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Quantum superposition states of Bose-Einstein condensates
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We propose a scheme to create a macroscopic “Slihger-cat” state formed by two interacting Bose
condensates. In analogy witiuantum opticswhere the control and engineering of quantum states can be
maintained to a large extent, we consider the present scheme to be an exaquasatam atom opticat work.
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I. INTRODUCTION quantum states in atomic systems. Recent studies of excita-
tions in trapped BECs belong to this category, although so

The recent experimental realization of Bose-Einstein confar rather limited kinds of time-dependent perturbations of
densation of trapped cold rubidiufl], sodium[2], and the trapping potential12] have been used and only a few
lithium [3] atoms has initiated new areas of atomic, molecutypes of excitation have been investigated. Walsworth and
lar and optical physic§4]. While some of these new areas You have proposed a method of selective creation of quasi-
remain still somewhat speculative, others have already aparticle excitations in trapped BEC%3]. Their method, re-
tained firm experimental grounds and many of them arderred to as the spatial magnetic resonance method, could in
based on the analogy between the matter waves and electiprinciple allow for engineering and control of arbitrary exci-
magnetic waves or between bosonic atoms and photons. tation in the Bose-condensed system.

On the level of single atoms, the analogy between the One of the most spectacular achievements of quantum
matter and electromagnetic waves has led to rapid develomptics in recent years has been the observation and study
ments ofatom opticd5]. Some authors have thus consideredof ~macroscopic (or, strictly speaking, mesoscopic
the possibility ofnonlinear atom opticsn systems of many “Schrodinger-cat” states of a trapped idi4] and of an
cold atoms, where the quantum statistical properties anélectromagnetic field in a higQ- cavity [15]. Schralinger
atom-atom interactions become importd6{. It also has [16] introduced his famous “cat” states in order to illustrate
been pointed ouf7] that nonlinear excitations of Bose- the fundamental problem of the correspondence between the
Einstein condensatdBECS may lead to various analogs of micro and macro worlds: the fact that quantum superposition
nonlinear optics. Most of these theories have a mean-fieldtates are never observed on the macro level. As postulated
character, i.e., they disregard quantum fluctuations of théy von Neumanil7], this is due to irreversible reduction of
atomic field operators and concentrate on the nonlineasuperposition states into statistical mixtures. Such a reduc-
Schralinger-like wave equations for the matter wave func-tion occurs in any quantum measurement process and leaves
tions. the system considered in a mixed state in a “preferred” ba-

In many situations, such as laser cooling or optical imagsis, determined by the measurement. Modern quantum mea-
ing, cold atoms not only exhibit their quantum statistical surement theor/18] describes the reduction process in terms
properties but they interact with photons. This fact motivateddf quantum decoherence due to interactions of the system
the developments afuantum field theory of atoms and pho- with environmen{19]. Experimental realization of cat states
tons[8]. Although this theory accounts in principle for quan- thus requires typically sophisticated means to avoid the de-
tum fluctuations of both atomic and electromagnetic fieldscoherence effectsl4,15.
attention so far has been focused predominantly on the latter. In this paper we demonstrate that it is feasible to prepare,

The atom-photon analogy has also triggered the studies icontrol, and detect a Schdimger cat formed by two interact-
the area of thehysics of atom lased®]. An atom laser, or ing Bose condensates of atoms in different internal states.
a boser, is a matter wave analog of an ordinary laser. QuitAtom-atom interactions in our model are mediated through
recently, the possibility of employing BECs as a source ofatom-atom collisions and a Josephson-like laser coupling
coherent matter waves has been demonstrated in the rematkat interchanges internal atomic states in a coherent manner.
able experiments of Andrews and co-workgt§. The theory of such bicondensates restricted to collisional in-

We propose here to proceed with this analogy and lookeractions only has been discussed recently in terms of the
for the implementation of further elements of quantum opticsThomas-Fermi approximatiori20] and beyond[21,22.
in quantum atom opticsin our opinion, one of the major Amazingly, the simultaneous condensation®@b atoms in
domains of concern of modern quantum optics is preparatwo internal state§F=2M=2) and (F=1M=—1) has
tion, engineering, control, and detection of quantum states ibeen recently achieved by Myadt al. [23], using a combi-
various systems that involve light-matter interactigdd].  nation of evaporativg24] and sympatheti¢25] cooling. As
By analogy, quantum atom optics, in the sense proposedhointed out by Juliennet al.[26], the simultaneous conden-
concerns preparation, engineering, control, and detection afation was possible due to a very fortunate ratio of elastic to
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inelastic collision rates for Rb atoms. For the moment, thescribes the Raman transitions induced by the laser detuned
prospects of extending the result[@B3] to other atomic spe- by A from the Raman resonanf28]; such interactions act as
cies are not promising. Nevertheless, one could expect that Josephson-like coupling that transfers coherently particles
various ways of modifying atomic scattering lengths will be between A) and|B), at a Rabi frequenc§)>0. Atoms are
realized[27], which will allow one to control atomic colli- confined in harmonic potentials of frequencieg g, and
sion processes in a desired way. The above comments appdi’s 4 are the scattering lengths for the corresponding col-
to the case of magnetic traps. Once it becomes possible iBions, respectively. We assume that the collisions are
achieve Bose-Einstein condensation in, for example, far-offpurely elastic and that they do not change the number of
resonance traps, this will open other possibilities of trappingparticles in each internal level.
partlclgs with dlfferent internal levels. Th|s W|II.aIIow one to The field operatorsy , B()Z)v\IIA B()'(’)f annihilate and cre-
meet in real atomic systems the conditions discussed below ) T : i
for the preparation of Schdinger-cat states. ate atoms ax in the .|nternal statt_—zbk) and_|B>. They fulfill
The plan of the paper is the following. In Sec. Il we the standard bosonic commutation relations
present the quantum field theoretical model of two trapped

condensates and its simplified two-mode caricature. The de- [\ifA(i),‘ifA(i’)TF S(x—x"), (38
tailed analysis of the two-mode model is carried out in Sec.
[ll. We show that in some circumstances the ground state of [\i,B(;) \i,B()zr)T]: S(xX—x"). (3b)

the system becomes a Schitmger cat and the system can be

prepared in such a state by adiabatically changing thgor the sake of simplicity, throughout this paper we will
strength of the Josephson-like laser coupling. Various apzssyme thabSt=ast=ast resonant laser excitation =0
proximate solutions are tested here in comparison with th nde=wAEi). T?]is makes the Hamiltoniafl) invariant
exact numerical solution of the problem. In Sec. IV approxi- nder the exchang@« B, which simplifies the analytical

mate solutions of the c_omplete quantum fi_eld_ theoretic_a rguments. In experimeritf. [23]) this symmetric situation
model are found. They display the same qualitative behawoirS not directly realized since atoms in differeiit,(1) states

as the one obtained fOIt t_h.e two—modg model. Finally, In SeCexperience different Zeeman effects in the magnetic field and
V we discuss the feasibility of experimental observation of

o ) . thus “feel” different trap potentials. Nevertheless, we stress
Schralinger-cat states of two interacting Bose condensatesthat our assumption has only a technical character. All the
results presented below for ti#e B symmetric case can be
Il. QUANTUM FIELD THEORY translated into the asymmetric case, as we shall see below. In
OF TWO INTERACTING CONDENSATES general, ifwp# wg, One can always choose the detunikg
We consider here Bose-Einstein condensation of a?to to compensate for the potential difference. One Sh.OUId
trapped gas of atoms with two internal levéls) and |B). also mention that the different Zeeman effects, combined

The atoms interact vidAA, BB, and AB elastic collisions. with gravity, may displace the traps with respect to each

Additionally, a set of laser fields drives coherently a RamanOther; even for such a situation compensation of the potential

transition connectingA)«|B). In the formalism of second differ?nce usingA#0 should be possible, although more
guantization, such a system is described by the Hamiltoniaff®MPI€X-

Let us now rescale the variables to dimensionless ones as
H=Ha+Hg+Hipy+Has, (1) follows. First, we divifie H E)y fiw and then define
A=0Q0/20>0, r=x/xy, ¥(r)=V(X)xZ?, Ug=4max,,
where and U,=4ma3%/xy, wherex,=(#/Mw)¥2 The rescaled
5 dimensionless Hamiltonian®) read now
HA,BZJ dS)Z\Il‘A'B()-())T _mvz‘l' EM(D'ZA'BXZ - R VZ r2
Hag= f d*rvaps(n’| =+ 5
4Wh2aZCB ~ ~ ~ Y ' 2 2
+T"PA,B(X)T‘PA,B(X) Yap(x), (23 U - . BR N
+7‘I’A,B(V)T‘I'A,B(r) Was(r), (48
47h2a

A8 f A3XW A(X) T (X)W (X)W A(X),

Hin=—1
(2 Hin=U; f d°rW (") "W e() V() WA(r),  (4b)
hQ 32 (I (o)At 37T (VT (DO (T
Hias= = == | d™X[Wa(x) " Wa(x)e Hlas=—>\f d*r[We(r) "Wa(r) +Wa(r)"We(r)]. (40)
+@A(;)T§,B(;)e+im]_ (20 Our objective is to study the properties of the system de-

scribed by the above Hamiltonians at zero temperature. To
HereH, g describes the evolution of atoms [iA) and|B),  this aim we need to find the ground state of the Hamiltonian
respectively, in the absence of interactions between atoms if1) with the corresponding terms defined in Eg4). The
different internal statest;,, describes the interactions be- search for this state is a very difficult task. Under some con-
tween atoms irfA) and|B) due to collisions, andi s de-  ditions one can obtain mean-field approximations and nu-
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merical (approximatg results for the ground state of EG).  where|a;|2+]|84/2=1, and look for collective states of the

In order to understand better our model, we will first analyzeN-particle system, with all the particles in the same stéje

a very simple two-mode model described by a caricature ofhat minimizes the total energy. Using the second quantiza-
the Hamiltonian(1). As we shall see in Secs. Il and 1V, the tion description, these collective states can be represented as
analysis of the simplified model resembles very much the

analysis of the complete model described by &g. 1 + 1N
The two-mode approximation of the Hamiltoni&h) is |¢N>=|l//1>®|¢1>"‘|¢1>=—\/m[ala +p1b'1M0),
given by Eq.(1) but with ' @
U
ot YAA g where|0) denotes the vacuum state.
Ha=waa’at 2 aaaa, (5a The expectation value of the Hamiltoni&) in this state
is
tho IBBL 1t Iy
Hg=wgb'b+ —~b'bbb, (5b) . Uo 4t
Ea,a*,B,8)=(unlHlyn) = - (|al*+| 8%
Hin=U1a"b'ba, (50) +U4|al? B>~ Na* B+ B* @), (8)
— y(aThaiAtL ptaatidt _
Hias= —N(a'be™' '+ blae™™). (5d  \where we have redefinedU ;= Uq(N—1)/N, and

a=+/Na,; and 8=+/NB;. The normalization condition im-

This model corresponds to the previous one in the limit 'nposes now

which the external motion of the atoms is frozen. The
bosonic annihilation and creation operaterg’ and b,b’ |a|?+|B2=N. (9
annihilate and create atoms in internal stdteés and|B),

respectively. They fulfill standard commutation relationsFor simplicity of the notation, we will drop the tilde over's
[a,a']=[b,b"]=1. As before, we will assumeg=ws=w, in the following.

A=0, andUp,=Ugg=U,. This allows us to neglect the We minimize the mean enerd§) with respect tax,8 and
first term inH, andHg since the total number of particles their complex conjugates, imposing the constré®tby us-
N=a'a+b'b is conserved. Note that the same simplifica-ing a Lagrange multipliep.. After elementary calculations
tion occurs whenwa# wg, but A=w,—wg. This means we obtain

that the results obtained in the next section forAh8 sym-

metric case are equivalent to the ones for the asymmetric [Uola|?+U4|Bl?la—\B=pa, (109
case with appropriately choseén ) )
An additional motivation behind the use of the mod®l [UolBI“+U4|a|?1B—Na=uB. (10b

is that it can be solved numerically for moderatand there- The above equations can be easilv solved. To this aim. we
fore allows us to compare the analytical approximations Withfirst note thatqfor)\;éo and 8 can %e taken'to be nonvar,1-
the exact numerical results. This will provide us with a. » & B

guideline for the analysis of the complete quantum field the—IShing real numbers. Thus we can divide Ei03 by « and

oretical model in the following section. Eq. (10b) by 4 and subtract them to obtain

(|al®>~|B[»=0. (12)

A
lll. ANALYSIS OF THE TWO-MODE MODEL [Ul_ Uo— B

In this section we consider in detail the simple two-mode

: e L The analysis of Eq.(1l) is straightforward. Defining
model described by the Hamiltoniafs). The section is di- . .
vided into three subsections. In Sec. Il A we derive the’=2MIN(U1—~Uo)] one finds that fofA|>1 there exists

ground-state energy of E¢5) using a mean-field approach, only one solution

for which all the atoms are supposed to be in the same P~
single-particle state. In Sec. Il B we refine this theory to find o= Bo=N/2, (12
a better approximation to the ground state. We show tha\;vhich gives the mean energg)
under certain conditions the ground state corresponds to a
Schralinger-cat state Finally, in Sec. 1l C we diagonalize N2
the Hamiltonian exactly using a numerical meth@&l and EO=T(UO+U1)—)\N. (13
compare the exact predictions with the approximate ones of
the previous subsections. For|A|<1 there exist three solutior(§,+,—):
A. Mean-field approximation ag= Bo=VN/2, (143

The equations for the ground state in the mean-field 12
(Hartree-like approximation can be derived using the stan- a+=[3=[ﬂ(1i m)} (14b)
dard procedure. We consider the single-particle state R ’

|41) = a1|A)+ B41|B), (6)  with the corresponding energies
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N? — (o =)= AN
EO:T(UO+U1)_)\N1 (15@ € <¢N|¢N> A! (19)

be as small as possible. The “size of the cat,” which can be
N2 A2 defined as ¥, should, on the other hand, be as large as
E+=E_:Uo7— U0 (15b) possible. The theory should determine under which condi-
1> tions the observation of the “cat of maximal size” is fea-
sible.

One can easily check that fofy>U; we haveE.>E; and . .
y o 1 = =0 The expectation value of the energy of the stai® is

therefore the solutiondy,By) gives the minimum energy.

On the other hand, fdd,>U both solutions &, ,8,) and G IR = (s H )
(a_,B_) give a lower energy thana,8,) (in particular, E =N TN/Z PR TR
for A=1, Eg=E.). : 1= (ygnlyn)
The results can be summarized as folloa. For weak N2 2U,— A2(U;—Ug) = (A)N(3Uy—Uy)

interactions between atoms in statde and|B), Uy>U;
and the mean-field wave function for the ground state is

4 1+ (AN - (29
It is easy to check that in the limit a¢f=1 (i.e., when the cat

[aT+b'N0)= [t + BobTTN|0). is still microscopi¢, we obtain

o 1 1
) J2VNI JNFNI

(16 AE= (U3~ Uy (21)

(b) For strong interactions between atoms in sta#es

and|B), U;>Uq and one has to distinguish two casé$:  This equation reveals characteristic scaling of the energy dif-

the strong laser case, in which=1 and the mean-field ferenceAE with N, which, as we shall see below, is also

wave function is|¢Q) given in Eq.(16), and (ii) the weak yalid in the more interesting limit oé=AN<1 (i.e., when

laser case, in whicth <1 and there are two degenerate so-the cat is mesoscopic or macroscopia such case we may

lutions | ) for the mean-field ground-state wave function expand the resul20) first in e and then ilN>1, so that we
obtain

) 1
|¢N>ZW[ataT+ﬁibT]N|o>' (17) AE=E_—E,—=eIn(e)N(U;—Uy). (22)

Thus, for a “given size” of the cat Fthe energy difference

is proportional td\. Quite generally, the difficulty in cooling

to a ground state of givenpurity increases with an increas-

ing number of atomsl, while a larger energy gapE makes
For the chosen parameters, the Hamiltonfanwith Eq.  the cooling easier. In this sense, the scalitg=N helps.

(5) is invariant under the operatich,g that exchanges the

internal level|A) with |B). Thus, in the case of no degen- C. Exact numerical solution

eracy the eigenstates #f,|$,) must be eigenstates dfag In the Fock basisim)s®|N—m)g (M=0,1,..N) the

gi)oé:S'?;tiA?]:Véd?gn?&;?;(l'|el'p’ ;Eiiginvggemi FZT HamiltonianH is an (N+1)x (N+ 1) tridiagonal matrix and
9 AB YK/~ Pk therefore can be easily diagonalized by numerical methods.

[case(i) abovg, it is clear that the states obtained using theSince the mean-field approximation and its improved version
mean-field approacki7) do not satisfy this condition. This . app ; P o
analyzed in the previous subsections should be valid in the

indicates that in cas@i) one can obtain a better approxima- imit N—sco We concentrate here on the finleresults
tion to the ground state with a lower energy if one uses as H Let d’ note b '
variational ansatz the wave function et us denote by

N
[ )= (1) = ) IV2. (18) 160= > q<|m)a®|N—m)g (23
m=0

This is a superposition of the two degenerate solutions. Note
that|™) is indeed an eigenstate f,g with eigenvaluet1  the eigenstate corresponding to the endggy(k=0,1,..,N
and therefore it conforms with the symmetry of the Hamil-andEq<E;<---<E,). The results of our analysis are pre-
tonian. sented in Figs. 1-4. In Fig. 1 we have plotted the ground-
The state$18) are written as a superposition of two statesstate energyE, as a function of A for N=1000 and
in which all the atoms are in either the single-particle statey,=3U,. Although this figure already shows the clear sig-
|y y=ai|AY+B,|B) or the single-particle state natures of the “phase transition” to the ScHinger-cat
|1 Y= aq |AY+ B |B). Therefore, they have the form of phase forA <1, it is more instructive to look at the relative
Schralinger-cat states. Note, however, that a Sdimger-cat  behavior of the consecutive eigenenergies of the low excited
state is characterized by its coherent inclusion of macrostates. This is represented in Figa2for N=1000 and Fig.
scopically distinguishable states. For the state of our conder(b) for N=10 000, where we have plotted the ratio between
sates to be a trué.e., macroscopic or at least mesoscopic the energy difference of the first excited state and the ground
Schralinger-cat state we must therefore require that the overstate and the energy difference of the second and first excited
lap e, states E;—Eg)/(E,—E,), as a function ofA for U;=3U,.

wherea. and 8. are given by expressiofl4b).

B. Beyond the mean-field approximation
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-6 E{-Ey
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0 : (b)  EsE
AN
: E
FIG. 1. Ground-state enerdy, as a function ofA for N=1000 2750
andU,=3U, calculated for the two-mode model. Note that accord- \
ing to the scalingsk, and\ are dimensionless. o ‘4/
L o _ 0561 Ei-Eo
The inset in Fig. #) shows the magnification of the transi- 0
tion region. The figures clearly show that As becomes 0.8 0.9 1 1.1
smaller than 1, the energies of the first excited state and the VN

ground state merge together. These two states become

guasidegenerate, whereas the energy gap to the second ex-  the fi d. and third excited

cited state remains finite. Since the ground state is even and FIG. 3. (a) Energy of the first, second, and thir excited states
the first excited state is odd with respect to i symme- with respect to the energy of the ground state as a functiohfof

: o . N=1000 and other parameters the same as in Fig. 1. The dashed
try, and since they both are Schinger-cat states, their sum . i g .
- ) y - s Y lines mark approximately the transition regigh) Same aga), but
or difference describes the “dead” or “alive cat,” respec-

tively for N=10 000. The inset shows the magnification of the transition

In Figs. 38 and 3b) we have plotted the energy of the region. The quantities plotted are dimensionless.
first, second, and third excited states with respect to the eN=10 000, respectively. This figures clearly illustrate that,
ergy of the ground state as a function/foffor N=1000 and as expected, merging of the energy levels occurs not only for
the two lowest ones but also within consecutive pairs of
levels, i.e. E5; becomes practically equal &, for A <1, etc.

Finally, in Fig. 4 we have plotted th&-atom number
1 distributions for the ground stafée., the coefficient$q®,|?

(a) from Eg. (23) as a function ofm] for N=1000 [Fig. 4(a)]

and N= 10 000[Fig. 4(b)] for different values ofA. These
ELF:O values belong to the transition regions between the dashed
E>-Eq lines in Figs. &) and 3b).

The comparison of these results with the mean-field
theory and its improved version is very satisfactory. Mean-
field theory is practically exact outside of the transition re-
gion and gives errors dD(1/N). The improved mean-field
approximation of Sec. lll B does a similar job for all values
1 (b) of the parameters, i.e., including the transition region. This

result indicates that a similar improved mean-field approach
can be used for the complete field theoretical model. We
E;-Eo adopt this approach in Sec. IV.
E,-E; Finally, the results indicate that due to the finite energy
gap between the ground and first excited states it is possible
0 to prepare and detect the Sctiimger-cat state in the follow-
0.96 ! ing manner. Obviously, direct cooling of the system to the
absolute ground state, which far<1 is a cat state, would
0.8 0.9 1 11 be a difficult task. The idea is therefore to first cool the
AN system to a temperatur€ close to zero[i.e., such that
(E1—Eg)/kgT<1] for A>1. Note that this is only possible

FIG. 2. () Ratio between the energy difference of the first ex- N this regime ofA since only there the first-excited-state
cited state and the ground state, and the energy difference of tHRN€rgy is high enough so that practically all of the atoms can
second and first excited state, (- Eo)/(E,—E,), as a function of ~be cooled down to the ground state. Then we decréase
A for U;=3U, and for N=1000. (b) Same as(a), but for  adiabatically and enter the Schiinger-cat phase: The sys-
N=10000. The inset shows the magnification of the transition retem remains in the ground state, which now becomes the
gion. The quantities plotted are dimensionless. Schralinger-cat state.




57 QUANTUM SUPERPOSITION STATES OF BOSE. . 1213

these results. Finally, in Sec. IV E we utilize an even more
(b) sophisticated model to approximate numerically the eigen-
states of the system.

MN=

—

==

AMN=1

~—
&

As in Sec. lll A, we assume that the ground state of the
system is a state for which all the atoms are in the same
single-particle state

A/N=0.99 2/N=0.998 /\ A. Mean-field approximation

A/N=0.98 A/N=0.996
m [\ (rl1) = as(r)|A)+ Ba(r)|B), (29
where
AN=0.97 MN=0.994
M /\/\ f d*r[]ay(r)*+]B1(N)|?]=1. (25)
MN=09 MN=0992 The collective ground state of the whole system will then be,
using the second quantization description,
/NS00 N=099 la)=v1)@ ) |)
M il < A b
=—| | d®rlay(N)*TA(r)T+B.(N*Tg(r)T]] |0Y,
0 500 1000 0 5000 10000
(26)

FIG. 4. (a) A-atom number distributions for the ground state Where|0> denotes the vacuum state. The mean energy of this
[i.e., the coefficientsql|? from Eg. (23) as a function ofm] for  state can be easily calculated
N=1000 for the values ol indicated. These values belong to the
transition region between the dashed lines in Fig).3b) Same as E(a,a* 1:813*):<‘//N|H|¢N>
(@), but for N=10 000. The values o\ belong to the transition

region between the dashed lines in Fi¢h)3 The quantities plotted 1 IR .
=5 j Bra(n)*| — =+ =+ —=|a(n)|?

are dimensionless. 2 2

vVZ r2 U,
2

Internal state-selective atom counting would then reveal a Uy, -0
two-peaked structure corresponding to thig) component. + 7|,8(r)|
This, of course, would not prove the coherence. In the most
general case, this would require tomographic techniques to A D N A N
reconstruct the complete density matrix of the two-mode sys- 2 d*rfa(r)* BN A" a(r)]
tem, similar to those developed for photon fie[84].

+(a—=p). (27)

a(r)

IV. ANALYSIS OF THE QUANTUM FIELD

THEORETICAL MODEL Here, as in the case of the two-mode system, we have de-

_ _fined Up=Uo(N—1)/N, U;=U(N=1)/N (for simplicity
Here we analyze the full problem described by the Hamil-ye will omit the tilde in the following, a(r)=Na;(r),

tonians(1) and (4) that account for the atomic motional de- o >, oL . i
grees of freedom. Given the similarities of this model to theand B(r)=VNBy(r). The normalization conditiof25) be

. comes now
two-mode model analyzed above, we follow steps similar to
those in Sec. lll. In Sec. IV A we apply the mean-field ap-
proximation to characterize the ground state of the full f d3|a(r)|?+|B(r)|*]=N. (28)
Hamiltonian. In principle, the exact solution of the mean-

field equations is already very difficult to handle and requires . )
numerical treatment. We have used instead two different [N EQ. (27) the expectation value of the energy is ex-
methods to analyze it: the Thomas-Fermi approximation irpr(issed as zifunctlonal of the single-particle wave functions
Sec. IV B and the Gaussian variational ansatz for the singlea(r) and B(r). The goal is now to minimize this energy
particle wave function in Sec. IV Qfor both methods cf. with respect to these functions. In general, it is a difficult
[30]). In both cases we find qualitatively the same results asask that can be treated only numerically. In the following
for the two-mode model; in particular, in the strong- subsections we will follow two different approaches to find
interaction and low-intensity limifcase(ii) abovd there are the solutions to this problem: first, we will analyze the
two degenerate solutions of the mean-field equations. In Sedhomas-Fermi limit and second, we will use Gaussian an-
IV D we go beyond the mean-field approximation to analyzesatz.
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B. Thomas-Fermi approximation the mean-field ground-state wave function is the same as in
In order to minimize Eq(27) we calculate the functional €aS€(@, and(ii) the weak laser case, in which far<A,
derivatives of the mean ener@(a,a*, 8, 8%) with respect there exist two degenergte solutidusg; ) for t_he mean-ﬂe]d
to a,B, and their complex conjugates using a Lagrange mulground-state wave function of the for(@6) with the coeffi-
tiplier u to ensure that the normalization conditiG®8) is  cientsa(r) andB(r) given by
fulfilled. This leads to a set of coupled nonlinear Schinger

ti - - 1 - =
eq”"f”ogsz 2 _ @ (122 BolF2= - [p, ()= ()7~ A2
r N N N -,
~ &+ 5+ Uola(N) 2+ U] B(N) 2| al(F) =N B(T) (349
=Ma(F), (299 forr<r,;=y2(u—AUy) and
[ v2 2 . A . a+(F)=a_(F)=M[p (N+A/2]  (34b
=5 5 U BN[*+ Uala(n)]?|B(r) —ra(r) UrtUo "

B - for r,=\2u+(U;—UpA=r=r;, where p,(r)=(u
= mB(r). (290 —r?/2)/U, and the value of the Lagrange multiplierhas to

be found by imposing the constrai(&8).

Apart from numerical factors and different scalings, the
omas-Fermi approximation gives results that are qualita-
tively similar to those found for the simple two-level model.

These equations are equivalent to Ed$) for the two-level
model. In the Thomas-Fermi approximation one assume.?h
that the terms involving’? can be neglected in comparison
to the interaction and potential terms.

According to Egs.(29), for A#0, at any positionr, if
B(r)=0 thena(r)=0. This can be understood as follows.

Consider, for example, that at some pokn(F)#O and S ; ) .

- i : section is valid forN—o (or strictly speakingNUg ;— )
B(r)=0; then the laser will take particles from staf) to ;04 predicts the existence of degenerate solutions for suffi-
state|B), which will imply that 8(r) #0. This is not the case ciently low laser intensities. It is interesting to see if the
if =0, where displaced solutions in the Thomas-Fermi limiteffects remain for finiteN. This can be analyzed using a
are indeed possiblg20]. Thus we can concentrate on the Gaussian variational ansatz for the wave functions, i.e., set-
positions r, where a(r),3(r)#0. Dividing Egs.(29) by  ting

r) and B(r), respectively, and taking the difference we R
fciyéd) A0 P g J a(r)=JAe 4 (353

C. Gaussian variational ansatz

The Thomas-Fermi solution found in the preceding sub-

B(r) = Be b, (35h)

with the variational parametes,B,a,b. These parameters
are not completely independent since the normalizat&&

Uo—Ust —— a2~ B(121=0, (30)
© T an ) !

which resembles very much E@l1). The analysis is, how- ;
ever, a bit more complicated. As before, there are two kind$€duIres
of solutions|a(r)|=|8(r)| and|e(r)|#|B(r)|, where the N=(2m)3%Aas+Bb?). (36)
latter exists for sufficiently smal only. In more detail, we
can distinguish the following case@) For a weak interac-  gypstituting this ansatz into E(27), we find that the expec-
tions between atoms in statps) and|B), Uo>U; and the  tation value of the energy depends on the variational param-
mean-field wave function for the ground state is E26)  etersa,A,b,B. We minimize it then with respect to those
with parameters taking into account the normalization condition
I (36). On the other hand, the stability analysis of these solu-
>\ oty — 2_.2 tions can be performed very easily using the methods devel-
a(r)=pr)= \/2(u0+u1)(r° ) GV oped in[32].
We have not found analytical solutions in this case. How-
where(for an isotropic trap in three dimensions ever, we have solved the problem numerically and found the
same qualitative results as in the Thomas-Fermi approxima-
32) tion. That is, in the case of weak interactions between atoms
in states|A) and|B) (Uy>U,) there exists only one solu-
tion that corresponds t&\=B and a=Db. In the case of
(b) For strong interactions between atoms in staf€s  strong interactions between atoms in the sthtésand|B)
and|B), U;>U, and one has to distinguish two case¢i)  (U,>U,), for a given number of particlesl we find that
strong laser case, in which for there exists\ o(N) such that ifA> A, the minimum energy
corresponds to the cage=B anda=Db again; conversely, if
A=<A, there exist two solutions with+#B anda#b. The
stability analysis shows that these solutions are stable in all

1/5

15
o= gN(UO—’_Ul)

2\ 2/5
AE Ul_UOZAOE|:51| (U1+U0)73/5 (33)
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these cases. The reason, as mentioned above, is that the lasgpression involving the expansion coefficienqts and the
beam tends to transfer the atoms that are pushed out of thgave functionsa,,(r): an infinite set of nonlinear Schro

Condensate to the Other internal |eme[22]) dinger equations that Coup|a$m4)qm,qmt1 as well as
Am— Ay Em=1,%N—m AN—m=1- A Solution of these equa-
D. Beyond the mean field tions seems to be an impossible task, but fortunately the

For our choice of parameters, the Hamiltonidn with equations simplify in the limit of sufficiently largsl. We
Eq. (4) is invariant under the operatiof,s that exchanges Nave proved using the systematia/lW expansion that in this
the internal leve|A) with |B). Thus the ground state of the limit one can simply substituten=m=1, which implies
Hamiltonian has to be an eigenstate of this operator. If we*m=@m=1, as Well ajy=qp=, in the equations fory's.
impose this condition on the ansat26) we find that The resulting set of differential equations feg,(r)’s has
|a(r)|=|B(r)|. As we have seen in the preceding subsec{he form
tions[caseqii)], for a given number of particles there exists

; ; ; v2 r? - - _ SR PR
a certainA ¢ such that |f4<A0 trlere are}wo wave functions -5 i 5 + Ul am(D)|?+ Uglan—m(N|2] @m(r)
of the form (26) |#.) with a.(r)# B.(r) that have lower
energy than that given by the solutipa(r)|=|B(r)|. This PN D=2 (F 49
implies in turn that there exists a better variational ansatz to an-m(F) = pmm(F) 42
the problem, namely, wherea(r)=Vmam(r) and with ., such that the normal-

=) =) = Un), (37)  ization condition

where m= f or | an(1)|? (43

+ 1 g + = = g + = =, N
lon)= N U d®r[ai (N* VAN ™+ B (N*¥(N)']| , s fulfiled. The above equations have to be accompanied by
' 39) the linear Schrdinger equations foq,,, that contain tridiago-
nal coupling toq,,+1. The coefficients in the latter equa-
The corresponding energy is given by tions, however, depend functionally, in a highly nonlinear
way, on thea,,’s,
_ ol HIgO) = (o IH g

+

- 1= (| tn)

It can be easily checked th&t, <{yy|H|¥y)<E_. Thus,

similarly to the two-level model, the proper ground-state an- 1

satz has the form of a Schiinger-cat state. E —— f 43 a,(F)*
m 2 m

(39 Edm=Emdm— AL mOm-1—AKnOm+ 1, (44)

whereE denotes the eigenvalue we search for, whereas

2 2

T e 7|2

E. Approximate numerical solution

U, A
+ > lan-m(")|? |am(r) +(MmoN=—m), (45

It is possible to use an even more general ansatz to gen-
erate better approximations to the real ground state of the
Hamiltonian(1). In that case no analytical approximation is R R R
possible and one has to restrict oneself to numerical evalua- L,,=+vm(N—m+ 1)f A3 am_1(r)* an_me(r),
tionsj_. In any case, one can check whether the existence of (46)
Schralinger-cat states is compatible with these more elabo-
rate calculations and one may confirm the mean-field solu-

tions. In the following we use the ansatz K= \(m+1)(N—m) 1)(N_m)f A3 a1 (1)* an (1)
- N A e e m (47)
lq]>_mz=0 Jmi (N—m)! f AT en(DVa(r) The coefficientsy,, are normalized as
s o N
8 fd " Bu-n(O¥7] 10 “o 2, lan®=1. (48)

whereq,,’s and the wave functiona,(r) and8,(r) are the S
variational parameters. To conform to the symmetry of the Note that Eq.(42) is similar to Egs.(29) except the

full Hamiltonian we impose additionally that former takes fully into account the change of the form of the
wave function withm. Unfortunately, these equations are
BN =am(1),  Gm=0n-m- (41)  still very difficult to solve, even using the Thomas-Fermi

approximation. We can show, however, that the condition
If the ansatZ40) is used to calculate the expectation value o (r)>a,,(r) (m<N/2) is fulfilled everywhere, a con-
of the Hamiltonian¥'|H|¥'), one finds a rather complicated clusion that could also be reached in the context of our
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0.6 0.7 0.6 0.
AN A/N 7

FIG. 5. Energy difference of the first excited state and the |G, 6. Energy of the first, second, and third excited states with
g.round state, and the energy difference qf the second and first exaspect to the energy of the ground state as a functioh célcu-
cited states £, —Eo)/(E,—Ey), as a function ofA for N=1000 |ated for the complete quantum field theoretical model. The param-

andU;=3U,, calculated for the complete quantum field theoreti- gters are the same as in Fig. 5. The quantities plotted are dimen-
cal model. The parameters aeg’=ag=50 nm, az5=150 NM,  gjonless.

Xo=3 um, andz =100 Hz. The quantities plotted are dimension-

less. V. IS A SCHRODINGER-CAT STATE

. . . . . ?
mean-field theory. Guided by this observation, we use simple EXPERIMENTALLY FEASIBLE

Gaussian functions to approximate the solution of &@). We conclude with a summary of requirements to observe
In other words, we set Schralinger cats in an experiment. While these necessary
. ) conditions to prepare and preserve catlike states are not ful-

an(r)= \/A_me’r l4am (49 filled in the present generation of Bose-Einstein experiments

[23], they might provide a guideline and motivation for fu-

and minimize the mean-field energy numerically with respecture experimental work.
to thea,,. Note that the normalization condition implies au-
tomatically thatm=A(27a2)%? so that the value oA, is
determined by the value daf,,. In an even more sophisti-
cated attempt we have used as a variational ansatz a sum of The calculations in the present paper assuma-ghsym-
two different Gaussians of the fori@9). This calculation metry. We believe that this assumption is mainly a technical
has led to practically the same results as the ones obtaingmbint in the theoretical calculation, but discuss this now in
with a single Gaussian ansatz. For this reason we presentore detail.
below numerical results corresponding to a single Gaussian The choice of equal scattering lengifi’=ag’ is reason-
ansatz. able and agrees with the recent theoretical calculafia@p

Our main results are shown in Figs. 5 and 6. Figure 5 isThe assumption of equal trap frequencigs= wg, however,
the straightforward analog of Fig.(@. We have plotted s typically not fulfilled in magnetic traps since atoms in
there the ratio between the energy difference of the first exdifferent internal states feel differefitnagneti¢ potentials,
cited state and the ground state and the energy difference glit could be realized in principle in an optical dipole trap,
the second and first excited statds, ¢ Eq)/(E,—E;) as a where it is assumed that the two states have the same elec-
function of A for N=1000 andJ,=3U,. We have used the tron configuration, so that the far-off resonance lasers induce
parametergy’=ag’=50 nm, axz =150 nm,x,=3 um, and  the same light shifts. Another way of achieving equal trap
hw=100 Hz. The figure clearly shows that, as in the case ofrequencies is to compensate for an asymmetgy: wg US-
the two-mode model, ad becomes smaller than 1, the en- ing an appropriately detuned laser. Such compensation is ex-
ergies of the first excited state and the ground state mergact in the case of the two-mode model. In the case of the
together. These two states become quasidegenerate, whereamplete field theoretical model it requires a little more care.
the energy gap to the second excited state remains finite. The idea is that the necessary and sufficient condition for a

Similarly, Fig. 6 is an analog of Fig.(8). There we have ground state of the system to be a Sclinger-cat state is
plotted the energy of the first, second, and third excited statethat there exist two distinct and degenerate minima of the
with respect to the energy of the ground state as a function afnergy in the mean-field approximation. #,# wg the
A. As already seen in the two-mode model, merging of themean-field theory would typically lead to two minima of the
energy levels occurs also among consecutive pairs of levelgnergy function, but with slightly different energies. The
i.e., E5 becomes practically equal ®, for A<1. reader can easily convince himself or herself that this is the

In conclusion, we stress that the similarity between Figscase for the two-mode model, while the analysis for the com-
2(a), 3(a), 5, and 6 is remarkable. Clearly, the complete fieldplete model is more technical, but otherwise analogess
theoretical model leads to the same physics as the two-modeecially in the Thomas-Fermi limit This means that in such
model. AsA is adiabatically decreased, the system enters theases we would have one global and one local minimum of
Schralinger-cat phase in which the ground state is a lineathe energy and neither of them would correspond to a
superposition of two states for which the-atom number Schralinger-cat state. They will, however, be characterized
distributions are significantly distinct. by different numbers of atoms in states) and|B). The

A. A-B symmetry
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point is that the energies of these minima and the correthe collective ground state is only #.8Thus the tempera-
spondingA- andB-atom numbers can be deformed in a con-tures required to observe a cat are much lower, such that
tinuous manner by changinly At some point one arrives at practically all atoms are in the collective ground state.
the situation when the two minima become degenerate and &hether existing cooling techniques, in particular evapora-
which the true ground state becomes a linear combination dfve cooling, can be extended into this regime remains to be

the two, i.e., becomes a Schlinger cat. investigated. However, the fact that we are dealing with
bosons instead of distinguishable particles helps significantly
B. Instability condition a$%>as’, to prepare a pure cat ground state. Consider a one-

dimensional situation. FoN distinguishable particles, there
areN possible collective excited states with the same energy.
Thus the temperature required to have most of the population

The existence of cat states imposes timstability) con-
dition ajz>ax’s (i.e., U;>Ug). As we know, the present

experiments[23] with Rb atoms allow for simultaneous in the collective ground state igsT<E;/N. On the con-

evaporative and sympathetic cooling because the inelastl[ﬁ;ary for bosons this temperature N times higher
collision rates are small, which is directly related to the factKT<’E1

thataxg=ax=ag [26]. While the condition seems not to be
satisfied for atom species used in presmaignetic trapex-
periments, we stress that future experiments might be based D. Decoherence

on different traps, for example, far-off-resonance traps using

highly detuned laser light. This will open up the possibility ~ Finally, we should address the question of decoherence.
of trapping new internal atomic states. Consider, for ex-Obviously, atom lossesuch as those due to inelastic colli-
ample, a total angular momentufn=1 and condensates in sions would destroy the Schdinger-cat state very rapidly.
the statesme==1. Furthermore, we assume that the levelln fact, in the extremal case when one has the cat
me=0 does not participate in the collision dynamighis  |O.N)+[N,0), already one atom loss would be enough to
can be done, for example, by shifting it with a Igséf the ~ distort completely the coherent superpositioricf.
singlet scattering length is larger than the triplet scatterind18,19,13). We stress, however, that the situation here is
length, then the conditioaj> a3’z will be fulfilled [29]. In  similar to that of the experiment of Bruret al. [15]. The

addition, one can in principle modify the atom-atom scatter-cats that live long enough to be observed must be mesos-
ing lengths using laser bearf7). copic. In fact, the Schidinger-cat states displayed in Fig. 4

belong to that category. They allow for the loss of many
atoms without the complete smearing out of their quantum-
mechanical coherence. If they are created, they could allow

Preparation of a cat requires the cooling to the groundor the study of the gradual decoherence process, in a manner
state of our system, i.e., the preparation qfime state. The  gjmilar to that in Ref[15].

sufficient condition is that the temperature has to be
kg T=<E,, whereE, is the energy of the first excited state of

C. Cooling to the ground state

the total Hamiltonian(for example, in the ideal case, that ACKNOWLEDGMENTS
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