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In this paper we use microscopic arguments to derive a nonlinear @oebes equation for trapped Bose-
condensed gases. This is made possible by considering the equations of motion of various anomalous averages.
The resulting equation explicitly includes the effect of repeated binary interactionsarticular laddens
between the atoms. Moreover, under the conditions where dressing of the intermediate states of a collision can
be ignored, this equation is shown to reduce to the conventional Gross-Pitaevskii equation in the pseudopo-
tential limit. Extending the treatment, we show first how the occupation of ex(ige particlg states affects
the collisions, and thus obtain the many-bdynatrix approximation in a trap. In addition, we discuss how
the bare particle many-bodl matrix gets dressed by mean fields due to condensed and excited atoms. We
conclude that the most commonly used version of the Gross-Pitaevskii equation can only be put on a micro-
scopic basis for a restrictive range of conditions. For partial condensation, we need to take account of inter-
actions between condensed and excited atoms, which, in a consistent formulation, should also be expressed in
terms of the many-bodi{ matrix. This can be achieved by considering fluctuations around the condensate
mean field beyond those included in the conventional finite temperature mean field, i.e., Hartree-Fock-
Bogoliubov, theory[S1050-294{®8)00302-3

PACS numbg(s): 03.75.Fi, 05.30.Jp, 31.15.Ne

I. INTRODUCTION interatomic potential by an effective one has also been ex-
tensively discussed by Popov in the context of effective ac-
The observation of Bose-Einstein condensatiBEC) in  tion path integral§16]. Following the work by Huang and
alkali atomic gasefl—3] strongly motivates a description of Yang [17] and Lee, Huang, and Yand8], this effective
the evolution of the condensate that takes full account of thénteraction is often expressed in the usual dilute Bose gas
microscopic nature of atomic interactions in a trap, bothpseudopotential form. In this paper, we will discuss the issue
close to and far from equilibrium. The conventional descrip-of an effective potential by means of an alternative approach,
tion relies heavily on the well-known Gross-Pitaevskii equa-somewnhat similar to Beliaev’s work for the homogeneous
tion (GPB [4], also known as the nonlinear Schinger  gaq We believe that the approach presented in this paper is

equation. In this equation, one assumes that the atoms are gl mewhat simpler to follow and more illustrative than pre-
effectively condensed and the atomic interactions can be acs

el deled b dopotential dint ﬂtous methods. More importantly, it allows us to go beyond

;:#ra €ly mode ett Y a Fself[hoq%_ent'r?' expresse 'rl ermsk e weakly interacting limit in a very natural and straightfor-

€ S-wave scattering lengtn. IS eory appears 10 Mak§, - 4 extension of our treatment. It is this latter extension
good predictions about the condensate’s propeftiesld

e : . X . that will form the main part of this paper.
and it is obviously desirable to put this phenomenological We will thus derive an expression for the condensate
theory on a clear microscopic basis. In fact, in spite of its P

frequent use, a direct link of this effective interaction ap_meaq—f|eld evoluthn in terms of the many-body transition
proach to microscopic properties of the gas that includes &7 SIMPly T) matrix. The many-body approach we shall
discussion of the effect of the mean fields on the intermedidiscuss is not limited to cases close to equilibrium, and there-
ate states of a binary collision, appears to be lacking. In thifore complements earlier work in this area. We would like to
paper we will address such issues in a derivation of a nontention the work by Bijlsma and Sto¢f9], who used a
linear Schrdinger equation based on these microscopicvariational approach to calculate equilibrium properties, such
properties and what we believe are reasonable assumptioB$ the normal and anomalous self-energies, in the many-body
about them. T-matrix approximation. The many-bodly matrix has also

In the first part of the paper we shall deal with the weaklybeen recently discussed in the context of the homogeneous
interacting cas¢14] and show how one can introduce an gas by Shi[20]. Furthermore, one of us has employed a
effective interaction that takes account of all possible refunctional formulation of the Keldysh theory to derive the
peated binary atomic collisions. This limit of weak interac- time-dependent Landau-Ginzburg theory for the long-
tions has been treated quite extensively in the literature. Wevavelength dynamics of an inhomogeneous weakly interact-
note the work of Beliae15] who obtained an effective ing gas at nonzero temperatures, also in the many-body
interaction by means of a diagrammatic perturbation expan¥-matrix approximatiorj21]. In this paper we will show, by
sion for the homogeneous gas. The replacement of the actudifferent methods, how to derive a time-dependent general-
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ized nonlinear Schidinger equatioh (NLSE) in a trap for One might expect the zero-temperature evolution of the
both zero and nonzero temperatures based on microscopigean field of a trapped Bose-Einstein condensate in the sim-
arguments. We shall also discuss the physical significance ¢flest version of the mean-field theory, to be described — in
other contributions that are left out of such an equation, anghe occupation number representation — by
thus discuss the validity of existing mean-field theories.

In an earlier publicatior{22], we derived equations of . dzy(1) _ (0)

. ifi——=> h®(t)z(t). (6h)
motion for thermal averages of products of up to three dt K
(single-particlg fluctuation operators. In this way, we ob-
tained a time-dependent versii8,24 of the Hartree-Fock- Here z,(t) corresponds to the time-dependent mean value
Bogoliubov (HFB) equationg 25—-2§ in terms of actual in- amplitude of thenth trap level which is obtained from the
teratomic potentials, and further generalized them bysingle-particle operatord,(t) according to the shiff28]
considering more complex anomalous averafeplets).
This closed system of equations can be used in two different an(t) =2zx(t) +Cy(1). (2
ways: in the first approach, all averages of products of fluc-
tuation operators evolve on similar time scales, so that thélere the operator&, are defined by the usual decomposition
equations need to be solved self-consistently. Such a treagf the Bose field operatow (r,t) into any complete set of
ment enables us to investigate the possibility of further ordebrthonormal single-particle states,(r), namely,
parameters being present in our system. We should note that
the possibility of pairing as a competing transition to BEC in - R
the case of attractive interactions has already been investi- \P(r,t):; Pn(r)an(t). ®
gated in[29]. The equations of22] further allow for the

possibility of three atoms grouping together, such as, f0fi {his simplest approach, the time-dependent condensate

example, condensation of triplef80]. However, there are mean field depends on the Hartree-Fock Hamiltomigt(t)
also situationgin particular a dilute gas with repulsive inter- given by

actions, in which the higher-ordefanomaloug correlations
vary on faster time scales, enabling us to formally eliminate . R
them from the equations of motion, i.e., by integrating over hﬁ?ﬁ(t)z(n|5|k)+z (nilV|]jk)zF (t)z;(1). (4
their effect during collisions. In this paper we will show how &
this formal (adiabati¢ elimination of the pair correlation in R
our HFB equa‘[ions gi\/es rise to a nonlinear S'dimger Here E contains the kinetic energy and trap potential and
equation that includes the nondressed repeated binary intefri|V|jk) represents the symmetrized form of the actual
actions(ladder$ at zero temperature. We shall furthermore (single-vertex interatomic potentia32] between a pair of
extend our treatment to nonzero temperatures, for which weolliding particles. This is defined in terms ¢f,(r) by
shall also need to eliminate the triplets mentioned above.

The equations of motion for averages of productsugf <ni|\7|jk>= %{(ni|V|jk)+(ni|\7|kj)}, (5)
to threg single-particle fluctuation operators have been given
in Appendix A, although we refer the reader{&2] for more  where
details. We emphasize that these equations do not merely
bring the bare patrticle ladder interactions into our formalism, .
but also include more complex effects, such as dressing and”'MJk)zf J drdr g (1) g (rOV(r=r" )i (r') g(r)
damping of intermediate states during collisions. In this pa- (6)
per, we discuss how — and in what limits — these micro-
scopic equations reduce to the conventionally used phenonandV(r—r’) represents the actual interatomic potential ex-
enological Gross-Pitaevskii expression. We also discuss thgerienced between two interacting atomseathcollisional
possibility of consistent theories outside these limits. Furvertex. Although Eg.(1) may on first sight appear to be
thermore, we explicitly mention what processes must be neequivalent to the conventional form of the GP4&,
glected in order to obtain a NLSE. In fact, we shall see one

has to neglect the effect of the condensate mean field and ~9d(r,1) h2v?

those due to the presence of excited atoms on the intermedi- ifi | om +Vtrap(r))(1)(rvt)

ate states of a binary collisiof81]. Identification of these

terms shows how to explore the deviation from the bare- +NUg| D (r,t)|2D(r 1), @)

particle T matrix due to dressing generated by the mean

fields. This treatment enables us to make qualitative predichis is not the case. The GPE takes account ofrefpeated

tions about the validity regime of the phenomenologicalcollisional processes via a pseudopotential of the form

GPE, an issue we hope to address computationally for inhov(r—r’)=Uq8(r—r’) whereUy=4mx#2%a/m [33]. On the

mogeneous gases in the future. contrary, the matrix element defined in Ef) represents the
instantaneousi.e., single-vertexinteraction between two at-
oms as depicted in Fig.(d).

To avoid confusion, we shall henceforth refer to the convention-  In this paper we will show that we can include the ladder
ally used equation as the GPE and the one we shall be deriving hegiagrams of Fig. (b) into our formalism, by considering the
as the NLSE. evolution of correlations of products of fluctuation operators
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field amplitudez,, in comparison with the duration of a
‘T typical binary interaction. This means that, in most of the
analysis given below, we are limiting ourselves to the case of
. i An i A0 net repulsive interactions between the atoms; i.e., we are not
@ (E)XM + (= >MN»\ allowing for BCS-type effectd29] to become important.
j k k i When extending our treatment to nonzero temperatures, we
will similarly need to assume slow evolution of the excited-
. ) . ) state populations, although this issue becomes rather subtle
\\‘ i \\‘ A" as we shall discuss in Sec. Ill C. In our subsequent calcula-
Wy tions we shall discuss when the thermal correlatiepisand
A T A T \ijjx vary on a much smaller time scale and show how they
oA . A can be formally eliminated in our treatment.
®) (E)X R T (E)X R This paper is divided into five parts. In the first part of the
paper we restrict ourselves to near zero temperatures, for
which it appears reasonable to neglect all effects of excited

I AMA- T

AW AN states. We thus obtain a NLSE that includes the foére
J'/ \ k k 7/ \J’ particle ladder interactions, where this effective interaction
potential arises from the adiabatic elimination of the anoma-
lous correlationk;, . This equation is then shown to reduce

densate mean fieldevel n) due to the instantaneous interaction of to the phenomenological Gross-Pitaevskii equation by means

two condensate atonfiabeled byj andk). In this, and all subse- of the usual pseudopotential approximation. In Sec. lll, we
quent figures, the curly line represents the vertex between two in€Xt€nd our treatment to nonzero temperatures. The first

teracting atoms located atandr’, respectively, and time runs Modification that comes about is the inclusion of the occu-
vertically upwards. We have explicitly drawn the two contributions Pation of virtually excited states into the ladder diagrams.
to the evolution of the condensate mean field due to the physicdiiowever, the finite number of excited atoms further neces-
nonsymmetrized matrix elements of E(f) separately. Each of Sitates the consideration of collisions between condensed and
these diagrams is associated with a factor &f {nto our final excited atoms. We thus show how ad[abatlc eI|rT_1|nat|on. of
equation for the evolution of,, as defined by Eq(5). In our ~ Aijk ~upgrades” the condensate—excited-state interaction
notation, continuous lines with one “free” end point represent con-pPotential to the ladder approximation. In Sec. IV, we show
densate particles, and have a factomssociated with thenithe ~ how the bare particle propagators get dressed by the conden-
dashed condensate line gives no such contribution, as it is the orgate mean field and by interactions with other excited atoms
whose evolution we are monitoring in this papei) shows the and discuss the consequences of identifying these terms in
cumulative effect of repeated binary interactions of this type, orour equations. We then discuss, in Sec. V, the validity of
ladder diagrams, in which an arbitrary numigeof loops (=0) several mean-field theories for both zero and nonzero tem-
may be present. Here, the final scattering iftondensatestatesn ~ peratures and in particular point out the inconsistency of the
andi has been mediated by other excited staggen by the ver-  conventional finite-temperature mean-field approdch.,
tical lines with arrows what is commonly referred to as HFBFinally, in Sec. VI,

we discuss some further effects of the mean fields on colli-
Cn which are given in Appendix A. These correlations influ- sions. The detailed form of the equations needed for the cur-
ence the condensate mean field according to the exact equant discussion has been reproduced in Appendix A, whereas

FIG. 1. (a) depicts the contribution to the evolution of the con-

tion [22] Appendix B gives an exact treatment of the condensate
dz, mean-field evolution up to second order in the interaction
ihazik: <n|E|k>zk+ij2k (ni|V|iK)[ 2z + wjiZf potential.
Il. LADDER INTERACTIONS IN A BARE PARTICLE
+2p 2+ Niji], (®) BASIS AT ZERO TEMPERATURES

where we have defined the quantities Let us initially assume that the atomic assembly is suffi-
i L L ciently dilute, so that we can treat the bare particles as

p;i=(CiCj), K=(&&;)=(C;Cw), weakly interacting quantities. In this limit, bare particles

: ; form a reasonable basis set for the system and can thus be

Nijk =(Ci C;C) = (&) E)- (9)  used for the description of the assembly. We shall take the

In obtaining Eq.(8) we have merely assumed the eXistencenonmteractlng parE of the single bare-particle Hamiltonian

of a mean fieldin the sense of Eg2)] and that the domi- In a trap as diagonal, by writing
nant coII|S|pns in our atomic assembly occur pairwise. (N|E|K) =t n Sy (10)
The main part of this paper deals with the microscopic
derivation of a nonlinear Schdinger equation for bare par- |If this basis accurately represents the state of the sy§tem
ticles in a trap, and we shall discuss in what limits it reducesall dressing of states by the mean fields can be ignotkedn
to simpler versions. The use of a NLSE necessitates a welthe anomalous average will evolve rapidly, thus enabling
defined and thus slowly varying condensate fraction, whictus to adiabatically eliminate it. The elementspofhowever,
in our formalism corresponds to a slowly evolving mean-vary on a slower time scale, as their evolution depends on an
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energy difference. This means that they should, in principlewhere we have define@8]
be retained in the equation of moti¢8) for the condensate
evolution. NearT=0, however, the occupation of excited — Ty
states is extremely scarce, so that we can, in the first in- AkJ_%« (ki VIm9[zmzst K. (13
stance, neglect its effect on the condensate evolution.
Within these approximations, E¢) reduces to We are now in a position to derive a NLSE valid &t
=0 with the actual interatomic potential of E@) replaced
by the two-bodyT matrix. Such an equation will be shown to
be equivalent to the conventional GPE if we replace The
matrix by the zero-range pseudopotential. This procedure is
In order to adiabatically eliminate the pairing,, we  analogous to that pursued by Beliaghb] for the homoge-
shall need its equation of motion given in Appendix A. We neous gas. The advantage of the approach presented here is
note that in a bare particle basistat 0, Eq.(A6) essentially  that it enables us to give criteria for the validity of the con-

. dz, .
|ﬁE=hwnzn+ij2k (ni|V[jk)[ZF zjz+ kjz" 1. (1)

simplifies to ventional approach and its application to the case of trapped
gases.
Ok Integrating Eq.(12) and substituting into Eq(11), we
Iﬁ_dtlzﬁ(wk+wj)Kkj+Akj7 (12) Obtaing g q ( ) g q( )’

d ~ )
i1 2 hwgzet S (niVMeZE 2zet S (nilV]jk)Z (1)
dt ims ijk

xf?—;ei<wk+wj><tt’>2 (JKIVIMS)[ zn(t)Z5(t') + K t)], (14)

where the integration is to be carried out in the interval . . datr’ , .
[to,t], in which the collision takes place. Since the gas is T22(E)=V+ >, V|Jk>J ﬁef'(‘”"m"*a(t*t (jk|V.
considered sufficiently dilute, the mean collisional duration K 17)
is negligible compared to the time between successive colli-

sions, enabling us to take the lint§— —c. In writing Q. Here E represents the energy of the collidifigare atoms
(14) we have made use of the approximation that the pairingior to the collision in the center-of-mass frafiie., in Eq.

« asymptotically relaxes to zero, so thaf(to)) =0 asto  (16), E=#%(wm+ ws)], whereag andk correspond to inter-

— —. Physically, this is the same as saying that thesgnediate trap eigenstates induced during the collision. How-
anomalous interparticle correlations are dominantly creategdyer, we point out that it is precisely the presence of the term
within a collision between condensate particles. kmdt"), which generate$28 to all orders inV, as can easily

A further crucial point to note is that, since we are trying pe seen by repeated use of E¢sl)—(13). We have hence
to derive a NLSE, we are implicitly assuming that the mean

value amplitudez;(t) is a slowly varying quantity, that is, it shown Eq.(16) to be valid to all orders iV, with 22
remains practically constant over the time scale in which th satisfying the following Lippmann-Schwinger relati¢a4]

correlationk varies. Thus, we are justified in allowing the natrap
quantities z;(t') present in the integrand of Eq14) to dt’
evolve freely with time by setting '”|'2B(E):\7+E \”/|jk>f We—i<wk+w,-—E>(t—tr)
ik
z(t) =z (t)et ait-t), (15) X(jk|T?B(E). (18

This modified form of the NLSE accurately represents a col-
lision between two condensate atoms occurring in a trap in
the absence of other particles, by taking account of all pos-
sible states via which the collision can proceed. Thus, Eq.
(18) includes the ladder diagrams for bare particles as de-
picted diagrammatically in Fig.(3).

In the above derivation of Eq16), we have repeatedly
used the assumption that the mean value of the condensate
field evolves more slowly than the anomalous averagee
have adiabatically eliminated. This assumption is indeed
which gives us the bare-particle two-bo@lymatrix in a trap  valid for the weakly interacting gas, as explained below. In
to second order in the interaction potentiglnamely, the low-temperature cas&k <A w) discussed in this sec-

If we now intitially limit ourselves to second order in the
interaction potentiaV, we note that we can disregard the
kmgt") term of Eq.(14), as its first contribution will be to
orderV2. Then, Eq.(14) reduces to

. dz, e
|ﬁa=hwnzn+gs<n||TZB(E)|ms>zi*zmzs, (16)
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\ lidity of our earlier assumption that the mean values evolve
"\N\/\r{( more slowly than the other processes occurring in the middle
® ™ _ . of a coIIision..

™ In upgrading Eq(16), the natural next step would be to

introduce the many-body matrix, which takes account of
the occupation of such transient excited states; this could be
done by making use of the next set of termsli/dt [given

\ 7( in Eq. (A6)]. However, before returning to this in Sec. Il A,
MWW let us focus on the relation between this version of the mi-
®) ™ = >/va< + 7 croscopically derived zero-temperature NLSED) and the
e\ phenomenological GPE).

A. Reduction to the Gross-Pitaevskii equation

Let us now show explicitly how we can obtain the GPE

i K i x o k j S from our NLSE (16). To do this we shall need to approxi-
© = + + mate thebare-particle T-matrix defined in Eq(18) in terms
of actual interatomic potentials, by a phenomenological

model, such as the pseudopotential approach discussed in
FIG. 2. (a) depicts diagrammatically the integral definition of detail in the classic paper by Huang and Y4ag]. For the
the bare-particle two-body matrix, as defined by Eq18). In (b) low condensation temperatures involved, we can limit our-

and(c) we have illustrated the definition of the many-bobdynatrix selves to the lowest-order contribution of teavave. We
according to Eq(26). The new feature introduced ib) is that one  may thus write

now takes account of the occupation of the intermediate states
through which the collision proceeds. Thus, the thick arrows indi- ~op 4mhla
cate that the collisions actually occur in an atomic medium, as T=5(r)=
opposed to the vacuum. In particuldc) indicates explicitly how
this excited-state occupation is taken into account according to th@herea corresponds to the-wave scattering length.
many-body factor (& pf} +pg), with the p° term indicated by the Let us now use this approximation in E@{.6) to explic-
double arrow. itly reconstruct Eq(7). In fact, in order to reconstruct the
GPE, we have to explicitly express the diagonal element
tion, it suffices to show that the amplitude of states tran—ﬁwnzn of Eq. (16) asEk<n|é|k>zk. We shall now also mul-
;iently populated in a two-bod_y_ co!lision varies very rapidly, tiply the resulting equation by, (r)/VN and sum over the
.e., we can neglect any modifications on the two-body lady,gicesn [so as to obtain the desire®(r,t) on the left-hand
der diagrams of Fig. (b). The amplitude of these transient side of our equatioh We note that the factor ofN is

- . . 2 .
excited states evolves \.N'th a ty.p|cal frequerigyna. This needed so as to renormalize the wave functions, ag;the
should be compared with a typical frequency for the evolu-

tion of the condensate mean field, e.g., the frequency of coEatISfy

lective modes that are excited in experiments. In the case of .

a trapped condensate, this is given approximately by the trap E z7 z;=N. (20)
frequencyZ/ml3, wherel, corresponds to the width of the '

ground state in the confining potential. In all cases;a, After carrying out the integration with respect to thdéunc-
with typical values of the order of 1@0 confirming the va- tion and rearranging, we thus obtain

- o(r), (19

H J _ ! * ’ é,’ ! 4 Zk(t)
.%@(r,t)—fdr [E Pr(r >¢n<r)}~<r >2k Bi(r') N
Z' (1) z;(t) z,(t)

\/ﬁ 2 ‘ﬁj(r’) \/Nzk (ﬁk(r’)W.

+Nuof dr{; <zs::<r'>¢>n<r>}2i PE(r') (21)

Using the completeness relation for orthogonal states, thibriefly discuss those here, so as to provide a complete ac-
reduces to the GPE) for ®(r,t). count of potential shortcomings of the GPE.

One of the aims of this paper is to specify validity re-  Firstly, we should emphasize that the pseudopotential
gimes for the currently existing mean-field theories, includ-should not be used as a straightforward substitute for the
ing the GPE. However, some limitations of the GPE haveactual interatomic potential. To explain what we mean by
been already extensively discussed in the literature. We shatis statement, we shall now outline the simplest possible
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derivation of the GPE, followind35]. We start with the that it is acting on free particle statg37]. In terms of Pop-
Heisenberg equation of motion for the Bose field operatoov’'s approach[16], this means that a-function potential
W(r,t) in the limit of pairwise interactions. After using the ¢an only be used in combination with an ultraviolet cutoff in

appropriate commutation relations for the field operators anghe theory. Furthermore, the nature of the pseudopotential
taking mean values, we find approximation explicitly ignores all momentum dependence,

which appears in the problem as higher-order terms in the

9D (1 1) 52y2 s-wave scattering length. This is an excellent approxima-
i% A ! +Vtrap(r))q)(r!t)+J’ dr'V(r—r’) tion, valid, in the case of the homogeneoys gaa/k <1,
at 2m where A represents the atomic de Broglie wavelength. It

cannot, therefore, be put into into higher-order terms in a
perturbation expansion with an unrestricted summation over
momenta. Thus far, in this section, we have focused our
whereV(r—r') again corresponds to the actual potential ex-attention on the limitations of the GPE in terms of the treat-
perienced by a pair of interacting atorfessuming a central ment of the spatial and momentum dependence of the atomic
potentia). interactions. These limitations are well known and have been
In the simplest derivations, one first uses the pseudopgreviously dealt with in the literature. The treatment pre-
tential as a model interaction VI&r —r")=Uy8(r—r’) and  sented in this paper is one way of overcoming such difficul-
then drops the interatomic correlations by settingties and handling spatially dependent interaction effects that
(U oW 0w (r,t) = (T ) e, H)(P(rt)). are not present in the phenomenological Gross-Pitaevskii
The two steps are, of course, interlinked, with the secondnodel[38]. However, these limitations are not the only prob-
step justified by arguing that the effect of all correlations/ém one has to address. In fact, the main emphasis of this

thus neglected is taken into account in the effective interacPaper lies on the extension of the effective interaction ap-
tion strengthU . proach beyond the weakly interactif@PB limit, and it is

However, we wish to stress that an effective interactiont© this issue that we now turn our attention. We remind the
treatment can only be rigorously justified if the pseudopotent€ader that the derivation of E(L6) found in the preceding
tial approximation is carried out after the two-body interac-Section is based on a bare particle basis. This implies, for
tion potential has been “upgraded” to tfe matrix, in the gxample,_ that we .have ignored all dressing effects on the
manner shown above. This is not a new result: in fact, thdhtermediate collisional states due to the condensate mean
replacement of the interaction potentiaby the two-bodyT fielq. This ot_)viously means that guch effects are aI;o implic-
matrix has been extensively discussed in the literature. Thily ignored in the GPE, and implies that the GPE is strictly
most notable work is the diagrammatic approach discusse@nly valid if the atoms are colliding in a strictly binary man-
for the homogeneous gas by Beligéb], and Popov's defi-  Ner. The reason thgse mean field effects cannot be mcluded
nition of a suitable effective action for the dilute Bose gasin @ Phenomenological GPE based on the s-wave scattering
[16]. Nonetheless, we feel that this point is often overlookedengtha, is that, in the experiments, is spectroscopically
in current treatments of the Bose gas, and we have therefoffétermined in the absence of mean fielids., effectively in
chosen to stress it in the first part of this paper. In fact, it isvacuum. Our microscopic approach fully treats collisions in
only possible to apply the pseudopotential approximation t¢he presence of mean fields, and we believe it provides a
V (and drop all interatomic correlations as discussed erliefatural formalism for obtaining expressions for both dressing
in the limit of weak interactions, as defined fi4]. In gen- ~ and damping of the GPE39].
eral, one must go beyond this limit, which mathematically
corresponds to defining an effective interaction beyond the
two-body T-matrix approximation. Such an improved effec-
tive interaction can no longer be represented by the usual
s-wave scattering length pseudopotential, and will, thus, Following the analysis of the previous section, it should
yield an equation distinct from the GPE, as will be discussede clear to the reader that the GPE represents only a limiting
in subsequent sections. In essence, this means that the @ase of the equations given in Appendix A, since it neglects
placement ol by the pseudopotential has a limited range ofthe effect of the medium in which the collisions occur
validity due to the effect of the medium in which the colli- (which becomes increasingly important as the atomic assem-
sions occur, as will be explained shortly. bly becomes denserBefore we deal with these issues, we

However, let us for the moment discuss other limitationswould, however, first like to extend Egl6) to finite tem-
of the GPE that are inherent in the nature of the pseudop@eratures, which corresponds to a well-posed problem within
tential approximation(19) (and will thus still be important our formalism.
even when this is correctly applied on the two-bobdyna- When extending our treatment to nonzero temperatures, a
trix). For example, it is well known in the case of the homo-variety of new features arises: firstly, there will now be a
geneous gas, that the use ofdunction potential in a self- non-negligible occupation of excited states, which leads to a
consistent treatment can lead to unphysical results, such asodification in the scattering between two condensed atoms,
no depletion of the condensdig6]. This can be easily un- as discussed in Sec. lll A below. At the same time, however,
derstood by looking at the original work by Huang and Yangthe evolution of the condensate mean field will also be af-
[17]. The reason for such unphysical results is that thdected by collisions between condensed and excited atoms,
pseudopotential approximation already contains an impliciais will be dealt with in Sec. Il B.
assumption about the actual interaction operator, namely, In this section we discuss the limit of weak interactions,

(W W )W (r,b), (22)

Ill. LADDER DIAGRAMS AT FINITE TEMPERATURES
IN A BARE PARTICLE BASIS
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in which the collisions can be described in terms of Haee,  order to take account of the occupation of virtual states ac-
non-dressedatoms. The deviation from such a simplistic cessed during a collision between two condensate particles,
picture(due to dressing induced by mean figldsll be dealt we need to modify Eq(12) to
with in Sec. IV.

7 3N gt o ket A S A A
A. The many-body T matrix for weakly interacting particles ! dt (e @17 ki r Pk H krprj]'

We shall now deal with the first of the finite temperature 23
effects, namely, how Bose statistics affect thenatrix, by
taking account of the occupation of low-lying excitations We again formally integrate the above equation and adia-
during a collision between two condensate particles. Thisatically eliminatex;, from Eq.(11). Doing so we obtain, to
effect is expected to be so small at low temperatures, that weecond order in the interaction potential, the following equa-
have chosen to neglect it altogether n&ar0. However, in  tion of motion for the condensate:

d “ R dat’ . , ~
iﬁ—zn=hwnzn+2 (ni|V|ms)zi*zsz+E (ni|V|jk)zi*(t)J’.—e*'(“’k“’i)“*t » (jkIVIms)zpn(t')zg(t")
dt ims ik it ms

A dt’ A , N
+3 <niIV|Jk>zi*<t>{ [ SHS et et Ok 22t )+ (k) (24
ij rms

Here, the notationt{k«j} indicates the presence of an identical term upon interchangingirttermediate propagation
labelsj andk, and thus indicates the presence of both a direct and an exchanggrtenuch the same manner as those are
included in the symmetrization of the interaction vertéx]. Once again the: correlations ensure that this equation gener-

alizes to allV. Hence, 7?2 in Eq. (16) becomes replaced by the operatpdefined by
. . a dt’ oA .
tE)=V+> VIJk>f e e D KRE) + 2, Vjk)
3 Tk

dt’ . , n
x{ f e et o B D () (k| + (ke ) [ E(E). (25

In the limit of weak interactions, we can treat the elementp @k diagonal, thus corresponding to population of excited
states. The off-diagonal elements will correspond to dressing of the bare atoms and will be discussed in Sec. IV. In this
manner, we arrive at the Lippmann-Schwinger relation for the many-boahatrix in a trap in terms of bare particles, in the
form

. . . dt’ o ,
TEE)=V+2, Vljk) f e e B pR(t) + pR(t) (K TVB(E). (26

This definition has also been depicted diagramatically in Fig®—2(c). The operatoil M8 of Eq. (26) is linked to T2 of Eq.
(18) by the equivalent definition

TYEE)=T*2(E)+ 2, TE)|ik) J ?—;e“(‘"k“’rE)“-”[pﬂ<t’>+p2k<t’>]<jk|?MB<E). 27)

It is easy to see that, in the homogeneous limit, the expres8@@®nreduces to the well-known integral relation for the
many-bodyT matrix [40], namely,

dk” 1+N(K/2+K") +N(K/2—K")
V(k'=K") :
(2m)3 E—(Ak")?/m+i0

TMB(k’,k,K;E)=V(k’—k)+f TVB(K" k,K;E). (29
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Herek andk’ respectively correspond to ingoing and out- Thus, Eq.(29) becomes, to second order in the interaction
coming particle moment& to the center-of-mass momen- potential
tum, andE represents the kinetic energy for the two atoms in
the center-of-mass frame. Furthermdxerepresents the av-
erage occupation number of a single-particle stafespeci- d
fied momentum _ iﬁ_zn:.__JrE (iV|M2pmize
In Sec. lll, we have already explained that the low- dt ims
temperature collisional evolution of the condensate mean
field in the weakly interacting limit is governed by the two- . dt’ ,
bod i ifyi TMB i + <ni|V|jk>f.—e*'<wk+wrwi><t*t>
y T matrix. Justifying whyT"* is the suitable parameter X i
in the regimek T>% w is more tricky. One of us has shown
elsewherd21] that the relevant time scale for the homoge- .
neous gas is given bg/kT. This can be interpreted as the XE (jkIVImS)2pmi(t")zg(t"). (3D
time scale for atoms to move a typical interparticle separa- ms
tion, a sensible time for the manifestation of many-body ef-

fects. These effects give rise to a slower evolution in com-

parison with the two-body one. Nonetheless, the time scalé‘S before, we assume t.hat all mean value amplitueis
for the many-bodyT matrix is still much faster than the vary on a much slower time scale than the anomalous corre-

collective motion in a trap f(/ml(z)), thus justifying once lations. Furthermore, we limit our discussion here to the

again the adiabatic elimination of the anomalous average ar‘@owly evolvmg d'(?g?nfl %\Iement«gi 5”?‘ n a ba_re partlple
the free evolution of the condensate mean figlé). asls, .for whichpj(t )_p_ii(t)' Tf_us S|mpl|f|.ca.t|on av9|ds
potential problems associated with the variationpabeing
slow in comparison with the two-body matrix. We thus
obtain the desired upgrading of condensate—excited-state in-
teractions to the two-body matrix, valid to second order in

So far, we have only accounted for the occupation ofy just like in Eq.(17). Once again, we see that this expres-
states through which a condensate-condensate collision prgion can be generalized to all orders in the interaction poten-
ceeds, in terms of the many-bod@ymatrix. The other impor- g, by taking account of the last term proportionahtg, in
tant effect arising at finite temperatures is the interaction bethe right-hand side of E¢30).

tween condensed and excited atoms. Obviously, such an Thys far, we have shown how to treat the condensate-
eff_ect must also be included in a NL_SE d.escnbmg the EVOtondensate interactions to the bare-parficf€ level and the
lution of the condensate. To deal with this effect, we must q ited butions T hat th
now also consider the rest of E@®) which has been ignored condensate—excited-state contributionsTto’, so that the

up to this point. To be more precise, we need to consider thgondensate mean field evolves according to the equation
effect of the additional contribution

B. Ladder approximation to the condensate-excited-state
interactions

. dz, R
|ﬁ_—...+%; <n||V|jk>[2piiZk+)\ijk]- (29)

= d -
dt iﬁ—zn—hwnszrE (ni|TM®|ms)Z* z,z¢
ms

dt

Careful observation of the first few terms in the equation of

motion for N, Eq. (A7) suggests, by analogy to the argu- +22 (ni|T28|is)plzs. (32
ments of Sec. Il, that it is indeed the suitable quantity for s
upgrading the actudkingle-vertex interatomic potential for
2pjizy in Eq. (29) to the T-matrix level. However, we note Itis cl . -
that the tripletx is not includedi.e., A =0) in the traditional is clear that a consistent finite-temperature theory would

mean field(i.e., HFB theory. This shows that we need to go rquuire the latter contribution to be also expressed in terms
beyond HFB in order to rigorously obtain a NLSE for the Of T"'®. The subtle point that needs to be addressed here is
evolution of the condensate mean field at non-zero temperdbat such an expression will contain terms of orde?)¢;
tures, and we shall discuss this below. An extension beyonfence, we expedtand we shall indeed confirm in our de-

HFB is, strictly speaking, also essential for a consistent tailed treatment belowthat in this situation, we should also
=0 theory. take account of the scattering of excited states into the con-

We shall now also adiabatically eliminafé1] the quan- densate, which modifies the evolution of the condensate

tity \jjx appearing in Eq(29). Consider initially the contri- ~Mean value.
bution

i d 5 C. Interactions between excited states
ih—(Nji) = + o — o)\
at M) ok o= o)y In this section we shall discuss how to upgrade expression
(32 to the many-bodyl matrix for excited states. On first
n KIVIMS (20— Zo4 Neo ). mspe_cthn, this appears to be quite straightforward, upon
% (KIVIMS)(2pmizs+ Aims) considering the first three terms of EGA7), namely, the
(30 contribution of
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2 <rk|v|ms>pjr[zpmizs+)\ims]+(k‘_’j) (33)

rms

. d N
|ﬁa(7\ijk):h(wj+wk_ wi)Mjk*‘%‘g (ikIVImMS)(2pmizst+ Nims) +

to the equation for condensate evoluti@®).
However, we wish to point out that maintaining merely this contribution\fgr cannot be consistent. The reason for this

is that the next term in EqA7), namely,
. d .. .
ih i) =+ =1 2 (MIV]in) pjmpiesze + (ke ) (34
rms

is an equally valid contribution to ord®f in the expression fotlz,/dt. Thus, a consistent approach must simultaneously take
into account both contribution§3) and (34) in adiabatically eliminating.. The interpretation of the contributiof83) is
straightforward: it leads to the renormalization of the condensate—excited-state interadtih #d first sight, it appears hard
to interpret the physical significance of E84). To achieve this, we shall once again limit ourselves to the slowly evolving
excited-state contributions®. In this limit, maintaining both term$33) and (34), we obtain for the contribution of excited
states to the evolution of the mean value amplitagléo second order iV,

dz,

,\ ,\ dat’ ,
|ﬁ—:+22 <n||V|IS>p|0|ZS+22 <ni|V|jk>f__efl(wk+wj7wi7ws)(t7t )
dt s ks i

X[pit+pipj; + P e Pl pRid (1 )(ikIV]is)zy(1). (35)
We can now easily identify the term in square brackets as
(p5+1)(pact 1) pf — i PPy + 1). (36)

This contribution is known to give the correct amplitude for the scattering of quasiparticles, and can be used to predict
condensate lifetimes. This expression is also in agreement with the results of the functional integral approach developed
independently by one of U21,42,.

Hence, we can now identify the negative contribution in 84) as the term that ensures the correct factors for scattering
into the condensate, due to the interaction of an excited state either with a condensed, or with another excited atom. Correct
treatment of the factors of Eq36) to all orders in the interaction potential should lead to an additional term in the finite
temperature NLSE, which should thus be expressible as

. dz, A AMBI:
Ihmzﬁw”Z”Jr%“s (n||TMB|ms>zi*zmzs+2i§S: (ni| T™B|is)p2z,

AMBI At et o AMBL
—2ij§k:s<n||TMB|Jk>fWe oo ei=ed (21 )0 pR 1) (K| TVB|is) z. (37

Equation(37) is depicted diagrammatically in Fig. 3. This of Ref.[22]]. Since such correlations appear explicitly in the
equation, already derived using an alternative approach irquation of motion for the normal averageit is reasonable
[21], is very important, as it includes the effect of kinetics that the evolution op, and therefore the collisions between
[43] due to interactions of two excited atoms. two excited states, will only be treated in an exact manner,
We note that a systematic analysis of the contributiongvhen the equation of motion fotc'c’cc) is explicitly
(33)—(34) to all orders inV appears to generate only one of Worked out(for which the decomposition approximation is
the many-bodyl matrices appearing in the latter term of Eq. only carried out on higher-order correlationhis argument

. s is justified by the fact that suitable treatment (@f'c'cc)
(37). In particular, we only obtaitjk|V|is), instead of the gives rise, in the limit of no condensati¢a4], to the well-

anticipated(jk| TV®|is), which may at first glance appear known quantum Boltzmann equati®89]. Thus a full treat-
unsatisfactory. ment of these more complex correlations can solve the ap-
Let us, however, reexamine the derivatif2?] of the  parent limitation of our formalism in terms of the derivation
equations of motion appearing in Appendix A. In their deri- of Eq. (37), as discussed in ProukaKi39].
vation, we have only maintained correlations of products of We would like to point out, however, that since the last
up to three fluctuation operators; in particular, we have(kinetic) contribution arises due to the interaction of two
treated the correlations of products of four such operators iexcited atoms resulting in scattering into the condensate, this
their mean-field contributions, i.e., in terms of products ofeffect may actually be negligible in a sufficiently dilute and
averages of two operatofer Wick’s theorem, see Eq22) low-temperature regime.
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. dky
@A) = oA lﬁd—tJ="'+§S: [ 7ksisi+ KisTsj]s
o N — where 7 is given by
+ () + T

+ Zx(%)x

- 2x(@)s

FIG. 3. This figure represents diagrammatically the evolution of
the condensate mean value amplitmjeas given by Eq(37). We
have explicitly illustrated diagrams corresponding to direct and ex-
change terms, as well as the associated contribution prefactors.
These factors have been suppressed in our mathematical analysis,
by means of the definitiot5) of a symmetrized matrix element.
The factorp® indicates the population of excited states.

IV. EFFECT OF MEAN FIELD ON COLLISION DYNAMICS

All discussion so far has been in terms of weakly inter-
acting atoms, for which we can ignore the effect of the mean
fields on the intermediate collisional states. In particular, in
adiabatically eliminating the anomalous averaggs and
\ijx» we have only considered certain of their contributions
appearing in the equations of motion of Appendix A. These
contributions correspond to those giving riseTtanatrices
for both condensate-condensate and condensate—excited-
state interactions in the equation governing the evolution of
the condensate mean field.

However, we know that the presence of mean fidids
terms of both condensate as well as excited stahahl
modify or “dress” the intermediate collisional states. In this
section, we shall limit ourselves to the regime where all ef-
fects of the triplets can be ignored € y=0). This will be
shown to correspond to the HFB description of the system in
terms of actual interatomic potentials, with the effect of
mean fields during a collision generating the quasiparticle
(Bogoliuboy dressing. In Sec. V we will discuss the validity
of the simple GPE, as well as that of other conventional
dilute Bose gas theories and we shall argue that a consistent
theory necessitates an extension of the conventional mean-
field theory(i.e., consideration of the triplets in our present
language

A. The limit where A=y=0

for Piji -

ks 2; (KIV[ts)(Z z,+ py).

pji = pii 8ji + Opji -

dt
+ij2k (ni|Vjk)z Srcy
+2%:4 <ni|\7|jk>zk5pjia
d
i1 (ki) = (et ;) i
+§ [ 7sOksjt SKsms)]
+(1+pict piy) Ay

2 [9pichsi+ Avsdp3],

d

1 2 (9pji) =h(w;— wi) 5pj;
+Er [ 7jr 8pri — Opjr Mii ]
+(pit— P mji

—Er [Skje AN —Aj 0]

. dz, s
|h—=hwnzn+%:, (ni|V[jK)[ ZF zze + 2p7 8ijzi]

1239

(38

(39

From Eq.(A5), we also write down the equation of motion
In Sec. lll, we assumed does not acquire a finite
mean value between collisiorise., it relaxes to zenoand
also ignored the off-diagonal elements. To deal with the
conventional mean-field dressing, we shall now also allow
for rapidly varying off-diagonalp elementsép;; , i.e., we
shall substitute fop;; the expressiofi45]

(40

We shall further assume thep/dt=0. In these limits,
we thus obtain the following set of equations for the rapid
variations ofép and 8« during a binary collisional process:

(41

(45

(46)

(47)

The physical significance of the various contributions ap-

Let us initially recast the equations of motion of Appen- pearing in these equations will be analyzed in detail below.
dix A in a simplified manner in the limik=y=0. In terms  First, however, we would like to point out that the limit
of the anomalous correlatior;,, we note that Eq(A6) A =y=0 of the equations of motion of Appendix A corre-
contains the additiongdressing contribution sponds to the time-dependent Hartree-Fock-Bogoliubov
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These HFB equations can be alternatively generated by the
following Hamiltonian[28]:

equations, written in terms of actual interatomic potentials. +
+ +

1 ta LA n ta o
HQ:E% {Npg(Eh8q+CqCh) + (A plhth+ A% Eqtp)},
(48) (@ MM

where

hea=(pIRla)=(p|Z|a)+ 75q=(p|E|a)+ 22 (pl|V]tq)

It ® o+ W oy
X(Z 2+ py). (49 "
This operator takes account of all possible quadratic terms in
bare particle fluctuation operatats. In the literatureHq is
termed the quasiparticle Hamiltonid28], as it describes ©
fully an assembly of noninteracting quasiparticles. The
dressing effect of the mean fields on the bare-particle states
resulting from this Hamiltonian is conventionally referred to
as quasiparticle dressing, and we shall now discuss its con-
sequences.

1. Quasiparticle dressing at zero temperature

At T=0 there will be very few excited atoms in the as- @ o+ AN E-)
sembly, so that we can approximai=0. We have already V7
shown that the termz (dx,;/dt)=Ay; of Eq. (43) corre- A
sponds to the two-bod¥ matrix being generated in the in-
teraction between condensed atoms. The terms contaiping
in both 5p and 8« [i.e., contributiong42) and(45)] give rise
to the dressing of Fig. (4). This represents the simplest  FIG. 4. This figure illustrates all different quasiparticle dressing
dressing term due to the mean field of the condensate in thgffects on the unoccupied intermediate propagators of the two-body
intermediate collisional steps, and corresponds algebraically matrix[Fig. 2(a)]. Such dressing during an atomic collision arises
to shifting and mixing of the intermediate states and frequendue to the effect ofa) the condensate mean field, @ the mean
cies. field of thermally excited states. Additionally, tl&»-S5« coupling
From Egs.(44) and (47), we see that there further exist 9enerates the anomalous termgaf corresponding to the creation,
more complex contributions that depend on the coupling bel" annlhllat'lon _of two condensed atoms, in favor of excited ones;
tween 8p and 6x. We expect these to correspond to thethese contrlbutlon§ dp not appear separately, but are complementary
anomalous quasipartici@ogoliuboy dressing, in much the of each other(d) indicates the extra dressing due to the bubble

i i i i O p°
same way creation and annihilation operators get coupled Viglagrams(46), which are .assouate‘j with a factop;(~ pjj). we
: . . note that all above dressing effects could also be very straightfor-
the quasiparticle transformation

wardly included in the many-body loops of FiggbR-2(c).

&= [uyb +uXb, (500 first one, which we have already discussed quite extensively,

! is the replacement of the two-body matrix by the many-
body one, due to enhanced condensate-condensate scattering
via occupied excited states. Furthermore, thierms in Egs.
L I (42) and (45 also allow modifications in the intermediate
Indeed, the combination of contributiorié4) and (47) collisional states due to the mean field of excited stéites

gives rise to intermediate dressing of the form of Fi()4 : .
We stress that the coupling between them implies that bot nﬁzgg)z/l('g)) the condensate mean field of Fig) }} as shown

diagrams in Fig. &) are combined at any single intermedi-
ate step. To understand the form of the coupling, we hav
illustrated in Fig. 5 two typical diagrams in the evolution of
the condensate mean field, along with their dressed equiv
lents due to theSp-J« coupling.

where '[heE),Jr correspond to quasiparticle annihilatidcre-
ation) operators.

The final modification we need to consider at finite tem-
‘Beratures is that due to the effect of the contributid6).
Adiabatic elimination of this contribution results in the gen-
ration of the so-called bubble diagrams shown in Fi{g).4
Let us now give a brief physical explanation of the bubble
diagrams. Consider the case of driving a trapped condensate
by some external field. The condensate oscillations will in-

Observation of Eqs(42) and (43) and (45 and (46) duce transitions between excited states, and those will in turn
shows the following new features arisingTat-0, Wherepﬂ act back on the condensate and modify its evolution. If the
becoms non-negligible due to thermally excited atoms. The&ondensate is suitably perturbed, these terms will become

2. Quasiparticle dressing at nonzero temperatures
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However, this dressing can only be ignored in the limit of
weak interactions, i.e., whenUg<<7iw. In order to derive
the GPE, we also have to ignore the effects of the occupation
of low-lying excitations during a collisioimany-body ef-
fecty. These restrictions give us the sufficient condition for
the validity of the GPE, namely,

nUo, kBT<ﬁw, (51)

wheref w is a typical energy separation between trap levels.
) Effectively, the GPE only treats condensate-condensate
\ A scattering in vacuuntthus ignoring both quasiparticle dress-
ing and many-body effecksln this limit, thes-wave scatter-
ing length indeed contains all relevant collisional informa-
tion. It is conventionally argued that the corrections to the
GPE due to the presence of mean field are purely diluteness
corrections. If the conditions of Eq51) are fulfilled the
corrections are indeed small and this statement is close to the
7( \ truth. However, even this statement is open to critisi88y.
More generally, in the case of partial condensatid®:Q),
we maintain that the notion that diluteness is the issue is
FIG. 5. This figure illustrates the cooperative action of fige misleading.
Sk coupling represented in Fig(e), by means of two typical terms
in the evolution of the condensate mean field, and their correspond-
ing dressing due to this couplingg) shows the effect on the scat-
tering between a condensed and an excited atom, whésgasr- As mentioned above, the GPE takes no account of the
responds to the dressing on a typical two-body ladder diagram. finite T=0 depletion of the condensate, arising due to colli-
sions between condensate atoms. This depletion is indeed

dominant, thus implying that the many-bodymatrix is no ~ Very small in the case of typical experimentally studied con-

longer the suitable parameter for the evolution of the condlensates, as has been shown explicitly, e.g., by Hutchinson
densate mean field. This would suggest that @) is no €t al. [47]. One can, therefore, calculate the frequencies of

longer valid, signaling a breakdown of the Markoffian ap-the elementary excitations, to good accuracy, by finding nor-
proximation discussed in Secs. Il and Il. It is worth pointing Mal modes of the linearized GPE, of the form

out that although these bubble diagrams can usually be ne- i i "

glected in Weagkly interacting systgms, they have ryecently o(rty=e g +u(ne " +o*(ne]. (52

been shown to be rather important near the critical tempera- . . .
ture of the gag46]. 5‘—|ere,u corresponds to the chemical potential of the undis-

turbed ground state and the condensate wave function has
the many-bodyT matrix corresponds to what is convention- been represented by the condensate orki(a). In addition,

ally referred to as the quasiparticle dressing for the interac® labels the frequency of the elementary excitations,

* .
tions between condensed atoms. Indeed, the consistent Comhereaw(r) andv*(r) correspond,to.the spatially depen-
bination of diagrams @—4(c) with the T-matrix elements dent coefficients of the condensate’s linear response to some

will generate the well-known normal and anomalous self-driving field. This Iingar response approach has be‘?” _dis—
energieshs ; and#3 ,. However, we believe that the con- cuss_ed in6,7] where it has been shO\_/vn that the subst!tutlon
ventionally used finite-temperature mean-field theory doe%sz) IS completely equivalent to carrying out the BOgOl'quV
not actually include all these effects in a consistent fashion,ranSforrTlat'or£48] on the fluctuating part of the Bose field
as we shall argue beloyBec. V). operator¥ — (W), i.e., to the diagonalization of the binary-
Following the above discussion on the dressing of interinteraction Hamiltonian for the assembly.
actions due to the presence of mean fields, we shall now turn Thus, one obtains a set of three static coupled equations
our attention to the analysis of conventional Bose gas thedor ¢(r), u(r), andv*(r), known as the Bogoliubov—de
ries appearing in the literature. GennegBdG) equations. These equations have been used to
predict condensate shapes, densities, and the energies of el-
ementary excitations at near zero temperatures. The results
V. CONVENTIONAL THEORIES AND THEIR VALIDITY of the BdG equations appear to be in excellent agreef@nt
with experiments as discussed in the general zero-

] ] temperature mean field theory review paper by Edwards
In Sec. IV, we discussed the effect of mean fields on they 5] [7].

intermediate collisional states in the limit=y=0. This ef-

fect means we should use noninteracting quasiparticles,
rather than bare particle states in our theoretical treatment.
This dressing is not taken into account in the GPE, as was We would like to point out that both use of EG2) and
explicitly shown in its microscopic derivation in Sec. II. the diagonalization discussed [ii,7] will only lead to the

®

S

B. Zero-temperature Bogoliubov-de Gennes equations

The interplay between all dressings of Figsa)44(d) in

A. The Gross-Pitaevskii equation

C. The “essence” of Hartree-Fock-Bogoliubov
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conventional BdG equations under the assumptior ~ Here, No(E;)=1/(eFi—1), and the above quantities are
—r")y=Uy8(r—r'). In this paper, we have argued that a normalized in the usual manng8]. These equations are be-
S-function pseudopotential approximation can only be im-ing used at the moment to study the finite-temperature exci-
posed on an “upgraded” effective interaction potential ex-tations of Bose-condensed ga$dg,49. Since these equa-
pressible in terms of the two-body matrix. This enor- tions do not use actual interatomic potentials, we would
mously complicates the discussion of the validity of certainrather not use the term HFB. In this paper, we shall call them
approximate mean-field theories, and generates confusion #se finite-temperature Bogoliubov—de Gennes equations, for
to precisely what set of equations is implied by the termwant of a better name. The reason for making this distinction
“Hartree-Fock-Bogoliubov.” arises from our view that the approximations made in obtain-
We would argue that the HFB equations are, in fact, deing Egs. (53)—(55) actually contain more physics than the
fined in terms of actual interatomic potentials. Thus, we deconventional mean-fieldHFB) approximation. This can be
fine HFB as the set of coupledp-« equations of Appendix seen from our microscopic approach: In Sec. Ill, we have
A (in which all interaction terms are left in terms of symme- explicitly shown that the condensate—excited-state interac-
trized matrix elemenjs in the limit A\=y=0. The time- tions can be considered in terms of an effectivenatrix
dependent HFB equations defined in this way can thus binteraction only once the triplet is taken into account. We
derived from the quasiparticle Hamiltonidd8) describing  stress that thi¥-matrix effective interaction is implicit in the
an assembly of noninteracting quasiparticles. We have alabove form of the finite-temperature BdG equati@f8)—
ready argued in Sec. lll A, however, that such a theory can¢s5), since they have been written in terms of zero-range
not consistently describe the interaction between an atom ipotentials. It is clearly important to bear in mind that, when
the condensate with an excited one. The rigorous way obne includes tha terms, one also brings in other effects that
doing this is by consideration of the correlations. Bringing have been ignored in the coupled BdG equations, such as
in the N correlations is equivalent to allowing the quasipar-further dressing of intermediate collisional states. The finite-
ticles to interact with each other. temperature BdG equations, therefore, have some inconsis-
We shall now discuss what people conventionally refer tatencies built into them. How important these inconsistencies
as the finite temperature mean field, or HFB approximationare in practice remains to be seen.
Some discussion has been recently focused around the
D. Finite-temperature mean-field theory so-called “Popov” approximation of these equations, which
and the Popov approximation corresponds to settingp(r)=0 in Egs.(53)—(55) [24]. This
The mean-field treatment extensively discussed in the it pproximation h_as_ been used to compute the finite-
erature avoids dealing with actual interatomic potentials In_temperature excitations of a t_rapped Bose [ii549. In
" . these papers, the equations being solved are referred to as the

stead, one conventionally expresses the above finite: : )
temperature HFB equations in terms of @function coupled HFB-Popov equations. We shall use the labeling

approximation. In the static case, these equations then takBedG_POpov’ since even the Popov approximation of these

the form given below, which can be derived as a special Casequations goes beyond the conventional mean-field theory
9 N . . P que to the implicit inclusion of tha correlation$. In our

of our microscopic formalism. The equations are . . . .

treatment, we have obtained these equations by adiabatically

52 eliminating both anomalous averages [or equivalently
- WV2+Vtrap(r)_M+ Uo[ Nol#(r)|2+20(r) ]} w(r) m(r)] and\ [not explicitly present in Eq¥53)—(55)]. Thus,
the Popov limit appears to be one way of obtaining a consis-
+Uom(r)¢* (r)=0, (53 tent theory. Indeed, Griffin24] has shown that such a theory

is gapless. However, using E¢53)—(55) as they stand, with

a nonzero value of(r), is clearly inconsistent, because we

have shown that it is precisely the adiabatic elimination of

- - m(r) that leads to the replacement of the interatomic poten-

Lvj(r)+ U No{g* (n)}2+m* (r)]u;(r) = — Ejo;(r), tial by an effective interactiot .

(55 Let us now discuss the validity of the Popov approxima-
tion. The BAG equations have been written in terms of the
quasiparticle coherence factarg(r) andv;(r). This shows
explicitly that they include the effect of the condensate mean

ﬁ(r)=z {[1u(N2+ o (|2 IN(E)) +|v; (1|3, field on the initial and final collisional states, which modifies
] the bare particle states into noninteracting Bogoliubov qua-
(56) siparticles. However, the analysis of Sec. IV shows that in
this limit, we must also consider other effects, such as the
m(r)= 2 uj(r)v}‘(r)[ZNo(Ej)Jr 1], (57) dressing of i_ntelrmediate collisional states and the occupation
j of these excitations. These many-body effects should be fully
included in a consistent theory of condensate-condensate and
and the operator condensate—excited-state collisions. The BdG-Popov theory
52 does not take account of these effects, and we would thus
A~ 2 2, ~ expect it to deviate from the actual description of the system.
L==smV FViragl 1)~ s 2Uo[ N[ (1) "+ (1) ]. Indeed, a basis-set simulation of excitation frequencies using
(58  the BdG-Popov equatioid9] has revealed larg@nd quali-

Lu; () + U No{g(r) Y2+ (1) Jv (N =E;u;(r), (54)

where we have defined the following quantities:
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tative) differences from experimental data for temperatures‘upgrade” the interatomic interaction potenti@b) to the
above 0.6.. We are currently working on determining a bare-particle two-bodf matrix (18), which includes all re-
more appropriate set of equations—similar to what we haveeated binary collisional processes in a trap in the absence of
termed finite-temperature BdG equations—that can bether particles. This is made possible by adiabatic elimina-
straightforwardly computed. tion of the anomalous correlatigiec), which is not retained
Our treatment shows that many-body effects are not thg, the conventional derivation of the GPE.
only effects that are not included in the BdG-Popov descrip- Furthermore, we explicitly showed in what limits the

tion, as discussed below. bare-particle NLSE16) reduces to the GP&), thus provid-
ing a clear microscopic derivation. We then generalized this
VI. EFFECTS OF MEAN FIELDS BEYOND NLSE to finite temperatures by including the effects of ex-
QUASIPARTICLE DRESSING cited states. This results in a variety of new features: firstly,

the occupation of excited states during a collision leads to

The equations of Appendix A, indicate that the dressingthe replacement of the two-body matrix for bare particles
discussed in Sec. IV is not the only effect the mean fie|d5by the many-body one. Secondly, we must now also consider
have during a collision. The dressing of Sec. IV arises fronthe effect of condensate—excited-state interactions in the
the quasiparticle Hamiltoniaf8), which replaces the inter- evolution of the condensate mean field. In order to do this
acting (bare atoms by non-interacting quasiparticles. How- consistently, we have shown the necessity of extending the
ever, we believe the theory should allow the quasiparticles teonventional mean-field theory by explicitly including the
interact weakly with each other. These interactions will leadriplet (c'cc), which upgrades this interaction to tAema-
to more complex dressing of the intermediate collisionaltrix. We have thus argued how to obtain a finite-temperature
states. However, this is not the only reason for going beyon@quation for the evolution of the condensate mean field,
a quasiparticle description. We have extensively shown iwhich includes kinetic contributions due to collisions be-
this paper that, to obtain the evolution of the condensatéween excited atoms. All such treatment is true in the limit of
mean field at finite temperatures, we need to consider th@eak interactions, i.e., whenUy<#iw. In this limit, it is
triplet \jj in Eq. (8). However, once including this, there reasonable to assume that the condensate mean field varies
appears to be no valid argument for neglecting the effects afuch more slowly than these anomalous averages, thus jus-
the triplets in the remaining equations of Appendix A. Fortifying the adiabatic elimination of anomalous averages and
example, Eq(A6) shows that when adiabatically eliminating the free evolution of mean fields discussed in Secs. Il and Il.
kjk, we will also have to worry about triplet effects. When this condition does not hold, we must take account

We thus believe the triplets have two effects. The readepf the effect the mean fields have on the intermediate colli-
is by now familiar with the first one, which is the necessity sjonal states. This leads to dressing of the states accessed
of triplets for deriving finite-temperature equations for con-during a binary collision. The presence of such dressing con-
densate evolution. Secondly, to extend this argument evefiibutions makes it extremely difficult to adiabatically elimi-
further, we also think that some of the triplets appearing imate the anomalous correlatiofesc) and{c'cc) in favor of
Eq. (A6) are actually needed in order to consistently com-a consistent equation valid in all limits. In fact, we point out
bine the dressing diagrams of Fig. 4. We believe that a dethat the triplet{c'cc) must be rigorously dealt with in a
tailed study of the effects of the triplets may shed some lightonsistentT=0 theory, due to the finit¢albeit negligible
on why the dressed many-body matrix appears to go to condensate depletion.
zero asT—0 [19,46. This behavior implies a vanishing in-  Our microscopic approach enables us to discuss the con-
teraction(in the nonlinear Schutinger equationfor colli-  ventional mean-field theories currently used for describing
sions between two condensate atoms, which cannot be cothe evolution of the condensate. In the first instance, we have
rect by itself, since we know that it is precisely theseargued that the Gross-Pitaevskii equation is strictly only
collisions that lead to the finite zero-temperature depletion ofalid in the regimenU,, kgT<#%w. Furthermore, we have
the condensate. We hope to discuss this, and related issugggued that the conventionally used finite-temperature
in the future. Bogoliubov—de Gennes equatiofEgs. (53—(55)] contain
some inconsistencies, which may be remoy24 if their
treatment is restricted to the so-called Popov approximation
[i.e.,m(r)=0 in Egs.(53)—(55)]. In this case one speaks of

In this paper we have carried out an in-depth analysis othe Popov approximation to Bd@&r HFB-Popoy. This na-
our microscopic description of the behavior of Bose-ively suggests that the full BAGHFB) theory is a better and
condensed systems at finite temperatures. The equations wfore complete theory, which is clearly not the case when
[22] have been recast in Appendix A, for the convenience obne is interested in the elementary excitations of a Bose con-
the reader. densate. To obtain a consistent theory, one must either con-

After a general introduction into our microscopic ap- sider BdG-Popov, or go beyond Bd®IFB) by including
proach, we used the set of time-dependent Hartree-Foclriplets to fix the gap in the spectrum of elementary excita-
Bogoliubov equations based on actual interatomic potentialions, as done in this paper. We therefore conclude that the
(i.e., without making any assumptions about theto derive  terminology Popovapproximationcan be quite misleading,
a nonlinear Schdinger equatior(16) for the description of as it actually refers to a distinct set of equations to HFB.
the condensate mean-field evolution at temperatures close Eurthermore, we have also argued that even the Popov limit
zero; in this limit, we can, to a good approximation, neglectof these equations may fail due to the neglect of many-body
the presence of excitations. We showed explicitly how toeffects on the collisions in the gas. Indeed, recent simulations

VIl. CONCLUSIONS
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[48] have shown discrepancies with the experiments at temAPPENDIX A: GENERALIZED MEAN-FIELD EQUATIONS
peratures beyond 0I§. We believe this must be due to the
back action of excited states onto the condensate mean fielpn

In particular, we expect Eq37)_to fail if the condensate is pproximation of correlations of four and five fluctuation
strongly driven in resonance with transitions between eXC'te‘gperators. We have reexpressed these equations in a form
states, which will signal the onset of the importance of theynat allows us to identify the physical importance of all the

bubble diagrams. o _ individual contributions. We remind the reader of the follow-
The analysis carried out in this paper shows precisely hoving definitions

hard it is to obtain a consistent mean-field theory for the

In this appendix we give the full set of self-consistent
ean-field equations derived [i@2], subject to a decoupling

description of partially Bose-condensed systems. An alterna- pji :<éiTéj>v Kjk:<ekéj>a )\ijk:<é;rejek>,
tive description that may not face the same difficulties is A
based on Popov’s approach of describing the homogeneous Yi=(Ci&80), (A1)
Bose gas in terms of an effective condensate density and A
phase. Such an approach has already been discussed by Ilin- 77jr:22 UVt ) (ZF e+ py), (A2)
ski and Stepanenk{t0], and we hope more discussions in It
this area will appear in the future.
A= 2 (KiVIMS) [ zyzst kil (A3)
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FIG. 6. This figure illustrates the evolution of
the condensate mean field to second order in the
interaction potential.(a)—(d) show the many-
body T-matrix terms in the interactiongo order
V?) between two condensed atorf(®),(c)], or
one condensed atom with an excited ¢fi®,(d)].

(e) shows the contribution to condensate evolu-
tion, due to the interaction of two excited atoms.
(f) corresponds to the bubble diagrams, which
have a factor 4} — pf}) associated with thertin-
dicated by the open arroysContinuous lines
with one “free” end point have a factar asso-
ciated with them, and the thick arrows due to
excited-state occupation have been defined in

Fig. 2c).

[The term+ (i< j<Kk) in the last equation indicates summationadifterms appearing in E4A8), under cyclic rotation of
the indices, j, andk—except, of course, the first “free evolution” contributign.

APPENDIX B: CONDENSATE EVOLUTION TO SECOND ORDER IN THE INTERACTION POTENTIAL

In this appendix we give a systematic categorization of all contributions to the condensate mean-field evolution, to second

order in the interaction potentidl. We shall carry this out by making use of the decompositi@®) of the single-particle
correlationp into a slowly varying diagonald®) and a rapidly evolving off-diagonal elementq). The implicit assumption

made here is that the atoms are weakly interacting, so that the bare particle basis may be used, to a good approximation, for
the description of the system. Furthermore, we have already argued in Sec. Il C that the equations of the Appendix do not take
account of the evolution of excited states due to quantum Boltzmann-type effects, which can be included by suitable treatment

of the (c'cfcc) correlations. We shall therefore assume that during a colligigffidt=0, which gives for the condensate
mean-field evolution t&/2, the expression
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iﬁ%—ztn=hwnzn+%‘,s (ni|V|ms)z* .z, (B1)
+2, (ni|V[is)plzs (B2)
I dt’ —i(wg+wj—on—og)(t—t") 0tr 0 (t’ ik|V *
Fa (miviilo2, | St e e O )+ K YIS 2 (2020 (B9)
BEVIF dt’ — (ot wi—w;—og)(t—t") (Vo 0 (tr ik I\l 0
+”Zk <n||V|Jk>§ fﬁe krem e ed U4 pi () + padt) (K[ V]is) 25 (1) zs(1) (B4)
SN dt’ —i(wtwi—wi—w)(t—t")o 0 e\ 0 rir\/ L INY];
—”Zk (nifV]jk) 2 f e e eimed 28 (1) pRy (1) (k| V]is)zy(t) (BS)
SN dt’ —i(wjton—oi—wg)(t—t")r 0/ s 0t/ ; \/|i * 0
+a (nilY1iRzO T [ Tre e e e )= o Nl Vi) 20240+ p40 B
(B6)

wheret’ acquires values within the range« to t. This  scattering amplitude factors for condensate evolution, as al-
equation has been diagrammatically depicted in Fig. 6ready explained in Sec. lll C. Finally, E¢B6) corresponds
where we also give the contribution factors of each diagramto the bubble diagrams of the many-body formalism, which
The terms in Eqs(B1) and(B2) represent the free evolu- are shown in Fig. 6).
tion of the condensed particle, and the interaction of one At this point, we should really comment on the consis-
condensed atom, either with another condensed gfign  tency of the above equation for condensate evolution. In ob-
6(a)], or with an excited on¢Fig 6(b)]. Equations(B3) and  taining this equation, we have not dealt with all quantities in
(B4) give the lowest-order corrections of the actual inter-the same manner. A fully consistent treatment would be to
atomic potential, due to its replacement by the many-bbdy assign a slowly varying and a rapidly evolving part to each
matrix, in both cases of condensate-conden§Big. 6(c)]  of the quantitiep, z, and« (which would also generate two
and condensate—excited-state interactipifig. 6(d)]. The parts for bothh andA), as well as the tripleta andy and
contribution (B5) — Fig. 6(e) — arises due to the interac- then deal with them as a closed system. We shall return to
tions between two excited atoms and ensures the correthis issue in a forthcoming presentation.
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