new, otherwise empty block. NOT, and using this perform a swap between the first and

This trick enables us to perform arbitrary operations onthird encoded positions.
qubits from the same block for the distance two codes. We Another operation is to swap qubits one and two with
switch the qubits of interest into blocks of their own, usethree and four and qubits five and six with seven and eight.
swap operations to move them into corresponding spots, therhis leavesM ;, M ,, andM 5 unchanged, and convemt, to
perform whole block operations to interact them. Then weM,M, andMz to M;Ms. On the encoded qubits, it induces
can swap them back and switch them back into place in theithe transformation
original blocks.

The step that is missing for arbitrary stabilizer codes is the XRI®I=X®Z®Z,
ability to move individual encoded qubits to different places
within a block. Since the gate in Sec. VI gives us a block IXRN—=-ZRX®Z,
CNOT, we can perform the switching operation into an
empty block. By using switching and whole block opera- I®I@X—-ZRZ® X, (39
tions, we can perform an arbitrary one-qubit operation on
any single encoded qubit within a block. The only remaining ZoI®1—-Zo1x1,
operation necessary is the ability to swap an encoded qubit
from theith place to thejth place. We can do this using IZ®1—19Z®],
guantum teleportation. All that is required is an otherwise
empty block with theith andjth encoded qubits in the en- I9I®Z=101RZ.

tangled stat¢00)+|11). Then we need only perform single-
qubit operations and a CNOT between the qubits inithe We could also switch the odd numbered qubits with the even
places, both of which we can do. To prepare the entangledumbered qubits. That leavé$; andM, unchanged, while
state, we simply start with the- 1-eigenstate oZ; andZ;,  turning M3 into M;M3, My into M;My, and Ms into
then measure the eigenvalueXyK; (and correct if the result M1M;Ms. On the encoded qubits it induces

is —1). This is just an operator if, so we know how to do
this. The state stays in an eigenvectorZgZ;, which com-
mutes withX;X;, so the result will be the desired encoded
Bell state. We can then teleport th qubit in one otherwise
empty block to thgth qubit in the block originally contain-
ing the Bell state. This was all we needed to allow universal
computation on any stabilizer code.

XRNRN—-=XRI®Z,
IIXRN—=1@XRZ,
IRIRX—-ZRZRX, (40

IR —-ZeI®l,

VIII. THE EIGHT QUBIT CODE 1820 —18Z8],
There is a code correcting one error encoding three qubits

in eight qubits[4,5,19. The stabilizer is given in Table Ill. I®IQZ—IQI®Z.

There are no transversal operations that leave this stabilizer

fixed except the automatic oneshi{S). However, when we This is just a conditional sign between the first and third

allow swaps between the constituent qubits, a number gblaces followed by a conditional sign between the second

possibilities become available. and third places. Combined with the first operation, it gives
One possible operation is to swap the first four qubits withus a conditional sign between the second and third places,

the second four qubits. This leav®s;, M,, and M, un-  which we can again convert to a swap between the second
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and third encoded positions. This allows us to swap any two X®1—=iY®X,
encoded qubits in the block, which is sufficient to give us
universal computation. )

In this case, the symmetries of the code naturally became I®X—IZ®Y.
allowed transformations of the stabilizer. This is likely to _ ] i )
hold true in many other cases as well. As with the five-qubit' NiS pérmutation can be produced by performing the cyclic
code, we now have two protocols for universal computationP€rmutationX—iY—Z—X on the first qubit and a phase

but multiple methods again allow us more freedom in choosfotation X—iY on the second qubit, and then performing a
ing efficient methods. standard controlled NOT from the first qubit to the second

qubit. It is straightforward to consider the other possibilities

and show that they too can be written using a CNOT and
IX. SUMMARY AND DISCUSSION one-qubit gates.

| have presented a general theory for understanding when | will show that the larger gates can be made this way by
it is possible to apply a given operation transversally to @nhduction on the number of qubits. Suppose we know this to
given quantum error-correcting code, and for understandin§e true for alln-qubit gates, and we have an< 1)-qubit
the results of making a measurement on a stabilizer codglateU. On an arbitrary input stat0)|) +[1)|$) (where
These results clarify the advantages of the doubly even selt#) and|¢) aren-qubit state} the output state will be
dual CSS codes used by SHai. They also provide proto-

cols for performing universal computation on any stabilizer (10)| )+ | 1) o)) + (|0)| 1)+ 1) | ). (A2)
code. In many cases, the protocols described here call for a

number of steps to perform most simple operations, so morgppose that under the applied transformatMrs U(Z® |
efficient protocols for specific codes are desirable, and | exg, . .. ®1)U" anticommutes withZ®1®---®l1. If it does
pect the methods described in this paper will be quite helpfuhot, we can apply a one-qubit transformation and/or rear-
when searching for these protocols. o range qubits so tham=X®M’, whereM’ is an n-qubit
Efficient use of space is also important. Existing r_n?thOd%peration. Suppose we apglyto |0)|#). If we were then to
of fault-tolerant computation use space very inefficiently, measurez for the first qubit, we would get either 0, in which
and being able to use more efficient codssch as those age the other qubits are in stég), or 1, in which case the
encodmg multiple qubits ina blogkcould be very helpful in remaining qubits are in states,). The above analysis of
reducing the space requirements. measurements shows that ) and|y,) are therefore related
by the application oM. DefineU’ by U’|¢)=|¢1). Then
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APPENDIX: PROOF THAT R, P, AND CNOT U(|1)[#)) =NU([0)|¢)) (A4)
GENERATE N(Q)
| claimed before that products &, P, and CNOT actu- =N(I+M)(|0)y®@U’|¢))

ally gave us all of the elements &f(G). The proof in this

appendix provides a neat application of the formalism pre-

sented in Secs. Il and Ill. The proof is constructive, and is o ,
quite useful for finding networks to perform multiple-qubit =(I=M)N(|0)oU’[4))
operations irN(G). The one-qubit operations N(G) corre-

spond to the six automorphisms Bf, given byR, P, Q, T,

T2, and of course the identity. We have already seen that =(1=M)(|0O)®N'U’'|¢)),
Q=P'RP'. Also, T=PQ', so all one-qubit operations are
covered.

We can also perform all two-qubit operations. Every au-using the above form dfi and the fact thafM,N}=0.
tomorphism ofD,x D, can be produced by a composition of ~ Now, U’ is ann-qubit operation, so we can build it out of

controlled NOT and single-qubit operations. For instanceR, P, and CNOT. To applyJ, first applyU’ to the lastn
take qubits. Now applyN’ to the lastn qubits conditioned on the

first qubit being 1. We can do this with just a series of
CNOTs and one-qubit operations. Now apply a Hadamard
L3I —=X®X, transform to the first qubit. This puts the system in the state

182287, (A1) (JOY+[1)@U’| )+ (|0) = |1))®N'U’|$).  (A8)
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Now, applyM’ to the lastn qubits conditioned on the first =|0)oU’[#)+M(|0)e@U’|#))+|0)eN'U’| o)
qubit. Again, we can do this with just CNOTs and one-qubit S
operations. This leaves the system in the state —M(|0)®N'U’[#)) (A10)
=(1+M)([0)yaU'[#)+ (1 =M)(|0)&N'U’[4)),
(A11)

O)U' |y +|1HyeM U’ |+ ]0)N'U’
0 1L [4+10) #) which we can recognize as the desired end state after apply-

—|1)®@M'N'U’| ), (A9)  ing U.
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