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Mesoscopic Fermi gas in a harmonic trap

J. Schneider and H. Wallis
Max-Planck-Institut fu¨r Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany

~Received 8 September 1997!

We study the thermodynamical properties of a mesoscopic Fermi gas in view of recent possibilities to trap
ultracold atoms in a harmonic potential. We focus on the effects of shell closure for finite small atom numbers.
The dependence of the chemical potential, the specific heat, and the density distribution on particle number and
temperature is obtained. Isotropic and anisotropic traps are compared. Possibilities of experimental observa-
tions are discussed.@S1050-2947~98!03502-1#

PACS number~s!: 03.75.2b, 05.30.Fk
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I. INTRODUCTION

The recent realizations of Bose-Einstein condensation
dilute atomic vapors@1–3# have stimulated not only man
investigations on Bose atoms but also studies of degene
Fermi gases. As opposed to charged Fermi gases, i.e., n
ons or electrons in solids, the effects of Fermi statistics
neutral atomic gases occur at much lower temperatures~typi-
cally below 1027 K! and at densities that allow a treatme
as dilute quantum gas because of the weak interatomic in
actions. Due to the selection rules for collisions,spin-
polarizedfermionic alkali atoms, such as6Li or 40K in mag-
netic traps, remain metastable in the regime of quan
statistical degeneracy. Due to Fermi statistics the lowest s
tering channel (s-wave scattering! is closed for atoms in
identical magnetic sublevels. Therefore, an ultracold sp
polarized Fermi gas will be less influenced by interactio
than the ultracold Bose gases@1–3#. Also a BCS transition as
studied in@4,5# is naturally excluded here. The only remai
ing interaction is the magnetic dipole-dipole interaction b
tween the atoms. An estimate of its contribution to the me
field @6# yields ^VDD&5(\ad /M )^r 23&, where M is the
atomic mass andad,10210 m. This effect is neglected here

The purpose of the present paper is rather to consider
stationary features of an ideal Fermi gas in isotropic or
isotropic harmonic traps. Since our results are based on
numerical calculation of the state sum without further a
proximation, they are complementary to the recent pape
Butts and Rokhsar@7#, where a continuous spectrum an
Thomas-Fermi approximation were used. That treatment
comes exact in the limit of large particle numbers. In co
trast, we focus here on the effects of small particle numb
where the shell structure still affects the behavior of
many-particle system.

The outline of the paper is as follows. In Sec. II we i
vestigate the case of an isotropic harmonic trap. We ana
the influence of the shell structure on the chemical poten
and the specific heat as a function of number and temp
ture. For small particle number, density distributions dev
ing from the Thomas-Fermi distribution are obtained. In S
III the anisotropic trap is considered with respect to chem
potential, specific heat, and density. The deviations from
isotropic trap are discussed. In Sec. IV the results are s
marized in view of experimental realizations, and the valid
571050-2947/98/57~2!/1253~7!/$15.00
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of the assumptions underlying our theoretical approach
discussed.

II. PROPERTIES OF THE FERMI GAS
IN AN ISOTROPIC HARMONIC TRAP

A. Degeneracies and the Fermi edge

We first study the isotropic harmonic trap with potent
energy

V5
Mv2

2
~x21y21z2! ~2.1!

and frequencyv because of its distinct features compar
with the anisotropic trap studied below. In this case the
generacy of states with equal energy

En5~n13/2!\v

is given by

gn5
1

2
~n11!~n12!, ~2.2!

i.e., equal to the number of simple partitions ofn as a sum of
three integersn5nx1ny1nz . Since gn gives the degen-
eracy of a shell of energyEn , one finds the total numberSa
of quantum states with energy smaller thanEa as the sum
over the shells 0<n<a,

(
n50

a

gn5Sa . ~2.3!

The sums

Sa5
1

6
~a11!~a12!~a13! ~2.4!

define the sequence$Sa%5$1,4,10,20,35,56, . . . % and so
forth. Note that each oscillator state is assumed to be fi
with a single fermion since only one spin orientation is co
fined by the magnetic trap.

For simplicity, our calculations are done using the gra
canonical ensemble@8#. The thermal occupation of a stat
with energy En at a temperaturekBT51/b is given by
Fermi-Dirac statistics as
1253 © 1998 The American Physical Society
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nn5
1

z21exp~b\vn!11
, ~2.5!

where the fugacityz is determined from the condition

(
n50

`

gnnn5N. ~2.6!

The definition of the fugacityz5exp$b@m2(3/2)\v#% ab-
sorbs the zero-point energy.N is the total number of particle
in the trap. For a given particle number one can determ
the Fermi energy

EF5~nF13/2!\v, ~2.7!

wherenF is the shell up to which the trap levels are fille
with particles at temperatureT50. In this limit (b→`) the
Fermi-Dirac distribution approaches a step function. N
that in the case of a mesoscopic ensemble the z
temperature equation

(
n50

`

gnu~nF2n!5N ~2.8!

does not have a solution for eachN, but only for the discrete
set of total particle numbersNP$Sa%. For N¹$Sa% we may
still define nF5 dxFe as the smallest integer equal to
greater than the exact solution of Eq.~2.8!,

xF5A1
1

3A
22, ~2.9!

whereA is given by

A5~3N1A9N221/27!1/3. ~2.10!

The expressionEF5\v( dxFe13/2) has with be compared t
the Thomas-Fermi approximation for the Fermi edge,

ẼF5\v~6N!1/3. ~2.11!

B. Calculation of the chemical potential

We now turn to the determination of the most importa
properties of the ideal gas. The fugacity and the chem
potential, respectively, are obtained by a numerical solu
of Eq. ~2.6! for given temperature and particle number. Th
is exact inasmuch as it does not invoke the Thomas-Fe
approximation. The results are then analyzed in certain lim
below. Figure 1 shows the dependence of the chemical
tential m on the atom numberN for small temperatures
Whereas the solid lines correspond to the Thomas-Fermi
proximation, the three other curves were obtained num
cally by truncating the sum in Eq.~2.6! at sufficiently highn.
They display a steplike variation that becomes increasin
smoother for higher temperatures. The step function will
pear to be broken into smaller steps in the anisotropic os
lator case studied below. Here the steps occur whenev
shell is saturated andnF acquires the next higher intege
value. m converges to a certain~‘‘plateau’’! value \v(nF
13/2) in the limit T→0 for all N that do not coincide with
e
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a ‘‘magic’’ number Sa . However, if a shell is closed (N
5SnF

), m takes the valuem5\v(nF12), which is very

close to the value of the Thomas-Fermi result atSnF
~solid

line in Fig. 1!. As can be shown by asymptotic expansio
the two curves intersect approximately atN5Sa and N
5(Sa1Sa21)/2, respectively, i.e., at total or half filling o
shells.

This information is displayed in detail in Fig. 2, giving th
dependence ofm on the temperature around the valueN
5S75120. At T50, theN5119 curve still approaches th
previous plateau valuem/\v5713/2, whereas theN5121
curve has to approach the valuem/\v5813/2.

The temperature dependence ofm can be calculated ana
lytically in the limits of high and low temperature. The high
temperature region of Fig. 2 is well described by t
Sommerfeld-like formula@7#

m̃~T!5ẼFF12
p2

3 S kT

ẼF
D 2G , ~2.12!

where the factorp2/3 replaces the factor ofp2/12 of the
usual case of fermions in a box. We note that for high te
peratures the exact result forN5119 approaches the Som
merfeld approximation forN5120 ~see Fig. 2!.

FIG. 1. m(N) shows a steplike behavior following the continu
ous approximation in Eq.~2.11!. The dashed and dotted curves a
displaced vertically by21 and22, respectively.

FIG. 2. m(T) for the isotropic trap. The Sommerfeld approx
mation is forN5S75120, but agrees very well with the numeric
curve forN5119. This occurs also for other values ofN.
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57 1255MESOSCOPIC FERMI GAS IN A HARMONIC TRAP
In the low-temperature regime, the variation ofm can be
analyzed in analogy to the chemical potential of electrons
an intrinsic semi-conductor. We first consider the ma
numbersNP$Sa%. Let N.(T) be the number of atoms ex
cited to states aboveEF andN,(T) the number of unoccu
pied states~‘‘holes’’ ! at or belowEF :

N.~T!5 (
n5nF11

`
gn

z21exp~b\vn!11
, ~2.13!

N,~T!5 (
n50

nF

gnS 12
1

z21exp~b\vn!11
D . ~2.14!

For low temperatures, i.e., for

kBT!EnF112m, kBT!m2EF , ~2.15!

the number of ‘‘particles’’ and holes can be approximated

N.~T!'S.e2b~EnF112m!, ~2.16!

N,~T!'S,e2b~m2EF!, ~2.17!

where

S.5 (
n5nF11

`

gne2b~En2EnF11!, ~2.18!

S,5 (
n50

nF

gne2b~EF2En! ~2.19!

are essentially Boltzmann sums. Combining the above eq
tions, one arrives at

N.~T!N,~T!5S.S,e2b\v. ~2.20!

From this condition the chemical potential can be det
mined. As forNP$Sa%, the Fermi shell is totally filled at
T50, N.(T) must equalN,(T) in that case, and one ob
tains from Eqs.~2.16!–~2.20! the low-temperature behavio

m~T!5\v~nF12!2
kBT

2
lnS S.

S,
D . ~2.21!

Thusm(0) lies in the middle of the ‘‘gap’’ betweenEF and
EF1\v, like in an intrinsic semi-conductor where the v
lence band is filled at zero temperature and the chem
potential lies in the middle of theband gap. It shows a slow
linear decrease with increasing temperature, governed by
small factor ln(S./S,).

If, on the other hand,NP” $Sa%, one can calculatem(T)
from the following approximation. For very low tempera
tures the Fermi function is well approximated bynn51 for
n,nF andnn50 for n.nF . The number of occupied state
in the Fermi shellDN5N2SnF21 then reads approximatel

DN5
gnF

z21exp~b\vnF!11
. ~2.22!
n
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Assuming thatDN is a constant for very low temperature
one can solve Eq.~2.22! for the chemical potential

m~T!5\vS nF1
3

2D2kTlnS gnF

DN
21D . ~2.23!

This expression varies linearly withT for nonvanishingDN,
with its slope changing sign atDN5gnF

/2. If the highest

shell is less than half filled (DN,gnF
/2), m(T) decreases

linearly from m(0)5EnF
; if it is more than half filled, it

increases linearly from them(0)5EnF
. The exact result then

approaches the Sommerfeld curve. The range of validityDT
of the linear approximation can be roughly determined
equating

\v

2
[kDTln~gF21! ~2.24!

since the maximum deviation from the Sommerfeld appro
mation equals\v/2 at DN51 ~see Fig. 2!. For nF57 one
obtains this range askBDT/\v<0.14. For larger values o
DN the slope is smaller and the validity range may be larg

C. Specific heat

The discontinuity of the chemical potential manifests
self most drastically in the specific heat of the gas. It
calculated from the total energy

U~T!5 (
n50

`
gn\vn

z21exp~b\vn!11
~2.25!

via

C~T!5
]U~T!

]T
. ~2.26!

The usual Sommerfeld approximation for low temperatu
yields

C̃~T!

Nk
5p2

kT

\v~6N!1/3
, ~2.27!

whereas the classical high-temperature limit equalsCcl /Nk
53. Here we determineC(T) for finite N from the state sum
and compare it with the Sommerfeld approximation. The
sults are shown in Fig. 3, where theN1/3 scaling is already
included on the ordinate. In the limit of ultralow temper
tures the finite-size effects result in a deviation from the l
ear Sommerfeld prediction. For higher temperature the s
cific heatC(T) approaches the Sommerfeld result~2.27!.

At very low temperaturesC(T) remains zero instead o
increasing linearly. This is consistent with the assumptio
leading to Eq.~2.23!, which are confirmed by the calculatio
of the state sums. In the ultralow-temperature regime
states above the Fermi energy are populated due to the
ergy gap, the total energy does not increase, andC(T) equals
zero. This explanation seems to be correct also for the c
of closed shells (N584,120,9880), where Eq.~2.23! does
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1256 57J. SCHNEIDER AND H. WALLIS
not hold. Note that the range whereC(T) remains zero is the
same as the range of validity of the linear approximation
m(T).

At intermediate temperatures a strong nonmonotonicN
dependence of the specific heat at constantT occurs, roughly
at those temperatures where the linear approximation ce
to be applicable. The origin of this behavior is revealed
Fig. 4. Each time a shell closure occurs,C(N) runs through
a maximum. At these points, the system can access a
totally empty shell, at the expense of adding the gap ene
to the new particles. On the contrary, the minima occur h
way between successive shell closures. In Fig. 5 the t
heat capacity is plotted versusN without a rescaling.

Figure 3 shows another interesting detail: The two lim
ing curves for totally filled shells (N584,120,9880) and hal
filled shells (N5102,142,10 270), respectively, do not d
pend onnF . Up to kBT/\v'0.5 the function (6N)1/3C/Nk
does not seem to depend onN explicitly for the values con-
sidered here, but only on the relative filling of the Fer
shell. This is related to the fact that the dependencem(T)
shown in Fig. 2 repeats itself around each value fornF .

FIG. 3. C(T) appropriately scaled. The linear curve is the So
merfeld result~2.27!. The deviation at largekBT/\v from the linear
behavior occurs only for smallN because for high temperature
(6N)1/3C(T)/Nk→3(6N)1/3 due to the equipartition theorem.

FIG. 4. Specific heat as a function of the particle number
different temperatures and scaled with (6N)1/3. t5kBT/\v denotes
the temperature in units of the level spacing. The arrows poin
N5Sn for n51, . . . ,11 (N54,10,20,35,56,84,120,165
220,286,364).
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D. Density distributions

Density distributions in traps can be measured quite e
ily. In an isotropic oscillator, one expects radially symmet
distributions. The radial wave functionsunr ,l ~cf., e.g.,@9#!

are numbered by a radial quantum numbernr and angular
momentuml . The corresponding energy isEnr ,l5\v@2(nr

21)1 l 13/2# son52(nr21)1 l . To compute the total den
sity one has to sum up the squared wave functions weigh
correctly withnn ,

r~r !5 (
n50

`

nn~T! (
nr51

@n/2#11
2l 11

4p
uunr ,l~r !u2, ~2.28!

wherel 5n22(nr21). The factor (2l 11)/4p is due to the
summation over all states withm52 l , . . . ,l . In Fig. 6,r(r )
is displayed for different particle numbers and temperatu
and scaled with the size of the trap ground states
5A\/Mv. The zero-temperature result from the Thoma
Fermi approximation@cf. @7# and see Eq.~3.6!; l51# is also
shown.

For N5120 ~closed shell,nF57), one observes a centra
minimum that disappears atN5142 ~half-filled shell, nF

-

t

o

FIG. 5. Total specific heat as a function of the particle numbe
different temperatures. Again,t5kBT/\v.

FIG. 6. Spatial densityr in a isotropic trap as a function of th
distance to the trap center for different numbers of fermions. T
scaling parameterss5A\/Mv is the width of the ground state
The unbroken lines denotekBT50.1\v, the dottedkBT50.25\v
and the dashed ones are obtained from the Thomas-Fermi app
mation atT50.
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57 1257MESOSCOPIC FERMI GAS IN A HARMONIC TRAP
58). This shell gets totally filled atN5165 wherer(r ) has
a maximum atr 50. TheN dependence of the density atr
50 is due to the fact that shells with oddn do not contribute
to r(0) because they are made up of odd angular momen
states that all have zero density at the origin. The curves
kBT50.1\v are almost indistinguishable from theT50
curves. The minima and maxima are still visible atkBT
50.25\v but disappear for temperatures abovekBT5\v.
For not too high temperatures the density approaches
Thomas-Fermi result. Interestingly,r(r ) is almost equal to
this approximation for half-filled Fermi shells.

III. THE ANISOTROPIC CASE

A. Chemical potential and heat capacity

Experimentally realized magnetic traps are usually at le
slightly anisotropic. In this section we therefore study a d
formed oscillator with a potential

V5
Mv2

2
~x21y21l2z2!, ~3.1!

i.e., we allow for prolate and oblate ellipsoid isoenergy s
faces. Accordingly, the energy eigenvalues are

Enr ,nz
5\vFn r111lS nz1

1

2D G , ~3.2!

where n r and nz count radial and longitudinal excitations
respectively. For givenn r there are stillgnr

5n r11 degen-
erate states with different numbers of excitations in the t
degenerate transversal directions~number of partitions of
n r5nx1ny). We use the notation (n r ,nz) for these states.

TheN dependence of quantities at zero temperature tu
out to have more features than in the isotropic case.
example, only in the oblate case (l.1) the notion of shell
closures still exists because only then is it energetically
vorable to fill up a transversal shell with degeneracygnr

before populating a higher longitudinal state. However, th
new structures occur on a smaller scale of particle numb
~due to the smaller degeneracy factors! and might be less
accessible in experiments with a finite uncertainty of
atom number.

Formulas analogous to Eq.~2.4! can only be given as
sums. Ifl,1, one can count all states up to a certain ex
tation (a r ,az) by

Sar ,az
5 (

nr50

ar1@azl#

gnrS Fa r2n r

l G1az11D , ~3.3!

where@x# denotes the largest integer less than or equal tx.
Thus one needsN5Sar ,az

particles to populate all states u

to Ear ,az
. For l.1, there is an analogous expression.

general, the exact Fermi energy can only be found by sea
ing the lowest state (n r ,nz) with N<Snr ,nz

. However, the
Thomas-Fermi approximation for the Fermi energy is o
slightly modified@7#

ẼF5\v~6Nl!1/3. ~3.4!
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The Sommerfeld formula~2.12! for the chemical potentia
holds equally in the anisotropic case.

In the following, we give some of the results for anis
tropic traps. We concentrate on the case of a heavily
formed cigar-shaped trapl!1 ~in fact, l50.076, like in
@10#!. We first consider the dependence of the chemical
tential on the temperature in the low-temperature regim
The graph ofm(T) for 1000 particles displayed in Fig. 7
shows a very intriguing feature: It starts linearly atT50 as
predicted by Eq.~2.23!, but then goes through a local max
mum. The highest occupied state atT50 is (5,22). Sognr

56 and with Eq.~3.3! DN5S5,222N55. The next higher
state is (6,9). The correction to the linear approximation
cluding this state basically shows that it is responsible for
local maximum. Indeed, the energy difference between
two states corresponds tokBT50.157\vl, which is roughly
at the local minimum~cf. arrow in Fig. 7!. Thus, at the
maximum of m(T) the next higher level above the Ferm
level becomes thermally accessible andm decreases.

As in the isotropic case, the specific heat shows deviati
from the Sommerfeld approximation at temperatures wh
the linear approximation form(T) begins to fail. IfT is fixed
to a value in that region, the graph of (6Nl)1/3C/Nk as a
function of particle number~Fig. 8! exhibits structure on two
scales of the particle number, considerably more comp
than the isotropic analog in Fig. 4. The big jumps take pla
whenever there are enough particles to access a new sh
the transversal oscillator. The arrows denote the valuesSar ,0

for a r55 –7. Between two such particle numbers~say,
Sar ,0

,Sar11,0) there are 13 major peaks, corresponding

1/l'13 longitudinal states being filled before the next tran
versal shell can be reached. The finer substructure~see inset
of Fig. 8! can also be explained easily: If one starts with t
state (a r ,0), thenext state is (0,@a r /l#11), followed by
„1,@(a r21)/l#11…, etc. Consequently, there should bea r
maxima before (a r ,1) is reached. In the case where 1/l is
integer this substructure disappears.

B. Density distributions

In order to calculate the density distribution we make u
of the transverse symmetry and obtain

FIG. 7. m(T) for a cigar-shaped trap withl50.076 andN
51000. The arrow denotes the energy difference between the F
level and the next higher state. The inset displays the linear
next higher approximation taking into account the states dire
below and above the Fermi level.
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1258 57J. SCHNEIDER AND H. WALLIS
r~r ,z!52 (
nr ,nz50

`

nnr ,nz
~T! (

nr50

@nr /2#

u ũnr ,nr22nr
~r !cnz

~z!u2,

~3.5!

where ũnr ,nr22nr
(r ) is the radial wave function of a two

dimensional harmonic oscillator (r 25x21y2) with magnetic
quantum numberumu5n r22nr andcnz

(z) is the wave func-
tion of the one-dimensional harmonic oscillator. The over
factor 2 allows for the twofold degeneracy of a state w
given nz ,Nr ,umu. nnr ,nz

(T) is the Fermi-Dirac occupation
number analogous to Eq.~2.5!. The numerical results shoul
again be compared with the Thomas-Fermi approximatio
T50 @7#

r~r ,z!5
Nl

RF
3

8

p2S 12
r 21l2z2

RF
2 D 3/2

, ~3.6!

whereRF5(48Nl)1/6s is the so-called Fermi radius of th
density distribution.

We restrict ourself to a plot ofr(r ,0) andr(0,z) ~cf. Fig.
9!. In transversal direction the density at zero temperat
shows only very slight deviations from the Thomas-Fer
result. In contrast, the density in longitudinal directio
shown on the right exhibits oscillations around this appro
mation. These oscillations are mainly due to a steplike
havior of the occupation numberNnz

of the oscillator states
in longitudinal direction, which is due to the filling of new
transversal states. The steps have a width of 1/l. In addition,
Nnz

decreases much more slowly~average derivative propor

tional to l) than the occupation numberNnx
for the trans-

versal states@average derivative proportional to 1/l; here we
considerr(x,y5z50)#. As a result, the longitudinal densit
profile r(0,z) receives a bigger contribution from highe
states than the transversal one, so one can still see the va
maxima of high oscillator states in the first case, but no
the latter.

FIG. 8. Specific heat for a cigar-shaped trap as a function oN
at kBT/\v50.044. The arrows point toSar ,0

(a r55 –7!. The inset
shows the number range 750,N,850 in more detail.
ll
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We finally note that for oblate traps the effects are ba
cally the same as in prolate traps. The behavior of the den
profiles is interchanged; the above-mentioned oscillati
occur in the transversal density profile and disappear in
longitudinal direction.

IV. CONCLUSION

Our calculations have shown that quantum statistical
fects on the easily accessible observables of a trapped F
gas are restricted to the regime of rather small atom num
e.g., belowN51000. For larger atom numbers quantum s
tistical effects can be more easily understood in terms o
local-density approximation@7,11#. Our work has been car
ried out using the grand canonical ensemble. It is kno
from the ideal Bose gas that the grand canonical and
canonical ensemble give differing predictions@8#. However,
the deviations are often smaller than the difference betw
the interacting and the interaction-free case. Problems s
as artificial fluctuations in a grand canonical ensemble
bosons will not occur for fermions. For that reason we do
dwell on a comparison of the different ensembles here.

The present study of an ideal Fermi gas showed so
remarkable effects of the shell structure in the harmonic
tential visible, e.g., in Fig. 1. For areal Fermi gas the atom-
atom interactions will introduce an additional dependence
the chemical potential on the particle number, which w
smoothen out the steps in Fig. 1. A quantitative prediction
this effect depends on the relative magnitude of atom-a
interactions and the experimentally controllable energy g
\v. As mentioned in the Introduction, an effective suppre
sion of the interactions in the ultracold regime can be attr
uted to the suppression ofs-wave scattering for fermions in
identical substates. Therefore, the ideal-gas behavior m
still be visible provided the harmonic potential is ste
enough.

BCS-like behavior as discussed in@4,5# requires two spin
states to be trapped. The effects of the harmonic potentia
that situation have been allowed for in local-density appro
mation in @5#, i.e., for large atom numbers. Because of t
sensitivity of the BCS transition to the difference of the ato

FIG. 9. Densityr for a cigar-shaped trap. The left part show
the density in transversal direction forz50, the graph on the right
is the density in longitudinal direction on the symmetry axisx
5y50). The unbroken lines are numerical results forT50, the
dashed lines come from the Thomas-Fermi approximation. N
that the ‘‘Fermi radius’’ in the longitudinal direction is about 1/l
'13 times larger than the transversal one.
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numbers in both spin states, however, it remains a challe
to observe a BCS transition experimentally. By contra
shell effects, as discussed in this paper, should be visible
suitable range of small atom numbers and sufficiently la
trap frequencies.
an

et

n,
tt.

et,

r,
06
ge
t,
a

e

ACKNOWLEDGMENTS

We appreciate stimulating discussions with A. Schen
and C. Zimmermann. H.W. acknowledges financial supp
by the DFG under Grant No. Wa 727/6.
for

s

,
ev.
@1# M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wiem
and E. A. Cornell, Science269, 198 ~1995!.

@2# C. C. Bradley, C. A. Sackett, J. J. Tollet, and R. G. Hul
Phys. Rev. Lett.75, 1687~1995!.

@3# K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Drute
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Le
75, 3969~1995!.

@4# H. T. C. Stoof, M. Houbiers, C. A. Sackett, and R. G. Hul
Phys. Rev. Lett.76, 10 ~1996!.

@5# M. Houbiers, R. Ferwerda, H. T. C. Stoof, W. I. McAlexande
C. A. Sackett, and R. G. Hulet, Report No. cond-mat/97070

@6# H. T. C. Stoof~unpublished!.
,

,

.

@7# D. A. Butts and D. S. Rokhsar, Phys. Rev. A55, 4346~1997!.
@8# The difference between different statistical ensembles

bosons is investigated in H. D. Politzer, Phys. Rev. A54, 5048
~1996!; C. Herzog and M. Olshanii,ibid. 55, 3254~1997!; M.
Wilkens and C. Weiss, J. Mod. Opt.44, 1801~1997!.

@9# J. P. Blaizot and G. Ripka,Quantum Theory of Finite System
~MIT Press, Cambridge, MA, 1986!, Chap. 6.

@10# M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn
D. S. Durfee, C. G. Townsend, and W. Ketterle, Phys. R
Lett. 77, 988 ~1996!.

@11# J. Oliva, Phys. Rev. B39, 4204~1989!.


