PHYSICAL REVIEW A VOLUME 57, NUMBER 2 FEBRUARY 1998

Unified treatment of some Casimir energies and Lamb shifts:
A dielectric between two ideal conductors
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Lamb shifts and Casimir energies, often thought of as long-range and short-range effects, respectively, and
studied separately, are each a manifestation of quantum electrodynamics and can be studied together. We do so
for a dielectric medium between two parallel ideal conducting plates. We extract the usual Casimir energy and
a bulk Lamb shift by studying the quantum fluctuations of the radiation field in the dielectric. We derive finite
expressions for the Casimir energy and the bulk Lamb shift valid for any permittivity satisfying the Kramers-
Kronig relation; some of the Casimir shifts obtained are simpler in form than any in the literature. We separate
the divergent and finite contributions to the bulk Lamb shift. For the dilute nonrelativistic gas we show that the
divergent contribution to the bulk Lamb shift defines the bare electron mass in terms of the physically observed
free-electron mass. Although we lack a physical interpretation for the necessary subtraction in the case of an
arbitrary dielectric, it is natural to interpret the finite part of the bulk energy as a “Lamb shift” in this case too.
We show that the derived finite bulk Lamb shift and Casimir energies in the limit of a dilute homogeneous gas
are consistent with earlier results for a single atom between two ideal conductors, and for an atom near one of
the walls. As an application, the radiative contribution to the interaction energy of a single electron with
uniform probability density between two ideal walls is obtainil050-294{©8)01602-3

PACS numbds): 31.30.Jv, 12.20.Ds, 11.10.Gh

I. INTRODUCTION limit in which the dielectric is a dilute gas, which we also
consider, is probably the simplest case.

Casimir energies and Lamb shifts are among the most We derive expressions for the Casimir energy as well as
interesting and best studied effects of quantum electrodythe bulk Lamb shift in terms of the permittivity( w?) of the
namics(QED). Each has been calculated many times, in amaterial itself, evaluating the energy of the fluctuating radia-
number of ways, for a variety of circumstances. Despite theition field in such a material. This macroscopic approach has
common QED origin, the Casimir energy is often taken to bethe advantage of not requiring a microscopic description of
a long-range effect and the Lamb shift is often taken to be & (w?), which—at least in principle—is a measurable quan-
short-range effect, and, to our knowledge, the two have nevaity. Our expression$3.5) for the Casimir energy, as well as
been evaluated in the course of a single calculation. (3.17 for the Lamb shift between two materials with the

Furthermore, even in situations for which only the Ca-same electron number density, give the contribution of the
simir effect was considered, the formalism used was oftemadiation field to the energy. This approach is therefore in-
more sophisticated and thus less transparent than was réependent of any approximations used in a theoretical calcu-
quired. Electromagnetic eigenfrequencies and eigenmodéstion of (w?) and is thus equally valid in a relativistic and
were often explicitly evaluated and the systems consideredonrelativistic description of the material and furthermore
were often rather complicatetWith regard to the last point, applies also to materials with(w?) not necessarily close to
the effects of a dielectric medium with permittivie be-  unity.
tween two ideal plane parallel walls have sometimes been Technically we evaluate the energy of the radiation field
analyzed by studying three dielectric media with permittivi- as a sum over the energies of the individual modes. This sum
tieseq, €3, ande,, settinge;=e,= only at the end of the is transformed into an integral expression using the general-
calculation. Although the result is more general, the techniized argument theorem—see Ef.9) below—thus eliminat-
cal complications of such a treatment tend to considerablyng the need to determine the energies of the individual
obscure the physical pictujegWe here restrict our attention modes. We stress the importance of the analytic properties of
to the relatively simple case for which a Casimir energy anc:(w?) implied by the Kramers-Knig relation, which in
a Lamb shift both contribute to the quantum electrodynamiqrinciple restricts this derivation to the idealized case of ma-
energy, a homogeneous dielectric material with frequencyterials with arbitrarily narrow(stable resonances. The final
dependent permittivitye (w?) and permeabilityu=1 be-  expression$3.5 and(3.17), however, do not depend on this
tween two ideal uncharged plane parallel conductors; théealization and are valid for realistic materials. They depend

only on the permittivitys (— £€2) at realé, which is a regular,
real function for any physical substance, and the restriction
*Electronic address: ms68@scires.nyu.edu we impose to derive these expressions can be drogpbis
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can also be explicitly shown in a more rigorous, but lessa uniform dielectric with permittivitye (w?) between them.

transparent path integral derivation of our res(ik) In Coulomb gauge the fluctuating electromagnetic fields be-
We emphasize the common conceptual origin of thetween the plates are determined by the vector potetial

Lamb shift and the Casimir effect as the finite renormalizedwith x, =(x,y,0), k, = (ky,ky,0), A, =(A4,A,,0), ande,

energy density and energy per unit area of the fluctuatinghe unit vector parallel to the axis, A is a linear superposi-

radiation field. We show that infinities of the unrenormalizedtion of the functions

energy density are associated with a moment of the discon-

tinuity of e(w) on the positive real axis. In the case of a A(kL kn;x)=[AL (k. ,n)sin(k,z)

dilute gas, this infinity can be interpreted as a redefinition of - K x

the electron mass and we therefore subtract the divergent +eA (k, ,n)cogkyz) ] (2.0)

contribution to the Lamb shift proportional to the second

moment of the discontinuity o&(«) on the positive real tor k, in the transverse direction can be taken to be continu-

axis. o . ;
. - - . ous, but the boundary conditions for ideal conducting plates
We finally explicitly show that thdinite EXpressions we imply that the componerk,, takes only discrete values
derive reproduce the well-known results for the Casimir en-

ergy and Lamb shift in special cases. In particular, we verify kl=nw, n=012... (2.2
Bethe’s original expression for the Lamb shift in a nonrela-

tivistic description of the case where the dielectric is a diluteand the Coulomb gauge conditiovi; A=0, reduces to
gas[2]. The interaction energy with the walls of a dilute gas )

between two ideal walls, studied here, is shown to be con- ik ALk, n)—kyAy(ky ,n)=0. 2.3
sistent with the interaction energies of a single atom at
fixed distance from an ideal wdlB] and of a single atom at

For plated XL with L>1, the components of the wave vec-

q:or a givenk, and n#0, two of the three amplitudes

a fixed location between two ideal wa[l4]. We also obtain .AX ’.AV A, are independent and there are wo states of polar-
pization, butk,=0 for n=0 and there is then only one polar-

the interaction energy with the walls of a single electron wit i tate. Sinc@ satisfies th i the f
a uniform probability density between the conductors. weZation state. sincéh salisties the wave equation, ne fre-

provide estimates of the range of validity of the approxima-q.uency.“’n of the nth mode is formally a solution of the
tions obtained. dispersion relation

The Casimir effect, it might be noted, had its origins in an 2 2 2_ .22
experiment on the stability of lyophobic colloids, which one(@p) ~ @ =k, @4
showed that the atom-atom interaction at large distamces where
did not obey the van der Waalsr$/law, but varied as 1/
[5]. Theorists were led to study the effects of electromagnetic o, =clk,|. (2.5
fluctuations; these effects could explain the’l1aw [6], and o ] )
also led to new results for the interaction of parallel idealThe implicit solutionsw, are thus functions of ande.
walls [7] and of an atom and an ideal wdB]. Not long It should be emphasized, however, that solutiensto
thereafter there were theoretical studies of a number of intef=d- (2.4) in principle exist only for the rather unphysical case
actions involving one or two dielectric walf8]. Over the  ©f @ substance with stableero-width) excited states, that is,
years, a few very good experiments were performed, largelfor @ discontinuity ofe(w?) on the positive reab® axis
on the force between a pair of dielectric wali|, but the 1
primary effqrt was by theorists. We list three reviews dealing ¢ (w)= Disce(w?) = o lim [e(w?+in)—e(w?—in)]
primarily with the above materidl10-12. More recently | .
there have been studies of the interaction energy of an elec- 2.
tron and a dielectric wall13], and interactions involving sets =Im s(w”+in), (2.6
of Walls[_14]. In the latter study the sets were a fixed di_Stancedescribed by a discrete sum of delta functions. In the physi-
apart, with the number of walls in each set and the thlckneSéaI case of resonances with nonzero width, the Kramers-

and permittivity of each wall arbitrary. The interaction be- Kronig relation between real and imaginary partss¢?)
tween the sets was obtained, as was the interaction with th%quired by causality

sets of an atom or electron at a fixed location between the
sets; these results encompass essentially all known interac- 2 (o o' o(w')

tions of walls and of atoms and electrons with walls. A very e(0?)=1+ —f do’ — (2.7
recent result is the experimental study of the force between a mJo o'~

conducting sphere of radil® and a conducting wall, where
the minimum distance between the sphere and the wall
satisfiesa<R [15]; that force can be expressed in terms o
the force per unit area between two parallel conducting wall

can be shown to implysee Appendix that the imaginary
cpart of w?s(w?) does not vanish for any with Re w>0.
Although in principle solutions to Eg2.4) thus cannot be
Yound for a real substance, approximate real solutiopso

(9] Eq. (2.4 exist for sufficiently narrow resonances. The fol-
Il. THE ENERGY DENSITY OF THE FLUCTUATING lowing treatment of the Casimir effect for a substance with
ELECTRIC FIELD IN A DIELECTRIC very narrow resonances is thus an idealization in much the

same spirit as the plates are idealized as perfect conductors.
The problem to be considered is that of two ideal conduct{Conceptually, the zero-width idealization is the more
ing plates parallel to thex(y) plane, az=0 andz=I, with  treacherous one, since a rather good approximation in the
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study of analytic functions can lead to quite bad results; in-
tuitively, the zero-width idealization should be an excellent
approximation, since the widths of the atomic levels are so
small compared to the energy differences between lgvels.
The results obtained are nevertheless correct for any dielec-
tric permittivity e(w?) satisfying Eq.(2.7), since our final
expressions remain valid for resonance spectra with seg-
ments that arelense and segments that contain sharp reso-
nances, as when band structures are present. As noted above,
our final results can also be obtained directly in the frame-
work of a path integral derivation of the Casimir effect. That
the complete neglect of the width of the resonance is a mean-
ingful approximation is perhaps less surprising if we recog-
nize that there is no dissipation of energy when dealing with FIG. 1. The contout in the complexw plane used to evaluate
electromagnetic fluctuations for the ground state of the systhe Casimir energy by the generalized argument theorem. Also in-
tem. dicated schematically are the zeros on the positivewestis of the
The conventional derivation of the Casimir effect as aris-holomorphic functions used in the generalized argument theorem
ing from the dependence of the zero point eneffy,|) due  (for w, #0).
to electromagnetic fluctuations

Imew

Rew

k,=[ w?e(w?)—0?1¥c. (2.1
However, the function in Eq2.10 is not holomorphic; in
addition to the desired roots kf=k,, it has a branch point

in w at any solutionw, of
would seem to be valid only in the ideal case of arbitrarily

sharp and discrete resonances, but from the discussion above
is of more general validity. From normal ordering, the en-

d2k,

(2m)?

1 “1
“hwegt2), ~ho,| (2.9
2 n 12

e(s,l):sz

2=0. (2.12

a)gs(wg) —w

ergy of a vacuum fluctuation of frequenayis % /2 and in
Eqg. (2.8) the two independent states of polarization for

Since anywq (and in particular one lying withii€) is inde-
pendent ofl, the contribution of such a branch point to the

>0 have been taken into account. Note also that even in thea@simir force between the plates vanishes—the force being

idealized case of arbitrarily sharp resonances (Edql) gen-
erally has several solutions for givenandk, . The sum in

the derivative with respect te—and the branch point is sim-
ply ignored. We are, however, also interested indtdepen-

Eq. (2.8) should be understood as extending over all thesélence of the fluctuating electromagnetic energy in the pres-

(1)
Wy’ .

The divergent sunf2.8) can formally be evaluated with-
out explicit knowledge of the solutions to E@.4) by using
the generalized argument theorem, which expresse&m).
as a contour integral in the complex plane. To do so, we
need a contou€ and a holomorphic functiofr (w) whose
roots withinC are all thew,, (and only thew,)). In the context
of Casimir effect studies, the generalized argument theore
apparently first used in related cases by van Kamgteal.
[16], gives

2’—1j€dﬁ||:— 1§dIF
4 wn=5 Cw wﬁ_wn (w)= 21 f» wlnF(w),
(2.9

where the sum extends over all zekog of F within C, with

ence of the dielectric and therefore will use the holomorphic
function

sink,|
kil

Fi(w)= =F(0? (2.13

to obtain the contribution from alb, with n#0 and, sepa-
rately,
m,
Fo(w?) =k3c?= w?e(0?)— w? (2.14
for the contribution from thev.

The contourC, depicted in Fig. 1, runs down the imagi-
nary o axis fromi{) to —iQ) and is closed by a semicircle of
radius(} in the Re»>0 plane. A finite value fof) regular-
izes the divergent expressig2.8) and we are ultimately
interested in thee and| dependence of Eq2.8) when Q

the solutions fom=0 weighted by 1/2. The last expression tends to infinity. Note that the statement tRatin Eq.(2.13
in Eq. (2.9) is the result of an integration by parts, using theandF in Eq.(2.14 are functions of»? depends crucially on

fact thatF(w) is holomorphic.[Without the w factor, the
first integral of Eq.(2.9) would just give the difference be-
tween the number of zeros and the number of poles(af)
in C; this is the usual argument theorgm.

A function often used foF in studying the current situ-
ation is

exp2ik,l)—1, (2.10

where

the fact thate satisfies Eq(2.7) and is thus itself a function
of w? only. A simple nonrelativistic damped harmonic oscil-
lator model of a gas, for example, gives(w)=1
+wh/(0f—w?—iwy,)], where wy is the plasma fre-
quency,w, is the resonant frequency, ang is the damping
factor. This form ofe(w?) is a function ofw? and satisfies
Eq. (2.7) if and only if '~0.

Separating the contributions to the contour integral into
integrations along the imaginary axisn) and the semicircle
(S), we thus have
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> on=lm(Q)+14Q). (2.19

With w=ié¢in ||, ando=Q exp(¢) inlg, Eq.(2.9 gives

lm(Q)= 1JQ da(llF 2)+InF 2
im( )——ﬂ _95 5(9—55” o =€) +InF (=€),

(2.19
Q w2 J 1 )
IS(Q): ﬁf, ﬂ/ze ¢ d¢£(§InFO(Qe ¢)
+|nF1(Qei¢)>. (2.17)

Consider first the integrdl,,, of Eqg. (2.16). For imaginary
arguments k,(w?=— £2) defined by Eq.(2.11) is better
written asiK ,(&?), where

KA(&2)=+[%(— &)+ w?]¥¥c. (2.18

[SinceFy and F; are both holomorphic functions, we are

free to choose either sign of the root in Bg.18.] K,(&?) of

Eqg. (2.18 is a real and positive function because physically
acceptables(— £2) satisfy Eq.(2.7) with a positive discon-
tinuity o(w?)>0 and are therefore real and greater than

unity.
With
Fo(— &)= —K3c? (2.19
and
Fi(—&)= Slri(;jz” - eKZI(12;<32KZ|) (2.20
we find

3INFo(— €% +InF (= £2) =K, +In[1—e™ 2],
(2.21)

where we have dropped a term that is independert axfid
that therefore vanishes und@wé. Inserting Eq(2.21) in to
Eq. (2.16), we integrate by parts, noting tha{—Q?)—1
and thereforel,(Q?)—Q/c for large > w, , to arrive at
10 okl 02

|Im(Q)_; . dé{In[1-e Z]'HKZ}_R-

(2.22

The integral over the first term in EqR.22) is finite in the

1111

it follows that

d¢

dropping terms that vanish in the limid—«. The ¢ inte-
gration in Eq.(2.17) can readily be performed upon observ-
ing that

Ql . .
~|?e"”col(ﬂle'¢/c), (2.29

1
EInF0+InF1

O~ .
cot(Qle'?/c) — [ | for 0<g<m/2 (2.2
i for —@/2<$<0
and gives
I15(Q —QZI 2.2
s(Q~o)=——. (2.27)

Summing Egs(2.22 and(2.27) one obtains for the regu-
larized zero-point energy at given, =c|k, | for large val-
ues of(}:

i
Rl ol 0)=2 ’ﬁwn=;f déin[1—e 2K4]
0

Ih [Q
+ —f dék,. (2.28

7 Jo

The first contribution togR in Eq. (2.28 is finite in the
limit Q—o (and gives a finite energy per unit area after
integration over transverse degrees of freegamd vanishes
when | —«. [For a vacuum between the ideal walls, i.e.,
e(w?) =1, this is just thel dependent Casimir pressure of
one transverse mode. It is modified by the medium for
e(w?)#1.] For a dilute gas, we interpret this change in the
energy density of the medium as partially arising from an
I-dependence of the Lamb shift of the individual atomic
states due to the presence of the walls.

The second contribution to E¢R.28), which is quadrati-
cally divergent in(}, is linearly dependent on the separation
| of the ideal walls. It leads to alrindependent constant
pressure between the walls. This pressure is balanced by the
pressure exerted by the vacuum outside the walls only if the
medium has permittivity: (w?)=1. Fore=1 this bulk con-
tribution to the total energy is given by the vacuum energy of
the radiation field. It is therefore natural to extract from this
term the change in energy density due to the radiation field
for e(w?)#1. For a dilute gas this energy should be the
Lamb shift of the individual atoms in the absence of the ideal
walls. In the next section we extract the finite physical effect
from the regularized expressi@@.28) in the limit ) — o,

limit Q—c and, as we shall see, is related to the Casimir

effect. _
To evaluatd 5(Q)), we note thato=Qe'? on the arc, with
Q very large. For fixedn, <Q andk,~(Q/c)e'?,
Fo~w?=(Qe'%)?, (2.23

and

_sin(Ql/c)el’]

(Ql/c)e'? (229

1

Ill. RENORMALIZATION
OF THE FLUCTUATION ENERGY

Only energy differences are of physical interest. Casimir
effects are just the difference between the energy with ideal
walls at a separatiohand the energy in the same region with
no walls present. Similarly, in deriving the Lamb shift one
compares the interaction energy of the radiation field with
the corresponding interaction energy of “free” electrons
(mass renormalization In the present analysis of both ef-
fects it is necessary to make both subtractions consistently.
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We propose to do this in two steps. be nonperturbative and relativistically valid #(w) is

We obtain the Casimir energy,{¢,l) by extracting the known. To be formally exact one in principle has to know
bulk energy from the total energy. To do so, we first considethe dependence af(w) on the separatioh [19].
the regularized energy of the radiation field in a box with Before proceeding to the second subtraction, we note that
ideal walls and of fixed dimensionisx L XL and permittiv-  the behavior ofs(— &) in the limit of small ¢ completely
ity e(w?), with an additional ideal wall placed a distarice determines the asymptotic form of the Casimir enefgy.at
<L from one of the sides of the box. We then subtract fromlargel. If £(0) is finite, as in most realistic situations, one
that energy the energy of the radiation field for the same boxan replace (— ¢2) by £(0) for| sufficiently large. One can
with the sames(w?) but without the additional wall17]. In  then evaluate the integral in E¢B.5), and one finds that the
the limit of largeQ) we then have asymptotic Casimir energy

A&R(e,l,0%)=lm [ER(e,l,0? ; Q)+ ER(e,L—1,0° ;Q)
Q—x
ECas(Syl)

—&R(e,L, 0% ;)] (3.1

= 2281L2¢/Ve(0)
_, _ mhL%c/Ve(0)

207 (3.6

is determined by the speed/\e(0), of long-wavelength
The limit in Eq. (3.1 is finite, since the second term in EQ. excitations, a physically reasonable res{ifor &(w?)=1,
(2.28), the bulk energy term directly proportional to the sepa-Eq. (3.6) is exact for all separations and is nothing other than
ration of the plates, drops out, as do contributions to Eqthe familiar Casimir energy for two ideal walls in a vacugim.
(3.1 from the first term in Eq(2.28 that decay exponen- To determine the domain of validity of E¢3.6) one begins
tially with L in the limit of largeL. IntegratingA ™ over the by noting that the maximum value @fthat contributes sig-
transverse modes gives the standard result for the Casimiificantly to the integral in Eq(3.5) is that for which the

energy exponent is about equal to unity, that &,,, is the solution
) ) of 21 € a0/e(— gzmay)/c=1. Furthermore one can approximate
Ecade |):sz dk, AER= sz d(w,) AR the monotonicall_y .decreasing functiom(—gz) by £(0)
' 21)? Arc? (greater than unityif Aé<Aw,, wherefw, is the lowest

excitation energy of the medium, which for the present pur-
, h SR oIk poses we can take to be the lowest excitation energy of an
=L (ch)zfo d(“’L)fO déin[1—e"“"] atom in the medium. We can therefore replaé&(— £2) by
eY%(0) if £&ma<w;. Taking a typical value foriw, to be
(e?/10a,), wherea, is the Bohr radius, the requirements on

=2 i J dé gzs(—gz)J dp | for Eq. (3.6) to be valid are consistent if, crudely,
2(mc)?Jo 1
Xpln[l_e72lfp\e(*§2)/0]_ (3.2) |= SEN - 103&0 . 3.7)
(€’/fic)\e(0) e(0)
The last expression fdfq,sin EQ. (3.2) is obtained by chang-
ing variableg 18] from w? to p?=[w?/£%e(— &) ]+1. Set- In the second step we extract the dependence of the en-
ting p’ =2l £pVe(—&%)/c, Eq. (3.2 becomes ergy density of the large box on the permittivityw?) of the
material it contains. We therefore compare the energy of the
L%k [ L% (= al box with permittivity & ,(w?) with that of the same box with
Ecad )= 8(7r|)2J0 de1(6)=- 8(77I)2f0 § f(;_g' permittivity eg(w?), for largeL. Neglecting the first term in

(3.3 Eq. (2.28 since it vanishes fok. —«, this regularized en-
' ergy difference at fixed, =c|k | is given by the difference
where in the second term of Eq2.28. With K, defined in Eq.
(2.18, we then have
= 'dp’In[1—e"P']; 4 ,
(&) J'2|g\/a(§2)/cp dpiin[1-e " J; @4 App(ep,ep,w,)= lim [ERX(ep,L, 0, ;)

Q—o

the surface term of the partial integration leading to the sec-
b g d — (e, L0, Q)]

ond expression fo€c,s in Eq. (3.3 vanishes. Evaluating

dllo¢ one obtains the Casimir energy as an integral aver L7 Q
only: = ol [ Cae [VEen- ) of
Ecade,l)=L% fwdg 5(1[528(—52)]) —V&%sp(— &)+ 0l ]. (3.9
(2mc)?Jo dé
Xln[l—efz'fVm’C]. @5 For large¢ Eq. (2.7) gives

This relatively simple form for the Casimir energy seems not e(— &) =1+ ij‘”dw, o' o(w)+0(EY |
to have been given previously. At this point we should per- w&?Jo
haps clarify our earlier remark that EQ.5 can be taken to (3.9
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whereo(w') is the discontinuity ofe defined in Eq.(2.6). of the limits is important and gives a divergent contribution
The limit in Eq. (3.8) therefore exists if and only if to the energy density, which for a dilute gas will be shown to
renormalize the electron mass. A naive reversal in the order
of the limits on the other hand would give an erronearsd
apparently finitg result for the differencé3.11) in the en-
ergy densities.

2 2 (= ’ ' ’ 2 (= ’ ’ ’
wpl(A)=;f0 do' o' op(w )=;f0 do' o'og(w')

= wp(B). (3.10 The integrations ovef andw? can be separated by using
, : the identity
As we will see shortly, Eq(3.10 is guaranteed by the well-
known Thomas-Reiche-Kuhn sum rul20] for the plasma "
. : 0 1/2 1/2 1 dA -\ -\
frequencywy, if the two substances under consideration have Xp‘—Xg =——= Tz[e *a—e M8], (3.12
the same electron number density. A simple and natural 2\mJox

choice foreg(w?) is the permittivity of an excited state of , i o .
the system: the electron number densities are then clearly thE€ integration ovew? is trivial and gives
same. We will henceforth assume this choice to have been

made, and we can therefore $et=oo, Ens(eaeB ;A)_ _ A lim J'wd_)‘ _ A2
g . = (1—e )
Even though we are comparing substances with the same L3 877203\/; A_oJo N2
electron density, the integration over the transverse frequen-
cies of the modes still generally diverges. To extract and % wdg[e‘xfz*’A(fz)—e‘xfz*’B(‘%*Z)].
interpret this divergence, consider the regularized difference 0
of the energy densities,
3.13
. 2
Eaplen.eaih) 1 (2 d(w?) Alag(en,e5,0°), Suppressing thé dependence of, andeg to simplify no-
L3 4mc?LJo tation, we write the term in square brackets of 313 as
(3.11)
_ _ _ e MPea_ g NPsp_[g Moea_ g N ) £2( g, —
where A2 is a simple cutoff for the transverse frequencies [ ¢leaen)]
wf. Introducing a second cutoff in addition o is poten- —NE%(ep—e€p), (3.19

tially dangerous and limits have to be taken with some care. _ _
Note in this respect that one must perform thintegration  to isolate the divergent part of E(3.11). Setting
in Eq. (3.11) with the cutoff A still in place, because Eq.

(2.28 is correct only fore? <Q2. The cutoff(Q) in the total Enp(en.esiA)  Eaplen,p) . AB(Ea,88A)
energy also restricts the transverse frequencies, as is clear L3 N L3 L3 '
from the contour integration. Our simplified cutoff procedure (3.19

only makes sense foA <), which implies that the limit
A — o can only be takeafter the limit ) — . This ordering  where

Easlen en) h . = dA o2 [ 2o (— g2 )
RN A"L“of e M) [ Cad e e Pen(- ) - (A-BY; (316

the limit A—o of the integrand in Eq(3.16 can be taken, since the term in square brackets is proportiondal for A
~0. We can further simpliff€,g by integrating by parts ovex. The surface term vanishes, and one obtains

0

EAB(SAvsB)__ fi * e 2 xd_)‘ P NG ) T
L2 12w2c3\/FJo aee |8A( g)fo ozt e | IAE
ﬁ o0
B ewzcsfo deee3(— ) —s3A— 81, (3.17

where Eq.(3.12 was used for then integration. We will later discuss the physical interpretatiorf gf as the difference of
the bulk Lamb shifts of state& andB.

The linearly divergent part ik of Eq. (3.195 arises from the second term in E®.14). It gives
A

47%c3

Eat(ea.ep; ) _ h °°d_)\
L3 8m2c3\[mJo 32

f:dgsz[sB(—§2>—8A<—§2>],
(3.18

(1—e-m2>fomdggz[s;\(—§2>—sB<—§2>]=
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where we again made use of E@.12. Since Eq.(3.10 2 (= 47e? 4e? 5
holds, the divergent contributiof8.18 is proportional to a ;J wop(w)dw=— > Ne(o;A)= m Ner=wp,
moment of the difference ,— o in the discontinuities, 0 ' (3.24)
o ) , ) whereNg, is the number of electrons per unit volume ang
fo dé &e(— &%) —ea(—£9)] is the plasma frequency. The quantum analog of(B@3) Is

obtained by replacingo, by w,s=(E,—Ep)/% (where A
o denotes the state under consideration &jdand E, are
=J do' o' [op(0’)—og(e')], (319  quantum energies of the dilute gaand Ng(w, ;A) by the
0 oscillator strengthf,, . Equation(3.24) then follows imme-
. o . o diately on using the Thomas-Reiche-Kuh20] sum rule
which we will interpret shortly &g in the limit of large A =, f,o=Ng(A), obtained using commutator relations.
thus becomes For the case of interest, the second moment of the discon-
tinuity in Eq. (3.20), we use Eq(3.23 to obtain the classical
state-dependent result

. AN (=
Si“é(sA,sB;A)/L3=4WZC3fo do'w' og(w')—oal(0’)].

) 2 2,2
(3.20 | oron@do-TTES (o). 329

In our derivation of the energy density of the fluctuating We first evaluate the sum semiclassically by noting that the
field and the extraction of the divergen@20 we have not ground-state energy of a harmonic oscillator of frequesgy
assumed any special properties of the dielectric. We willjs (3/2)fiw, and that the kinetic energyf/Zm of the oscil-
however, in the following show only that the divergent partlator is half that, so thatu,=(4/3ﬁ)(p,2/2m). We thereby
(3.18 can be interpreted as a redefinition of the electronobtain
mass in the case where the permittivity(»?) is described

- 2,2

by a discrete set of nonrelativistic oscillators with vanishing f w2oa(w)do= 8me” Ek"‘) , (3.26

width. This should, in particular, be a valid approximation 0 3mh |V

for a dilute gas, but probably also describes the permittivity

of other materials quite well. The finitesultwe obtain with where

this restriction, however, remains valid when the spectrum of Ein Pr2

the oscillators becomes dense and therefore should apply to ( v :Z %NEI(wr A) (3.27
A

any substance whose permittivity satisfies E47).
_ For heurlst_lc purposes, we begln by recalling that Fhe clasig the kinetic energy &) per unit volume Y) in the state
sical expression foe,(w) for a dilute gas of atoms in the A Proceeding somewhat more formally, we again replace

stateA is by w,» andNg(w, ;A) by f,, and use commutator relations
to arrive at the same result in a quantum format, namely,
47e? Ng( o, ;A)
oal(@) =1+ — =3 ————— (32 8m2e?

p?
3mhL3<A‘2i 2m A>’ (3.29

whereNg (o, ;A) is the number of electrons per unit volume \yhere the sum extends over all the electrons.

with frequencyw, when the system is in state. Here and Nonrelativistically, the energy density difference between
later, =, represents both a sum and an integral. With eacktates| A) and|B) as given by Eq(3.15 can therefore be
energy level assumed to have zero width, we take eackewritten as
damping factory, to be vanishingly small, sef,w=1"~0,

T oo iy waO'A(w)dw=
0

and use Enplen.ep;A)  Eaplen.ep) < SH(A) >
L3 L3 L3
1 Slw. —
lim Im#=ﬂ'5(wr2—w2)=w SH(A)
r—o o’—?=il 2w, - B, (3.29
(3.22 L
to find where
2.2 SH(A) 2e’A pi2 (3.30
2722 N ‘A =— > ——. .
(@) =Im sa(w)= 2o Nel@riR) o ). 3cm< 2m

m < )
r (3.23  The operatosH is interpreted as a cutoff-dependent defini-
tion of the bare electron masg, of the Hamiltonian without
Note that any analytic functioors() can be written in this  radiative correction$21]
manner if one allows part of the spectrum of resonances to
become dense. We thus obtain the classical state- Mo(A)= ———————.
independent result 1+2e?A/3c3m

(3.3)
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Since the physically measured massof a free electron
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By Eq. (3.17 the difference in energy density of a gas of

includes all radiative corrections, the energy density differ-atoms prepared such that all are in stétg or all are in state

ence between stat¢8) and|B) due to the radiation field is
given by (3.17).
If a nonrelativistic approximation for the permittivities in

Eq. (3.17 is used, this expression for the difference in en-

ergy densities of statd#\) and|B) diverges logarithmically.
The logarithmic divergence of the integral in E§.17) can

be traced to the failure of nonrelativistic kinematics to de-
scribe the permittivities at high frequencies. The integral in

Eqg. (3.17 should be finite forphysical permittivities that

|B) becomes

SAB/LSN -

he? (= fa
d 3
7Tmc3f0 ¢ ( wrzA-l-fZ]

—{A—>B}> .

NA«A)Z

(4.5

take into account the relativistic phase space at high-energyinc®Z, Na;, and the electron number densi, are the
transfers. However, since the divergence induced by the nors2me for statefA) and|B), that is,

relativistic description of the permittivities is only logarith-
mic, we will resort to the usuald hocremedy of introducing
a cutoff for the frequency integral of the order &f,.y

=mdc4. As will be seen in the next section, where we as-
sume the dielectric to be a dilute gas of atoms, the use of th

cutoff allows a simple comparison of E(.17) with nonrel-

ativistic estimates of the Lamb shift in the literature. We will
also suggest that E¢3.17) can itself be interpreted as a bulk

Lamb shift.

IV. SPECIAL LIMITING CASES

To simplify the discussion, we will use subscripis D,
At, and El to denote a metallideal) surface, a dielectric

that is well approximated as a dilute gas of atoms, an atom,
and an electron, respectively. To gain some insight into the

physical meaning of&c,{¢,l) of Eg. (3.5 and of
Enplen,ep) Of EQ. (3.17), let us consider a dielectric that is
a dilute gas of atoms in a single stae If the gas is suffi-
ciently dilute its permittivitye o will be adequately described
in terms of the atomic polarizabilityr, of the individual
atoms by

eal(—E)=1+4mNp(A) an(— €) (4.1

to first order in the atomic number densh(A). In some
situations, the atomic number denshi; may explicitly de-
pend on the separatidrof the ideal mirrors, as, for instance,
when the number of atoms is fixed.

A. The Lamb shift for a dilute gas

Zp=Zg=Z, Np(A)=Na(B)=Npy,

Ne(A)=Ng(B)=Ng=ZNg, (4.9
Eq. (4.5 is only logarithmically divergent. We cut off the
frequency integral afnm.,—=mc/%, beyond which the nonrel-
ativistic approximation for the polarizabiliti4.2) is anyhow
unacceptable. With

Na=Nal? (4.7
the total number of atoms between the plates, Bd) be-
comes

fe?

gA B

At mcd

‘2 wafrAlnﬁ] —{Aﬁs}}.
r hler|
(4.9

The choice of a zero energy reference level is a matter of
convention; the individual terms in curly brackets of Eg.
(4.8) are usually interpreted as the finite nonrelativistic Lamb
shifts for the individual statef2].

If there is only one atom, thelN = 1/L3, and sincex(0)
is of orderag, Eqg. (4.1) is then satisfied and so is E@t.8).
We also want to allow for a number of atoms. A necessary
but not sufficient condition for the validity of E¢4.8) is that
Eq. (4.2) be applicable, which can be taken to be

47N pa(0)<1. 4.9

We should, however, demand not only that Ef1) be sat-

For our model atom, a nonrelativistic oscillator with zero- isfied, which it is if Eq.(4.9) is valid, but that the atom-atom

width excited states, the polarizability is

fia
2 27
wipt+ €

2
ap(— )~ =3,

m=

4.2

where, as beforay,,=(E, —EA)/# is the frequency associ-
ated with the energy difference to the statg and thef,,
are the oscillator strengths with

Z fia=2Zn, 4.3

interaction energyquadratic inN,;) be small compared to
the Lamb shift, which is of first order iN 4, but is neverthe-
less a very small effect. To be precise, we demand that

(4.10

where 2rfivg is a typical Lamb shift an@ 4.4 is the aver-
age atom-atom interaction energy per unit volulig,. »; for
a homogeneous gas of atoms with number densjtyis

EAt—At<SAB/L3~27ThNAtVO!

2At-At“Nitfo 47r2drVpea(r), (4.1

the number of electrons of the atom. To first order in the

atomic number densiti(A), Eqg. (4.1) gives

e3A(— £2)=1+6mNp(A) aa(—&2). (4.4)

where V(1) is the interaction potential between two at-
oms, which forr>a, is the van der Waals potential due to
the dipole-dipole interaction of the atoms, that is,
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2\ 2 2.5 [in Sec. IV D we will consider a case for whiah(w?) ~ o
(eqp)”| ap €7ag .
Vara(r>ag) ~Vyaw~| —5—| 5=—7F- 412  for w~0], and Eq.(4.16) gives
r e r
. . . 0)L%% 0)m3L%h

Forr <Cag with C of the order of 3, the interaction between A& { a,l~x)= NAth.Cé(Ar = NAtLgC
the atoms will be assumed repulsive and we thus obtain a 4l 360
crude estimate of the integral in E¢4.11) by setting the

gral in E(1.LD by setting V1 pw(@(0),1~), (417

lower bound to~Cag and using the van der Waals interac-

tion (4.12. Thus, we demand that where{(x) is the Riemann zeta function

2 2 o]
~N2, — %«
T~ Ny 5= <27AiNawo. 4.13 (0=3, n*, (4.18

If we arbitrarily choqsezp to be the Lamb ;hift frequency for andVy, p u(a(0),l ~=) is the interaction energy of a dilute
the 25— 2p separation in hydrogen, that igg~10° Hz, the  gag petween two ideal mirrors with the conductors. The
Lamb shift(4.8) will be the leading effect for atomic densi- change in the asymptotic behavior of the Casimir effect
ties given roughly by (4.17 is, of course, more readily computed by directly ex-
3 53,3 panding the asymptotic behavior of the Casimir end®)9)
Na<4x10""C*ay, (4.14 to first order inN;.

implying fewer than~ 10 atoms per cr for C=3, a typi-

cal number density for a gas at standard conditions. Since C. Asymptotic Casimir energy of a dilute gas
a(0) is typically of the order o&3, the restriction(4.14) on and the potential energy of a single atom
N4 for the validity of Eq.(4.8) is generally far more strin- The asymptotic expressiod.17 for Vy pm(a(0),l

gent than Eq.(4.9. Note, however, that the second order ~«) can also be derived from the interaction energy
effect due to the interaction between the atoms is a bulk/y, » v(2) of a single atom between two metallic plates with
effect that does not contribute to the Casimir energy, northe plates. We here follow Barton’s notation, now locating

more significantly, to the Casimir force. the plates aiz=—1/2 andz=1/2; the atom is at a fixed
distancez from the midpoint. The interaction of a single
B. Casimir energies: A dilute gas versus a vacuum atom for largel is [4]

In addition to the Lamb shift just discussed, there is the he] 1 3—2co@(aZ/)
Casimir energy(3.5). Using Eq.(4.1) and expanding Eq. v, , \(Z,|~%)= ——| === — ———————| 4(0).
(3.5 in the atomic number density , (we are considering a 14 | 360  8cod(wz/l)
dilute gas, the change in the Casimir energy on inserting a (4.19

dielectric between the plates where there had previously been . ) )
a vacuumii.e., e=1) is [As throughout this paper, we here disregard the magnetic

contribution to the interaction energy, given Mg, a v(Z)
Alcad a,l)=Ecade~1+4mNpa,l)—Ecade=1)) by Barton[4].] Equation(4.19 is a valid expression for the
potential energy of an atom between two ideal mirrors only

L2A (= J ) for distancesa from either wall that are large compared to
:NAtEL d¢ §a—§{§ a(=¢&%) c/w;, where w; is the lowest resonance frequency of the
atom. (2/c is the to-and-from time of flight of a photon
XIn[1—e~2'¢°];, (4.15  between the atom and the wall, anar/2, is the period of

the atom; it follows that for a2/c> 2/ w4 an atom located at
(The difference A&y, is finite; there is no need to study a is in the retardation zoneCloser to either wall the poten-
two states|A) and [B), and we therefore omit subscripts tial is not retarded and is proportional tat/instead of 14*
denoting states in the followingA partial integration gives s in Eq.(4.19. (The 1A° dependence is the nonretarded
the remarkably simple expression—one that seems not tpteraction of a dipole with its mirror imageVery close to
have been given previously— either wall the interaction potential finally depends on details
of the structure of the atom.

L2h (= To lowest order in N the interaction ener
__ - 2 g2 _ a-2lEc Ats ay
Afcadal)=—Nu chJo d§ (= ¢7)In[1-e "] Vi p m(a(0),1~) of a dilute gas is obtained by integrating
(4.1  Eq.(4.19 over a homogeneous distribution of atoms of den-
Sity Nag

for the change in the Casimir energy, compared to a vacuum, 0
due to the presence of a dilute gas between the plates. The _ 2 ~ ~

linear relationship(4.16) between the change of the Casimir Vi o m(@(0),1~22)=2Nnl fo dzVu am(2),

energy and the atomic polarizability represents the indepen- (4.20
dent interaction of each atom with the fields present in the

absence of the atoms but in the presence of the walls. Favhere we used the fact that the contributions freri2 to 0
largel we can replacer(— &2) by «(0), assumed to be finite and from 0 tol/2 are the same, and the interaction
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Vi at w(Z) is the interaction valid for aik. To evaluate the
integral in Eq.(4.20), we choose a distanee which satisfies

c/lwi<a<l. (4.21
We can then write

Vi pm(@(0),1~2)=Vy p y+2Vp u(a(0),a),
(4.22

where

12—a __ -
Vi p M:2NAtL2fo dzVy arm(2) (4.23

and

2 _
Vpm(a(0),a)= NAthjllziad ZVy am(z) (4.29

is the interaction of the “skin” of gas of thicknessadjacent

to one of the conductors. We require only the potential of a
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ther subtleties. The present analysis is conceptually simpler
in at least one regard in that we start with only one dielectric,
having sets;=¢,=0o0 at the outsetV,, p y then follows on
taking e 3 to be the permittivity of a dilute gas. To determine
Vai m » however, we either have to argue that in this case one
must neglect terms representing multiple reflections, that is,
one must retain only the=1 term in Eq.(4.17), or compare
with the known potentiaV/, A m(Z) and subtract infinities.
For illustrative purposes and to compare with the literature,
we chose the latter method to extrati; y - |

We have assumed that the atoms are uniformly distrib-
uted. This is of course not quite the case since the atoms are
attracted to the wall, but especially for largé should be a
reasonable assumptio¥,; y is strong but not singular near
the wall, and temperature effects help a bit. In any eVdgt,
will be reasonably uniform away from the wall, since we
took N4; to be independent dfand for that case the number
of atoms that attach themselves to the wall will saturate.
Note that it is perfectly possible to maintain the valueNgf
Y introducing atoms akincreases. The experimentally per-

atom in the retardation region between the plates to evaluafdPs more easily realizable situation in which the number of

Eq. (4.23. Using Eq.(4.19, we find

NalL27he| 1-(2all)

V B cog mall)
MDM™ |3 { 360

 4msind(mall)

a(0).
(4.25

Ignoring terms of ordea/l and using Eq(4.17), we arrive at

Vm pm(a(0),1~)=AEda(0),l~*)+| 2Vp y(a(0),a)

a(0)hcl?
Al 47ad

. (4.2

Since Eq.(4.26) is valid for |~ for any a satisfying Eq.
(4.21), the term in square brackets must vanish, that is,

a(0)hclL?

Vpm(a(0),a)=Ng e (4.27)

and A&q,d a,l ~=) is indeed equal t&/y; p p(a(0),l~0).

The contribution toV, y(a(0),a) from atoms a distance

betweena anda+ da from the conductor is

3a(0)hc
4

dVp m(a(0),a)=(NyL?da)
8ma

=(NpL?da)Va w(a(0),a). (4.28

atomsN L2 is constant can be analyzed by the procedure
used in the following study of electrons between walls.
Feynman[22] pointed ou{23] that one could obtain the
Lamb shift for an atom by considering one such atom in a
box with conducting walls, with the effective index of refrac-
tion then given byn(w)=e"{w)~1+2ma(w)/L3, where
L3 is the volume of the box and(w) is the polarizability of
the atom. The discussion immediately above shows that the
study of an atom in a box can give not only the Lamb shift
but also the correction to the Casimir effect. Our earlier dis-
cussion was of course more general, for it considered a rea-
sonably arbitrang (w).

D. Interaction energy of an electron with one and two walls

Finally we point out that Eq(4.16 in some cases also
allows one to evaluate the change in the Casimir energy
compared to a vacuum when( — £2) is singular at¢?=0,
as, for instance, when there is an isolated electron between
the plates withug(— £2) = e?/(mé&?). The expansior4.1) of
the permittivitye (— £€2) arounde =1 in this case is certainly
not valid for £2<4mwNge?/m and the arguments leading to
Eqg. (4.16 might seem to be questionable. However, for
Ng—0 the only frequencies for which the expansion does
not apply are in the neighborhood of the origin. Since the
integral in Eq.(4.15 is not singular at the origin, Eq4.16
remains validwith N4 replaced byNg) in the limit Ng—0,
which includes the single-electron case. Introducing a single
electron therefore has an overall negligible effect on the field

Ve m(@(0),a) is the well-known[3] retarded potential of an and effectively interacts with the field that would be there in
atom with a mirror for large. [It may be interesting to note its absence. The contribution to the total interaction energy
that in Lifshitz’'s seminal paper on Casimir effects involving from electromagnetic fields with extremely low frequency,

dielectrics[8] he determined the interaction energy o p

for which the effect of introducing an electron is not negli-

of three planar dielectrics, where the outer dielectrics of pergible, vanishes due to the available phase space. The integral
mittivity e, and e, extend to+o0, and sandwich a slab of in Eq. (4.16 is readily performed and one obtains for the

thicknesd and permittivitye ;. By settinge;=1 and taking
€, to be the permittivity of a dilute gas, he obtain¥g; o,
and by lettinge;— 00, he also obtaine® , \ , without fur-

radiative contribution to the potential energy of a single elec-
tron with uniform probability density] Ng=1/(L?)] be-
tween two ideal conductors,
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7e? whe? we use the symbal in Eq. (4.33 to indicate that this is not
{(2) a potential. Performing the integral in E4.32 and neglect-

12mc|2('4 29 ing terms that vanish in the limk/l —0, one obtains
. 2 he?

[Note that Eq.(4.29 does not include the classical electro- Vuemn=lvamb)+———

magnetic energy between the plates due to the presence of an

electron, which is independent of and# but many orders +A%cad e DIng=12y. (439

of magnitude larger than Eq4.29. A confirmation of o

AECaS(aE|,I)|NE|:1,(Lz|) would therefore require a measure- Demanding thaV,, g (1) not depend ot for any b satis-

ment of very high accuracy, for it would be necessary tofying b<, the term in square brackets in E@.34 is a

determine the difference between the measured interactiggPnstantC independent ob for sufficiently smallb/l. We

and the classical Coulombic effedts. can now recover the interactiory, y(b) of an electron at a
One can check the validity of E44.29 by proceeding distanceb from one of the walls with that wall by noting that

along the same lines as used in checkWg p y(a(0),

~o), that is, by confirming that

A&c s(aE|a|)|N =1L T T o
& B ML S mel

. he’ ke
gplE M) = db 4mmcb 4zmcl?’

(4.35

_ 2 _ _
Aécad aeDIng=1zn=Vvam()= Ty dzVyewm(Z),  which follows on differentiating Eq(4.34) with respect td,
and also, from Eq(4.33, that

(4.30
d
where %UEIM(b):VM em(1/2=b)~Vg y(b); (4.36
v 3) wﬁez[ 1 1 .30 the last step in Eq(4.36 follows on recognizing that the
z)= -+ = . i ion wi i : 2
M EIM mclzllz aco(wzll) interaction with the second wall is proportional td<1/and

therefore smaller thaN'g y(b) by of orderb?/1%. Compar-
ing Egs. (4.35 and (4.36 gives the well-known retarded

j§ the retardation interaction of an electron at a fixed diStanC?nteraction of an electron with a single wall

z from a point midway between the two wa[@4]. There is,
however, the complicating factor that we could consider the he?
case for whichNy, is constant, but with one electrddg Ve m(b)=
varies as 1/ [One cannot sensibly study many electrons be-

tween the walls rather than just one, witky; held indepen-
dent ofl by introducing electrons dss increased, and main-
tain a uniform electron distribution; the electron-electron
Coulomb repulsion and the attraction of the electrons by th
walls would drive many electrons to the walls. Even with the

one electron case under consideration the distribution will, density therefore decreases ds Etrthermore, the con-
not truly be uniform, @hough\/M erm(l) could _St'" be ofstant in fact diverges if the upper limit on the integral in Eq.
some useVy g w(l) might be of greater practical use in a (4.33 is 1/2 and Eq.(4.3)) is valid for all distances. How-

study of the effect of_walls on an electron passing betwee@ver, the resultingdivergenj contribution proportional to
walls for small deflections of the electron and for the eIectronllI to V. | i of the same form as the Coulomb interac
M EI M -

Lnﬂderf]rt \:antthh avsnljlgértr):“try ?enslclt);trl]n(:edp?fefmrjennt Og) 'Sv d'f{ tion of the electron with its image charge in the opposite
tﬁeceelectiron aend e'lc1t0.m fage: etlhil; difeferenieebgien ea s?ri jvall. This (divergen 1/ contribution toVyy g should thus
fying factor: Eq.(4.31) is valid éver here between ?he idearl) be interpreted as a radiative correction to the Coulombic con-
g factor; £q.{4. : veryw ; tribution to the interaction energy. The divergent constnt
walls, since the interaction with the electron is always re- . :
ust redefines the charge of the electron in orfleto the

tarded, for neither the ideal wall nor the electron have bhysical one. With theb independentdivergen} term in

natural penoql. In_troducmg a Iengﬂn<|,_we isolate t_he di- square brackets in Eq4.34 absorbed in the electron
vergent contribution when the electron is close to either wal Ve
charge,Vy g m and AgCas(aEle)|NE|:1/(L2I) each fall off as

_ 3
47mck? (4.37

In the case of a dilute gas of atoms, the constant corre-
sponding toC just defines the zero-energy level. It was sub-
tracted by demanding that the interaction energy vanish for

—oo, As noted above, however, in the present case we are
orced to consider only one electron, and the electron num-

by writing )
1/1< and are equal to one another.
_ 2 li2-b _ —
VM EIM(I):I_(UElM(b)_FJ dZVM E|M(Z) , V. DISCUSSION
0
(4.32 The assumption that the walls are perfect conductors is an
where idealization, but, especially for largg, for which low-

frequency contributions dominate, it is often a rather good

- approximation. In addition, results for conductors serve as
Vg M(b):f dEVM £ M(E); (4.33 check25 on results for d_ielectrics; further, fota_lrge SO th_at
-b e(— &) can be approximated by(0), interaction energies



57 UNIFIED TREATMENT OF SOME CASIMIR ENERGIES . .. 1119

are relatively insensitive to variations #¥(0), and by de- to thank L. Rosenberg for some helpful conversations at the
manding that the interaction energies have the correct forrearly stages of this research. This work was supported in part
for £(0)=« and fore(0)—1<1, one can easily guess at by the National Science Foundation Grant No. PHY-
forms of the interactio25] that are good to within about 9605218. L.S. was also supported by the Humboldt Founda-
10% over the entire range<le(0)=<oo. tion.

We note that the bulk Lamb shif8.17) can be applied to
a dielectric in free space, for any reasonable smooth shape of APPENDIX: ABSENCE OF COMPLEX SOLUTIONS
the dielectric. If the volume of the dielectric is not too large, TO THE DISPERSION RELATION [Eq. (2.4)]
one would, however, have to know the Casimir energy,
which is not simply proportional to the volume, in order to ~ Suppose Eq2.4) for someb?= w? +c’k;=0 has a com-
isolate the bulk Lamb shift. plex solutionwﬁzzo with Rezy=0, Imzy#0. Taking real

A number of our results are in the literature, but some ofand imaginary parts of Eq2.4) this would require, since?
the forms we obtain, see E¢B.5), for example, are simpler is real, that
than any given previously, and some of our results have not
been obtained before. These include simplified forms for (Rezg)[Ree(zg)]=b2+(Imzg)[Ime(z5)]  (Al)
some known Casimir energies, and Casimir energies for a
dilute gas of atoms between plates and for an individuafnd
electron with uniform probability density between plates.
But the primary contribution may well be placing the analy- (Imzp)[Ree(zp)]=—(Rezp)[Im e(zg)]  (A2)
sis on a somewhat firmer and perhaps also broader basis. The | _ ) _ _
present unified derivation may thus be of some significanc@€ Satisfied simultaneously. Taking the imaginary part of Eg.
in itself. Further, we calculated the radiative corrections tol2-7) ©ne has in addition
the total energy in terms of the macroscopic permittivity )
e(w) of the material, which at least in principle, can be Im &(zo) =C*(z0)Im Zo, (A3)
measured. Our finite results for the Casimir energy and bulk
Lamb shift do not rely on a microscopic calculation of theWhere
permittivity and should be valid for the physical permittivity.
A microscopic calculation would, however, reveal that the
permittivity e (w) of the material itself depends on the sepa-
ration| between the platgd9]. Only to interpret the diver-
gent part of the bulk Lamb shift as a renormalization of thejs positive and real, because the discontinuify»’) in Eq.
electron mass was a microscopic description of the dielectri¢z 7), that is, Ime(w?), is positive and real[lf Im &(?)
in terms of atoms needed. We believe that the finite expreSyere negative, a p|ane wave incident on the medium would
sions for the radiative corrections to the total enef8%)  grow exponentiallyl. Equation(A3) implies that Imz, and
and (3.17 are, however, valid beyond the dilute gas|m g(z,) have thesamesign for Imz,#0. Im&(zo) there-
approximation—in the worst case, E@.17) definesthe fi-  fore vanishenly for z, real. In general Inz(z,) vanishes
nite radiative bulk energy density up to a finite term propor-gn|y for negative reat,, that is, on the imaginary axis of,
tional to the second moment of the discontinuity sdfw).  sinceC2(z,) can tend to infinity ag, approaches a point on

We have seen that this tervanishes in the dilute gas limit the positive real axis. Inserting E¢A3) in Eq. (A2) and
Without a rigorousdefinitionof what is meant by theadia-  gjviding by Imz,+0 one obtains

tive contribution to the total energy in the general case, our
choice for the finite bulk radiative contribution, while some- 2

' Ree(zp)=—(Rezy)C(z A5
what arbitrary, would seem to be a reasonable one; in par- ¢(zo) ( 0)C(20) (A5

ticular, the limit as one approaches the dilute case is equal i a solution to Eq.(2.4) with a nonvanishing imaginary
the well known result for that case. In this respect, it is perpart, Finally, using Eqs(A3) and (A5) for the real and

haps of some interest that we find the radiative bulk energymaginary parts ofe(z,) we see that Eq(A1) implies the
density to be related to the third power of the index of re-contradiction

fraction in Eq.(3.17); this reflects the fact that the Lamb shift

is proportional toc 3.

We close by noting that the theory of quantized Maxwell
fields in absorptive dielectrics has been the Subject ofa NUIMA solution Zy to Eq (24) for a physica| perm|tt|v|ty Satisfy_
ber of papers. These include Glauber and Lewens®  ing Eq. (2.7) with positive discontinuityo=0 is therefore
Ref. [13], Barnettet al. [27], Kupiszewska and Mostowski rea|. Equation(A2) then requires that Im(zy)=0 for

Cz )=Efmdw’M>O (A4)
R IS |w'2— 7|2

0= — (Rezy)?C%(zy) =b?+(Im z()?C%(z,)>0. (A6)

[28], Barton[29], and Milonni[30]. . Z,#0. These real solutions to E¢2.4) thus only exist in
_Note added in proofEquation(3.5) can be further sim-  regions wheres vanishes. The discrete spectrum of zero-
plified, to a derivative-free form. width resonances we consider is the simplest model that sat-

isfies Eq.(2.7) and also allows us to calculate the zero-point
energy in the conventional fashion. By letting the spectrum
of resonances become deradahe end of the calculatiowe

We are deeply grateful to G. Barton for reading the manucompute the Casimir energy and bulk Lamb shift of any
script and making a number of useful remarks. We also wansystem with a physical permittivity (w?).
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