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Microscopic treatment of binary interactions in the nonequilibrium dynamics
of partially Bose-condensed trapped gases
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In this paper we use microscopic arguments to derive a nonlinear Schro¨dinger equation for trapped Bose-
condensed gases. This is made possible by considering the equations of motion of various anomalous averages.
The resulting equation explicitly includes the effect of repeated binary interactions~in particular ladders!
between the atoms. Moreover, under the conditions where dressing of the intermediate states of a collision can
be ignored, this equation is shown to reduce to the conventional Gross-Pitaevskii equation in the pseudopo-
tential limit. Extending the treatment, we show first how the occupation of excited~bare particle! states affects
the collisions, and thus obtain the many-bodyT-matrix approximation in a trap. In addition, we discuss how
the bare particle many-bodyT matrix gets dressed by mean fields due to condensed and excited atoms. We
conclude that the most commonly used version of the Gross-Pitaevskii equation can only be put on a micro-
scopic basis for a restrictive range of conditions. For partial condensation, we need to take account of inter-
actions between condensed and excited atoms, which, in a consistent formulation, should also be expressed in
terms of the many-bodyT matrix. This can be achieved by considering fluctuations around the condensate
mean field beyond those included in the conventional finite temperature mean field, i.e., Hartree-Fock-
Bogoliubov, theory.@S1050-2947~98!00302-3#

PACS number~s!: 03.75.Fi, 05.30.Jp, 31.15.Ne
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I. INTRODUCTION

The observation of Bose-Einstein condensation~BEC! in
alkali atomic gases@1–3# strongly motivates a description o
the evolution of the condensate that takes full account of
microscopic nature of atomic interactions in a trap, bo
close to and far from equilibrium. The conventional descr
tion relies heavily on the well-known Gross-Pitaevskii equ
tion ~GPE! @4#, also known as the nonlinear Schro¨dinger
equation. In this equation, one assumes that the atoms a
effectively condensed and the atomic interactions can be
curately modeled by a pseudopotential, expressed in term
the s-wave scattering length. This theory appears to m
good predictions about the condensate’s properties@5–13#
and it is obviously desirable to put this phenomenologi
theory on a clear microscopic basis. In fact, in spite of
frequent use, a direct link of this effective interaction a
proach to microscopic properties of the gas that include
discussion of the effect of the mean fields on the interme
ate states of a binary collision, appears to be lacking. In
paper we will address such issues in a derivation of a n
linear Schro¨dinger equation based on these microsco
properties and what we believe are reasonable assump
about them.

In the first part of the paper we shall deal with the wea
interacting case@14# and show how one can introduce a
effective interaction that takes account of all possible
peated binary atomic collisions. This limit of weak intera
tions has been treated quite extensively in the literature.
note the work of Beliaev@15# who obtained an effective
interaction by means of a diagrammatic perturbation exp
sion for the homogeneous gas. The replacement of the a
571050-2947/98/57~2!/1230~18!/$15.00
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interatomic potential by an effective one has also been
tensively discussed by Popov in the context of effective
tion path integrals@16#. Following the work by Huang and
Yang @17# and Lee, Huang, and Yang@18#, this effective
interaction is often expressed in the usual dilute Bose
pseudopotential form. In this paper, we will discuss the is
of an effective potential by means of an alternative approa
somewhat similar to Beliaev’s work for the homogeneo
gas. We believe that the approach presented in this pap
somewhat simpler to follow and more illustrative than pr
vious methods. More importantly, it allows us to go beyo
the weakly interacting limit in a very natural and straightfo
ward extension of our treatment. It is this latter extens
that will form the main part of this paper.

We will thus derive an expression for the condens
mean-field evolution in terms of the many-body transiti
~or simply T) matrix. The many-body approach we sha
discuss is not limited to cases close to equilibrium, and the
fore complements earlier work in this area. We would like
mention the work by Bijlsma and Stoof@19#, who used a
variational approach to calculate equilibrium properties, su
as the normal and anomalous self-energies, in the many-b
T-matrix approximation. The many-bodyT matrix has also
been recently discussed in the context of the homogene
gas by Shi@20#. Furthermore, one of us has employed
functional formulation of the Keldysh theory to derive th
time-dependent Landau-Ginzburg theory for the lon
wavelength dynamics of an inhomogeneous weakly inter
ing gas at nonzero temperatures, also in the many-b
T-matrix approximation@21#. In this paper we will show, by
different methods, how to derive a time-dependent gene
1230 © 1998 The American Physical Society
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57 1231MICROSCOPIC TREATMENT OF BINARY . . .
ized nonlinear Schro¨dinger equation1 ~NLSE! in a trap for
both zero and nonzero temperatures based on microsc
arguments. We shall also discuss the physical significanc
other contributions that are left out of such an equation,
thus discuss the validity of existing mean-field theories.

In an earlier publication@22#, we derived equations o
motion for thermal averages of products of up to thr
~single-particle! fluctuation operators. In this way, we ob
tained a time-dependent version@23,24# of the Hartree-Fock-
Bogoliubov ~HFB! equations@25–28# in terms of actual in-
teratomic potentials, and further generalized them
considering more complex anomalous averages~triplets!.
This closed system of equations can be used in two diffe
ways: in the first approach, all averages of products of fl
tuation operators evolve on similar time scales, so that
equations need to be solved self-consistently. Such a tr
ment enables us to investigate the possibility of further or
parameters being present in our system. We should note
the possibility of pairing as a competing transition to BEC
the case of attractive interactions has already been inv
gated in @29#. The equations of@22# further allow for the
possibility of three atoms grouping together, such as,
example, condensation of triplets@30#. However, there are
also situations~in particular a dilute gas with repulsive inte
actions!, in which the higher-order~anomalous! correlations
vary on faster time scales, enabling us to formally elimin
them from the equations of motion, i.e., by integrating ov
their effect during collisions. In this paper we will show ho
this formal ~adiabatic! elimination of the pair correlation in
our HFB equations gives rise to a nonlinear Schro¨dinger
equation that includes the nondressed repeated binary i
actions~ladders! at zero temperature. We shall furthermo
extend our treatment to nonzero temperatures, for which
shall also need to eliminate the triplets mentioned above

The equations of motion for averages of products of~up
to three! single-particle fluctuation operators have been giv
in Appendix A, although we refer the reader to@22# for more
details. We emphasize that these equations do not me
bring the bare particle ladder interactions into our formalis
but also include more complex effects, such as dressing
damping of intermediate states during collisions. In this
per, we discuss how — and in what limits — these mic
scopic equations reduce to the conventionally used phen
enological Gross-Pitaevskii expression. We also discuss
possibility of consistent theories outside these limits. F
thermore, we explicitly mention what processes must be
glected in order to obtain a NLSE. In fact, we shall see o
has to neglect the effect of the condensate mean field
those due to the presence of excited atoms on the interm
ate states of a binary collision@31#. Identification of these
terms shows how to explore the deviation from the ba
particle T matrix due to dressing generated by the me
fields. This treatment enables us to make qualitative pre
tions about the validity regime of the phenomenologi
GPE, an issue we hope to address computationally for in
mogeneous gases in the future.

1To avoid confusion, we shall henceforth refer to the conventi
ally used equation as the GPE and the one we shall be deriving
as the NLSE.
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One might expect the zero-temperature evolution of
mean field of a trapped Bose-Einstein condensate in the
plest version of the mean-field theory, to be described —
the occupation number representation — by

i\
dzn~ t !

dt
5(

k
hnk

~0!~ t !zk~ t !. ~1!

Here zn(t) corresponds to the time-dependent mean va
amplitude of thenth trap level which is obtained from th
single-particle operatorsân(t) according to the shift@28#

ân~ t !5zn~ t !1 ĉn~ t !. ~2!

Here the operatorsân are defined by the usual decompositio

of the Bose field operatorĈ(r ,t) into any complete set o
orthonormal single-particle statescn(r ), namely,

Ĉ~r ,t !5(
n

cn~r !ân~ t !. ~3!

In this simplest approach, the time-dependent conden
mean field depends on the Hartree-Fock Hamiltonianh„0…(t)
given by

hnk
~0!~ t !5^nuĴuk&1(

i j
^niuV̂u jk&zi* ~ t !zj~ t !. ~4!

Here Ĵ contains the kinetic energy and trap potential a

^niuV̂u jk& represents the symmetrized form of the actu
~single-vertex! interatomic potential@32# between a pair of
colliding particles. This is defined in terms ofcn(r ) by

^niuV̂u jk&5 1
2 $~niuV̂u jk !1~niuV̂uk j !%, ~5!

where

~niuV̂u jk !5E E drdr 8cn* ~r !c i* ~r 8!V~r2r 8!ck~r 8!c j~r !

~6!

andV(r2r 8) represents the actual interatomic potential e
perienced between two interacting atoms ateachcollisional
vertex. Although Eq.~1! may on first sight appear to b
equivalent to the conventional form of the GPE@4#,

i\
]F~r ,t !

]t
5S 2

\2¹ r
2

2m
1Vtrap~r ! DF~r ,t !

1NU0uF~r ,t !u2F~r ,t !, ~7!

this is not the case. The GPE takes account of all~repeated!
collisional processes via a pseudopotential of the fo
V(r2r 8)5U0d(r2r 8) whereU054p\2a/m @33#. On the
contrary, the matrix element defined in Eq.~5! represents the
instantaneous~i.e., single-vertex! interaction between two at
oms as depicted in Fig. 1~a!.

In this paper we will show that we can include the ladd
diagrams of Fig. 1~b! into our formalism, by considering the
evolution of correlations of products of fluctuation operato

-
re
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ĉn which are given in Appendix A. These correlations infl
ence the condensate mean field according to the exact e
tion @22#

i\
dzn

dt
5(

k
^nuĴuk&zk1(

i jk
^niuV̂u jk&@zi* zjzk1k jkzi*

12r j i zk1l i jk #, ~8!

where we have defined the quantities

r j i 5^ĉi
†ĉ j&, k jk5^ĉkĉ j&5^ĉ j ĉk&,

l i jk5^ĉi
†ĉ j ĉk&5^ĉkĉ j ĉi

†&. ~9!

In obtaining Eq.~8! we have merely assumed the existen
of a mean field@in the sense of Eq.~2!# and that the domi-
nant collisions in our atomic assembly occur pairwise.

The main part of this paper deals with the microsco
derivation of a nonlinear Schro¨dinger equation for bare par
ticles in a trap, and we shall discuss in what limits it reduc
to simpler versions. The use of a NLSE necessitates a w
defined and thus slowly varying condensate fraction, wh
in our formalism corresponds to a slowly evolving mea

FIG. 1. ~a! depicts the contribution to the evolution of the co
densate mean field~level n) due to the instantaneous interaction
two condensate atoms~labeled byj andk). In this, and all subse-
quent figures, the curly line represents the vertex between two
teracting atoms located atr and r 8, respectively, and time run
vertically upwards. We have explicitly drawn the two contributio
to the evolution of the condensate mean field due to the phys
nonsymmetrized matrix elements of Eq.~6! separately. Each o

these diagrams is associated with a factor of (1
2 ) into our final

equation for the evolution ofzn , as defined by Eq.~5!. In our
notation, continuous lines with one ‘‘free’’ end point represent co
densate particles, and have a factorz associated with them~the
dashed condensate line gives no such contribution, as it is the
whose evolution we are monitoring in this paper!. ~b! shows the
cumulative effect of repeated binary interactions of this type,
ladder diagrams, in which an arbitrary numberp of loops (p>0)
may be present. Here, the final scattering into~condensate! statesn
and i has been mediated by other excited states~given by the ver-
tical lines with arrows!.
ua-

e

c

s
ll-
h
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field amplitudezn , in comparison with the duration of a
typical binary interaction. This means that, in most of t
analysis given below, we are limiting ourselves to the case
net repulsive interactions between the atoms; i.e., we are
allowing for BCS-type effects@29# to become important.
When extending our treatment to nonzero temperatures
will similarly need to assume slow evolution of the excite
state populations, although this issue becomes rather su
as we shall discuss in Sec. III C. In our subsequent calc
tions we shall discuss when the thermal correlationsk jk and
l i jk vary on a much smaller time scale and show how th
can be formally eliminated in our treatment.

This paper is divided into five parts. In the first part of th
paper we restrict ourselves to near zero temperatures
which it appears reasonable to neglect all effects of exc
states. We thus obtain a NLSE that includes the full~bare
particle! ladder interactions, where this effective interacti
potential arises from the adiabatic elimination of the anom
lous correlationk jk . This equation is then shown to reduc
to the phenomenological Gross-Pitaevskii equation by me
of the usual pseudopotential approximation. In Sec. III,
extend our treatment to nonzero temperatures. The
modification that comes about is the inclusion of the oc
pation of virtually excited states into the ladder diagram
However, the finite number of excited atoms further nec
sitates the consideration of collisions between condensed
excited atoms. We thus show how adiabatic elimination
l i jk ‘‘upgrades’’ the condensate–excited-state interact
potential to the ladder approximation. In Sec. IV, we sho
how the bare particle propagators get dressed by the con
sate mean field and by interactions with other excited ato
and discuss the consequences of identifying these term
our equations. We then discuss, in Sec. V, the validity
several mean-field theories for both zero and nonzero t
peratures and in particular point out the inconsistency of
conventional finite-temperature mean-field approach~i.e.,
what is commonly referred to as HFB!. Finally, in Sec. VI,
we discuss some further effects of the mean fields on co
sions. The detailed form of the equations needed for the
rent discussion has been reproduced in Appendix A, whe
Appendix B gives an exact treatment of the condens
mean-field evolution up to second order in the interact
potential.

II. LADDER INTERACTIONS IN A BARE PARTICLE
BASIS AT ZERO TEMPERATURES

Let us initially assume that the atomic assembly is su
ciently dilute, so that we can treat the bare particles
weakly interacting quantities. In this limit, bare particle
form a reasonable basis set for the system and can thu
used for the description of the assembly. We shall take

noninteracting partĴ of the single bare-particle Hamiltonia
in a trap as diagonal, by writing

^nuĴuk&5\vndkn . ~10!

If this basis accurately represents the state of the system~i.e.,
all dressing of states by the mean fields can be ignored!, then
the anomalous averagek will evolve rapidly, thus enabling
us to adiabatically eliminate it. The elements ofr, however,
vary on a slower time scale, as their evolution depends on
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57 1233MICROSCOPIC TREATMENT OF BINARY . . .
energy difference. This means that they should, in princip
be retained in the equation of motion~8! for the condensate
evolution. NearT50, however, the occupation of excite
states is extremely scarce, so that we can, in the first
stance, neglect its effect on the condensate evolution.

Within these approximations, Eq.~8! reduces to

i\
dzn

dt
5\vnzn1(

i jk
^niuV̂u jk&@zi* zjzk1k jkzi* #. ~11!

In order to adiabatically eliminate the pairingk jk , we
shall need its equation of motion given in Appendix A. W
note that in a bare particle basis atT50, Eq.~A6! essentially
simplifies to

i\
dkk j

dt
5\~vk1v j !kk j1Dk j , ~12!
va
i

on
ol

in
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te

g
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t
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e

e
e
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n-

where we have defined@28#

Dk j5(
ms

^k j uV̂ums&@zmzs1kms#. ~13!

We are now in a position to derive a NLSE valid atT
50 with the actual interatomic potential of Eq.~4! replaced
by the two-bodyT matrix. Such an equation will be shown t
be equivalent to the conventional GPE if we replace theT
matrix by the zero-range pseudopotential. This procedur
analogous to that pursued by Beliaev@15# for the homoge-
neous gas. The advantage of the approach presented h
that it enables us to give criteria for the validity of the co
ventional approach and its application to the case of trap
gases.

Integrating Eq.~12! and substituting into Eq.~11!, we
obtain
i\
dzn

dt
5\vnzn1(

ims
^niuV̂ums&zi* zmzs1(

i jk
^niuV̂u jk&zi* ~ t !

3E dt8

i\
e2 i ~vk1v j !~ t2t8!(

ms
^ jkuV̂ums&@zm~ t8!zs~ t8!1kms~ t8!#, ~14!
w-
rm

ol-
in

os-
Eq.
de-
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-

where the integration is to be carried out in the inter
@ t0 ,t#, in which the collision takes place. Since the gas
considered sufficiently dilute, the mean collisional durati
is negligible compared to the time between successive c
sions, enabling us to take the limitt0→2`. In writing Eq.
~14! we have made use of the approximation that the pair
k asymptotically relaxes to zero, so thatk jk(t0)→0 as t0
→2`. Physically, this is the same as saying that th
anomalous interparticle correlations are dominantly crea
within a collision between condensate particles.

A further crucial point to note is that, since we are tryin
to derive a NLSE, we are implicitly assuming that the me
value amplitudezi(t) is a slowly varying quantity, that is, i
remains practically constant over the time scale in which
correlationk jk varies. Thus, we are justified in allowing th
quantities zi(t8) present in the integrand of Eq.~14! to
evolve freely with time by setting

zi~ t8!5zi~ t !e1 iv i ~ t2t8!. ~15!

If we now intitially limit ourselves to second order in th
interaction potentialV, we note that we can disregard th
kms(t8) term of Eq.~14!, as its first contribution will be to
orderV3. Then, Eq.~14! reduces to

i\
dzn

dt
5\vnzn1(

ims
^niuT̂2B~E!ums&zi* zmzs , ~16!

which gives us the bare-particle two-bodyT matrix in a trap
to second order in the interaction potentialV̂, namely,
l
s

li-

g

e
d

n

e

T̂2B~E!5V̂1(
jk

V̂u jk&E dt8

i\
e2 i ~vk1v j 2E!~ t2t8!^ jkuV̂.

~17!

Here E represents the energy of the colliding~bare! atoms
prior to the collision in the center-of-mass frame@i.e., in Eq.
~16!, E5\(vm1vs)#, whereasj andk correspond to inter-
mediate trap eigenstates induced during the collision. Ho
ever, we point out that it is precisely the presence of the te
kms(t8), which generatesT2B to all orders inV, as can easily
be seen by repeated use of Eqs.~11!–~13!. We have hence
shown Eq.~16! to be valid to all orders inV, with T̂2B

satisfying the following Lippmann-Schwinger relation@34#
in a trap

T̂2B~E!5V̂1(
jk

V̂u jk&E dt8

i\
e2 i ~vk1v j 2E!~ t2t8!

3^ jkuT̂2B~E!. ~18!

This modified form of the NLSE accurately represents a c
lision between two condensate atoms occurring in a trap
the absence of other particles, by taking account of all p
sible states via which the collision can proceed. Thus,
~18! includes the ladder diagrams for bare particles as
picted diagrammatically in Fig. 2~a!.

In the above derivation of Eq.~16!, we have repeatedly
used the assumption that the mean value of the conden
field evolves more slowly than the anomalous averagek we
have adiabatically eliminated. This assumption is inde
valid for the weakly interacting gas, as explained below.
the low-temperature case (kT!\v) discussed in this sec



n

d
t

u
o

lve
dle

o
f

be

,
mi-

E
i-

cal
d in

ur-

e
ent

e

f

t

a

t
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tion, it suffices to show that the amplitude of states tra
siently populated in a two-body collision varies very rapidly
i.e., we can neglect any modifications on the two-body la
der diagrams of Fig. 1~b!. The amplitude of these transien
excited states evolves with a typical frequency\/ma2. This
should be compared with a typical frequency for the evol
tion of the condensate mean field, e.g., the frequency of c
lective modes that are excited in experiments. In the case
a trapped condensate, this is given approximately by the tr
frequency\/ml0

2, where l 0 corresponds to the width of the
ground state in the confining potential. In all cases,l 0@a,
with typical values of the order of 100a, confirming the va-

FIG. 2. ~a! depicts diagrammatically the integral definition o
the bare-particle two-bodyT matrix, as defined by Eq.~18!. In ~b!
and~c! we have illustrated the definition of the many-bodyT matrix
according to Eq.~26!. The new feature introduced in~b! is that one
now takes account of the occupation of the intermediate sta
through which the collision proceeds. Thus, the thick arrows ind
cate that the collisions actually occur in an atomic medium,
opposed to the vacuum. In particular,~c! indicates explicitly how
this excited-state occupation is taken into account according to
many-body factor (11r j j

0 1rkk
0 ), with ther0 term indicated by the

double arrow.
th

e-
d
v
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-
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-
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of
ap

lidity of our earlier assumption that the mean values evo
more slowly than the other processes occurring in the mid
of a collision.

In upgrading Eq.~16!, the natural next step would be t
introduce the many-bodyT matrix, which takes account o
the occupation of such transient excited states; this could
done by making use of the next set of terms indk/dt @given
in Eq. ~A6!#. However, before returning to this in Sec. III A
let us focus on the relation between this version of the
croscopically derived zero-temperature NLSE~16! and the
phenomenological GPE~7!.

A. Reduction to the Gross-Pitaevskii equation

Let us now show explicitly how we can obtain the GP
from our NLSE ~16!. To do this we shall need to approx
mate the~bare-particle! T-matrix defined in Eq.~18! in terms
of actual interatomic potentials, by a phenomenologi
model, such as the pseudopotential approach discusse
detail in the classic paper by Huang and Yang@17#. For the
low condensation temperatures involved, we can limit o
selves to the lowest-order contribution of thes-wave. We
may thus write

T̂2B~r !.
4p\2a

m
d~r !, ~19!

wherea corresponds to thes-wave scattering length.
Let us now use this approximation in Eq.~16! to explic-

itly reconstruct Eq.~7!. In fact, in order to reconstruct th
GPE, we have to explicitly express the diagonal elem

\vnzn of Eq. ~16! as(k^nuĴuk&zk . We shall now also mul-
tiply the resulting equation byfn(r )/AN and sum over the
indicesn @so as to obtain the desiredF(r ,t) on the left-hand
side of our equation#. We note that the factor ofAN is
needed so as to renormalize the wave functions, as thzi
satisfy

(
i

zi* zi5N. ~20!

After carrying out the integration with respect to thed func-
tion and rearranging, we thus obtain

es
i-
s

he
i\
]

]t
F~r ,t !5E dr 8F(

n
fn* ~r 8!fn~r !GĴ~r 8!(

k
fk~r 8!

zk~ t !

AN

1NU0E dr 8F(
n

fn* ~r 8!fn~r !G(
i

f i* ~r 8!
zi* ~ t !

AN
(

j
f j~r 8!

zj~ t !

AN
(

k
fk~r 8!

zk~ t !

AN
. ~21!
ac-

tial
the
by
ible
Using the completeness relation for orthogonal states,
reduces to the GPE~7! for F(r ,t).

One of the aims of this paper is to specify validity r
gimes for the currently existing mean-field theories, inclu
ing the GPE. However, some limitations of the GPE ha
been already extensively discussed in the literature. We s
is

-
e
all

briefly discuss those here, so as to provide a complete
count of potential shortcomings of the GPE.

Firstly, we should emphasize that the pseudopoten
should not be used as a straightforward substitute for
actual interatomic potential. To explain what we mean
this statement, we shall now outline the simplest poss
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derivation of the GPE, following@35#. We start with the
Heisenberg equation of motion for the Bose field opera

Ĉ(r ,t) in the limit of pairwise interactions. After using th
appropriate commutation relations for the field operators
taking mean values, we find

i\
]F~r ,t !

]t
5S 2

\2¹ r
2

2m
1Vtrap~r ! DF~r ,t !1E dr 8V~r2r 8!

3^Ĉ†~r 8,t !Ĉ~r 8,t !Ĉ~r ,t !&, ~22!

whereV(r2r 8) again corresponds to the actual potential e
perienced by a pair of interacting atoms~assuming a centra
potential!.

In the simplest derivations, one first uses the pseudo
tential as a model interaction viaV(r2r 8)5U0d(r2r 8) and
then drops the interatomic correlations by setti

^Ĉ†(r 8,t)Ĉ(r 8,t)Ĉ(r ,t)& 5 ^Ĉ†(r 8,t)&^Ĉ(r 8,t)&^Ĉ(r ,t)&.
The two steps are, of course, interlinked, with the seco
step justified by arguing that the effect of all correlatio
thus neglected is taken into account in the effective inter
tion strengthU0.

However, we wish to stress that an effective interact
treatment can only be rigorously justified if the pseudopot
tial approximation is carried out after the two-body intera
tion potential has been ‘‘upgraded’’ to theT matrix, in the
manner shown above. This is not a new result: in fact,
replacement of the interaction potentialV by the two-bodyT
matrix has been extensively discussed in the literature.
most notable work is the diagrammatic approach discus
for the homogeneous gas by Beliaev@15#, and Popov’s defi-
nition of a suitable effective action for the dilute Bose g
@16#. Nonetheless, we feel that this point is often overlook
in current treatments of the Bose gas, and we have there
chosen to stress it in the first part of this paper. In fact, i
only possible to apply the pseudopotential approximation
V ~and drop all interatomic correlations as discussed ear!
in the limit of weak interactions, as defined by@14#. In gen-
eral, one must go beyond this limit, which mathematica
corresponds to defining an effective interaction beyond
two-bodyT-matrix approximation. Such an improved effe
tive interaction can no longer be represented by the u
s-wave scattering length pseudopotential, and will, th
yield an equation distinct from the GPE, as will be discuss
in subsequent sections. In essence, this means that th
placement ofV by the pseudopotential has a limited range
validity due to the effect of the medium in which the col
sions occur, as will be explained shortly.

However, let us for the moment discuss other limitatio
of the GPE that are inherent in the nature of the pseudo
tential approximation~19! ~and will thus still be important
even when this is correctly applied on the two-bodyT ma-
trix!. For example, it is well known in the case of the hom
geneous gas, that the use of ad-function potential in a self-
consistent treatment can lead to unphysical results, suc
no depletion of the condensate@36#. This can be easily un
derstood by looking at the original work by Huang and Ya
@17#. The reason for such unphysical results is that
pseudopotential approximation already contains an imp
assumption about the actual interaction operator, nam
r

d

-

o-

d

c-

n
-

-

e

e
ed

d
re

s
o
r

e

al
,
d
re-
f

s
o-

-

as

e
it
ly,

that it is acting on free particle states@37#. In terms of Pop-
ov’s approach@16#, this means that ad-function potential
can only be used in combination with an ultraviolet cutoff
the theory. Furthermore, the nature of the pseudopoten
approximation explicitly ignores all momentum dependen
which appears in the problem as higher-order terms in
s-wave scattering lengtha. This is an excellent approxima
tion, valid, in the case of the homogeneous gas ifa/L!1,
where L represents the atomic de Broglie wavelength.
cannot, therefore, be put into into higher-order terms in
perturbation expansion with an unrestricted summation o
momenta. Thus far, in this section, we have focused
attention on the limitations of the GPE in terms of the tre
ment of the spatial and momentum dependence of the ato
interactions. These limitations are well known and have b
previously dealt with in the literature. The treatment pr
sented in this paper is one way of overcoming such diffic
ties and handling spatially dependent interaction effects
are not present in the phenomenological Gross-Pitaev
model@38#. However, these limitations are not the only pro
lem one has to address. In fact, the main emphasis of
paper lies on the extension of the effective interaction
proach beyond the weakly interacting~GPE! limit, and it is
to this issue that we now turn our attention. We remind
reader that the derivation of Eq.~16! found in the preceding
section is based on a bare particle basis. This implies,
example, that we have ignored all dressing effects on
intermediate collisional states due to the condensate m
field. This obviously means that such effects are also imp
itly ignored in the GPE, and implies that the GPE is stric
only valid if the atoms are colliding in a strictly binary man
ner. The reason these mean field effects cannot be inclu
in a phenomenological GPE based on the s-wave scatte
length a, is that, in the experiments,a is spectroscopically
determined in the absence of mean fields~i.e., effectively in
vacuum!. Our microscopic approach fully treats collisions
the presence of mean fields, and we believe it provide
natural formalism for obtaining expressions for both dress
and damping of the GPE@39#.

III. LADDER DIAGRAMS AT FINITE TEMPERATURES
IN A BARE PARTICLE BASIS

Following the analysis of the previous section, it shou
be clear to the reader that the GPE represents only a limi
case of the equations given in Appendix A, since it negle
the effect of the medium in which the collisions occ
~which becomes increasingly important as the atomic ass
bly becomes denser!. Before we deal with these issues, w
would, however, first like to extend Eq.~16! to finite tem-
peratures, which corresponds to a well-posed problem wi
our formalism.

When extending our treatment to nonzero temperature
variety of new features arises: firstly, there will now be
non-negligible occupation of excited states, which leads t
modification in the scattering between two condensed ato
as discussed in Sec. III A below. At the same time, howev
the evolution of the condensate mean field will also be
fected by collisions between condensed and excited ato
as will be dealt with in Sec. III B.

In this section we discuss the limit of weak interaction
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in which the collisions can be described in terms of bare~i.e.,
non-dressed! atoms. The deviation from such a simplist
picture~due to dressing induced by mean fields! will be dealt
with in Sec. IV.

A. The many-body T matrix for weakly interacting particles

We shall now deal with the first of the finite temperatu
effects, namely, how Bose statistics affect theT matrix, by
taking account of the occupation of low-lying excitatio
during a collision between two condensate particles. T
effect is expected to be so small at low temperatures, tha
have chosen to neglect it altogether nearT50. However, in
is
e

order to take account of the occupation of virtual states
cessed during a collision between two condensate partic
we need to modify Eq.~12! to

i\
dkk j

dt
5\~vk1v j !kk j1Dk j1(

r
@rkrD r j 1Dkrr r j* #.

~23!

We again formally integrate the above equation and ad
batically eliminatek jk from Eq.~11!. Doing so we obtain, to
second order in the interaction potential, the following equ
tion of motion for the condensate:
re
er-

ted
. In this
e

e

i\
dzn

dt
5\vnzn1(

ims
^niuV̂ums&zi* zmzs1(

i jk
^niuV̂u jk&zi* ~ t !E dt8

i\
e2 i ~vk1v j !~ t2t8!(

ms
^ jkuV̂ums&zm~ t8!zs~ t8!

1(
i jk

^niuV̂u jk&zi* ~ t !H E dt8

i\ (
rms

e2 i ~vk1v j !~ t2t8!^rkuV̂ums&zm~ t8!zs~ t8!r j r ~ t8!1$k↔ j %J . ~24!

Here, the notation1$k↔ j % indicates the presence of an identical term upon interchanging the~intermediate propagation!
labels j andk, and thus indicates the presence of both a direct and an exchange term@in much the same manner as those a
included in the symmetrization of the interaction vertex~5!#. Once again thek correlations ensure that this equation gen
alizes to allV. Hence,T2B in Eq. ~16! becomes replaced by the operatort̂ , defined by

t̂ (E)5V̂1(
jk

V̂u jk&E dt8

i\
e2 i ~vk1v j 2E!~ t2t8!^ jku t̂ (E)1(

r jk
V̂u jk&

3H E dt8

i\
e2 i ~vk1v j 2E!~ t2t8!r j r (t8)^rku1(k↔ j )J t̂ (E). ~25!

In the limit of weak interactions, we can treat the elements ofr as diagonal, thus corresponding to population of exci
states. The off-diagonal elements will correspond to dressing of the bare atoms and will be discussed in Sec. IV
manner, we arrive at the Lippmann-Schwinger relation for the many-bodyT matrix in a trap in terms of bare particles, in th
form

T̂MB~E!5V̂1(
jk

V̂u jk&E dt8

i\
e2 i ~vk1v j 2E!~ t2t8!@11r j j

0 ~ t8!1rkk
0 ~ t8!#^ jkuT̂MB~E!. ~26!

This definition has also been depicted diagramatically in Figs. 2~b!–2~c!. The operatorT̂MB of Eq. ~26! is linked toT̂2B of Eq.
~18! by the equivalent definition

T̂MB~E!5T̂2B~E!1(
jk

T̂2B~E!u jk&E dt8

i\
e2 i ~vk1v j 2E!~ t2t8!@r j j

0 ~ t8!1rkk
0 ~ t8!#^ jkuT̂MB~E!. ~27!

It is easy to see that, in the homogeneous limit, the expression~26! reduces to the well-known integral relation for th
many-bodyT matrix @40#, namely,

TMB~k8,k,K;E!5V~k82k!1E dk9

~2p!3
V~k82k9!

11N~K/21k9!1N~K/22k9!

E2~\k9!2/m1 i0
TMB~k9,k,K;E!. ~28!
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Here k and k8 respectively correspond to ingoing and ou
coming particle momenta,K to the center-of-mass momen
tum, andE represents the kinetic energy for the two atoms
the center-of-mass frame. Furthermore,N represents the av
erage occupation number of a single-particle state~of speci-
fied momentum!.

In Sec. III, we have already explained that the lo
temperature collisional evolution of the condensate m
field in the weakly interacting limit is governed by the tw
bodyT matrix. Justifying whyT̂MB is the suitable paramete
in the regimekT@\v is more tricky. One of us has show
elsewhere@21# that the relevant time scale for the homog
neous gas is given by\/kT. This can be interpreted as th
time scale for atoms to move a typical interparticle sepa
tion, a sensible time for the manifestation of many-body
fects. These effects give rise to a slower evolution in co
parison with the two-body one. Nonetheless, the time sc
for the many-bodyT matrix is still much faster than the
collective motion in a trap (\/ml0

2), thus justifying once
again the adiabatic elimination of the anomalous average
the free evolution of the condensate mean field~16!.

B. Ladder approximation to the condensate–excited-state
interactions

So far, we have only accounted for the occupation
states through which a condensate-condensate collision
ceeds, in terms of the many-bodyT matrix. The other impor-
tant effect arising at finite temperatures is the interaction
tween condensed and excited atoms. Obviously, such
effect must also be included in a NLSE describing the e
lution of the condensate. To deal with this effect, we m
now also consider the rest of Eq.~8! which has been ignored
up to this point. To be more precise, we need to consider
effect of the additional contribution

i\
dzn

dt
5•••1(

i jk
^niuV̂u jk&@2r j i zk1l i jk #. ~29!

Careful observation of the first few terms in the equation
motion for l i jk , Eq. ~A7! suggests, by analogy to the arg
ments of Sec. II, that it is indeed the suitable quantity
upgrading the actual~single-vertex! interatomic potential for
2r j i zk in Eq. ~29! to the T-matrix level. However, we note
that the tripletl is not included~i.e.,l50) in the traditional
mean field~i.e., HFB! theory. This shows that we need to g
beyond HFB in order to rigorously obtain a NLSE for th
evolution of the condensate mean field at non-zero temp
tures, and we shall discuss this below. An extension bey
HFB is, strictly speaking, also essential for a consistenT
50 theory.

We shall now also adiabatically eliminate@41# the quan-
tity l i jk appearing in Eq.~29!. Consider initially the contri-
bution

i\
d

dt
~l i jk !5\~vk1v j2v i !l i jk

1(
ms

^ jkuV̂ums&~2rmizs1l ims!.

~30!
n
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Thus, Eq.~29! becomes, to second order in the interacti
potential

i\
dzn

dt
5•••1(

ims
^niuV̂ums&2rmizs

1(
i jk

^niuV̂u jk&E dt8

i\
e2 i ~vk1v j 2v i !~ t2t8!

3(
ms

^ jkuV̂ums&2rmi~ t8!zs~ t8!. ~31!

As before, we assume that all mean value amplitudeszi(t)
vary on a much slower time scale than the anomalous co
lations. Furthermore, we limit our discussion here to t
slowly evolving diagonal elementsr i i

0dmi in a bare particle
basis, for whichr i i

0 (t8)5r i i
0 (t). This simplification avoids

potential problems associated with the variation ofr being
slow in comparison with the two-bodyT matrix. We thus
obtain the desired upgrading of condensate–excited-stat
teractions to the two-bodyT matrix, valid to second order in
V, just like in Eq.~17!. Once again, we see that this expre
sion can be generalized to all orders in the interaction po
tial, by taking account of the last term proportional tol ims in
the right-hand side of Eq.~30!.

Thus far, we have shown how to treat the condensa
condensate interactions to the bare-particleT̂MB level and the
condensate–excited-state contributions toT̂2B, so that the
condensate mean field evolves according to the equation

i\
dzn

dt
5\vnzn1(

ims
^niuT̂MBums&zi* zmzs

12(
is

^niuT̂2Bu is&r i i
0zs . ~32!

It is clear that a consistent finite-temperature theory wo
require the latter contribution to be also expressed in te
of T̂MB. The subtle point that needs to be addressed her
that such an expression will contain terms of order (r0)2;
hence, we expect~and we shall indeed confirm in our de
tailed treatment below! that in this situation, we should als
take account of the scattering of excited states into the c
densate, which modifies the evolution of the condens
mean value.

C. Interactions between excited states

In this section we shall discuss how to upgrade express
~32! to the many-bodyT matrix for excited states. On firs
inspection, this appears to be quite straightforward, up
considering the first three terms of Eq.~A7!, namely, the
contribution of
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i\
d

dt
~l i jk !5\~v j1vk2v i !l i jk1(

ms
^ jkuV̂ums&~2rmizs1l ims!1H(

rms
^rkuV̂ums&r j r @2rmizs1l ims#1~k↔ j !J ~33!

to the equation for condensate evolution~29!.
However, we wish to point out that maintaining merely this contribution forl i jk cannot be consistent. The reason for th

is that the next term in Eq.~A7!, namely,

i\
d

dt
~l i jk !5•••2H(

rms
^msuV̂u ir &r jmrkszr1~k↔ j !J ~34!

is an equally valid contribution to orderV2 in the expression fordzn /dt. Thus, a consistent approach must simultaneously t
into account both contributions~33! and ~34! in adiabatically eliminatingl. The interpretation of the contribution~33! is
straightforward: it leads to the renormalization of the condensate–excited-state interaction toT̂MB. At first sight, it appears hard
to interpret the physical significance of Eq.~34!. To achieve this, we shall once again limit ourselves to the slowly evolv
excited-state contributionsr0. In this limit, maintaining both terms~33! and ~34!, we obtain for the contribution of excited
states to the evolution of the mean value amplitudezn to second order inV,

i\
dzn

dt
5•••12(

is
^niuV̂u is&r i i

0zs12(
i jks

^niuV̂u jk&E dt8

i\
e2 i ~vk1v j 2v i2vs!~ t2t8!

3@r i i
0 1r i i

0r j j
0 1r i i

0rkk
0 2r j j

0 rkk
0 #~ t8!^ jkuV̂u is&zs~ t !. ~35!

We can now easily identify the term in square brackets as

~r j j
0 11!~rkk

0 11!r i i
0 2r j j

0 rkk
0 ~r i i

0 11!. ~36!

This contribution is known to give the correct amplitude for the scattering of quasiparticles, and can be used to
condensate lifetimes. This expression is also in agreement with the results of the functional integral approach d
independently by one of us@21,42#.

Hence, we can now identify the negative contribution in Eq.~34! as the term that ensures the correct factors for scatte
into the condensate, due to the interaction of an excited state either with a condensed, or with another excited atom
treatment of the factors of Eq.~36! to all orders in the interaction potential should lead to an additional term in the fi
temperature NLSE, which should thus be expressible as

i\
dzn

dt
5\vnzn1(

ims
^niuT̂MBums&zi* zmzs12(

is
^niuT̂MBu is&r i i

0zs

22(
i jks

^niuT̂MBu jk&E dt8

i\
e2 i ~v j 1vk2v i2vs!~ t2t8!@r j j

0 rkk
0 #~ t8!^ jkuT̂MBu is&zs . ~37!
is
h
cs

n
of
q.

r

ri-
o
v
s
o

e

n
er,

is

ap-
n

st
o
this
d

Equation~37! is depicted diagrammatically in Fig. 3. Th
equation, already derived using an alternative approac
@21#, is very important, as it includes the effect of kineti
@43# due to interactions of two excited atoms.

We note that a systematic analysis of the contributio
~33!–~34! to all orders inV appears to generate only one
the many-bodyT matrices appearing in the latter term of E
~37!. In particular, we only obtain̂ jkuV̂u is&, instead of the
anticipated^ jkuT̂MBu is&, which may at first glance appea
unsatisfactory.

Let us, however, reexamine the derivation@22# of the
equations of motion appearing in Appendix A. In their de
vation, we have only maintained correlations of products
up to three fluctuation operators; in particular, we ha
treated the correlations of products of four such operator
their mean-field contributions, i.e., in terms of products
averages of two operators@or Wick’s theorem, see Eq.~22!
in

s

f
e
in
f

of Ref. @22##. Since such correlations appear explicitly in th
equation of motion for the normal averager, it is reasonable
that the evolution ofr, and therefore the collisions betwee
two excited states, will only be treated in an exact mann
when the equation of motion for̂c†c†cc& is explicitly
worked out~for which the decomposition approximation
only carried out on higher-order correlations!. This argument
is justified by the fact that suitable treatment of^c†c†cc&
gives rise, in the limit of no condensation@44#, to the well-
known quantum Boltzmann equation@39#. Thus a full treat-
ment of these more complex correlations can solve the
parent limitation of our formalism in terms of the derivatio
of Eq. ~37!, as discussed in Proukakis@39#.

We would like to point out, however, that since the la
~kinetic! contribution arises due to the interaction of tw
excited atoms resulting in scattering into the condensate,
effect may actually be negligible in a sufficiently dilute an
low-temperature regime.
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IV. EFFECT OF MEAN FIELD ON COLLISION DYNAMICS

All discussion so far has been in terms of weakly int
acting atoms, for which we can ignore the effect of the me
fields on the intermediate collisional states. In particular,
adiabatically eliminating the anomalous averagesk jk and
l i jk , we have only considered certain of their contributio
appearing in the equations of motion of Appendix A. The
contributions correspond to those giving rise toT matrices
for both condensate-condensate and condensate–exc
state interactions in the equation governing the evolution
the condensate mean field.

However, we know that the presence of mean fields~in
terms of both condensate as well as excited states! will
modify or ‘‘dress’’ the intermediate collisional states. In th
section, we shall limit ourselves to the regime where all
fects of the triplets can be ignored (l5g50). This will be
shown to correspond to the HFB description of the system
terms of actual interatomic potentials, with the effect
mean fields during a collision generating the quasipart
~Bogoliubov! dressing. In Sec. V we will discuss the validi
of the simple GPE, as well as that of other conventio
dilute Bose gas theories and we shall argue that a consi
theory necessitates an extension of the conventional m
field theory~i.e., consideration of the triplets in our prese
language!.

A. The limit where l5g50

Let us initially recast the equations of motion of Appe
dix A in a simplified manner in the limitl5g50. In terms
of the anomalous correlationk jk , we note that Eq.~A6!
contains the additional~dressing! contribution

FIG. 3. This figure represents diagrammatically the evolution
the condensate mean value amplitudezn as given by Eq.~37!. We
have explicitly illustrated diagrams corresponding to direct and
change terms, as well as the associated contribution prefac
These factors have been suppressed in our mathematical ana
by means of the definition~5! of a symmetrized matrix elemen
The factorr0 indicates the population of excited states.
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i\
dkk j

dt
5•••1(

s
@hksks j1kkshs j* #, ~38!

whereh is given by

hks52(
l t

^kluV̂uts&~zl* zt1r t l !. ~39!

From Eq.~A5!, we also write down the equation of motio
for r j i . In Sec. III, we assumedk does not acquire a finite
mean value between collisions~i.e., it relaxes to zero! and
also ignored the off-diagonalr elements. To deal with the
conventional mean-field dressing, we shall now also all
for rapidly varying off-diagonalr elementsdr j i , i.e., we
shall substitute forr j i the expression@45#

r j i 5r i i
0d j i 1dr j i . ~40!

We shall further assume thatdr i i
0 /dt.0. In these limits,

we thus obtain the following set of equations for the rap
variations ofdr anddk during a binary collisional process

i\
dzn

dt
5\vnzn1(

i jk
^niuV̂u jk&@zi* zjzk12r i i

0d i j zk#

1(
i jk

^niuV̂u jk&zi* dk jk

12(
i jk

^niuV̂u jk&zkdr j i , ~41!

i\
d

dt
~dkk j!5\~vk1v j !dkk j

1(
s

@hksdks j1dkkshs j* # ~42!

1~11rkk
0 1r j j

0 !Dk j ~43!

1(
s

@drksDs j1Dksdrs j* #, ~44!

i\
d

dt
~dr j i !5\~v j2v i !dr j i

1(
r

@h j r dr ri 2dr j r h ri # ~45!

1~r i i
0 2r j j

0 !h j i ~46!

2(
r

@dk j r D ri* 2D j r dk ri* #. ~47!

The physical significance of the various contributions a
pearing in these equations will be analyzed in detail belo
First, however, we would like to point out that the lim
l5g50 of the equations of motion of Appendix A corre
sponds to the time-dependent Hartree-Fock-Bogoliub

f

-
rs.
sis,
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equations, written in terms of actual interatomic potentia
These HFB equations can be alternatively generated by
following Hamiltonian@28#:

HQ5
1

2(pq
$hpq~ ĉp

†ĉq1 ĉqĉp
†!1~Dpqĉp

†ĉq
†1Dpq* ĉqĉp!%,

~48!

where

hpq5^puĥuq&5^puĴuq&1hpq5^puĴuq&12(
l t

^pluV̂utq&

3~zl* zt1r t l !. ~49!

This operator takes account of all possible quadratic term
bare particle fluctuation operatorsĉi . In the literature,HQ is
termed the quasiparticle Hamiltonian@28#, as it describes
fully an assembly of noninteracting quasiparticles. T
dressing effect of the mean fields on the bare-particle st
resulting from this Hamiltonian is conventionally referred
as quasiparticle dressing, and we shall now discuss its
sequences.

1. Quasiparticle dressing at zero temperature

At T.0 there will be very few excited atoms in the a
sembly, so that we can approximater i i

0 .0. We have already
shown that the termi\(dkk j /dt)}Dk j of Eq. ~43! corre-
sponds to the two-bodyT matrix being generated in the in
teraction between condensed atoms. The terms containinh
in bothdr anddk @i.e., contributions~42! and~45!# give rise
to the dressing of Fig. 4~a!. This represents the simple
dressing term due to the mean field of the condensate in
intermediate collisional steps, and corresponds algebraic
to shifting and mixing of the intermediate states and frequ
cies.

From Eqs.~44! and ~47!, we see that there further exis
more complex contributions that depend on the coupling
tween dr and dk. We expect these to correspond to t
anomalous quasiparticle~Bogoliubov! dressing, in much the
same way creation and annihilation operators get coupled
the quasiparticle transformation

ĉi5(
l

@uil b̂l1v i l* b̂l
†#, ~50!

where theb̂l
† correspond to quasiparticle annihilation~cre-

ation! operators.
Indeed, the combination of contributions~44! and ~47!

gives rise to intermediate dressing of the form of Fig. 4~c!.
We stress that the coupling between them implies that b
diagrams in Fig. 4~c! are combined at any single intermed
ate step. To understand the form of the coupling, we h
illustrated in Fig. 5 two typical diagrams in the evolution
the condensate mean field, along with their dressed equ
lents due to thedr-dk coupling.

2. Quasiparticle dressing at nonzero temperatures

Observation of Eqs.~42! and ~43! and ~45! and ~46!
shows the following new features arising atT.0, wherer i i

0

becoms non-negligible due to thermally excited atoms. T
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first one, which we have already discussed quite extensiv
is the replacement of the two-bodyT matrix by the many-
body one, due to enhanced condensate-condensate scat
via occupied excited states. Furthermore, theh terms in Eqs.
~42! and ~45! also allow modifications in the intermediat
collisional states due to the mean field of excited states@in
analogy to the condensate mean field of Fig. 4~a!#, as shown
in Fig. 4~b!.

The final modification we need to consider at finite te
peratures is that due to the effect of the contribution~46!.
Adiabatic elimination of this contribution results in the ge
eration of the so-called bubble diagrams shown in Fig. 4~d!.
Let us now give a brief physical explanation of the bubb
diagrams. Consider the case of driving a trapped conden
by some external field. The condensate oscillations will
duce transitions between excited states, and those will in
act back on the condensate and modify its evolution. If
condensate is suitably perturbed, these terms will beco

FIG. 4. This figure illustrates all different quasiparticle dressi
effects on the unoccupied intermediate propagators of the two-b
T matrix @Fig. 2~a!#. Such dressing during an atomic collision aris
due to the effect of~a! the condensate mean field, or~b! the mean
field of thermally excited states. Additionally, thedr-dk coupling
generates the anomalous terms of~c!, corresponding to the creation
or annihilation of two condensed atoms, in favor of excited on
these contributions do not appear separately, but are compleme
of each other.~d! indicates the extra dressing due to the bub
diagrams~46!, which are associated with a factor (r i i

02r j j
0 ). We

note that all above dressing effects could also be very straigh
wardly included in the many-body loops of Figs. 2~b!–2~c!.
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dominant, thus implying that the many-bodyT matrix is no
longer the suitable parameter for the evolution of the co
densate mean field. This would suggest that Eq.~37! is no
longer valid, signaling a breakdown of the Markoffian a
proximation discussed in Secs. II and III. It is worth pointin
out that although these bubble diagrams can usually be
glected in weakly interacting systems, they have recen
been shown to be rather important near the critical tempe
ture of the gas@46#.

The interplay between all dressings of Figs. 4~a!–4~d! in
the many-bodyT matrix corresponds to what is convention
ally referred to as the quasiparticle dressing for the inter
tions between condensed atoms. Indeed, the consistent c
bination of diagrams 4~a!–4~c! with the T-matrix elements
will generate the well-known normal and anomalous se
energies\S11 and\S12. However, we believe that the con
ventionally used finite-temperature mean-field theory do
not actually include all these effects in a consistent fashi
as we shall argue below~Sec. V!.

Following the above discussion on the dressing of int
actions due to the presence of mean fields, we shall now
our attention to the analysis of conventional Bose gas th
ries appearing in the literature.

V. CONVENTIONAL THEORIES AND THEIR VALIDITY

A. The Gross-Pitaevskii equation

In Sec. IV, we discussed the effect of mean fields on t
intermediate collisional states in the limitl5g50. This ef-
fect means we should use noninteracting quasipartic
rather than bare particle states in our theoretical treatm
This dressing is not taken into account in the GPE, as w
explicitly shown in its microscopic derivation in Sec. II

FIG. 5. This figure illustrates the cooperative action of thedr-
dk coupling represented in Fig. 4~c!, by means of two typical terms
in the evolution of the condensate mean field, and their correspo
ing dressing due to this coupling:~a! shows the effect on the scat
tering between a condensed and an excited atom, whereas~b! cor-
responds to the dressing on a typical two-body ladder diagram.
-
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However, this dressing can only be ignored in the limit
weak interactions, i.e., whennU0!\v. In order to derive
the GPE, we also have to ignore the effects of the occupa
of low-lying excitations during a collision~many-body ef-
fects!. These restrictions give us the sufficient condition f
the validity of the GPE, namely,

nU0 , kBT!\v, ~51!

where\v is a typical energy separation between trap leve
Effectively, the GPE only treats condensate-condens

scattering in vacuum~thus ignoring both quasiparticle dres
ing and many-body effects!. In this limit, thes-wave scatter-
ing length indeed contains all relevant collisional inform
tion. It is conventionally argued that the corrections to t
GPE due to the presence of mean field are purely diluten
corrections. If the conditions of Eq.~51! are fulfilled the
corrections are indeed small and this statement is close to
truth. However, even this statement is open to critisism@39#.
More generally, in the case of partial condensation (TÞ0),
we maintain that the notion that diluteness is the issue
misleading.

B. Zero-temperature Bogoliubov–de Gennes equations

As mentioned above, the GPE takes no account of
finite T50 depletion of the condensate, arising due to co
sions between condensate atoms. This depletion is ind
very small in the case of typical experimentally studied co
densates, as has been shown explicitly, e.g., by Hutchin
et al. @47#. One can, therefore, calculate the frequencies
the elementary excitations, to good accuracy, by finding n
mal modes of the linearized GPE, of the form

F~r ,t !5e2 imt@f~r !1u~r !e2 ivt1v* ~r !eivt#. ~52!

Here m corresponds to the chemical potential of the und
turbed ground state and the condensate wave function
been represented by the condensate orbitalf(r ). In addition,
v labels the frequency of the elementary excitatio
whereasu(r ) and v* (r ) correspond to the spatially depen
dent coefficients of the condensate’s linear response to s
driving field. This linear response approach has been
cussed in@6,7# where it has been shown that the substituti
~52! is completely equivalent to carrying out the Bogoliubo
transformation@48# on the fluctuating part of the Bose fiel

operatorĈ2^Ĉ&, i.e., to the diagonalization of the binary
interaction Hamiltonian for the assembly.

Thus, one obtains a set of three static coupled equat
for f(r ), u(r ), and v* (r ), known as the Bogoliubov–de
Gennes~BdG! equations. These equations have been use
predict condensate shapes, densities, and the energies
ementary excitations at near zero temperatures. The re
of the BdG equations appear to be in excellent agreemen@8#
with experiments as discussed in the general ze
temperature mean field theory review paper by Edwa
et al. @7#.

C. The ‘‘essence’’ of Hartree-Fock-Bogoliubov

We would like to point out that both use of Eq.~52! and
the diagonalization discussed in@6,7# will only lead to the

d-
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1242 57N. P. PROUKAKIS, K. BURNETT, AND H. T. C. STOOF
conventional BdG equations under the assumptionV(r
2r 8)5U0d(r2r 8). In this paper, we have argued that
d-function pseudopotential approximation can only be i
posed on an ‘‘upgraded’’ effective interaction potential e
pressible in terms of the two-bodyT matrix. This enor-
mously complicates the discussion of the validity of cert
approximate mean-field theories, and generates confusio
to precisely what set of equations is implied by the te
‘‘Hartree-Fock-Bogoliubov.’’

We would argue that the HFB equations are, in fact,
fined in terms of actual interatomic potentials. Thus, we
fine HFB as the set of coupledz-r-k equations of Appendix
A ~in which all interaction terms are left in terms of symm
trized matrix elements!, in the limit l5g50. The time-
dependent HFB equations defined in this way can thus
derived from the quasiparticle Hamiltonian~48! describing
an assembly of noninteracting quasiparticles. We have
ready argued in Sec. III A, however, that such a theory c
not consistently describe the interaction between an atom
the condensate with an excited one. The rigorous way
doing this is by consideration of thel correlations. Bringing
in the l correlations is equivalent to allowing the quasipa
ticles to interact with each other.

We shall now discuss what people conventionally refe
as the finite temperature mean field, or HFB approximati

D. Finite-temperature mean-field theory
and the Popov approximation

The mean-field treatment extensively discussed in the
erature avoids dealing with actual interatomic potentials.
stead, one conventionally expresses the above fin
temperature HFB equations in terms of ad-function
approximation. In the static case, these equations then
the form given below, which can be derived as a special c
of our microscopic formalism. The equations are

H 2
\2

2M
¹21Vtrap~r !2m1U0@N0uc~r !u212ñ~r !#J c~r !

1U0m̃~r !c* ~r !50, ~53!

L̂uj~r !1U0@N0$c~r !%21m̃~r !#v j~r !5Ejuj~r !, ~54!

L̂v j~r !1U0@N0$c* ~r !%21m̃* ~r !#uj~r !52Ejv j~r !,
~55!

where we have defined the following quantities:

ñ~r !5(
j

$@ uuj~r !u21uv j~r !u2#N0~Ej !1uv j~r !u2%,

~56!

m̃~r !5(
j

uj~r !v j* ~r !@2N0~Ej !11#, ~57!

and the operator

L̂52
\2

2M
¹21Vtrap~r !2m12U0@N0uc~r !u21ñ~r !#.

~58!
-
-

as

-
-

e

l-
-
in
of

-

o
.

t-
-
e-

ke
se

Here, N0(Ej )51/(ebEj21), and the above quantities ar
normalized in the usual manner@6#. These equations are be
ing used at the moment to study the finite-temperature e
tations of Bose-condensed gases@47,49#. Since these equa
tions do not use actual interatomic potentials, we wo
rather not use the term HFB. In this paper, we shall call th
the finite-temperature Bogoliubov–de Gennes equations,
want of a better name. The reason for making this distinct
arises from our view that the approximations made in obta
ing Eqs. ~53!–~55! actually contain more physics than th
conventional mean-field~HFB! approximation. This can be
seen from our microscopic approach: In Sec. III, we ha
explicitly shown that the condensate–excited-state inte
tions can be considered in terms of an effectiveT-matrix
interaction only once the tripletl is taken into account. We
stress that thisT-matrix effective interaction is implicit in the
above form of the finite-temperature BdG equations~53!–
~55!, since they have been written in terms of zero-ran
potentials. It is clearly important to bear in mind that, wh
one includes thel terms, one also brings in other effects th
have been ignored in the coupled BdG equations, such
further dressing of intermediate collisional states. The fin
temperature BdG equations, therefore, have some incon
tencies built into them. How important these inconsistenc
are in practice remains to be seen.

Some discussion has been recently focused around
so-called ‘‘Popov’’ approximation of these equations, whi
corresponds to settingm̃(r )50 in Eqs.~53!–~55! @24#. This
approximation has been used to compute the fin
temperature excitations of a trapped Bose gas@47,49#. In
these papers, the equations being solved are referred to a
coupled HFB-Popov equations. We shall use the labe
BdG-Popov, since even the Popov approximation of th
equations goes beyond the conventional mean-field the
~due to the implicit inclusion of thel correlations!. In our
treatment, we have obtained these equations by adiabati
eliminating both anomalous averagesk @or equivalently
m̃(r )# andl @not explicitly present in Eqs.~53!–~55!#. Thus,
the Popov limit appears to be one way of obtaining a con
tent theory. Indeed, Griffin@24# has shown that such a theor
is gapless. However, using Eqs.~53!–~55! as they stand, with
a nonzero value ofm̃(r ), is clearly inconsistent, because w
have shown that it is precisely the adiabatic elimination
m̃(r ) that leads to the replacement of the interatomic pot
tial by an effective interactionU0.

Let us now discuss the validity of the Popov approxim
tion. The BdG equations have been written in terms of
quasiparticle coherence factorsuj (r ) andv j (r ). This shows
explicitly that they include the effect of the condensate me
field on the initial and final collisional states, which modifie
the bare particle states into noninteracting Bogoliubov q
siparticles. However, the analysis of Sec. IV shows that
this limit, we must also consider other effects, such as
dressing of intermediate collisional states and the occupa
of these excitations. These many-body effects should be f
included in a consistent theory of condensate-condensate
condensate–excited-state collisions. The BdG-Popov the
does not take account of these effects, and we would t
expect it to deviate from the actual description of the syste
Indeed, a basis-set simulation of excitation frequencies us
the BdG-Popov equations@49# has revealed large~and quali-
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tative! differences from experimental data for temperatu
above 0.6Tc . We are currently working on determining
more appropriate set of equations—similar to what we h
termed finite-temperature BdG equations—that can
straightforwardly computed.

Our treatment shows that many-body effects are not
only effects that are not included in the BdG-Popov desc
tion, as discussed below.

VI. EFFECTS OF MEAN FIELDS BEYOND
QUASIPARTICLE DRESSING

The equations of Appendix A, indicate that the dress
discussed in Sec. IV is not the only effect the mean fie
have during a collision. The dressing of Sec. IV arises fr
the quasiparticle Hamiltonian~48!, which replaces the inter
acting ~bare! atoms by non-interacting quasiparticles. Ho
ever, we believe the theory should allow the quasiparticle
interact weakly with each other. These interactions will le
to more complex dressing of the intermediate collisio
states. However, this is not the only reason for going bey
a quasiparticle description. We have extensively shown
this paper that, to obtain the evolution of the condens
mean field at finite temperatures, we need to consider
triplet l i jk in Eq. ~8!. However, once including this, ther
appears to be no valid argument for neglecting the effect
the triplets in the remaining equations of Appendix A. F
example, Eq.~A6! shows that when adiabatically eliminatin
k jk , we will also have to worry about triplet effects.

We thus believe the triplets have two effects. The rea
is by now familiar with the first one, which is the necess
of triplets for deriving finite-temperature equations for co
densate evolution. Secondly, to extend this argument e
further, we also think that some of the triplets appearing
Eq. ~A6! are actually needed in order to consistently co
bine the dressing diagrams of Fig. 4. We believe that a
tailed study of the effects of the triplets may shed some li
on why the dressed many-bodyT matrix appears to go to
zero asT→0 @19,46#. This behavior implies a vanishing in
teraction~in the nonlinear Schro¨dinger equation! for colli-
sions between two condensate atoms, which cannot be
rect by itself, since we know that it is precisely the
collisions that lead to the finite zero-temperature depletion
the condensate. We hope to discuss this, and related is
in the future.

VII. CONCLUSIONS

In this paper we have carried out an in-depth analysis
our microscopic description of the behavior of Bos
condensed systems at finite temperatures. The equation
@22# have been recast in Appendix A, for the convenience
the reader.

After a general introduction into our microscopic a
proach, we used the set of time-dependent Hartree-F
Bogoliubov equations based on actual interatomic poten
~i.e., without making any assumptions about them!, to derive
a nonlinear Schro¨dinger equation~16! for the description of
the condensate mean-field evolution at temperatures clos
zero; in this limit, we can, to a good approximation, negle
the presence of excitations. We showed explicitly how
s
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‘‘upgrade’’ the interatomic interaction potential~5! to the
bare-particle two-bodyT matrix ~18!, which includes all re-
peated binary collisional processes in a trap in the absenc
other particles. This is made possible by adiabatic elimi
tion of the anomalous correlation^cc&, which is not retained
in the conventional derivation of the GPE.

Furthermore, we explicitly showed in what limits th
bare-particle NLSE~16! reduces to the GPE~7!, thus provid-
ing a clear microscopic derivation. We then generalized t
NLSE to finite temperatures by including the effects of e
cited states. This results in a variety of new features: firs
the occupation of excited states during a collision leads
the replacement of the two-bodyT matrix for bare particles
by the many-body one. Secondly, we must now also cons
the effect of condensate–excited-state interactions in
evolution of the condensate mean field. In order to do t
consistently, we have shown the necessity of extending
conventional mean-field theory by explicitly including th
triplet ^c†cc&, which upgrades this interaction to theT ma-
trix. We have thus argued how to obtain a finite-temperat
equation for the evolution of the condensate mean fie
which includes kinetic contributions due to collisions b
tween excited atoms. All such treatment is true in the limit
weak interactions, i.e., whennU0!\v. In this limit, it is
reasonable to assume that the condensate mean field v
much more slowly than these anomalous averages, thus
tifying the adiabatic elimination of anomalous averages a
the free evolution of mean fields discussed in Secs. II and

When this condition does not hold, we must take acco
of the effect the mean fields have on the intermediate co
sional states. This leads to dressing of the states acce
during a binary collision. The presence of such dressing c
tributions makes it extremely difficult to adiabatically elim
nate the anomalous correlations^cc& and^c†cc& in favor of
a consistent equation valid in all limits. In fact, we point o
that the triplet^c†cc& must be rigorously dealt with in a
consistentT50 theory, due to the finite~albeit negligible!
condensate depletion.

Our microscopic approach enables us to discuss the
ventional mean-field theories currently used for describ
the evolution of the condensate. In the first instance, we h
argued that the Gross-Pitaevskii equation is strictly o
valid in the regimenU0 , kBT!\v. Furthermore, we have
argued that the conventionally used finite-temperat
Bogoliubov–de Gennes equations@Eqs. ~53!–~55!# contain
some inconsistencies, which may be removed@24# if their
treatment is restricted to the so-called Popov approxima
@i.e., m̃(r )50 in Eqs.~53!–~55!#. In this case one speaks o
the Popov approximation to BdG~or HFB-Popov!. This na-
ively suggests that the full BdG~HFB! theory is a better and
more complete theory, which is clearly not the case wh
one is interested in the elementary excitations of a Bose c
densate. To obtain a consistent theory, one must either
sider BdG-Popov, or go beyond BdG~HFB! by including
triplets to fix the gap in the spectrum of elementary exci
tions, as done in this paper. We therefore conclude that
terminology Popovapproximationcan be quite misleading
as it actually refers to a distinct set of equations to HF
Furthermore, we have also argued that even the Popov l
of these equations may fail due to the neglect of many-b
effects on the collisions in the gas. Indeed, recent simulati
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1244 57N. P. PROUKAKIS, K. BURNETT, AND H. T. C. STOOF
@48# have shown discrepancies with the experiments at t
peratures beyond 0.6Tc . We believe this must be due to th
back action of excited states onto the condensate mean
In particular, we expect Eq.~37! to fail if the condensate is
strongly driven in resonance with transitions between exc
states, which will signal the onset of the importance of
bubble diagrams.

The analysis carried out in this paper shows precisely h
hard it is to obtain a consistent mean-field theory for
description of partially Bose-condensed systems. An alte
tive description that may not face the same difficulties
based on Popov’s approach of describing the homogen
Bose gas in terms of an effective condensate density
phase. Such an approach has already been discussed b
ski and Stepanenko@50#, and we hope more discussions
this area will appear in the future.
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APPENDIX A: GENERALIZED MEAN-FIELD EQUATIONS

In this appendix we give the full set of self-consiste
mean-field equations derived in@22#, subject to a decoupling
approximation of correlations of four and five fluctuatio
operators. We have reexpressed these equations in a
that allows us to identify the physical importance of all t
individual contributions. We remind the reader of the follow
ing definitions

r j i 5^ĉi
†ĉ j&, k jk5^ĉkĉ j&, l i jk5^ ĉi

†ĉ j ĉk&,

g i jk5^ĉi ĉ j ĉk&, ~A1!

h j r 52(
l t

^ j l uV̂utr &~zl* zt1r t l !, ~A2!

Dk j5(
ms

^k j uV̂ums&@zmzs1kms#. ~A3!

In writing down the equations of motion, we have assum
we are working in a bare particle basis, where the opera

Ĵ52(\2¹2)/(2m)1Vtrap(r ) is diagonal, i.e., ^kuĴun&
5\vndnk . Furthermore, the equations given below are e
pressed in terms of the actual interatomic potential exp
enced between two atoms at each collisional vertex. We t
obtain the following set of equations:
i\
dzn

dt
5\vnzn1(

i jk
^niuV̂u jk&@zi* zjzk1k jkzi* 12r j i zk1l i jk #, ~A4!

i\
dr j i

dt
5\~v j2v i !r j i 1(

r
@h j r r ri 2r j r h ri #2(

r
@k j r D ri* 2D j r k ri* #1(

rms
^ j r uV̂ums&~2lmri* zs1l imszr* !

2(
rms

^msuV̂uri &~2lmr jzs* 1l jms* zr !, ~A5!

i\
dkk j

dt
5\~vk1v j !kk j1Dk j1(

s
@rksDs j1Dksrs j* #1(

s
@hksks j1kkshs j* #1(

rms
$^kruV̂ums&@2l rs jzm1gms jzr* #1~k↔ j !%,

~A6!

i\
d

dt
~l i jk !5\~vk1v j2v i !l i jk1(

ms
^ jkuV̂ums&~2rmizs1l ims!1(

rms
$^kruV̂ums&r j r @2rmizs1l ims#1~k↔ j !%

2(
rms

$^msuV̂u ir &r jmrkszr1~k↔ j !%1(
s

$l i jshsk* 1l j is* Dsk1~k↔ j !%2(
s

@h is* ls jk2D js* gsik#

1(
rms

$^kruV̂ums&2rmi~k jszr* 1l r js!1~k↔ j !%2(
rms

^msuV̂u ir &$k rk~2r jmzs* 1l jms* !1~k↔ j !%

1(
rms

$^kruV̂ums&@2km j~k ir* zs1lsir* !1k ir* gsm j#1~k↔ j !%2(
rms

^msuV̂u ir &$2r jmlskr1~k↔ j !%, ~A7!

i\
d

dt
~g i jk !5\~v i1v j1vk!g i jk1(

ms
^ i j uV̂ums&~2kkmzs1gkms!1(

rms
$^ ir uV̂ums&r j r @2kkmzs1gkms#1~ i↔ j !%

1(
rms

^ ir uV̂ums&$kmk@k jszr* 12l r js#1~k↔ j !%1(
s

h isgs jk1~ i↔ j↔k!. ~A8!
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@The term1( i↔ j↔k) in the last equation indicates summation ofall terms appearing in Eq.~A8!, under cyclic rotation of
the indicesi , j , andk—except, of course, the first ‘‘free evolution’’ contribution.#

APPENDIX B: CONDENSATE EVOLUTION TO SECOND ORDER IN THE INTERACTION POTENTIAL

In this appendix we give a systematic categorization of all contributions to the condensate mean-field evolution, to
order in the interaction potentialV. We shall carry this out by making use of the decomposition~40! of the single-particle
correlationr into a slowly varying diagonal (r0) and a rapidly evolving off-diagonal element (dr). The implicit assumption
made here is that the atoms are weakly interacting, so that the bare particle basis may be used, to a good approxim
the description of the system. Furthermore, we have already argued in Sec. III C that the equations of the Appendix do
account of the evolution of excited states due to quantum Boltzmann-type effects, which can be included by suitable t
of the ^c†c†cc& correlations. We shall therefore assume that during a collisiondr i i

0 /dt.0, which gives for the condensat
mean-field evolution toV2, the expression

FIG. 6. This figure illustrates the evolution o
the condensate mean field to second order in
interaction potential.~a!–~d! show the many-
body T-matrix terms in the interactions~to order
V2) between two condensed atoms@~a!,~c!#, or
one condensed atom with an excited one@~b!,~d!#.
~e! shows the contribution to condensate evo
tion, due to the interaction of two excited atom
~f! corresponds to the bubble diagrams, whi
have a factor (r i i

02r j j
0 ) associated with them~in-

dicated by the open arrows!. Continuous lines
with one ‘‘free’’ end point have a factorz asso-
ciated with them, and the thick arrows due
excited-state occupation have been defined
Fig. 2~c!.
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where t8 acquires values within the range2` to t. This
equation has been diagrammatically depicted in Fig.
where we also give the contribution factors of each diagra

The terms in Eqs.~B1! and~B2! represent the free evolu
tion of the condensed particle, and the interaction of o
condensed atom, either with another condensed atom@Fig.
6~a!#, or with an excited one@Fig 6~b!#. Equations~B3! and
~B4! give the lowest-order corrections of the actual int
atomic potential, due to its replacement by the many-bodT
matrix, in both cases of condensate-condensate@Fig. 6~c!#
and condensate–excited-state interactions@Fig. 6~d!#. The
contribution ~B5! — Fig. 6~e! — arises due to the interac
tions between two excited atoms and ensures the co
ie-

n,
tt.
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.

.

k,

es
,
.

e
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ct

scattering amplitude factors for condensate evolution, as
ready explained in Sec. III C. Finally, Eq.~B6! corresponds
to the bubble diagrams of the many-body formalism, wh
are shown in Fig. 6~f!.

At this point, we should really comment on the cons
tency of the above equation for condensate evolution. In
taining this equation, we have not dealt with all quantities
the same manner. A fully consistent treatment would be
assign a slowly varying and a rapidly evolving part to ea
of the quantitiesr, z, andk ~which would also generate two
parts for bothh andD), as well as the tripletsl andg and
then deal with them as a closed system. We shall retur
this issue in a forthcoming presentation.
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@30# F. Lalöe, in Bose-Einstein Condensation, edited by A. Griffin,

D. W. Snoke and S. Stringari~Cambridge University Press
Cambridge, MA, 1995!.

@31# N. P. Proukakis and K. Burnett, Philos. Trans. R. Soc. Lond
Ser. A ~to be published!.

@32# We point out that this distinction between the matrix eleme

^niuV̂u jk& and (niuV̂u jk) was not explicitly analyzed in@22#,
although all equations of motion appearing there@i.e., all equa-
tions after~17! in @22## made use of this symmetrized matr
element of the interaction potential. We note that the use of
symmetrized matrix element greatly simplifies all subsequ
expressions, and has therefore also been adopted in this p
-

n-

f
-

.

,

s

e
t
er.

@33# E. Fermi, Riverca Sci.7, 13 ~1936!.
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