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Unified treatment of some Casimir energies and Lamb shifts:
A dielectric between two ideal conductors
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Lamb shifts and Casimir energies, often thought of as long-range and short-range effects, respectively, and
studied separately, are each a manifestation of quantum electrodynamics and can be studied together. We do so
for a dielectric medium between two parallel ideal conducting plates. We extract the usual Casimir energy and
a bulk Lamb shift by studying the quantum fluctuations of the radiation field in the dielectric. We derive finite
expressions for the Casimir energy and the bulk Lamb shift valid for any permittivity satisfying the Kramers-
Krönig relation; some of the Casimir shifts obtained are simpler in form than any in the literature. We separate
the divergent and finite contributions to the bulk Lamb shift. For the dilute nonrelativistic gas we show that the
divergent contribution to the bulk Lamb shift defines the bare electron mass in terms of the physically observed
free-electron mass. Although we lack a physical interpretation for the necessary subtraction in the case of an
arbitrary dielectric, it is natural to interpret the finite part of the bulk energy as a ‘‘Lamb shift’’ in this case too.
We show that the derived finite bulk Lamb shift and Casimir energies in the limit of a dilute homogeneous gas
are consistent with earlier results for a single atom between two ideal conductors, and for an atom near one of
the walls. As an application, the radiative contribution to the interaction energy of a single electron with
uniform probability density between two ideal walls is obtained.@S1050-2947~98!01602-3#

PACS number~s!: 31.30.Jv, 12.20.Ds, 11.10.Gh
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I. INTRODUCTION

Casimir energies and Lamb shifts are among the m
interesting and best studied effects of quantum electro
namics~QED!. Each has been calculated many times, in
number of ways, for a variety of circumstances. Despite th
common QED origin, the Casimir energy is often taken to
a long-range effect and the Lamb shift is often taken to b
short-range effect, and, to our knowledge, the two have ne
been evaluated in the course of a single calculation.

Furthermore, even in situations for which only the C
simir effect was considered, the formalism used was of
more sophisticated and thus less transparent than wa
quired. Electromagnetic eigenfrequencies and eigenmo
were often explicitly evaluated and the systems conside
were often rather complicated.~With regard to the last point
the effects of a dielectric medium with permittivity«3 be-
tween two ideal plane parallel walls have sometimes b
analyzed by studying three dielectric media with permitti
ties«1, «3, and«2, setting«15«25` only at the end of the
calculation. Although the result is more general, the tech
cal complications of such a treatment tend to considera
obscure the physical picture.! We here restrict our attentio
to the relatively simple case for which a Casimir energy a
a Lamb shift both contribute to the quantum electrodynam
energy, a homogeneous dielectric material with frequen
dependent permittivity«(v2) and permeabilitym51 be-
tween two ideal uncharged plane parallel conductors;

*Electronic address: ms68@scires.nyu.edu
571050-2947/98/57~2!/1108~13!/$15.00
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limit in which the dielectric is a dilute gas, which we als
consider, is probably the simplest case.

We derive expressions for the Casimir energy as well
the bulk Lamb shift in terms of the permittivity«(v2) of the
material itself, evaluating the energy of the fluctuating rad
tion field in such a material. This macroscopic approach
the advantage of not requiring a microscopic description
«(v2), which—at least in principle—is a measurable qua
tity. Our expressions~3.5! for the Casimir energy, as well a
~3.17! for the Lamb shift between two materials with th
same electron number density, give the contribution of
radiation field to the energy. This approach is therefore
dependent of any approximations used in a theoretical ca
lation of «(v2) and is thus equally valid in a relativistic an
nonrelativistic description of the material and furthermo
applies also to materials with«(v2) not necessarily close to
unity.

Technically we evaluate the energy of the radiation fie
as a sum over the energies of the individual modes. This s
is transformed into an integral expression using the gene
ized argument theorem—see Eq.~2.9! below—thus eliminat-
ing the need to determine the energies of the individ
modes. We stress the importance of the analytic propertie
«(v2) implied by the Kramers-Kro¨nig relation, which in
principle restricts this derivation to the idealized case of m
terials with arbitrarily narrow~stable! resonances. The fina
expressions~3.5! and~3.17!, however, do not depend on th
idealization and are valid for realistic materials. They depe
only on the permittivity«(2j2) at realj, which is a regular,
real function for any physical substance, and the restrict
we impose to derive these expressions can be dropped.~This
1108 © 1998 The American Physical Society
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57 1109UNIFIED TREATMENT OF SOME CASIMIR ENERGIES . . .
can also be explicitly shown in a more rigorous, but le
transparent path integral derivation of our results@1#.!

We emphasize the common conceptual origin of
Lamb shift and the Casimir effect as the finite renormaliz
energy density and energy per unit area of the fluctua
radiation field. We show that infinities of the unrenormaliz
energy density are associated with a moment of the disc
tinuity of «(v) on the positive real axis. In the case of
dilute gas, this infinity can be interpreted as a redefinition
the electron mass and we therefore subtract the diver
contribution to the Lamb shift proportional to the seco
moment of the discontinuity of«(v) on the positive real
axis.

We finally explicitly show that thefinite expressions we
derive reproduce the well-known results for the Casimir
ergy and Lamb shift in special cases. In particular, we ve
Bethe’s original expression for the Lamb shift in a nonre
tivistic description of the case where the dielectric is a dil
gas@2#. The interaction energy with the walls of a dilute g
between two ideal walls, studied here, is shown to be c
sistent with the interaction energies of a single atom a
fixed distance from an ideal wall@3# and of a single atom a
a fixed location between two ideal walls@4#. We also obtain
the interaction energy with the walls of a single electron w
a uniform probability density between the conductors. W
provide estimates of the range of validity of the approxim
tions obtained.

The Casimir effect, it might be noted, had its origins in
experiment on the stability of lyophobic colloids, whic
showed that the atom-atom interaction at large distancer
did not obey the van der Waals 1/r 6 law, but varied as 1/r 7

@5#. Theorists were led to study the effects of electromagn
fluctuations; these effects could explain the 1/r 7 law @6#, and
also led to new results for the interaction of parallel ide
walls @7# and of an atom and an ideal wall@3#. Not long
thereafter there were theoretical studies of a number of in
actions involving one or two dielectric walls@8#. Over the
years, a few very good experiments were performed, larg
on the force between a pair of dielectric walls@9#, but the
primary effort was by theorists. We list three reviews deal
primarily with the above material@10–12#. More recently
there have been studies of the interaction energy of an e
tron and a dielectric wall@13#, and interactions involving set
of walls @14#. In the latter study the sets were a fixed distan
apart, with the number of walls in each set and the thickn
and permittivity of each wall arbitrary. The interaction b
tween the sets was obtained, as was the interaction with
sets of an atom or electron at a fixed location between
sets; these results encompass essentially all known inte
tions of walls and of atoms and electrons with walls. A ve
recent result is the experimental study of the force betwee
conducting sphere of radiusR and a conducting wall, where
the minimum distancea between the sphere and the wa
satisfiesa!R @15#; that force can be expressed in terms
the force per unit area between two parallel conducting w
@9#.

II. THE ENERGY DENSITY OF THE FLUCTUATING
ELECTRIC FIELD IN A DIELECTRIC

The problem to be considered is that of two ideal condu
ing plates parallel to the (x,y) plane, atz50 andz5 l , with
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a uniform dielectric with permittivity«(v2) between them.
In Coulomb gauge the fluctuating electromagnetic fields
tween the plates are determined by the vector potentiaA.
With x'5(x,y,0), k'5(kx ,ky,0), A'5(Ax ,Ay,0), and êz
the unit vector parallel to thez axis,A is a linear superposi-
tion of the functions

A~k' ,kn ;x!5@A'~k' ,n!sin~knz!

1êzAz~k' ,n!cos~knz!#eik'•x'. ~2.1!

For platesL3L with L@ l , the components of the wave vec
tor k' in the transverse direction can be taken to be conti
ous, but the boundary conditions for ideal conducting pla
imply that the componentkn takes only discrete values

knl 5np, n50,1,2, . . . ~2.2!

and the Coulomb gauge condition,¹•A50, reduces to

ik'•A'~k' ,n!2knAz~k' ,n!50. ~2.3!

For a given k' and nÞ0, two of the three amplitudes
Ax ,Ay ,Az are independent and there are two states of po
ization, butkn50 for n50 and there is then only one pola
ization state. SinceA satisfies the wave equation, the fr
quencyvn of the nth mode is formally a solution of the
dispersion relation

vn
2«~vn

2!2v'
2 5c2kn

2 , ~2.4!

where

v'5cuk'u. ~2.5!

The implicit solutionsvn are thus functions ofl and«.
It should be emphasized, however, that solutionsvn to

Eq. ~2.4! in principle exist only for the rather unphysical ca
of a substance with stable~zero-width! excited states, that is
for a discontinuity of«(v2) on the positive realv2 axis

s~v!5Disc«~v2!5
1

2i
lim

h→01

@«~v21 ih!2«~v22 ih!#

5Im «~v21 ih!, ~2.6!

described by a discrete sum of delta functions. In the ph
cal case of resonances with nonzero width, the Krame
Krönig relation between real and imaginary parts of«(v2)
required by causality,

«~v2!511
2

pE0

`

dv8
v8s~v8!

v8 22v2
, ~2.7!

can be shown to imply~see Appendix! that the imaginary
part of v2«(v2) does not vanish for anyv with Re v.0.
Although in principle solutions to Eq.~2.4! thus cannot be
found for a real substance, approximate real solutionsvn to
Eq. ~2.4! exist for sufficiently narrow resonances. The fo
lowing treatment of the Casimir effect for a substance w
very narrow resonances is thus an idealization in much
same spirit as the plates are idealized as perfect conduc
~Conceptually, the zero-width idealization is the mo
treacherous one, since a rather good approximation in
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1110 57MARTIN SCHADEN, LARRY SPRUCH, AND FEI ZHOU
study of analytic functions can lead to quite bad results;
tuitively, the zero-width idealization should be an excelle
approximation, since the widths of the atomic levels are
small compared to the energy differences between leve!
The results obtained are nevertheless correct for any die
tric permittivity «(v2) satisfying Eq.~2.7!, since our final
expressions remain valid for resonance spectra with s
ments that aredense, and segments that contain sharp re
nances, as when band structures are present. As noted a
our final results can also be obtained directly in the fram
work of a path integral derivation of the Casimir effect. Th
the complete neglect of the width of the resonance is a me
ingful approximation is perhaps less surprising if we reco
nize that there is no dissipation of energy when dealing w
electromagnetic fluctuations for the ground state of the s
tem.

The conventional derivation of the Casimir effect as ar
ing from the dependence of the zero point energyE(«,l ) due
to electromagnetic fluctuations

E~«,l !5L2E d2k'

~2p!2F1

2
\v012(

n51

`
1

2
\vnG ~2.8!

would seem to be valid only in the ideal case of arbitrar
sharp and discrete resonances, but from the discussion a
is of more general validity. From normal ordering, the e
ergy of a vacuum fluctuation of frequencyv is \v/2 and in
Eq. ~2.8! the two independent states of polarization forn
.0 have been taken into account. Note also that even in
idealized case of arbitrarily sharp resonances Eq.~2.4! gen-
erally has several solutions for givenn andk' . The sum in
Eq. ~2.8! should be understood as extending over all th
vn

( i ) .
The divergent sum~2.8! can formally be evaluated with

out explicit knowledge of the solutions to Eq.~2.4! by using
the generalized argument theorem, which expresses Eq.~2.8!
as a contour integral in the complexv plane. To do so, we
need a contourC and a holomorphic functionF(v) whose
roots withinC are all thevn ~and only thevn). In the context
of Casimir effect studies, the generalized argument theor
apparently first used in related cases by van Kampenet al.
@16#, gives

(
n

8vn5
1

2p i RCvdv
]

]v
lnF~v!52

1

2p i RCdv lnF~v!,

~2.9!

where the sum extends over all zerosvn of F within C, with
the solutions forn50 weighted by 1/2. The last expressio
in Eq. ~2.9! is the result of an integration by parts, using t
fact that F(v) is holomorphic.@Without the v factor, the
first integral of Eq.~2.9! would just give the difference be
tween the number of zeros and the number of poles ofF(v)
in C; this is the usual argument theorem.#

A function often used forF in studying the current situ
ation is

exp~2ikzl !21, ~2.10!

where
-
t
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kz5@v2«~v2!2v'
2 #1/2/c. ~2.11!

However, the function in Eq.~2.10! is not holomorphic; in
addition to the desired roots atkz5kn , it has a branch point
in v at any solutionv0 of

v0
2«~v0

2!2v'
2 50. ~2.12!

Since anyv0 ~and in particular one lying withinC) is inde-
pendent ofl , the contribution of such a branch point to th
Casimir force between the plates vanishes—the force be
the derivative with respect tol—and the branch point is sim
ply ignored. We are, however, also interested in the« depen-
dence of the fluctuating electromagnetic energy in the p
ence of the dielectric and therefore will use the holomorp
function

F1~v!5
sinkzl

kzl
[F1~v2! ~2.13!

to obtain the contribution from allvn with nÞ0 and, sepa-
rately,

F0~v2!5kz
2c25v2«~v2!2v'

2 ~2.14!

for the contribution from thev0.
The contourC, depicted in Fig. 1, runs down the imag

naryv axis fromiV to 2 iV and is closed by a semicircle o
radiusV in the Rev.0 plane. A finite value forV regular-
izes the divergent expression~2.8! and we are ultimately
interested in the« and l dependence of Eq.~2.8! when V
tends to infinity. Note that the statement thatF1 in Eq. ~2.13!
andF0 in Eq. ~2.14! are functions ofv2 depends crucially on
the fact that« satisfies Eq.~2.7! and is thus itself a function
of v2 only. A simple nonrelativistic damped harmonic osc
lator model of a gas, for example, gives«(v)51
1@vpl

2 /(v r
22v22 ivg r)#, where vpl is the plasma fre-

quency,v r is the resonant frequency, andg r is the damping
factor. This form of«(v2) is a function ofv2 and satisfies
Eq. ~2.7! if and only if G;0.

Separating the contributions to the contour integral in
integrations along the imaginary axis~Im! and the semicircle
(S), we thus have

FIG. 1. The contourC in the complexv plane used to evaluate
the Casimir energy by the generalized argument theorem. Also
dicated schematically are the zeros on the positive realv axis of the
holomorphic functions used in the generalized argument theo
~for v'Þ0).
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57 1111UNIFIED TREATMENT OF SOME CASIMIR ENERGIES . . .
( 8vn5I Im~V!1I S~V!. ~2.15!

With v5 i j in I Im andv5V exp(if) in I S , Eq. ~2.9! gives

I Im~V!52
1

2pE2V

V

j dj
]

]jS 1

2
lnF0~2j2!1 lnF1~2j2! D ,

~2.16!

I S~V!5
V

2p i E2p/2

p/2

eif df
]

]fS 1

2
lnF0~Veif!

1 lnF1~Veif! D . ~2.17!

Consider first the integralI Im of Eq. ~2.16!. For imaginary
arguments,kz(v

252j2) defined by Eq.~2.11! is better
written asiK z(j

2), where

Kz~j2!51@j2«~2j2!1v'
2 #1/2/c. ~2.18!

@Since F0 and F1 are both holomorphic functions, we ar
free to choose either sign of the root in Eq.~2.18!.# Kz(j

2) of
Eq. ~2.18! is a real and positive function because physica
acceptable«(2j2) satisfy Eq.~2.7! with a positive discon-
tinuity s(v2).0 and are therefore real and greater th
unity.

With

F0~2j2!52Kz
2c2 ~2.19!

and

F1~2j2!5
sin~ iK zl !

iK zl
5

eKzl~12e22Kzl !

2Kzl
~2.20!

we find

1
2 lnF0~2j2!1 lnF1~2j2!5Kzl 1 ln@12e22Kzl #,

~2.21!

where we have dropped a term that is independent ofj and
that therefore vanishes under]/]j. Inserting Eq.~2.21! in to
Eq. ~2.16!, we integrate by parts, noting that«(2V2)→1
and thereforeKz(V

2)→V/c for largeV@v' , to arrive at

I Im~V!5
1

pE0

V

dj $ ln@12e22Kzl #1 lK z%2
V2l

pc
.

~2.22!

The integral over the first term in Eq.~2.22! is finite in the
limit V→` and, as we shall see, is related to the Casi
effect.

To evaluateI S(V), we note thatv5Veif on the arc, with
V very large. For fixedv'!V andkz;(V/c)eif,

F0;v25~Veif!2, ~2.23!

and

F1;
sin@~V l /c!eif#

~V l /c!eif
; ~2.24!
n

ir

it follows that

]

]fF1

2
lnF01 lnF1G; i

V l

c
eifcot~V leif/c!, ~2.25!

dropping terms that vanish in the limitV→`. The f inte-
gration in Eq.~2.17! can readily be performed upon obser
ing that

cot~V leif/c! →
V;` H 2 i for 0,f,p/2

i for 2p/2,f,0
~2.26!

and gives

I S~V;`!5
V2l

pc
. ~2.27!

Summing Eqs.~2.22! and~2.27! one obtains for the regu
larized zero-point energy at givenv'5cuk'u for large val-
ues ofV:

ER~«,l ,v'
2 ;V!5( 8\vn5

\

pE0

V

dj ln@12e22Kzl #

1
l\

p E
0

V

djKz . ~2.28!

The first contribution toER in Eq. ~2.28! is finite in the
limit V→` ~and gives a finite energy per unit area aft
integration over transverse degrees of freedom! and vanishes
when l→`. @For a vacuum between the ideal walls, i.e
«(v2)51, this is just thel dependent Casimir pressure
one transverse mode. It is modified by the medium
«(v2)Þ1.# For a dilute gas, we interpret this change in t
energy density of the medium as partially arising from
l -dependence of the Lamb shift of the individual atom
states due to the presence of the walls.

The second contribution to Eq.~2.28!, which is quadrati-
cally divergent inV, is linearly dependent on the separatio
l of the ideal walls. It leads to anl -independent constan
pressure between the walls. This pressure is balanced b
pressure exerted by the vacuum outside the walls only if
medium has permittivity«(v2)51. For«51 this bulk con-
tribution to the total energy is given by the vacuum energy
the radiation field. It is therefore natural to extract from th
term the change in energy density due to the radiation fi
for «(v2)Þ1. For a dilute gas this energy should be t
Lamb shift of the individual atoms in the absence of the id
walls. In the next section we extract the finite physical effe
from the regularized expression~2.28! in the limit V→`.

III. RENORMALIZATION
OF THE FLUCTUATION ENERGY

Only energy differences are of physical interest. Casim
effects are just the difference between the energy with id
walls at a separationl and the energy in the same region wi
no walls present. Similarly, in deriving the Lamb shift on
compares the interaction energy of the radiation field w
the corresponding interaction energy of ‘‘free’’ electro
~mass renormalization!. In the present analysis of both e
fects it is necessary to make both subtractions consiste
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We propose to do this in two steps.
We obtain the Casimir energyECas(«,l ) by extracting the

bulk energy from the total energy. To do so, we first consi
the regularized energy of the radiation field in a box w
ideal walls and of fixed dimensionsL3L3L and permittiv-
ity «(v2), with an additional ideal wall placed a distancel
!L from one of the sides of the box. We then subtract fro
that energy the energy of the radiation field for the same
with the same«(v2) but without the additional wall@17#. In
the limit of largeV we then have

DER~«,l ,v'
2 !5 lim

V→`

@ER~«,l ,v'
2 ;V!1ER~«,L2 l ,v'

2 ;V!

2ER~«,L,v'
2 ;V!#. ~3.1!

The limit in Eq. ~3.1! is finite, since the second term in E
~2.28!, the bulk energy term directly proportional to the sep
ration of the plates, drops out, as do contributions to
~3.1! from the first term in Eq.~2.28! that decay exponen
tially with L in the limit of largeL. IntegratingDER over the
transverse modes gives the standard result for the Cas
energy

ECas~«,l !5L2E d2k'

~2p!2
DER5L2E d~v'!2

4pc2
DER

5L2
\

~2pc!2E0

`

d~v'
2 !E

0

`

dj ln@12e22lK z#

5L2
\

2~pc!2E0

`

dj j2«~2j2!E
1

`

dp

3pln@12e22l jpA«~2j2!/c#. ~3.2!

The last expression forECasin Eq. ~3.2! is obtained by chang
ing variables@18# from v'

2 to p25@v'
2 /j2«(2j2)#11. Set-

ting p852l jpA«(2j2)/c, Eq. ~3.2! becomes

ECas~«,l !5
L2\

8~p l !2E0

`

dj I ~j!52
L2\

8~p l !2E0

`

dj j
]I

]j
,

~3.3!

where

I ~j!5E
2l jA«~2j2!/c

`

p8dp8ln@12e2p8#; ~3.4!

the surface term of the partial integration leading to the s
ond expression forECas in Eq. ~3.3! vanishes. Evaluating
]I /]j one obtains the Casimir energy as an integral ovej
only:

ECas~«,l !5L2
\

~2pc!2E0

`

dj jS d

dj
@j2«~2j2!# D

3 ln@12e22l jA«~2j2!/c#. ~3.5!

This relatively simple form for the Casimir energy seems
to have been given previously. At this point we should p
haps clarify our earlier remark that Eq.~3.5! can be taken to
r

x

-
.

ir

c-

t
-

be nonperturbative and relativistically valid if«(v) is
known. To be formally exact one in principle has to kno
the dependence of«(v) on the separationl @19#.

Before proceeding to the second subtraction, we note
the behavior of«(2j2) in the limit of small j completely
determines the asymptotic form of the Casimir energyECasat
large l . If «(0) is finite, as in most realistic situations, on
can replace«(2j2) by «(0) for l sufficiently large. One can
then evaluate the integral in Eq.~3.5!, and one finds that the
asymptotic Casimir energy

ECas~«,l !→
l;`

2
p2\L2c/A«~0!

720l 3
~3.6!

is determined by the speed,c/A«(0), of long-wavelength
excitations, a physically reasonable result.@For «(v2)51,
Eq. ~3.6! is exact for all separations and is nothing other th
the familiar Casimir energy for two ideal walls in a vacuum#
To determine the domain of validity of Eq.~3.6! one begins
by noting that the maximum value ofj that contributes sig-
nificantly to the integral in Eq.~3.5! is that for which the
exponent is about equal to unity, that is,jmax is the solution
of 2l jmaxA«(2jmax

2 )/c51. Furthermore one can approxima
the monotonically decreasing function«(2j2) by «(0)
~greater than unity! if \j!\v1, where\v1 is the lowest
excitation energy of the medium, which for the present p
poses we can take to be the lowest excitation energy o
atom in the medium. We can therefore replace«1/2(2j2) by
«1/2(0) if jmax,v1. Taking a typical value for\v1 to be
(e2/10a0), wherea0 is the Bohr radius, the requirements o
l for Eq. ~3.6! to be valid are consistent if, crudely,

l *
5a0

~e2/\c!A«~0!
'

103a0

A«~0!
. ~3.7!

In the second step we extract the dependence of the
ergy density of the large box on the permittivity«(v2) of the
material it contains. We therefore compare the energy of
box with permittivity«A(v2) with that of the same box with
permittivity «B(v2), for largeL. Neglecting the first term in
Eq. ~2.28! since it vanishes forL→`, this regularized en-
ergy difference at fixedv'5cuk'u is given by the difference
in the second term of Eq.~2.28!. With Kz defined in Eq.
~2.18!, we then have

DEAB~«A ,«B ,v'!5 lim
V→`

@ER~«A ,L,v' ;V!

2ER~«B ,L,v' ;V!#

5
L\

pc
lim

V→`
E

0

V

dj @Aj2«A~2j2!1v'
2

2Aj2«B~2j2!1v'
2 #. ~3.8!

For largej Eq. ~2.7! gives

«~2j2!511
2

pj2E0

`

dv8 v8s~v8!1O~j24! ,

~3.9!
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wheres(v8) is the discontinuity of« defined in Eq.~2.6!.
The limit in Eq. ~3.8! therefore exists if and only if

vpl
2 ~A!5

2

pE0

`

dv8 v8sA~v8!5
2

pE0

`

dv8 v8sB~v8!

5vpl
2 ~B!. ~3.10!

As we will see shortly, Eq.~3.10! is guaranteed by the well
known Thomas-Reiche-Kuhn sum rule@20# for the plasma
frequencyvpl if the two substances under consideration ha
the same electron number density. A simple and nat
choice for«B(v2) is the permittivity of an excited state o
the system; the electron number densities are then clearly
same. We will henceforth assume this choice to have b
made, and we can therefore setV5`.

Even though we are comparing substances with the s
electron density, the integration over the transverse frequ
cies of the modes still generally diverges. To extract a
interpret this divergence, consider the regularized differe
of the energy densities,

EAB~«A ,«B ;L!

L3
[

1

4pc2L
E

0

L2

d~v'
2 ! DEAB~«A ,«B ,v'

2 !,

~3.11!

whereL2 is a simple cutoff for the transverse frequenc
v'

2 . Introducing a second cutoff in addition toV is poten-
tially dangerous and limits have to be taken with some ca
Note in this respect that one must perform thej integration
in Eq. ~3.11! with the cutoff L still in place, because Eq
~2.28! is correct only forv'

2 !V2. The cutoffV in the total
energy also restricts the transverse frequencies, as is
from the contour integration. Our simplified cutoff procedu
only makes sense forL!V, which implies that the limit
L→` can only be takenafter the limit V→`. This ordering
e
al

he
en

e
n-
d
e

e.

ear

of the limits is important and gives a divergent contributi
to the energy density, which for a dilute gas will be shown
renormalize the electron mass. A naive reversal in the or
of the limits on the other hand would give an erroneous~and
apparently finite! result for the difference~3.11! in the en-
ergy densities.

The integrations overj andv'
2 can be separated by usin

the identity

xA
1/22xB

1/252
1

2Ap
E

0

` dl

l3/2
@e2lxA2e2lxB#. ~3.12!

The integration overv'
2 is trivial and gives

EAB~«A ,«B ;L!

L3
52

\

8p2c3Ap
lim
L→0

E
0

` dl

l5/2
~12e2lL2

!

3E
0

`

dj@e2lj2«A~2j2!2e2lj2«B~2j2!#.

~3.13!

Suppressing thej dependence of«A and«B to simplify no-
tation, we write the term in square brackets of Eq.~3.13! as

e2lj2«A2e2lj2«B5@e2lj2«A2e2lj2«B1lj2~«A2«B!#

2lj2~«A2«B!, ~3.14!

to isolate the divergent part of Eq.~3.11!. Setting

EAB~«A ,«B ;L!

L3
5
EAB~«A ,«B!

L3
1
EAB

div~«A ,«B ;L!

L3
,

~3.15!

where
EAB~«A ,«B!

L3
52

\

8p2c3Ap
lim
L→0

E
0

` dl

l5/2
~12e2lL2

!E
0

`

dj@$e2lj2«A~2j2!1lj2«A~2j2!%2$A→B%#; ~3.16!

the limit L→` of the integrand in Eq.~3.16! can be taken, since the term in square brackets is proportional tol2 for l
;0. We can further simplifyEAB by integrating by parts overl. The surface term vanishes, and one obtains

EAB~«A ,«B!

L3
52

\

12p2c3Ap
E

0

`

djj2F H «A~2j2!E
0

` dl

l3/2
~12e2lj2«A~2j2!!J 2$A→B%G

5
\

6p2c3E0

`

djj3@«B
3/2~2j2!2«A

3/2~2j2!#, ~3.17!

where Eq.~3.12! was used for thel integration. We will later discuss the physical interpretation ofEAB as the difference of
the bulk Lamb shifts of statesA andB.

The linearly divergent part inL of Eq. ~3.15! arises from the second term in Eq.~3.14!. It gives

EAB
div~«A ,«B ;L!

L3
5

\

8p2c3Ap
E

0

` dl

l3/2
~12e2lL2

!E
0

`

djj2@«A~2j2!2«B~2j2!#5
\L

4p2c3E0

`

djj2@«B~2j2!2«A~2j2!#,

~3.18!
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where we again made use of Eq.~3.12!. Since Eq.~3.10!
holds, the divergent contribution~3.18! is proportional to a
moment of the differencesA2sB in the discontinuities,

E
0

`

dj j2@«B~2j2!2«A~2j2!#

5E
0

`

dv8v82@sA~v8!2sB~v8!#, ~3.19!

which we will interpret shortly.EAB
div in the limit of largeL

thus becomes

EAB
div~«A ,«B ;L!/L35

\L

4p2c3E0

`

dv8v82@sB~v8!2sA~v8!#.

~3.20!

In our derivation of the energy density of the fluctuati
field and the extraction of the divergence~3.20! we have not
assumed any special properties of the dielectric. We w
however, in the following show only that the divergent pa
~3.18! can be interpreted as a redefinition of the elect
mass in the case where the permittivity«A(v2) is described
by a discrete set of nonrelativistic oscillators with vanishi
width. This should, in particular, be a valid approximatio
for a dilute gas, but probably also describes the permittiv
of other materials quite well. The finiteresultwe obtain with
this restriction, however, remains valid when the spectrum
the oscillators becomes dense and therefore should app
any substance whose permittivity satisfies Eq.~2.7!.

For heuristic purposes, we begin by recalling that the c
sical expression for«A(v) for a dilute gas of atoms in the
stateA is

«A~v!511
4pe2

m (
r

NEl~v r ;A!

v r
22v22 ig rv

, ~3.21!

whereNEl(v r ;A) is the number of electrons per unit volum
with frequencyv r when the system is in stateA. Here and
later, ( r represents both a sum and an integral. With e
energy level assumed to have zero width, we take e
damping factorg r to be vanishingly small, setg rv5G;0,
and use

lim
G→0

Im
1

v r
22v22 iG

5pd~v r
22v2!5

pd~v r2v!

2v r

~3.22!

to find

sA~v!5Im «A~v!5
2p2e2

m (
r

NEl~v r ;A!

v r
d~v r2v!.

~3.23!

Note that any analytic functionsA(v) can be written in this
manner if one allows part of the spectrum of resonance
become dense. We thus obtain the classical st
independent result
l,
t
n

y

f
to

s-

h
ch

to
e-

2

pE0

`

vsA~v!dv5
4pe2

m (
r

NEl~v r ;A!5
4pe2

m
NEl5vpl

2 ,

~3.24!

whereNEl is the number of electrons per unit volume andvpl
is the plasma frequency. The quantum analog of Eq.~3.23! is
obtained by replacingv r by v rA5(Er2EA)/\ ~where A
denotes the state under consideration andEr and EA are
quantum energies of the dilute gas!, andNEl(v r ;A) by the
oscillator strengthf rA . Equation~3.24! then follows imme-
diately on using the Thomas-Reiche-Kuhn@20# sum rule
( r f rA5NEl(A), obtained using commutator relations.

For the case of interest, the second moment of the disc
tinuity in Eq. ~3.20!, we use Eq.~3.23! to obtain the classica
state-dependent result

E
0

`

v2sA~v!dv5
2p2e2

m (
r

v rNEl~v r ;A!. ~3.25!

We first evaluate the sum semiclassically by noting that
ground-state energy of a harmonic oscillator of frequencyv r
is (3/2)\v r and that the kinetic energypr

2/2m of the oscil-
lator is half that, so thatv r5(4/3\)(pr

2/2m). We thereby
obtain

E
0

`

v2sA~v!dv5
8p2e2

3m\ S Ekin

V D
A

, ~3.26!

where

S Ekin

V D
A

5(
r

pr
2

2m
NEl~v r ;A! ~3.27!

is the kinetic energy (Ekin) per unit volume (V) in the state
A. Proceeding somewhat more formally, we again replacev r
by v rA andNEl(v r ;A) by f rA , and use commutator relation
to arrive at the same result in a quantum format, namely

E
0

`

v2sA~v!dv5
8p2e2

3m\L3 K AU(
i

pi
2

2mUAL , ~3.28!

where the sum extends over all the electrons.
Nonrelativistically, the energy density difference betwe

statesuA& and uB& as given by Eq.~3.15! can therefore be
rewritten as

EAB~«A ,«B ;L!

L3
5
EAB~«A ,«B!

L3
1K AU dH~L!

L3 UAL
2K BU dH~L!

L3 UBL , ~3.29!

where

dH~L!52
2e2L

3c3m
(

i

pi
2

2m
. ~3.30!

The operatordH is interpreted as a cutoff-dependent defin
tion of the bare electron massm0 of the Hamiltonian without
radiative corrections@21#

m0~L!5
m

112e2L/3c3m
. ~3.31!
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Since the physically measured massm of a free electron
includes all radiative corrections, the energy density diff
ence between statesuA& and uB& due to the radiation field is
given by ~3.17!.

If a nonrelativistic approximation for the permittivities i
Eq. ~3.17! is used, this expression for the difference in e
ergy densities of statesuA& anduB& diverges logarithmically.
The logarithmic divergence of the integral in Eq.~3.17! can
be traced to the failure of nonrelativistic kinematics to d
scribe the permittivities at high frequencies. The integra
Eq. ~3.17! should be finite forphysical permittivities that
take into account the relativistic phase space at high-en
transfers. However, since the divergence induced by the n
relativistic description of the permittivities is only logarith
mic, we will resort to the usualad hocremedy of introducing
a cutoff for the frequency integral of the order ofjmax
5mc2/\. As will be seen in the next section, where we a
sume the dielectric to be a dilute gas of atoms, the use of
cutoff allows a simple comparison of Eq.~3.17! with nonrel-
ativistic estimates of the Lamb shift in the literature. We w
also suggest that Eq.~3.17! can itself be interpreted as a bu
Lamb shift.

IV. SPECIAL LIMITING CASES

To simplify the discussion, we will use subscriptsM , D,
At, and El to denote a metallic~ideal! surface, a dielectric
that is well approximated as a dilute gas of atoms, an at
and an electron, respectively. To gain some insight into
physical meaning of ECas(«,l ) of Eq. ~3.5! and of
EAB(«A ,«B) of Eq. ~3.17!, let us consider a dielectric that i
a dilute gas of atoms in a single stateA. If the gas is suffi-
ciently dilute its permittivity«A will be adequately describe
in terms of the atomic polarizabilityaA of the individual
atoms by

«A~2j2!'114pNAt~A!aA~2j2! ~4.1!

to first order in the atomic number densityNAt(A). In some
situations, the atomic number densityNAt may explicitly de-
pend on the separationl of the ideal mirrors, as, for instance
when the number of atoms is fixed.

A. The Lamb shift for a dilute gas

For our model atom, a nonrelativistic oscillator with zer
width excited states, the polarizability is

aA~2j2!'
e2

m(
r

f rA

v rA
2 1j2

, ~4.2!

where, as before,v rA5(Er2EA)/\ is the frequency associ
ated with the energy difference to the stateur & and thef rA
are the oscillator strengths with

(
r

f rA5ZA , ~4.3!

the number of electrons of the atom. To first order in t
atomic number densityNAt(A), Eq. ~4.1! gives

«A
3/2~2j2!5116pNAt~A!aA~2j2!. ~4.4!
-

-

-
n

gy
n-

-
he

,
e

e

By Eq. ~3.17! the difference in energy density of a gas
atoms prepared such that all are in stateuA& or all are in state
uB& becomes

EAB /L3;2
\e2

pmc3E0

`

dj j3S H NAt~A!(
r

f rA

v rA
2 1j2J

2$A→B% D . ~4.5!

SinceZ, NAt , and the electron number densityNEl are the
same for statesuA& and uB&, that is,

ZA5ZB[Z, NAt~A!5NAt~B![NAt ,

NEl~A!5NEl~B![NEl5ZNAt , ~4.6!

Eq. ~4.5! is only logarithmically divergent. We cut off the
frequency integral atjmax5mc2/\, beyond which the nonrel-
ativistic approximation for the polarizability~4.2! is anyhow
unacceptable. With

NAt[NAtL
3 ~4.7!

the total number of atoms between the plates, Eq.~4.5! be-
comes

EAB

NAt
;2

\e2

pmc3F H(r
v rA

2 f rAln
mc2

\uv rAuJ 2$A→B%G .
~4.8!

The choice of a zero energy reference level is a matte
convention; the individual terms in curly brackets of E
~4.8! are usually interpreted as the finite nonrelativistic Lam
shifts for the individual states@2#.

If there is only one atom, thenNAt51/L3, and sincea(0)
is of ordera0

3, Eq. ~4.1! is then satisfied and so is Eq.~4.8!.
We also want to allow for a number of atoms. A necess
but not sufficient condition for the validity of Eq.~4.8! is that
Eq. ~4.1! be applicable, which can be taken to be

4pNAta~0!!1. ~4.9!

We should, however, demand not only that Eq.~4.1! be sat-
isfied, which it is if Eq.~4.9! is valid, but that the atom-atom
interaction energy~quadratic inNAt) be small compared to
the Lamb shift, which is of first order inNAt but is neverthe-
less a very small effect. To be precise, we demand that

SAt-At!EAB /L3;2p\NAtn0 , ~4.10!

where 2p\n0 is a typical Lamb shift andSAt-At is the aver-
age atom-atom interaction energy per unit volume.SAt-At for
a homogeneous gas of atoms with number densityNAt is

SAt-At'NAt
2 E

0

`

4pr 2drVAt-At~r !, ~4.11!

whereVAt-At(r ) is the interaction potential between two a
oms, which forr @a0 is the van der Waals potential due
the dipole-dipole interaction of the atoms, that is,
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VAt-At~r @a0!;VvdW'S ~ea0!2

r 3 D 2
a0

e2
5

e2a0
5

r 6
. ~4.12!

For r ,Ca0 with C of the order of 3, the interaction betwee
the atoms will be assumed repulsive and we thus obta
crude estimate of the integral in Eq.~4.11! by setting the
lower bound to;Ca0 and using the van der Waals intera
tion ~4.12!. Thus, we demand that

SAt-At'NAt
2

4pe2a0
2

3C3
!2p\NAtn0 . ~4.13!

If we arbitrarily choosen0 to be the Lamb shift frequency fo
the 2s→2p separation in hydrogen, that is,n0'109 Hz, the
Lamb shift ~4.8! will be the leading effect for atomic dens
ties given roughly by

NAt!431028C3/a0
3 , ~4.14!

implying fewer than;1019 atoms per cm3 for C53, a typi-
cal number density for a gas at standard conditions. S
a(0) is typically of the order ofa0

3, the restriction~4.14! on
NAt for the validity of Eq.~4.8! is generally far more strin-
gent than Eq.~4.9!. Note, however, that the second ord
effect due to the interaction between the atoms is a b
effect that does not contribute to the Casimir energy, n
more significantly, to the Casimir force.

B. Casimir energies: A dilute gas versus a vacuum

In addition to the Lamb shift just discussed, there is
Casimir energy~3.5!. Using Eq. ~4.1! and expanding Eq
~3.5! in the atomic number densityNAt ~we are considering a
dilute gas!, the change in the Casimir energy on inserting
dielectric between the plates where there had previously b
a vacuum~i.e., «51) is

DECas~a,l !5ECas~«'114pNAta,l !2ECas~«51,l !

5NAt

L2\

pc2E0

`

dj j
]

]j
$j2a~2j2!

3 ln@12e22l j/c#%. ~4.15!

~The difference,DECas, is finite; there is no need to stud
two statesuA& and uB&, and we therefore omit subscrip
denoting states in the following.! A partial integration gives
the remarkably simple expression—one that seems no
have been given previously—

DECas~a,l !52NAt

L2\

pc2E0

`

dj j2a~2j2!ln@12e22l j/c#

~4.16!

for the change in the Casimir energy, compared to a vacu
due to the presence of a dilute gas between the plates.
linear relationship~4.16! between the change of the Casim
energy and the atomic polarizability represents the indep
dent interaction of each atom with the fields present in
absence of the atoms but in the presence of the walls.
largel we can replacea(2j2) by a(0), assumed to be finite
a

ce

lk
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e
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en

to

,
he

n-
e
or

@in Sec. IV D we will consider a case for whicha(v2);`
for v;0#, and Eq.~4.16! gives

DECas~a,l;`!5NAt

a~0!L2\c

4p l 3
z~4!5NAt

a~0!p3L2\c

360l 3

5VM D M„a~0!,l;`…, ~4.17!

wherez(x) is the Riemann zeta function

z~x!5 (
n51

`

n2x, ~4.18!

andVM D M„a(0),l;`… is the interaction energy of a dilut
gas between two ideal mirrors with the conductors. T
change in the asymptotic behavior of the Casimir eff
~4.17! is, of course, more readily computed by directly e
panding the asymptotic behavior of the Casimir energy~3.6!
to first order inNAt .

C. Asymptotic Casimir energy of a dilute gas
and the potential energy of a single atom

The asymptotic expression~4.17! for VM D M„a(0),l
;`… can also be derived from the interaction ener
VM At M(z) of a single atom between two metallic plates wi
the plates. We here follow Barton’s notation, now locati
the plates atz̃52 l /2 and z̃5 l /2; the atom is at a fixed
distance z̃ from the midpoint. The interaction of a singl
atom for largel is @4#

VM At M~ z̃ ,l;`!5
p3\c

l 4 F 1

360
2

322cos2~p z̃ / l !

8cos4~p z̃ / l !
Ga~0!.

~4.19!

@As throughout this paper, we here disregard the magn
contribution to the interaction energy, given forVM At M( z̃)
by Barton@4#.# Equation~4.19! is a valid expression for the
potential energy of an atom between two ideal mirrors o
for distancesa from either wall that are large compared
c/v1, where v1 is the lowest resonance frequency of t
atom. (2a/c is the to-and-from time of flight of a photon
between the atom and the wall, and 2p/v1 is the period of
the atom; it follows that for 2a/c.2p/v1 an atom located a
a is in the retardation zone.! Closer to either wall the poten
tial is not retarded and is proportional to 1/a3 instead of 1/a4

as in Eq.~4.19!. ~The 1/a3 dependence is the nonretarde
interaction of a dipole with its mirror image.! Very close to
either wall the interaction potential finally depends on deta
of the structure of the atom.

To lowest order in NAt , the interaction energy
VM D M„a(0),l;`… of a dilute gas is obtained by integratin
Eq. ~4.19! over a homogeneous distribution of atoms of de
sity NAt

VM D M„a~0!,l;`…52NAtL
2E

0

l /2

d z̃VM At M~ z̃ !,

~4.20!

where we used the fact that the contributions from2 l /2 to 0
and from 0 to l /2 are the same, and the interactio
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VM At M( z̃) is the interaction valid for allz̃ . To evaluate the
integral in Eq.~4.20!, we choose a distancea, which satisfies

c/v1!a! l . ~4.21!

We can then write

VM D M„a~0!,l;`…5VM D M8 12VD M„a~0!,a…,
~4.22!

where

VM D M8 52NAtL
2E

0

l /22a

d z̃VM At M~ z̃ ! ~4.23!

and

VD M„a~0!,a…5NAtL
2E

l /22a

l /2

d z̃VM At M~ z̃ ! ~4.24!

is the interaction of the ‘‘skin’’ of gas of thicknessa adjacent
to one of the conductors. We require only the potential of
atom in the retardation region between the plates to eval
Eq. ~4.23!. Using Eq.~4.19!, we find

VM D M8 5
NAtL

2p3\c

l 3 F12~2a/ l !

360
2

cos~pa/ l !

4psin3~pa/ l !
Ga~0!.

~4.25!

Ignoring terms of ordera/ l and using Eq.~4.17!, we arrive at

VM D M„a~0!,l;`…5DECas„a~0!,l;`…1F2VD M„a~0!,a…

2NAt

a~0!\cL2

4pa3 G . ~4.26!

Since Eq.~4.26! is valid for l;` for any a satisfying Eq.
~4.21!, the term in square brackets must vanish, that is,

VD M„a~0!,a…5NAt

a~0!\cL2

8pa3
~4.27!

and DECas(a,l;`) is indeed equal toVM D M„a(0),l;`….
The contribution toVD M„a(0),a… from atoms a distance
betweena anda1da from the conductor is

dVD M„a~0!,a…5~NAtL
2da!F2

3a~0!\c

8pa4 G
5~NAtL

2da!VAt M„a~0!,a…. ~4.28!

VAt M„a(0),a… is the well-known@3# retarded potential of an
atom with a mirror for largea. @It may be interesting to note
that in Lifshitz’s seminal paper on Casimir effects involvin
dielectrics@8# he determined the interaction energyVD D D
of three planar dielectrics, where the outer dielectrics of p
mittivity «1 and «2 extend to6`, and sandwich a slab o
thicknessl and permittivity«3. By setting«351 and taking
«2 to be the permittivity of a dilute gas, he obtainedVAt D ,
and by letting«1→`, he also obtainedVAt M , without fur-
n
te

r-

ther subtleties. The present analysis is conceptually sim
in at least one regard in that we start with only one dielect
having set«15«25` at the outset.VM D M then follows on
taking«3 to be the permittivity of a dilute gas. To determin
VAt M , however, we either have to argue that in this case
must neglect terms representing multiple reflections, tha
one must retain only then51 term in Eq.~4.17!, or compare
with the known potentialVM At M( z̃) and subtract infinities.
For illustrative purposes and to compare with the literatu
we chose the latter method to extractVAt M .#

We have assumed that the atoms are uniformly dist
uted. This is of course not quite the case since the atoms
attracted to the wall, but especially for largel it should be a
reasonable assumption;VAt M is strong but not singular nea
the wall, and temperature effects help a bit. In any event,NAt

will be reasonably uniform away from the wall, since w
took NAt to be independent ofl and for that case the numbe
of atoms that attach themselves to the wall will satura
Note that it is perfectly possible to maintain the value ofNAt

by introducing atoms asl increases. The experimentally pe
haps more easily realizable situation in which the numbe
atomsNAtlL

2 is constant can be analyzed by the proced
used in the following study of electrons between walls.

Feynman@22# pointed out@23# that one could obtain the
Lamb shift for an atom by considering one such atom in
box with conducting walls, with the effective index of refra
tion then given byn(v)5«1/2(v)'112pa(v)/L3, where
L3 is the volume of the box anda(v) is the polarizability of
the atom. The discussion immediately above shows that
study of an atom in a box can give not only the Lamb sh
but also the correction to the Casimir effect. Our earlier d
cussion was of course more general, for it considered a
sonably arbitrary«(v).

D. Interaction energy of an electron with one and two walls

Finally we point out that Eq.~4.16! in some cases also
allows one to evaluate the change in the Casimir ene
compared to a vacuum whena(2j2) is singular atj250,
as, for instance, when there is an isolated electron betw
the plates withaEl(2j2)5e2/(mj2). The expansion~4.1! of
the permittivity«(2j2) around«51 in this case is certainly
not valid for j2,4pNEle

2/m and the arguments leading t
Eq. ~4.16! might seem to be questionable. However, f
NEl→0 the only frequencies for which the expansion do
not apply are in the neighborhood of the origin. Since t
integral in Eq.~4.15! is not singular at the origin, Eq.~4.16!
remains valid~with NAt replaced byNEl) in the limit NEl→0,
which includes the single-electron case. Introducing a sin
electron therefore has an overall negligible effect on the fi
and effectively interacts with the field that would be there
its absence. The contribution to the total interaction ene
from electromagnetic fields with extremely low frequenc
for which the effect of introducing an electron is not neg
gible, vanishes due to the available phase space. The inte
in Eq. ~4.16! is readily performed and one obtains for th
radiative contribution to the potential energy of a single el
tron with uniform probability density@NEl51/(L2l )# be-
tween two ideal conductors,
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DECas~aEl ,l !uNEl51/~L2l !5
\e2

2pmcl2
z~2!5

p\e2

12mcl2
.

~4.29!

@Note that Eq.~4.29! does not include the classical electr
magnetic energy between the plates due to the presence
electron, which is independent ofm and\ but many orders
of magnitude larger than Eq.~4.29!. A confirmation of
DECas(aEl ,l )uNEl51/(L2l ) would therefore require a measur
ment of very high accuracy, for it would be necessary
determine the difference between the measured interac
and the classical Coulombic effects.#

One can check the validity of Eq.~4.29! by proceeding
along the same lines as used in checkingVM D M„a(0),l
;`…, that is, by confirming that

DECas~aEl ,l !uNEl51/~L2l !5 V̄M El M~ l !5
2

l E0

l /2

d z̃VM El M~ z̃ !,

~4.30!

where

VM El M~ z̃ !5
p\e2

mcl2
F 1

12
1

1

4cos2~p z̃ / l !
G ~4.31!

is the retardation interaction of an electron at a fixed dista
z̃ from a point midway between the two walls@24#. There is,
however, the complicating factor that we could consider
case for whichNAt is constant, but with one electronNEl
varies as 1/l . @One cannot sensibly study many electrons
tween the walls rather than just one, withNEl held indepen-
dent ofl by introducing electrons asl is increased, and main
tain a uniform electron distribution; the electron-electr
Coulomb repulsion and the attraction of the electrons by
walls would drive many electrons to the walls. Even with t
one electron case under consideration the distribution
not truly be uniform, thoughV̄M El M( l ) could still be of
some use.V̄M El M( l ) might be of greater practical use in
study of the effect of walls on an electron passing betw
walls for small deflections of the electron and for the elect
incident with a probability density independent of its d
tance from the walls.# There is a further difference betwee
the electron and atom cases, this difference being a sim
fying factor; Eq.~4.31! is valid everywhere between the ide
walls, since the interaction with the electron is always
tarded, for neither the ideal wall nor the electron have
natural period. Introducing a lengthb! l , we isolate the di-
vergent contribution when the electron is close to either w
by writing

V̄M El M~ l !5
2

l S vEl M~b!1E
0

l /22b

d z̃VM El M~ z̃ ! D ,

~4.32!

where

vEl M~b!5E
l /22b

l /2

d z̃VM El M~ z̃ !; ~4.33!
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we use the symbolv in Eq. ~4.33! to indicate that this is not
a potential. Performing the integral in Eq.~4.32! and neglect-
ing terms that vanish in the limitb/ l→0, one obtains

V̄M El M~ l !5
2

l F v̄ El M~b!1
\e2

4pmcbG
1DECas~aEl ,l !uNEl51/~L2l ! . ~4.34!

Demanding thatV̄M El M( l ) not depend onb for anyb satis-
fying b! l , the term in square brackets in Eq.~4.34! is a
constantC independent ofb for sufficiently smallb/ l . We
can now recover the interactionVEl M(b) of an electron at a
distanceb from one of the walls with that wall by noting tha

d

db
vEl M~b!52

d

db

\e2

4pmcb
5

\e2

4pmcb2
, ~4.35!

which follows on differentiating Eq.~4.34! with respect tob,
and also, from Eq.~4.33!, that

d

db
vEl M~b!5VM El M~ l /22b!'VEl M~b!; ~4.36!

the last step in Eq.~4.36! follows on recognizing that the
interaction with the second wall is proportional to 1/l 2, and
therefore smaller thanVEl M(b) by of orderb2/ l 2. Compar-
ing Eqs. ~4.35! and ~4.36! gives the well-known retarded
interaction of an electron with a single wall

VEl M~b!5
\e2

4pmcb2
. ~4.37!

In the case of a dilute gas of atoms, the constant co
sponding toC just defines the zero-energy level. It was su
tracted by demanding that the interaction energy vanish
l→`. As noted above, however, in the present case we
forced to consider only one electron, and the electron nu
ber density therefore decreases as 1/l . Furthermore, the con
stant in fact diverges if the upper limit on the integral in E
~4.33! is l /2 and Eq.~4.31! is valid for all distances. How-
ever, the resulting~divergent! contribution proportional to
1/l to V̄M El M is of the same form as the Coulomb intera
tion of the electron with its image charge in the oppos
wall. This ~divergent! 1/l contribution toV̄M El M should thus
be interpreted as a radiative correction to the Coulombic c
tribution to the interaction energy. The divergent constanC
just redefines the charge of the electron in order\ to the
physical one. With theb independent~divergent! term in
square brackets in Eq.~4.34! absorbed in the electron
charge,V̄M El M andDECas(aEl ,l )uNEl51/(L2l ) each fall off as

1/l 2 and are equal to one another.

V. DISCUSSION

The assumption that the walls are perfect conductors is
idealization, but, especially for largel , for which low-
frequency contributions dominate, it is often a rather go
approximation. In addition, results for conductors serve
checks on results for dielectrics; further, forl large so that
«(2j2) can be approximated by«(0), interaction energies
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are relatively insensitive to variations in«(0), and by de-
manding that the interaction energies have the correct f
for «(0)5` and for «(0)21!1, one can easily guess a
forms of the interaction@25# that are good to within abou
10% over the entire range 1<«(0)<`.

We note that the bulk Lamb shift~3.17! can be applied to
a dielectric in free space, for any reasonable smooth shap
the dielectric. If the volume of the dielectric is not too larg
one would, however, have to know the Casimir ener
which is not simply proportional to the volume, in order
isolate the bulk Lamb shift.

A number of our results are in the literature, but some
the forms we obtain, see Eq.~3.5!, for example, are simple
than any given previously, and some of our results have
been obtained before. These include simplified forms
some known Casimir energies, and Casimir energies fo
dilute gas of atoms between plates and for an individ
electron with uniform probability density between plate
But the primary contribution may well be placing the ana
sis on a somewhat firmer and perhaps also broader basis
present unified derivation may thus be of some significa
in itself. Further, we calculated the radiative corrections
the total energy in terms of the macroscopic permittiv
«(v) of the material, which at least in principle, can b
measured. Our finite results for the Casimir energy and b
Lamb shift do not rely on a microscopic calculation of t
permittivity and should be valid for the physical permittivit
A microscopic calculation would, however, reveal that t
permittivity «(v) of the material itself depends on the sep
ration l between the plates@19#. Only to interpret the diver-
gent part of the bulk Lamb shift as a renormalization of t
electron mass was a microscopic description of the dielec
in terms of atoms needed. We believe that the finite exp
sions for the radiative corrections to the total energy~3.5!
and ~3.17! are, however, valid beyond the dilute g
approximation—in the worst case, Eq.~3.17! definesthe fi-
nite radiative bulk energy density up to a finite term prop
tional to the second moment of the discontinuity of«(v).
We have seen that this termvanishes in the dilute gas limit.
Without a rigorousdefinitionof what is meant by theradia-
tive contribution to the total energy in the general case,
choice for the finite bulk radiative contribution, while som
what arbitrary, would seem to be a reasonable one; in
ticular, the limit as one approaches the dilute case is equ
the well known result for that case. In this respect, it is p
haps of some interest that we find the radiative bulk ene
density to be related to the third power of the index of
fraction in Eq.~3.17!; this reflects the fact that the Lamb sh
is proportional toc23.

We close by noting that the theory of quantized Maxw
fields in absorptive dielectrics has been the subject of a n
ber of papers. These include Glauber and Lewenstein@26#,
Ref. @13#, Barnettet al. @27#, Kupiszewska and Mostowsk
@28#, Barton@29#, and Milonni @30#.

Note added in proof. Equation~3.5! can be further sim-
plified, to a derivative-free form.
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APPENDIX: ABSENCE OF COMPLEX SOLUTIONS
TO THE DISPERSION RELATION †Eq. „2.4…‡

Suppose Eq.~2.4! for someb25v'
2 1c2kn

2>0 has a com-
plex solutionvn

25z0 with Rez0>0, Im z0Þ0. Taking real
and imaginary parts of Eq.~2.4! this would require, sinceb2

is real, that

~Rez0!@Re«~z0!#5b21~ Im z0!@ Im «~z0!# ~A1!

and

~ Im z0!@Re«~z0!#52~Rez0!@ Im «~z0!# ~A2!

be satisfied simultaneously. Taking the imaginary part of
~2.7! one has in addition

Im «~z0!5C2~z0!Im z0 , ~A3!

where

C2~z0!5
2

pE0

`

dv8
v8s~v8!

uv822z0u2
.0 ~A4!

is positive and real, because the discontinuitys(v8) in Eq.
~2.7!, that is, Im«(v2), is positive and real.@If Im «(v2)
were negative, a plane wave incident on the medium wo
grow exponentially.# Equation~A3! implies that Imz0 and
Im «(z0) have thesamesign for Imz0Þ0. Im «(z0) there-
fore vanishesonly for z0 real. In general Im«(z0) vanishes
only for negative realz0, that is, on the imaginary axis ofv,
sinceC2(z0) can tend to infinity asz0 approaches a point on
the positive real axis. Inserting Eq.~A3! in Eq. ~A2! and
dividing by Imz0Þ0 one obtains

Re«~z0!52~Rez0!C2~z0! ~A5!

for a solution to Eq.~2.4! with a nonvanishing imaginary
part. Finally, using Eqs.~A3! and ~A5! for the real and
imaginary parts of«(z0) we see that Eq.~A1! implies the
contradiction

0>2~Rez0!2C2~z0!5b21~ Im z0!2C2~z0!.0. ~A6!

A solution z0 to Eq. ~2.4! for a physical permittivity satisfy-
ing Eq. ~2.7! with positive discontinuitys>0 is therefore
real. Equation ~A2! then requires that Im«(z0)50 for
z0Þ0. These real solutions to Eq.~2.4! thus only exist in
regions wheres vanishes. The discrete spectrum of zer
width resonances we consider is the simplest model that
isfies Eq.~2.7! and also allows us to calculate the zero-po
energy in the conventional fashion. By letting the spectr
of resonances become denseat the end of the calculationwe
compute the Casimir energy and bulk Lamb shift of a
system with a physical permittivity«(v2).
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