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Quantum superposition states of Bose-Einstein condensates
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We propose a scheme to create a macroscopic ‘‘Schro¨dinger-cat’’ state formed by two interacting Bose
condensates. In analogy withquantum optics, where the control and engineering of quantum states can be
maintained to a large extent, we consider the present scheme to be an example ofquantum atom opticsat work.
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I. INTRODUCTION

The recent experimental realization of Bose-Einstein c
densation of trapped cold rubidium@1#, sodium @2#, and
lithium @3# atoms has initiated new areas of atomic, mole
lar and optical physics@4#. While some of these new area
remain still somewhat speculative, others have already
tained firm experimental grounds and many of them
based on the analogy between the matter waves and ele
magnetic waves or between bosonic atoms and photons

On the level of single atoms, the analogy between
matter and electromagnetic waves has led to rapid deve
ments ofatom optics@5#. Some authors have thus consider
the possibility ofnonlinear atom opticsin systems of many
cold atoms, where the quantum statistical properties
atom-atom interactions become important@6#. It also has
been pointed out@7# that nonlinear excitations of Bose
Einstein condensates~BECs! may lead to various analogs o
nonlinear optics. Most of these theories have a mean-fi
character, i.e., they disregard quantum fluctuations of
atomic field operators and concentrate on the nonlin
Schrödinger-like wave equations for the matter wave fun
tions.

In many situations, such as laser cooling or optical im
ing, cold atoms not only exhibit their quantum statistic
properties but they interact with photons. This fact motiva
the developments ofquantum field theory of atoms and ph
tons@8#. Although this theory accounts in principle for qua
tum fluctuations of both atomic and electromagnetic fiel
attention so far has been focused predominantly on the la

The atom-photon analogy has also triggered the studie
the area of thephysics of atom lasers@9#. An atom laser, or
a boser, is a matter wave analog of an ordinary laser. Q
recently, the possibility of employing BECs as a source
coherent matter waves has been demonstrated in the rem
able experiments of Andrews and co-workers@10#.

We propose here to proceed with this analogy and lo
for the implementation of further elements of quantum opt
in quantum atom optics. In our opinion, one of the majo
domains of concern of modern quantum optics is prepa
tion, engineering, control, and detection of quantum state
various systems that involve light-matter interactions@11#.
By analogy, quantum atom optics, in the sense propo
concerns preparation, engineering, control, and detectio
571050-2947/98/57~2!/1208~11!/$15.00
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quantum states in atomic systems. Recent studies of ex
tions in trapped BECs belong to this category, although
far rather limited kinds of time-dependent perturbations
the trapping potential@12# have been used and only a fe
types of excitation have been investigated. Walsworth a
You have proposed a method of selective creation of qu
particle excitations in trapped BECs@13#. Their method, re-
ferred to as the spatial magnetic resonance method, cou
principle allow for engineering and control of arbitrary exc
tation in the Bose-condensed system.

One of the most spectacular achievements of quan
optics in recent years has been the observation and s
of macroscopic ~or, strictly speaking, mesoscopic!
‘‘Schrödinger-cat’’ states of a trapped ion@14# and of an
electromagnetic field in a high-Q cavity @15#. Schrödinger
@16# introduced his famous ‘‘cat’’ states in order to illustra
the fundamental problem of the correspondence between
micro and macro worlds: the fact that quantum superposi
states are never observed on the macro level. As postu
by von Neumann@17#, this is due to irreversible reduction o
superposition states into statistical mixtures. Such a red
tion occurs in any quantum measurement process and le
the system considered in a mixed state in a ‘‘preferred’’ b
sis, determined by the measurement. Modern quantum m
surement theory@18# describes the reduction process in term
of quantum decoherence due to interactions of the sys
with environment@19#. Experimental realization of cat state
thus requires typically sophisticated means to avoid the
coherence effects@14,15#.

In this paper we demonstrate that it is feasible to prepa
control, and detect a Schro¨dinger cat formed by two interact
ing Bose condensates of atoms in different internal sta
Atom-atom interactions in our model are mediated throu
atom-atom collisions and a Josephson-like laser coup
that interchanges internal atomic states in a coherent man
The theory of such bicondensates restricted to collisional
teractions only has been discussed recently in terms of
Thomas-Fermi approximation@20# and beyond @21,22#.
Amazingly, the simultaneous condensation of87Rb atoms in
two internal states~F52,M52! and ~F51,M521! has
been recently achieved by Myattet al. @23#, using a combi-
nation of evaporative@24# and sympathetic@25# cooling. As
pointed out by Julienneet al. @26#, the simultaneous conden
sation was possible due to a very fortunate ratio of elastic
1208 © 1998 The American Physical Society
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57 1209QUANTUM SUPERPOSITION STATES OF BOSE- . . .
inelastic collision rates for Rb atoms. For the moment,
prospects of extending the result of@23# to other atomic spe-
cies are not promising. Nevertheless, one could expect
various ways of modifying atomic scattering lengths will
realized@27#, which will allow one to control atomic colli-
sion processes in a desired way. The above comments a
to the case of magnetic traps. Once it becomes possib
achieve Bose-Einstein condensation in, for example, far-
resonance traps, this will open other possibilities of trapp
particles with different internal levels. This will allow one t
meet in real atomic systems the conditions discussed be
for the preparation of Schro¨dinger-cat states.

The plan of the paper is the following. In Sec. II w
present the quantum field theoretical model of two trapp
condensates and its simplified two-mode caricature. The
tailed analysis of the two-mode model is carried out in S
III. We show that in some circumstances the ground stat
the system becomes a Schro¨dinger cat and the system can b
prepared in such a state by adiabatically changing
strength of the Josephson-like laser coupling. Various
proximate solutions are tested here in comparison with
exact numerical solution of the problem. In Sec. IV appro
mate solutions of the complete quantum field theoret
model are found. They display the same qualitative beha
as the one obtained for the two-mode model. Finally, in S
V we discuss the feasibility of experimental observation
Schrödinger-cat states of two interacting Bose condensat

II. QUANTUM FIELD THEORY
OF TWO INTERACTING CONDENSATES

We consider here Bose-Einstein condensation o
trapped gas of atoms with two internal levelsuA& and uB&.
The atoms interact viaAA, BB, and AB elastic collisions.
Additionally, a set of laser fields drives coherently a Ram
transition connectinguA&↔uB&. In the formalism of second
quantization, such a system is described by the Hamilton

H5HA1HB1H int1H las, ~1!

where

HA,B5E d3xWĈA,B~xW !†F2
\2

2M
¹21

1

2
MvA,B

2 x2

1
4p\2aA,B

sc

2M
ĈA,B~xW !†ĈA,B~xW !GĈA,B~xW !, ~2a!

H int5
4p\2aAB

sc

M E d3xWĈA~xW !†ĈB~xW !†ĈB~xW !ĈA~xW !,

~2b!

H las52
\V

2 E d3xW @ĈB~xW !†ĈA~xW !e2 iDt

1ĈA~xW !†ĈB~xW !e1 iDt#. ~2c!

HereHA,B describes the evolution of atoms inuA& and uB&,
respectively, in the absence of interactions between atom
different internal states,H int describes the interactions be
tween atoms inuA& and uB& due to collisions, andH las de-
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scribes the Raman transitions induced by the laser detu
by D from the Raman resonance@28#; such interactions act a
a Josephson-like coupling that transfers coherently parti
betweenuA& and uB&, at a Rabi frequencyV.0. Atoms are
confined in harmonic potentials of frequenciesvA,B , and
aA,B,AB

sc are the scattering lengths for the corresponding c
lisions, respectively. We assume that the collisions
purely elastic and that they do not change the numbe
particles in each internal level.

The field operatorsĈA,B(xW ),ĈA,B(xW )† annihilate and cre-
ate atoms atxW in the internal statesuA& anduB&. They fulfill
the standard bosonic commutation relations

@ĈA~xW !,ĈA~xW8!†#5d~xW2xW8!, ~3a!

@ĈB~xW !,ĈB~xW8!†#5d~xW2xW8!. ~3b!

For the sake of simplicity, throughout this paper we w
assume thataB

sc5aA
sc[asc, resonant laser excitationD50,

andvB5vA[v. This makes the Hamiltonian~1! invariant
under the exchangeA↔B, which simplifies the analytica
arguments. In experiment~cf. @23#! this symmetric situation
is not directly realized since atoms in different (F,M ) states
experience different Zeeman effects in the magnetic field
thus ‘‘feel’’ different trap potentials. Nevertheless, we stre
that our assumption has only a technical character. All
results presented below for theA-B symmetric case can b
translated into the asymmetric case, as we shall see below
general, ifvAÞvB , one can always choose the detuningD
Þ0 to compensate for the potential difference. One sho
also mention that the different Zeeman effects, combin
with gravity, may displace the traps with respect to ea
other; even for such a situation compensation of the poten
difference usingDÞ0 should be possible, although mo
complex.

Let us now rescale the variables to dimensionless one
follows. First, we divide H by \v and then define

l[V/2v.0, rW[xW /x0 , Ĉ(rW)[Ĉ(xW )x0
3/2, U0[4pasc/x0 ,

and U1[4paAB
sc /x0 , where x0[(\/Mv)1/2. The rescaled

dimensionless Hamiltonians~2! read now

HA,B5E d3rWĈA,B~rW !†F2
¹2

2
1

r 2

2

1
U0

2
ĈA,B~rW !†ĈA,B~rW !GĈA,B~rW !, ~4a!

H int5U1E d3rWĈA~rW !†ĈB~rW !†ĈB~rW !ĈA~rW !, ~4b!

H las52lE d3rW@ĈB~rW !†ĈA~rW !1ĈA~rW !†ĈB~rW !#. ~4c!

Our objective is to study the properties of the system
scribed by the above Hamiltonians at zero temperature.
this aim we need to find the ground state of the Hamilton
~1! with the corresponding terms defined in Eqs.~4!. The
search for this state is a very difficult task. Under some c
ditions one can obtain mean-field approximations and
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1210 57CIRAC, LEWENSTEIN, MO” LMER, AND ZOLLER
merical~approximate! results for the ground state of Eq.~1!.
In order to understand better our model, we will first analy
a very simple two-mode model described by a caricature
the Hamiltonian~1!. As we shall see in Secs. III and IV, th
analysis of the simplified model resembles very much
analysis of the complete model described by Eq.~1!.

The two-mode approximation of the Hamiltonian~1! is
given by Eq.~1! but with

HA5vAa†a1
UAA

2
a†a†aa, ~5a!

HB5vBb†b1
UBB

2
b†b†bb, ~5b!

H int5U1a†b†ba, ~5c!

H las52l~a†be2 iDt1b†ae1 iDt!. ~5d!

This model corresponds to the previous one in the limit
which the external motion of the atoms is frozen. T
bosonic annihilation and creation operatorsa,a† and b,b†

annihilate and create atoms in internal statesuA& and uB&,
respectively. They fulfill standard commutation relatio
@a,a†#5@b,b†#51. As before, we will assumevB5vA[v,
D50, and UAA5UBB[U0 . This allows us to neglect the
first term in HA and HB since the total number of particle
N5a†a1b†b is conserved. Note that the same simplific
tion occurs whenvAÞvB , but D5vA2vB . This means
that the results obtained in the next section for theA-B sym-
metric case are equivalent to the ones for the asymme
case with appropriately chosenD.

An additional motivation behind the use of the model~5!
is that it can be solved numerically for moderateN and there-
fore allows us to compare the analytical approximations w
the exact numerical results. This will provide us with
guideline for the analysis of the complete quantum field t
oretical model in the following section.

III. ANALYSIS OF THE TWO-MODE MODEL

In this section we consider in detail the simple two-mo
model described by the Hamiltonians~5!. The section is di-
vided into three subsections. In Sec. III A we derive t
ground-state energy of Eq.~5! using a mean-field approach
for which all the atoms are supposed to be in the sa
single-particle state. In Sec. III B we refine this theory to fi
a better approximation to the ground state. We show
under certain conditions the ground state corresponds
Schrödinger-cat state. Finally, in Sec. III C we diagonalize
the Hamiltonian exactly using a numerical method~5! and
compare the exact predictions with the approximate one
the previous subsections.

A. Mean-field approximation

The equations for the ground state in the mean-fi
~Hartree-like! approximation can be derived using the sta
dard procedure. We consider the single-particle state

uc1&5a1uA&1b1uB&, ~6!
e
f

e

-

ic

h

-

e

at
a

of

d
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whereua1u21ub1u251, and look for collective states of th
N-particle system, with all the particles in the same state~6!
that minimizes the total energy. Using the second quant
tion description, these collective states can be represente

ucN&5uc1& ^ uc1&•••uc1&5
1

AN!
@a1a†1b1b†#Nu0&,

~7!

whereu0& denotes the vacuum state.
The expectation value of the Hamiltonian~5! in this state

is

E~a,a* ,b,b* !5^cNuHucN&5
Ũ0

2
~ uau41ubu4!

1Ũ1uau2ubu22l~a* b1b* a!, ~8!

where we have redefinedŨ0,15U0,1(N21)/N, and
a5ANa1 and b5ANb1 . The normalization condition im-
poses now

uau21ubu25N. ~9!

For simplicity of the notation, we will drop the tilde overU ’s
in the following.

We minimize the mean energy~8! with respect toa,b and
their complex conjugates, imposing the constraint~9! by us-
ing a Lagrange multiplierm. After elementary calculations
we obtain

@U0uau21U1ubu2#a2lb5ma, ~10a!

@U0ubu21U1uau2#b2la5mb. ~10b!

The above equations can be easily solved. To this aim,
first note that forlÞ0, a andb can be taken to be nonvan
ishing real numbers. Thus we can divide Eq.~10a! by a and
Eq. ~10b! by b and subtract them to obtain

FU12U02
l

ab G~ uau22ubu2!50. ~11!

The analysis of Eq.~11! is straightforward. Defining
L52l/@N(U12U0)# one finds that foruLu.1 there exists
only one solution

a05b05AN/2, ~12!

which gives the mean energy~8!

E05
N2

4
~U01U1!2lN. ~13!

For uLu,1 there exist three solutions~0,1,2!:

a05b05AN/2, ~14a!

a65b75FN

2
~16A12L2!G1/2

, ~14b!

with the corresponding energies
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57 1211QUANTUM SUPERPOSITION STATES OF BOSE- . . .
E05
N2

4
~U01U1!2lN, ~15a!

E15E25U0

N2

2
2

l2

U12U0
. ~15b!

One can easily check that forU0.U1 we haveE6.E0 and
therefore the solution (a0 ,b0) gives the minimum energy
On the other hand, forU1.U0 both solutions (a1 ,b1) and
(a2 ,b2) give a lower energy than (a0 ,b0) ~in particular,
for L51, E05E6!.

The results can be summarized as follows.~a! For weak
interactions between atoms in statesuA& and uB&, U0.U1
and the mean-field wave function for the ground state is

ucN
0 &5

1

A2NN!
@a†1b†#Nu0&5

1

ANNN!
@a0a†1b0b†#Nu0&.

~16!

~b! For strong interactions between atoms in statesuA&
and uB&, U1.U0 and one has to distinguish two cases:~i!
the strong laser case, in whichL>1 and the mean-field
wave function isucN

0 & given in Eq.~16!, and ~ii ! the weak
laser case, in whichL,1 and there are two degenerate s
lutions ucN

6& for the mean-field ground-state wave functio

ucN
6&5

1

ANNN!
@a6a†1b6b†#Nu0&, ~17!

wherea6 andb6 are given by expression~14b!.

B. Beyond the mean-field approximation

For the chosen parameters, the Hamiltonian~1! with Eq.
~5! is invariant under the operationTAB that exchanges the
internal leveluA& with uB&. Thus, in the case of no degen
eracy the eigenstates ofH,ufk& must be eigenstates ofTAB
too. SinceTAB is idempotent~i.e., has eigenvalues61!, the
eigenstates have to fulfillTABuck&56uck&. For uauÞubu
@case~ii ! above#, it is clear that the states obtained using t
mean-field approach~7! do not satisfy this condition. This
indicates that in case~ii ! one can obtain a better approxim
tion to the ground state with a lower energy if one uses a
variational ansatz the wave function

uc6&5~ ucN
1&6ucN

2&)/&. ~18!

This is a superposition of the two degenerate solutions. N
that uc6& is indeed an eigenstate ofTAB with eigenvalue61
and therefore it conforms with the symmetry of the Ham
tonian.

The states~18! are written as a superposition of two stat
in which all the atoms are in either the single-particle st
uc1

1&5a1
1uA&1b1

1uB& or the single-particle state
uc1

2&5a1
2uA&1b1

2uB&. Therefore, they have the form o
Schrödinger-cat states. Note, however, that a Schro¨dinger-cat
state is characterized by its coherent inclusion of mac
scopically distinguishable states. For the state of our cond
sates to be a true~i.e., macroscopic or at least mesoscop!
Schrödinger-cat state we must therefore require that the o
lap e,
-

a

te

e

-
n-

r-

e5^cN
1ucN

2&5LN, ~19!

be as small as possible. The ‘‘size of the cat,’’ which can
defined as 1/e, should, on the other hand, be as large
possible. The theory should determine under which con
tions the observation of the ‘‘cat of maximal size’’ is fea
sible.

The expectation value of the energy of the state~18! is

E65
^cN

1uHucN
1&6^cN

1uHucN
2&

16^cN
1ucN

2&

5
N2

4

2U02L2~U12U0!6~L!N~3U02U1!

16~L!N . ~20!

It is easy to check that in the limit ofe.1 ~i.e., when the cat
is still microscopic!, we obtain

DE5
N

2
~U12U0!. ~21!

This equation reveals characteristic scaling of the energy
ferenceDE with N, which, as we shall see below, is als
valid in the more interesting limit ofe5LN!1 ~i.e., when
the cat is mesoscopic or macroscopic!. In such case we may
expand the result~20! first in e and then inN@1, so that we
obtain

DE5E22E12.e ln~e!N~U12U0!. ~22!

Thus, for a ‘‘given size’’ of the cat 1/e the energy difference
is proportional toN. Quite generally, the difficulty in cooling
to a ground state of agivenpurity increases with an increas
ing number of atomsN, while a larger energy gapDE makes
the cooling easier. In this sense, the scalingDE}N helps.

C. Exact numerical solution

In the Fock basisum&A^ uN2m&B (m50,1,...,N) the
HamiltonianH is an (N11)3(N11) tridiagonal matrix and
therefore can be easily diagonalized by numerical metho
Since the mean-field approximation and its improved vers
analyzed in the previous subsections should be valid in
limit N→`, we concentrate here on the finite-N results.

Let us denote by

ufk&5 (
m50

N

qm
k um&A^ uN2m&B ~23!

the eigenstate corresponding to the energyEk ~k50,1,...,N
andE0<E1<•••,EN!. The results of our analysis are pre
sented in Figs. 1–4. In Fig. 1 we have plotted the grou
state energyE0 as a function of L for N51000 and
U153U0 . Although this figure already shows the clear si
natures of the ‘‘phase transition’’ to the Schro¨dinger-cat
phase forL,1, it is more instructive to look at the relativ
behavior of the consecutive eigenenergies of the low exc
states. This is represented in Fig. 2~a! for N51000 and Fig.
2~b! for N510 000, where we have plotted the ratio betwe
the energy difference of the first excited state and the gro
state and the energy difference of the second and first exc
states (E12E0)/(E22E1), as a function ofL for U153U0 .
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1212 57CIRAC, LEWENSTEIN, MO” LMER, AND ZOLLER
The inset in Fig. 2~b! shows the magnification of the trans
tion region. The figures clearly show that asL becomes
smaller than 1, the energies of the first excited state and
ground state merge together. These two states bec
quasidegenerate, whereas the energy gap to the secon
cited state remains finite. Since the ground state is even
the first excited state is odd with respect to theA-B symme-
try, and since they both are Schro¨dinger-cat states, their sum
or difference describes the ‘‘dead’’ or ‘‘alive cat,’’ respe
tively.

In Figs. 3~a! and 3~b! we have plotted the energy of th
first, second, and third excited states with respect to the
ergy of the ground state as a function ofL for N51000 and

FIG. 1. Ground-state energyE0 as a function ofL for N51000
andU153U0 calculated for the two-mode model. Note that acco
ing to the scalings,E0 andl are dimensionless.

FIG. 2. ~a! Ratio between the energy difference of the first e
cited state and the ground state, and the energy difference o
second and first excited states (E12E0)/(E22E1), as a function of
L for U153U0 and for N51000. ~b! Same as~a!, but for
N510 000. The inset shows the magnification of the transition
gion. The quantities plotted are dimensionless.
he
me
ex-
nd

n-N510 000, respectively. This figures clearly illustrate th
as expected, merging of the energy levels occurs not only
the two lowest ones but also within consecutive pairs
levels, i.e.,E3 becomes practically equal toE2 for L,1, etc.

Finally, in Fig. 4 we have plotted theA-atom number
distributions for the ground state@i.e., the coefficientsuqm

0 u2

from Eq. ~23! as a function ofm# for N51000 @Fig. 4~a!#
and N510 000 @Fig. 4~b!# for different values ofL. These
values belong to the transition regions between the das
lines in Figs. 3~a! and 3~b!.

The comparison of these results with the mean-fi
theory and its improved version is very satisfactory. Mea
field theory is practically exact outside of the transition r
gion and gives errors ofO(1/N). The improved mean-field
approximation of Sec. III B does a similar job for all value
of the parameters, i.e., including the transition region. T
result indicates that a similar improved mean-field appro
can be used for the complete field theoretical model.
adopt this approach in Sec. IV.

Finally, the results indicate that due to the finite ener
gap between the ground and first excited states it is poss
to prepare and detect the Schro¨dinger-cat state in the follow-
ing manner. Obviously, direct cooling of the system to t
absolute ground state, which forL,1 is a cat state, would
be a difficult task. The idea is therefore to first cool t
system to a temperatureT close to zero@i.e., such that
(E12E0)/kBT,1# for L.1. Note that this is only possible
in this regime ofL since only there the first-excited-sta
energy is high enough so that practically all of the atoms
be cooled down to the ground state. Then we decreaseL~l!
adiabatically and enter the Schro¨dinger-cat phase: The sys
tem remains in the ground state, which now becomes
Schrödinger-cat state.

-

-
he

-

FIG. 3. ~a! Energy of the first, second, and third excited sta
with respect to the energy of the ground state as a function ofL for
N51000 and other parameters the same as in Fig. 1. The da
lines mark approximately the transition region.~b! Same as~a!, but
for N510 000. The inset shows the magnification of the transit
region. The quantities plotted are dimensionless.
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57 1213QUANTUM SUPERPOSITION STATES OF BOSE- . . .
Internal state-selective atom counting would then reve
two-peaked structure corresponding to theucN

6& component.
This, of course, would not prove the coherence. In the m
general case, this would require tomographic technique
reconstruct the complete density matrix of the two-mode s
tem, similar to those developed for photon fields@31#.

IV. ANALYSIS OF THE QUANTUM FIELD
THEORETICAL MODEL

Here we analyze the full problem described by the Ham
tonians~1! and ~4! that account for the atomic motional de
grees of freedom. Given the similarities of this model to t
two-mode model analyzed above, we follow steps simila
those in Sec. III. In Sec. IV A we apply the mean-field a
proximation to characterize the ground state of the
Hamiltonian. In principle, the exact solution of the mea
field equations is already very difficult to handle and requi
numerical treatment. We have used instead two differ
methods to analyze it: the Thomas-Fermi approximation
Sec. IV B and the Gaussian variational ansatz for the sin
particle wave function in Sec. IV C~for both methods cf.
@30#!. In both cases we find qualitatively the same results
for the two-mode model; in particular, in the stron
interaction and low-intensity limit@case~ii ! above# there are
two degenerate solutions of the mean-field equations. In
IV D we go beyond the mean-field approximation to analy

FIG. 4. ~a! A-atom number distributions for the ground sta
@i.e., the coefficientsuqm

0 u2 from Eq. ~23! as a function ofm# for
N51000 for the values ofL indicated. These values belong to th
transition region between the dashed lines in Fig. 3~a!. ~b! Same as
~a!, but for N510 000. The values ofL belong to the transition
region between the dashed lines in Fig. 3~b!. The quantities plotted
are dimensionless.
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these results. Finally, in Sec. IV E we utilize an even mo
sophisticated model to approximate numerically the eig
states of the system.

A. Mean-field approximation

As in Sec. III A, we assume that the ground state of
system is a state for which all the atoms are in the sa
single-particle state

^rWuc1&5a1~rW !uA&1b1~rW !uB&, ~24!

where

E d3rW@ ua1~rW !u21ub1~rW !u2#51. ~25!

The collective ground state of the whole system will then
using the second quantization description,

ucn&5uc1& ^ uc1&•••uc1&

5
1

AN!
F E d3rW@a1~rW !* ĈA~rW !†1b1~rW !* ĈB~rW !†#GN

u0&,

~26!

whereu0& denotes the vacuum state. The mean energy of
state can be easily calculated

E~a,a* ,b,b* !5^cNuHucN&

5
1

2 E d3rWa~rW !* F2
¹2

2
1

r 2

2
1

U0

2
ua~rW !u2

1
U1

2
ub~rW !u2Ga~rW !

2
l

2 E d3rW@a~rW !* b~rW !b~rW !* a~rW !#

1~a↔b!. ~27!

Here, as in the case of the two-mode system, we have
fined Ũ05U0(N21)/N, Ũ15U1(N21)/N ~for simplicity
we will omit the tilde in the following!, a(rW)5ANa1(rW),
and b(rW)5ANb1(rW). The normalization condition~25! be-
comes now

E d3rW@ ua~rW !u21ub~rW !u2#5N. ~28!

In Eq. ~27! the expectation value of the energy is e
pressed as a functional of the single-particle wave functi
a(rW) and b(rW). The goal is now to minimize this energ
with respect to these functions. In general, it is a diffic
task that can be treated only numerically. In the followi
subsections we will follow two different approaches to fin
the solutions to this problem: first, we will analyze th
Thomas-Fermi limit and second, we will use Gaussian
satz.
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B. Thomas-Fermi approximation

In order to minimize Eq.~27! we calculate the functiona
derivatives of the mean energyE(a,a* ,b,b* ) with respect
to a,b, and their complex conjugates using a Lagrange m
tiplier m to ensure that the normalization condition~28! is
fulfilled. This leads to a set of coupled nonlinear Schro¨dinger
equations

F2
¹2

2
1

r 2

2
1U0ua~rW !u21U1ub~rW !u2Ga~rW !2lb~rW !

5ma~rW !, ~29a!

F2
¹2

2
1

r 2

2
1U0ub~rW !u21U1ua~rW !u2Gb~rW !2la~rW !

5mb~rW !. ~29b!

These equations are equivalent to Eqs.~10! for the two-level
model. In the Thomas-Fermi approximation one assum
that the terms involving¹2 can be neglected in compariso
to the interaction and potential terms.

According to Eqs.~29!, for lÞ0, at any positionrW, if
b(rW)50 thena(rW)50. This can be understood as follow
Consider, for example, that at some pointa(rW)Þ0 and
b(rW)50; then the laser will take particles from stateuA& to
stateuB&, which will imply thatb(rW)Þ0. This is not the case
if l50, where displaced solutions in the Thomas-Fermi lim
are indeed possible@20#. Thus we can concentrate on th
positions rW, where a(rW),b(rW)Þ0. Dividing Eqs. ~29! by
a(rW) and b(rW), respectively, and taking the difference w
find

FU02U11
l

a~rW !b~rW !
G @ ua~rW !u22b~rW !u2#50, ~30!

which resembles very much Eq.~11!. The analysis is, how-
ever, a bit more complicated. As before, there are two ki
of solutions ua(rW)u5ub(rW)u and ua(rW)uÞub(rW)u, where the
latter exists for sufficiently smalll only. In more detail, we
can distinguish the following cases.~a! For a weak interac-
tions between atoms in statesuA& and uB&, U0.U1 and the
mean-field wave function for the ground state is Eq.~26!
with

a~rW !5b~rW !5A 1

2~U01U1!
~r 0

22r 2!, ~31!

where~for an isotropic trap in three dimensions!

r 05F 15

8p
N~U01U1!G1/5

. ~32!

~b! For strong interactions between atoms in statesuA&
and uB&, U1.U0 and one has to distinguish two cases:~i!
strong laser case, in which for

L[
2l

U12U0
>L0[F15N

8p G2/5

~U11U0!23/5 ~33!
l-

s

t

s

the mean-field ground-state wave function is the same a
case~a!, and ~ii ! the weak laser case, in which forL,L0

there exist two degenerate solutionsucN
6& for the mean-field

ground-state wave function of the form~26! with the coeffi-
cientsa(rW) andb(rW) given by

a6~rW !25b7~rW !25
1

&
@rm~rW !6Arm~rW !22L2#1/2

~34a!

for r<r 1[A2(m2LU0) and

a1~rW !5a2~rW !5
U12U0

U11U0
@rm~rW !1L/2# ~34b!

for r 2[A2m1(U12U0)L>r>r 1 , where rm(rW)[(m
2r 2/2)/U0 and the value of the Lagrange multiplierm has to
be found by imposing the constraint~28!.

Apart from numerical factors and different scalings, t
Thomas-Fermi approximation gives results that are qua
tively similar to those found for the simple two-level mode

C. Gaussian variational ansatz

The Thomas-Fermi solution found in the preceding su
section is valid forN→` ~or strictly speakingNU0,1→`!
and predicts the existence of degenerate solutions for s
ciently low laser intensities. It is interesting to see if th
effects remain for finiteN. This can be analyzed using
Gaussian variational ansatz for the wave functions, i.e.,
ting

a~rW !5AAe2r 2/4a, ~35a!

b~rW !5ABe2r 2/4b, ~35b!

with the variational parametersA,B,a,b. These parameter
are not completely independent since the normalization~28!
requires

N5~2p!3/2~Aa31Bb3!. ~36!

Substituting this ansatz into Eq.~27!, we find that the expec-
tation value of the energy depends on the variational par
etersa,A,b,B. We minimize it then with respect to thos
parameters taking into account the normalization condit
~36!. On the other hand, the stability analysis of these so
tions can be performed very easily using the methods de
oped in@32#.

We have not found analytical solutions in this case. Ho
ever, we have solved the problem numerically and found
same qualitative results as in the Thomas-Fermi approxi
tion. That is, in the case of weak interactions between ato
in statesuA& and uB& (U0.U1) there exists only one solu
tion that corresponds toA5B and a5b. In the case of
strong interactions between atoms in the statesuA& and uB&
(U1.U0), for a given number of particlesN we find that
there existsL0(N) such that ifL.L0 the minimum energy
corresponds to the caseA5B anda5b again; conversely, if
L<L0 there exist two solutions withAÞB andaÞb. The
stability analysis shows that these solutions are stable in
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these cases. The reason, as mentioned above, is that the
beam tends to transfer the atoms that are pushed out o
condensate to the other internal level~see@22#!.

D. Beyond the mean field

For our choice of parameters, the Hamiltonian~1! with
Eq. ~4! is invariant under the operationTAB that exchanges
the internal leveluA& with uB&. Thus the ground state of th
Hamiltonian has to be an eigenstate of this operator. If
impose this condition on the ansatz~26! we find that
ua(rW)u5ub(rW)u. As we have seen in the preceding subs
tions @cases~ii !#, for a given number of particles there exis
a certainL0 such that ifL,L0 there are two wave function
of the form ~26! uc6& with a6(rW)Þb6(rW) that have lower
energy than that given by the solutionua(rW)u5ub(rW)u. This
implies in turn that there exists a better variational ansat
the problem, namely,

uc6&5ucN
1&6ucN

2&, ~37!

where

ucN
6&5

1

AN!
F E d3rW@a1

6~rW !* ĈA~rW !†1b1
6~rW !* ĈB~rW !†#GN

,

~38!

The corresponding energy is given by

E65
^cN

2uHucN
1&6^cN

1uHucN
2&

16^cN
1ucN

2&
. ~39!

It can be easily checked thatE1,^cN
1uHucN

1&,E2 . Thus,
similarly to the two-level model, the proper ground-state a
satz has the form of a Schro¨dinger-cat state.

E. Approximate numerical solution

It is possible to use an even more general ansatz to
erate better approximations to the real ground state of
Hamiltonian~1!. In that case no analytical approximation
possible and one has to restrict oneself to numerical eva
tions. In any case, one can check whether the existenc
Schrödinger-cat states is compatible with these more ela
rate calculations and one may confirm the mean-field s
tions. In the following we use the ansatz

uĈ&5 (
m50

N
qm

Am! ~N2m!!
F E d3rW am~rW !Ĉa~rW !†Gm

3F E d3rW bN2m~rW !Ĉb~rW !†GN2m

u0&, ~40!

whereqm’s and the wave functionsam(rW) andbm(rW) are the
variational parameters. To conform to the symmetry of
full Hamiltonian we impose additionally that

bm~rW !5am~rW !, qm5qN2m . ~41!

If the ansatz~40! is used to calculate the expectation val
of the Hamiltonian̂ ĈuHuĈ&, one finds a rather complicate
aser
he

e

-

to

-

n-
e

a-
of
-
-

e

expression involving the expansion coefficientsqm and the
wave functionsam(rW): an infinite set of nonlinear Schro¨-
dinger equations that couplesqm→qm ,qm61 as well as
am→am ,am61 ,aN2m ,aN2m61 . A solution of these equa
tions seems to be an impossible task, but fortunately
equations simplify in the limit of sufficiently largeN. We
have proved using the systematic 1/AN expansion that in this
limit one can simply substitutem.m61, which implies
am.am61 , as well asqm.qm61 in the equations foram’s.

The resulting set of differential equations foram(rW)’s has
the form

F2
¹2

2
1

r 2

2
1U0uãm~rW !u21U1uãN2m~rW !u2G ãm~rW !

22lãN2m~rW !5mmãm~rW !, ~42!

whereãm(rW)[Amam(rW) and withmm such that the normal-
ization condition

m5E d3rWuãm~rW !u2 ~43!

is fulfilled. The above equations have to be accompanied
the linear Schro¨dinger equations forqm that contain tridiago-
nal coupling toqm61 . The coefficients in the latter equa
tions, however, depend functionally, in a highly nonline
way, on theam’s,

Eqm5Emqm2lLmqm212lKmqm11 , ~44!

whereE denotes the eigenvalue we search for, whereas

Em5
1

2 E d3rW am~rW !* F2
¹2

2
1

r 2

2
1

U0

2
uam~rW !u2

1
U1

2
uaN2m~rW !u2Gam~rW !1~m↔N2m!, ~45!

Lm5Am~N2m11!E d3rW am21~rW !* aN2m11~rW !,

~46!

Km5A~m11!~N2m!E d3rW am11~rW !* aN2m21~rW !.

~47!

The coefficientsqm are normalized as

(
m50

N

uqmu251. ~48!

Note that Eq.~42! is similar to Eqs.~29! except the
former takes fully into account the change of the form of t
wave function withm. Unfortunately, these equations a
still very difficult to solve, even using the Thomas-Ferm
approximation. We can show, however, that the condit
aN2m(rW).am(rW) (m,N/2) is fulfilled everywhere, a con-
clusion that could also be reached in the context of
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mean-field theory. Guided by this observation, we use sim
Gaussian functions to approximate the solution of Eq.~42!.
In other words, we set

am~rW !5AAme2r 2/4am ~49!

and minimize the mean-field energy numerically with resp
to theam . Note that the normalization condition implies a
tomatically thatm5Am(2pam

2 )3/2, so that the value ofAm is
determined by the value ofam . In an even more sophisti
cated attempt we have used as a variational ansatz a su
two different Gaussians of the form~49!. This calculation
has led to practically the same results as the ones obta
with a single Gaussian ansatz. For this reason we pre
below numerical results corresponding to a single Gaus
ansatz.

Our main results are shown in Figs. 5 and 6. Figure 5
the straightforward analog of Fig. 2~a!. We have plotted
there the ratio between the energy difference of the first
cited state and the ground state and the energy differenc
the second and first excited states (E12E0)/(E22E1) as a
function ofL for N51000 andU153U0 . We have used the
parametersaA

sc5aB
sc550 nm, aAB

sc 5150 nm,x053 mm, and
\v5100 Hz. The figure clearly shows that, as in the case
the two-mode model, asL becomes smaller than 1, the e
ergies of the first excited state and the ground state m
together. These two states become quasidegenerate, wh
the energy gap to the second excited state remains finite

Similarly, Fig. 6 is an analog of Fig. 3~a!. There we have
plotted the energy of the first, second, and third excited st
with respect to the energy of the ground state as a functio
L. As already seen in the two-mode model, merging of
energy levels occurs also among consecutive pairs of lev
i.e., E3 becomes practically equal toE2 for L,1.

In conclusion, we stress that the similarity between Fi
2~a!, 3~a!, 5, and 6 is remarkable. Clearly, the complete fie
theoretical model leads to the same physics as the two-m
model. AsL is adiabatically decreased, the system enters
Schrödinger-cat phase in which the ground state is a lin
superposition of two states for which theA-atom number
distributions are significantly distinct.

FIG. 5. Energy difference of the first excited state and
ground state, and the energy difference of the second and firs
cited states (E12E0)/(E22E1), as a function ofL for N51000
andU153U0 , calculated for the complete quantum field theore
cal model. The parameters areaA

sc5aB
sc550 nm, aAB

sc 5150 nm,
x053 mm, and\v5100 Hz. The quantities plotted are dimensio
less.
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V. IS A SCHRÖDINGER-CAT STATE
EXPERIMENTALLY FEASIBLE?

We conclude with a summary of requirements to obse
Schrödinger cats in an experiment. While these necess
conditions to prepare and preserve catlike states are not
filled in the present generation of Bose-Einstein experime
@23#, they might provide a guideline and motivation for fu
ture experimental work.

A. A-B symmetry

The calculations in the present paper assume anA-B sym-
metry. We believe that this assumption is mainly a techni
point in the theoretical calculation, but discuss this now
more detail.

The choice of equal scattering lengthaA
sc5aB

sc is reason-
able and agrees with the recent theoretical calculations@26#.
The assumption of equal trap frequenciesvA5vB , however,
is typically not fulfilled in magnetic traps since atoms
different internal states feel different~magnetic! potentials,
but could be realized in principle in an optical dipole tra
where it is assumed that the two states have the same
tron configuration, so that the far-off resonance lasers ind
the same light shifts. Another way of achieving equal tr
frequencies is to compensate for an asymmetryvAÞvB us-
ing an appropriately detuned laser. Such compensation is
act in the case of the two-mode model. In the case of
complete field theoretical model it requires a little more ca
The idea is that the necessary and sufficient condition fo
ground state of the system to be a Schro¨dinger-cat state is
that there exist two distinct and degenerate minima of
energy in the mean-field approximation. IfvAÞvB the
mean-field theory would typically lead to two minima of th
energy function, but with slightly different energies. Th
reader can easily convince himself or herself that this is
case for the two-mode model, while the analysis for the co
plete model is more technical, but otherwise analogous~es-
pecially in the Thomas-Fermi limit!. This means that in such
cases we would have one global and one local minimum
the energy and neither of them would correspond to
Schrödinger-cat state. They will, however, be characteriz
by different numbers of atoms in statesuA& and uB&. The

e
x-

FIG. 6. Energy of the first, second, and third excited states w
respect to the energy of the ground state as a function ofL calcu-
lated for the complete quantum field theoretical model. The par
eters are the same as in Fig. 5. The quantities plotted are dim
sionless.
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57 1217QUANTUM SUPERPOSITION STATES OF BOSE- . . .
point is that the energies of these minima and the co
spondingA- andB-atom numbers can be deformed in a co
tinuous manner by changingD. At some point one arrives a
the situation when the two minima become degenerate an
which the true ground state becomes a linear combinatio
the two, i.e., becomes a Schro¨dinger cat.

B. Instability condition aAB
sc >aA,B

sc

The existence of cat states imposes the~instability! con-
dition aAB

sc .aA,B
sc ~i.e., U1.U0!. As we know, the presen

experiments@23# with Rb atoms allow for simultaneou
evaporative and sympathetic cooling because the inela
collision rates are small, which is directly related to the fa
thataAB

sc .aA
sc.aB

sc @26#. While the condition seems not to b
satisfied for atom species used in presentmagnetic trapex-
periments, we stress that future experiments might be ba
on different traps, for example, far-off-resonance traps us
highly detuned laser light. This will open up the possibili
of trapping new internal atomic states. Consider, for
ample, a total angular momentumF51 and condensates i
the statesmF561. Furthermore, we assume that the lev
mF50 does not participate in the collision dynamics~this
can be done, for example, by shifting it with a laser!. If the
singlet scattering length is larger than the triplet scatter
length, then the conditionaAB

sc .aA,B
sc will be fulfilled @29#. In

addition, one can in principle modify the atom-atom scatt
ing lengths using laser beams@27#.

C. Cooling to the ground state

Preparation of a cat requires the cooling to the grou
state of our system, i.e., the preparation of apure state. The
sufficient condition is that the temperature has to
kBT&E1 , whereE1 is the energy of the first excited state
the total Hamiltonian~for example, in the ideal case, th
would require that approximatelyN21 particles are in the
ground state and one is in the first excited state!. We stress
that this requirement is much stronger than the requirem
of having most of the atoms in the single-particle grou
state, i.e., obtaining amacroscopic occupationof the ground
state, as observed in current BEC experiments@1–3#.

We illustrate this by an example. If we haveN particles
and 80% of them are in the ground state, the population
an
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the collective ground state is only 0.8N. Thus the tempera-
tures required to observe a cat are much lower, such
practically all atoms are in the collective ground sta
Whether existing cooling techniques, in particular evapo
tive cooling, can be extended into this regime remains to
investigated. However, the fact that we are dealing w
bosons instead of distinguishable particles helps significa
to prepare a pure cat ground state. Consider a o
dimensional situation. ForN distinguishable particles, ther
areN possible collective excited states with the same ene
Thus the temperature required to have most of the popula
in the collective ground state iskBT&E1 /N. On the con-
trary, for bosons this temperature isN times higher,
kT&E1 .

D. Decoherence

Finally, we should address the question of decoheren
Obviously, atom losses~such as those due to inelastic col
sions! would destroy the Schro¨dinger-cat state very rapidly
In fact, in the extremal case when one has the
u0,N&1uN,0&, already one atom loss would be enough
distort completely the coherent superposition~cf.
@18,19,15#!. We stress, however, that the situation here
similar to that of the experiment of Bruneet al. @15#. The
cats that live long enough to be observed must be me
copic. In fact, the Schro¨dinger-cat states displayed in Fig.
belong to that category. They allow for the loss of ma
atoms without the complete smearing out of their quantu
mechanical coherence. If they are created, they could a
for the study of the gradual decoherence process, in a ma
similar to that in Ref.@15#.
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