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Mesoscopic Fermi gas in a harmonic trap
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We study the thermodynamical properties of a mesoscopic Fermi gas in view of recent possibilities to trap
ultracold atoms in a harmonic potential. We focus on the effects of shell closure for finite small atom numbers.
The dependence of the chemical potential, the specific heat, and the density distribution on particle number and
temperature is obtained. Isotropic and anisotropic traps are compared. Possibilities of experimental observa-
tions are discusseflS1050-294{08)03502-]

PACS numbdps): 03.75-b, 05.30.Fk

I. INTRODUCTION of the assumptions underlying our theoretical approach is

L . . . .discussed.
The recent realizations of Bose-Einstein condensation in

dilute atomic vaporg1-3] have stimulated not only many
investigations on Bose atoms but also studies of degenerate
Fermi gases. As opposed to charged Fermi gases, i.e., nucle-
ons or electrons in solids, the effects of Fermi statistics in A. Degeneracies and the Fermi edge

neutral atomic gases occur at much lower temperalyps We first study the isotropic harmonic trap with potential
cally below 10’ K) and at densities that allow a treatment energy

as dilute quantum gas because of the weak interatomic inter-

actions. Due to the selection rules for collisiorspin- M w? 2, .2, 2

polarizedfermionic alkali atoms, such &.i or “%K in mag- V= —— (X +y*+z ) 2.1
netic traps, remain metastable in the regime of quantum

statistical degeneracy. Due to Fermi statistics the lowest sca@nd frequencyw because of its distinct features compared
tering channel §-wave scatteringis closed for atoms in with the anisotropic trap studied below. In this case the de-
identical magnetic sublevels. Therefore, an ultracold spingeneracy of states with equal energy

polarized Fermi gas will be less influenced by interactions E.=(v+32ho

than the ultracold Bose gasgls-3]. Also a BCS transition as v
studied in[4,5] is naturally excluded here. The only remain- js given by
ing interaction is the magnetic dipole-dipole interaction be-

tween the atoms. An estimate of its contribution to the mean

field [6] yields (Vpp)=(hay/M)(r~3), where M is the

atomic mass andy<10~1°m. This effect is neglected here.

The purpose of the present paper is rather to consider tHeE-» €dual to the number of simple partitionsiofs a sum of

stationary features of an ideal Fermi gas in isotropic or anihree integersv=uv,+v,+»,. Sinceg, gives the degen-
one finds the total numbé&;,,

isotropic harmonic traps. Since our results are based on th%][acy of a shell of engrr]gﬁy, lor h
numerical calculation of the state sum without further ap-0 quantum states with energy smaller thap as the sum

proximation, they are complementary to the recent paper ofVer the shells &v=<a,

Butts and Rokhsaf7], where a continuous spectrum and a
Thomas-Fermi approximation were used. That treatment be- > g9,=S,. (2.3
comes exact in the limit of large particle numbers. In con- v=0
trast, we focus here on the effects of small particle numbersrhe sums
where the shell structure still affects the behavior of the
many-particle system. 1

The outline of the paper is as follows. In Sec. Il we in- Se=glat(a+2)(a+3) (2.4
vestigate the case of an isotropic harmonic trap. We analyze
the influence of the shell structure on the chemical potentiatlefine the sequencéS,}={1,4,10,20,35,56...} and so
and the specific heat as a function of number and temperderth. Note that each oscillator state is assumed to be filled
ture. For small particle number, density distributions deviat-with a single fermion since only one spin orientation is con-
ing from the Thomas-Fermi distribution are obtained. In Secfined by the magnetic trap.
[l the anisotropic trap is considered with respect to chemical For simplicity, our calculations are done using the grand
potential, specific heat, and density. The deviations from theanonical ensemblg8]. The thermal occupation of a state
isotropic trap are discussed. In Sec. IV the results are sunwith energy E, at a temperaturkgT=1/8 is given by
marized in view of experimental realizations, and the validityFermi-Dirac statistics as

Il. PROPERTIES OF THE FERMI GAS
IN AN ISOTROPIC HARMONIC TRAP

gy=%(v+l)(v+2), (2.2
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The definition of the fugacity =exp{flu—(3/2)hw]} ab- 20 be T
sorbs the zero-point energyl.is the total number of particles g po =008 o 1
in the trap. For a given particle number one can determine 00 5'0 1(')0 15'0 200

the Fermi energy

2.7 FIG. 1. u(N) shows a steplike behavior following the continu-
ous approximation in Eq2.11). The dashed and dotted curves are

where v is the shell up to which the trap levels are filled displaced vertically by-1 and—2, respectively.

with particles at temperature=0. In this limit (83— «) the

Fermi-Dirac distribution approaches a step function. Notea “magic” number S,. However, if a shell is closedN

that in the case of a mesoscopic ensemble the zero= sVF), u takes the valueu=r%w(ve+2), which is very

temperature equation close to the value of the Thomas-Fermi resulSgt (solid

line in Fig. 1. As can be shown by asymptotic expansion,
g,0(vg—v)=N (2.9 the two curves intersect approximately Ht=S, and N
0 =(S,+S,_1)/2, respectively, i.e., at total or half filling of
shells.

This information is displayed in detail in Fig. 2, giving the
dependence oju on the temperature around the valbie
=5;=120. At T=0, theN=119 curve still approaches the
previous plateau valug/#iw=7+3/2, whereas th&l=121
curve has to approach the valpés o =8+ 3/2.

EF:(VF+3/2)h(1),

M s

14

does not have a solution for eabh but only for the discrete
set of total particle numbeld e {S,}. ForN&{S,} we may
still define vg=[xg] as the smallest integer equal to or
greater than the exact solution of EG.9),

Xe=A+ i -2, (2.9 The temperature dependencewfan be calculated ana-
3A Iytically in the limits of high and low temperature. The high-
hereA is i b temperature region of Fig. 2 is well described by the
WREreA Is given by Sommerfeld-like formuld7]
A=(3N+9N2—1/27)1", (2.10 22 KT\ 2
. . m(TM=Ep| 1= —( = |, (212
The expressioltr =% w([Xg]+ 3/2) has with be compared to 3\ Er

the Thomas-Fermi approximation for the Fermi edge,

where the factorr?/3 replaces the factor ofr?/12 of the
usual case of fermions in a box. We note that for high tem-
peratures the exact result fobr=119 approaches the Som-
merfeld approximation foN=120 (see Fig. 2

Er=fw(6N)Y3 (2.11)

B. Calculation of the chemical potential

We now turn to the determination of the most important
properties of the ideal gas. The fugacity and the chemical

potential, respectively, are obtained by a numerical solution ol II:II: Hg el
of Eq. (2.6) for given temperature and particle number. This 925 | \ ~ N=121 ------ 4
is exact inasmuch as it does not invoke the Thomas-Fermi u N émeaf aPIi_ffOii —————
approximation. The results are then analyzed in certain limits 7, o ommmerteid ==
below. Figure 1 shows the dependence of the chemical po-

tential « on the atom numbeN for small temperatures. 875

Whereas the solid lines correspond to the Thomas-Fermi ap-

proximation, the three other curves were obtained numeri- 8.5

cally by truncating the sum in E2.6) at sufficiently highw.

They display a steplike variation that becomes increasingly 8.25 . . . . L L

smoother for higher temperatures. The step function will ap- 0 02 04 06 08 1 1.2
pear to be broken into smaller steps in the anisotropic oscil- %

lator case studied below. Here the steps occur whenever a

shell is saturated ana: acquires the next higher integer
value. u converges to a certaifi‘plateau”) value fiw(vg
+3/2) in the limit T—0 for all N that do not coincide with

FIG. 2. u(T) for the isotropic trap. The Sommerfeld approxi-
mation is forN=S,=120, but agrees very well with the numerical
curve forN=119. This occurs also for other valuesNf
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In the low-temperature regime, the variationgfcan be  Assuming thatAN is a constant for very low temperatures,
analyzed in analogy to the chemical potential of electrons irone can solve Eq2.22 for the chemical potential
an intrinsic semi-conductor. We first consider the magic

numbersNe{S,}. Let N.(T) be the number of atoms ex- 3 Oy
cited to states abovEr andN_(T) the number of unoccu- m(T)=tho| ve+ 5| —KTIn| F=5-1].  (2.23
pied stateg"holes”) at or belowE :
w This expression varies linearly with for nonvanishingAN,
No(T) = S - 9, , 2.13 with i'Fs slope changing. sign alN:gVFIZ. If the highest
v=vpt+l {Trexpfhov)+1 shell is less than half f|IIedA(N<gVF/2), 1(T) decreases
linearly from M(O)ZEVF§ if it is more than half filled, it
VE
1 increases linearly from the(0)=E,_. The exact result then
NATD=3 g, 1- — (219 y from the(0)=E, .
v=0 TrexpBhov)+1 approaches the Sommerfeld curve. The range of valitlify
of the linear approximation can be roughly determined by
For low temperatures, i.e., for equating
kBT<EvF+1_,U/I kBT<M_ EF! (215) hw
TEKATM(QF— 1) (2.249

the number of “particles” and holes can be approximated as
since the maximum deviation from the Sommerfeld approxi-

N-(T)=Z. e AErerims), (216 mation equaldiw/2 at AN=1 (see Fig. 2 For vg=7 one
B obtains this range alsgAT/%iw=<0.14. For larger values of
No(T)~X_e Pr7Fr, (217 AN the slope is smaller and the validity range may be larger.

where C. Specific heat

* The discontinuity of the chemical potential manifests it-
S.= X ge AEEe), (2.189  self most drastically in the specific heat of the gas. It is

vEvEtl calculated from the total energy
- = - B(EE-E,) . g,hiwv
3= ge AEE (2.19 um=3 (2.29
»=0 =0 {lexp(Bhov)+1
are essentially Boltzmann sums. Combining the above equgsig
tions, one arrives at
o Ju(T)
No(T)N(T)=3.3 _e Fhe, (2.20 C(M= T (2.26

From this condition the chemical potential can be deter-_l_he usual Sommerfeld approximation for low temperatures
mined. As forNe{S,}, the Fermi shell is totally filled at P P

T=0, N(T) must equalN_(T) in that case, and one ob- Y¢/0S
tains from Eqs(2.16—(2.20 the low-temperature behavior

E>)
2< '

C(m_, kT
NK 7 ha(6N) P 227

kgT
,U,(T)=ﬁw(v,:+2)—7|n (2.21)

whereas the classical high-temperature limit eq@lgNk
Thus 1. (0) lies in the middle of the “gap” betweeBr and  =3. Here we determin€(T) for finite N from the state sum
Er+7%w, like in an intrinsic semi-conductor where the va- and compare it with the Sommerfeld approximation. The re-
lence band is filled at zero temperature and the chemicaults are shown in Fig. 3, where th® scaling is already
potential lies in the middle of theand gap It shows a slow included on the ordinate. In the limit of ultralow tempera-
linear decrease with increasing temperature, governed by thares the finite-size effects result in a deviation from the lin-
small factor InE-/3.). ear Sommerfeld prediction. For higher temperature the spe-
If, on the other handN & {S,}, one can calculatg.(T) cific heatC(T) approaches the Sommerfeld res@it27).

from the following approximation. For very low tempera- At very low temperature€(T) remains zero instead of
tures the Fermi function is well approximated by=1 for  increasing linearly. This is consistent with the assumptions
v<vg andn,=0 for v>v¢. The number of occupied states leading to Eq(2.23), which are confirmed by the calculation
in the Fermi shelAN=N-S,__, then reads approximately of the state sums. In the ultralow-temperature regime no
states above the Fermi energy are populated due to the en-
9 ergy gap, the total energy does not increase, @) equals
N= i ) (2.2  Zero. This explanation seems to be correct also for the case

{lexp(Bhove)+ 1 of closed shells Nl=84,120,9880), where Ed2.23 does
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FIG. 5. Total specific heat as a function of the particle number at

FIG. 3. C(T) appropriately scaled. The linear curve is the Som_diﬁerent temperatures. Again=kgT/% o.

merfeld resul{2.27). The deviation at largkgT/A @ from the linear
behavior occurs only for smaN because for high temperatures e
(6N)Y3C(T)/Nk— 3(6N)* due to the equipartition theorem. D. Density distributions

Density distributions in traps can be measured quite eas-

not hold. Note that the range wheB4T) remains zero is the ily. In an isotropic oscillator, one expects radially symmetric

same as the range of validity of the linear approximation fordlstnbunons. The radial .wave functlom;:]r 1 (cf., e.g.,[9])
wu(T). are numbered by a radial qL!antum numberand angular

At intermediate temperatures a strong nonmonotdic Momentuml. The corresponding energy &, =% o[2(n,
dependence of the specific heat at constaatcurs, roughly —1)+1+3/2] sov=2(n,—1)+I. To compute the total den-
at those temperatures where the linear approximation ceasgy one has to sum up the squared wave functions weighted
to be applicable. The origin of this behavior is revealed incorrectly withn,,

Fig. 4. Each time a shell closure occug,N) runs through w0 [v/2]+1
a maximum. At these points, the system can access a new + 2

- ' . o pm=2 n(T) X lun (D2, (2.28
totally empty shell, at the expense of adding the gap energy v=0 n=1 4w r

to the new particles. On the contrary, the minima occur half-
way between successive shell closures. In Fig. 5 the totabherel=v—2(n,—1). The factor (2+ 1)/4s is due to the
heat capacity is plotted versi without a rescaling. summation over all states with=—1, ... |. In Fig. 6,p(r)
Figure 3 shows another interesting detail: The two limit-is displayed for different particle numbers and temperatures
ing curves for totally filled shellsN=84,120,9880) and half and scaled with the size of the trap ground state
filled shells N=102,142,10 270), respectively, do not de- = JA/Mw. The zero-temperature result from the Thomas-
pend onvg . Up tokgT/7w~0.5 the function (8l)Y3C/Nk  Fermi approximatiorcf. [7] and see E¢3.6); A=1] is also
does not seem to depend binexplicitly for the values con- shown.
sidered here, but only on the relative filling of the Fermi ~For N=120(closed shellye=7), one observes a central
shell. This is related to the fact that the dependen¢®)  mMinimum that disappears df=142 (half-filled shell, v¢
shown in Fig. 2 repeats itself around each valueifer
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FIG. 6. Spatial density in a isotropic trap as a function of the
FIG. 4. Specific heat as a function of the particle number atdistance to the trap center for different numbers of fermions. The
different temperatures and scaled withN)B”%. 7=k T/% » denotes  scaling parameters=\A/Mw is the width of the ground state.
the temperature in units of the level spacing. The arrows point tar'he unbroken lines denotg;T=0.1% 0, the dottedkgT=0.2% w
N=S, for v=1,...,11 (N=4,10,20,35,56,84,120,165, and the dashed ones are obtained from the Thomas-Fermi approxi-
220,286,364). mation atT=0.
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=8). This shell gets totally filled al=165 wherep(r) has 101.51 T ' ' ' ' ' '
a maximum atr=0. TheN dependence of the density iat
=0 is due to the fact that shells with oadddo not contribute u
to p(0) because they are made up of odd angular momentum  Aw 101.49
states that all have zero density at the origin. The curves for
ksT=0.1nw are almost indistinguishable from the=0

curves. The minima and maxima are still visible T 101.47
=0.2% w but disappear for temperatures abdd =7 w.

For not too high temperatures the density approaches the
Thomas-Fermi result. Interestingly(r) is almost equal to 10145 | 10144 . ' .
this approximation for half-filled Fermi shells. 0

101.5

101.48

10L.46

101 .44 1 1 1 1 1 1 1
0 02 04 06 08 1 12 14

Ill. THE ANISOTROPIC CASE %
w

A. Chemical potential and heat capacit
P pacty FIG. 7. u(T) for a cigar-shaped trap with =0.076 andN

_Experimentally realized magnetic traps are usually at least 1000. The arrow denotes the energy difference between the Fermi
slightly anisotropic. In this section we therefore study a dedevel and the next higher state. The inset displays the linear and

formed oscillator with a potential next higher approximation taking into account the states directly
) below and above the Fermi level.
w
V= > (X2+y?+\?2%), (3.1)  The Sommerfeld formuld2.12 for the chemical potential

holds equally in the anisotropic case.

i.e., we allow for prolate and oblate ellipsoid isoenergy sur-_ " the following, we give some of the results for aniso-
faces. Accordingly, the energy eigenvalues are tropic traps. We concentrate on the cas_e of a h.eav[ly de-
formed cigar-shaped trap<1 (in fact, A=0.076, like in
[10]). We first consider the dependence of the chemical po-
, (3.2 tential on the temperature in the low-temperature regime.
The graph ofu(T) for 1000 particles displayed in Fig. 7
shows a very intriguing feature: It starts linearlyTat 0 as
where v, and v, count radial and longitudinal excitations, predicted by Eq(2.23), but then goes through a local maxi-
respectively. For given, there are stillg, =»,+1 degen- mum. The highest occupied stateTat 0 is (5,22). Sog,,
erate states with different numbers of excitations in the two=6 and with Eq.(3.3 AN=S;,,—N=5. The next higher
degenerate transversal directiofmumber of partitions of state is (6,9). The correction to the linear approximation in-
v, =+ vy). We use the notationig ,v,) for these states. cluding this state basically shows that it is responsible for the
The N dependence of quantities at zero temperature turnical maximum. Indeed, the energy difference between the
out to have more features than in the isotropic case. FdWO states corresponds kgT=0.157 A, which is roughly
example, only in the oblate cas& % 1) the notion of shell ~at the local minimum(cf. arrow in Fig. 7. Thus, at the -
closures still exists because only then is it energetically famaximum of u(T) the next higher level above the Fermi
vorable to fill up a transversal shell with degeneragy level becomes thermally accessible andiecreases.

before populating a higher longitudinal state. However, thes% As in the isotropic case, the specific heat shows deviations

E,,r ’,,Zzﬁw vi+1+N v+ =

2

new structures occur on a smaller scale of particle numbe om the Sommerfeld approximation at temperatures where

(due to the smaller degeneracy facjosmd might be less the linear approximation for(T) begins to fail. IfT is fixed

i i 13
accessible in experiments with a finite uncertainty of thel® @ _value in that region, the gfaph_ofmﬁ) C/Nk as a
atom number. function of particle numbe(Fig. 8) exhibits structure on two

Formulas analogous to Eq2.4) can only be given as scales of the particle number, considerably more complex

sums. IfA<<1, one can count all states up to a certain exci—than the isotropic analog in Fig. 4 The big jumps take place
tation (a, ,a,) by whenever there are enough particles to access a new shell of
r»=z

the transversal oscillator. The arrows denote the vaﬂ,yre,g

for @,=5-7. Between two such particle numbe(say,
, 3.3 Sar,o,SarH,O) there are 13 major peaks, corresponding to

1/A~13 longitudinal states being filled before the next trans-
versal shell can be reached. The finer substrudsee inset

of Fig. 8 can also be explained easily: If one starts with the
) ) state @,,0), thenext state is (Qa,/\]+1), followed by

to E, .. ForA>1, there is an analogous expression. '”(1,[(ar—1)/)\]+1), etc. Consequently, there should be
general, the exact Fermi energy can only be found by searclmaxima before , ,1) is reached. In the case wherea i

ing the lowest state(, ,v,) with N<S, , . However, the integer this substructure disappears.

Thomas-Fermi approximation for the Fermi energy is only S

slightly modified[7] B. Density distributions

_ In order to calculate the density distribution we make use
Er=fw(6NN)Y3 (3.4  of the transverse symmetry and obtain

ay— Vy

N

Su 0=

r

ar+[a ]
Vr( +a,+1

z ~
v, =0

where[ x] denotes the largest integer less than or equal to
Thus one needBl=Sar a, particles to populate all states up
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FIG. 9. Densityp for a cigar-shaped trap. The left part shows
the density in transversal direction fae=0, the graph on the right
0 by L L4 L L R is the density in longitudinal direction on the symmetry axs (
400 500 600 700 800 900 1000 1100 1200 =y=0). The unbroken lines are numerical results Tor0, the
N dashed lines come from the Thomas-Fermi approximation. Note

that the “Fermi radius” in the longitudinal direction is about1/

FIG. 8. Specific heat for a cigar-shaped trap as a functioN of ~13 times larger than the transversal one.

atkgT/hw=0.044. The arrows point 8, o (a;=5-7. The inset

< i il. . .
shows the number range 7504850 in more detail We finally note that for oblate traps the effects are basi-

. cally the same as in prolate traps. The behavior of the density

_ ~ 2 profiles is interchanged; the above-mentioned oscillations
p(r,z)=2 r%:O Ny, 'Vz(T)HYE:O |unr"’r_2nr(r)l’//nz(z)| ' occur in the transversal density profile and disappear in the
(3.5 longitudinal direction.

[v /2]

whereUnr,Vr_an(r) is the radial wave function of a two- IV. CONCLUSION

dimensional harmonic oscillator {=x?+y?) with magnetic Our calculations have shown that quantum statistical ef-
quantum numbem| = v, —2n, andy, (2) is the wave func-  fects on the easily accessible observables of a trapped Fermi
tion of the one-dimensional harmonic oscillator. The overallgas are restricted to the regime of rather small atom number,
factor 2 allows for the twofold degeneracy of a state withe.g., belowN=1000. For larger atom numbers quantum sta-
given v,,N,,|m|. n, ., (T) is the Fermi-Dirac occupation tistical effects can be more easily understood in terms of a

number analogous to E.5). The numerical results should local-density approximatiofi7,11]. Our work has been car-

again be compared with the Thomas-Fermi approximation gied out using the grand canonical ensemble. It is known
T=0[7] from the ideal Bose gas that the grand canonical and the

canonical ensemble give differing predictior®d. However,
32 the deviations are often smaller than the difference between
, (3.6) the interacting and the interaction-free case. Problems such
as artificial fluctuations in a grand canonical ensemble of
bosons will not occur for fermions. For that reason we do not
WhereRF=(48N)\)1’60 is the so-called Fermi radius of the dwell on a comparison of the_ different ensembles here.
density distribution. The present study of an ideal Ferml_ gas showed ‘some
We restrict ourself to a plot g5(r,0) andp(0.2) (cf. Fig. remarkable effects of the shell structure in the harmonic po-

9). In transversal direction the density at zero temperaturd&ential visible, e.g., in Fig. 1. For eeal Fermi gas the atom-
shows only very slight deviations from the Thomas-Ferm;iatom interactions will introduce an additional dependence of

result. In contrast, the density in longitudinal direction the chemical potential on the particle number, which will
shown on the right exhibits oscillations around this approxi-Smoothen out the steps in Fig. 1. A quantitative prediction of
mation. These oscillations are mainly due to a steplike bethis effect depends on the relative magnitude of atom-atom
havior of the occupation numbeé¢, of the oscillator states interactions and the experimentally controllable energy gap
. - o o2 . hw. As mentioned in the Introduction, an effective suppres-
in longitudinal direction, which is due to the filling of new

X o ion of the interactions in the ultracold regim n rib-
transversal states. The steps have a width »f Y addition, sion of the interactions in the ultracold regime can be attrib

N d h low derivati uted to the suppression efwave scattering for fermions in
v, dECTrEases much more sio Bverage derivative propor- identical substates. Therefore, the ideal-gas behavior might

tional to A) than the occupation numbé¥, for the trans-  stjl| be visible provided the harmonic potential is steep
versal statefaverage derivative proportional tonl/here we  enough.

considerp(x,y=z=0)]. As a result, the longitudinal density BCS-like behavior as discussed[#,5] requires two spin
profile p(0,z) receives a bigger contribution from higher states to be trapped. The effects of the harmonic potential in
states than the transversal one, so one can still see the varidihait situation have been allowed for in local-density approxi-
maxima of high oscillator states in the first case, but not inmation in[5], i.e., for large atom numbers. Because of the
the latter. sensitivity of the BCS transition to the difference of the atom

r.2) N 8 L r2+a2z2
rz)=—m—| 1-————
P R 72 R2
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numbers in both spin states, however, it remains a challenge ACKNOWLEDGMENTS
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shell effects, as discussed in this paper, should be visible in a We appreciate stimulating discussions with A. Schenzle
suitable range of small atom numbers and sufficiently largeand C. Zimmermann. H.W. acknowledges financial support
trap frequencies. by the DFG under Grant No. Wa 727/6.

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, [7] D. A. Butts and D. S. Rokhsar, Phys. Rev58, 4346(1997.

and E. A. Cornell, Scienc269, 198(1995. [8] The difference between different statistical ensembles for
[2] C. C. Bradley, C. A. Sackett, J. J. Tollet, and R. G. Hulet, bosons is investigated in H. D. Politzer, Phys. Re\s4A5048
Phys. Rev. Lett75, 1687(1995. (1996; C. Herzog and M. Olshaniibid. 55, 3254(1997); M.

[3] K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, Wilkens and C. Weiss, J. Mod. Opt4, 1801(1997.
D. S. Durfee, D. M. Kurn, and W. Ketterle, Phys. Rev. Lett. [g] J. P. Blaizot and G. RipkaQuantum Theory of Finite Systems

75, 3969(1995. . (MIT Press, Cambridge, MA, 1936Chap. 6.
[4] H. T. C. Stoof, M. HOUblerS, C. A SaCkett, and R. G. Hulet, [10] M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. M. Kurn,
Phys. Rev. Lett76, 10 (1996. D. S. Durfee, C. G. Townsend, and W. Ketterle, Phys. Rev.

[5] I\CA.:o;biirs, R. I;egvecr‘dz T TiqC. Sto'c\>lf, W. I.ndAIt;e;?g;jggé Lett. 77, 988(1996.
- A Sackett, and R. G. Hulet, Report No. cond-ma [11] J. Oliva, Phys. Rev. B9, 4204(1989.
[6] H. T. C. Stoof(unpublished



