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Separable wave equation for three Coulomb interacting particles
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We consider a separable approximation to the Stihger equation for the three-body Coulomb problem
and found its exact solution above the ionization threshold. This wave function accounts for different possible
asymptotic behaviors and reduces to the well-known product of three two-body Coulomb (G8)efor
scattering conditions. The momenta and position-dependent modifications recently proposed for the Sommer-
feld parameters, as an improvement to the C3 model, are analyzed. We show how these changes can be
included in our model as a suitable physically based variations in the separable approximation for the wave
equation[S1050-294®8)01302-X]

PACS numbgs): 34.50.Fa, 34.16:x, 03.65.Nk

I. INTRODUCTION different factors correspond to solutions of two-body Cou-
lomb problems. One of the most thoroughly used is known
The position of three particles in the center-of-mass frames C3[2]. In the C3 model, the three-body wave function is
can be defined in closed form using a set of six variablestepresented as a product of three two-body Coulomb wave
However, the choice of this set is by no means trivial, sincefunctions, one for each pair of particles. Each pair is consid-
it is dictated by the physical processes we are interested igred to interact separately with a relative energy on the two-
describing. Each set of variables leads toa particular expregody energy shell and with electric charges unscreened by
sion of the coupled six-dimensional Schimger equation. the presence of the third particle. Through the years this
The general solution of this equation is not known and apmodel has been modified to obtain a better description of the
proximate wave functions should be considered instead. Th&ynamic of the three-body problem. Some of the modifica-
usual method to circumvent this problem is to propose thgjons of the basic model include the introduction of velocity-
full separability of the solution into six wave functions, each dependent charges, and recently, position-dependent charges
one rela;eq with a spe_cific co_ord!nate. In this way, the origi-[3 4. Using theses charges, which represent the dynamical
nal Schralinger equation splits into six partial uncoupled screening associated with the position or velocities of the
equations and the complete solution has a set of six quamuc?’hrticles, the new wave functions give a better description of
numbers that represent integrals of motion of the simplifieqpe problem in contrast with the original model.
problem. The underlying assumption is that the simplified | this work we obtain a fully separable approximate so-
model portrays the most important features of the dynamic ofytion of the three-body Coulomb problem above the thresh-
the problem. _ B old of total breakup, suitable to describe the final state of
In the three-body Coulomb problem, in addition to thejonizing collisions. We name this function C6 because it is
total energyE, there are two more exact quantum numbersyyjt upon the superposition of a two-body continuum wave
that can be used to label the stationary state of the thregnction for each of the six independent subsystems. A par-
particles, these are the total orbital angular momerituamd  ticular choice of the separation parameters restricts the C6
its projectionM along a space-fixed axis. These two quan-model to the usual C3 one. The modified C3 models can be
tum numbers represent a certain fundamental symmetryptained in a similar way, including relevant information of
property(isotropy of our space and does not depend on thehe dynamic of the real problem through the proper election
nature of interparticle interaction. Hence, the dynamical aspf these parameters as a function of momenta or position of
pects of the system would be represented by the reduced sgfe particles.
of three additional quantum numbers. The main shortcoming The plan of this paper is as follows. After discussing the
is that in the truly three-body Coulomb problem these othehasic C6 model, Sec. II, we derive the well-known C3 wave
three quantum numbers do not exist and then the siXfunction. We discuss the different asymptotic behavior of the
dimensional Schriinger equation cannot be totally sepa- c6 model. In Sec. Il we introduce the general form of the
rated. approximate Hamiltonian, which straightforwardly leads to

These considerations have led to different kinds of apthe variation of the basic model. Finally, conclusions of our
proximate wave functions for the three-body Coulomb prob-york are drawn in Sec. IV.

lem along the yearfl]. In particular, the high-energy elec-
tron or ion collisions with atoms are treated with simple
models, which rely on separable wave functions where the Il THE C6 MODEL
The Schrdinger equation for three particles with charges

*Permanent address: Departamento @ick) Universidad Nacio- Z; and massem; (i=1,2,3) can be expressed in any of the
nal del Sur, Avenida Alem 1253, 8000 BahBlanca, Argentina.  following Jacobi pairgrj; ,R;;} as[5]
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57 SEPARABLE WAVE EQUATION FOR THREE COULOM . .. 1019
1 1 3 - As we can see these coordinates appear to be an adequate
Vrz,, - —Vé.# Z Vi |¥(rij,Rij) system to consider all the interactions and particles motions
Vij 1 equally. As we pointed out above, Ed) is not totally sepa-

rable. Nevertheless, it is easy to see from g&j.that if we
neglectD, from this equation it can be solved in a closed
form.

The usual C3 solution has been discussed by Kéar
Here we will analyze a general solution for

=EV(r;; ,R;)) (1)

with the reduced massesu;;=mm;/(m;+m;) and

Vij :(mi+mj)mk/mi+mj+mk, while Vi: ijk/rjk (l 751
#k) are the three Coulomb potentials. The eigenendtgy
will be written considering that all the particles are in the

continuum. The ansatz Do¥=0, (8)

— ) ) which is a fully separable function:
V= (2m) SeKizRutkziap(r, Ry () Y Sep

removes the eigenenergy giving a wave equation for the
function . The set{k;; K;;} are the conjugated momenta.
Continuum states, which are the object under study in this - .
work, are infinitely degenerate ih and appropriate linear and satisfies the equations

combinations should be defined regarding asymptotic bound- _ ,  _ 1

ary conditions. So, for high energy one may prefer to aban- LA A +upZiZd (& m) = 3 Cil&i+ m)Ti(&i, 7).
donL andM for the sake of individual momenta of colliding (10

particles _or other guantum numbers characterizings \ve choose forf; the formf,(& ,m)=g:(&)hi(7) we can
asymptotic behavior of.the wave fupctloh. T_o do th_at we easily see that the functiorg; (&) and h,(7;) satisfy the
use the set of generalized parabolic coordinates 'mmduceé’quations

by Klar [6], which leads the wave equation in a very sym-

3
\If:i[llfi@i,m) 9)

metric form: L ik
. . A+ 5 (Ci&it+a) |gi(6)=0, (13)
1=t Koz ran, m1=rzp—Koyz s,
~ ~ _ Mijk
£,=r13tKig 13, 72=r13—Kyz- I3, A +7J(Ci77i+bi) hi(7;)=0, (12
E3=T1otKip T2, 73=T15—Kip 12, (3 with the constraints
where k;3 and k3 are the unit vectors determined by the 3
directions of the relative momenta. This set of coordinates is Z’l Ci=0 and aj+bj=27;Z. (13

adequate for the analysis of the scattering asymptotic behav-

ior. Thus the equation foW results: The solution of these equations can be obtained by trans-
forming the confluent hypergeometric equation. The general
solution of Eq.(4) whenD; is neglected can be written as
(see Appendix

DV =[Dy+D;]¥=0, 4

whereD, andD, are given by

3
3

_ v=N e—i(kmrJZ)(l—7|)(§|—77|)
Do= —— [AT+ A +uy ZiZ 5 _
=i Mjk(§i+7]i)[ A uZizd ) I=1l#m#n
Yi—1—ipmm /K .
and X ]_Fl ZyTn mn,l,_|kmn7|§|)
2 3 (_1)i+l y|_1+IM bl/k
_— mn’ mn .
Dl:iglj;i-l - BB, (6) X 1F4 2y, ,1,|kmn'y|77|), (14

where we have defined the following operators:

. 3 _ J
A =¢ a_i2+(1+|kjk§i) 9E”

_ 7 , d
A= o+ (1-ikm) ——,

It i
0 Jd
Bi=(V:,&) a_§+(vrjkni) Ers ()

wherey2=1— 2um.C k3.

By setting specific values for separation parameters we
obtain solutions with a particular asymptotic behavior. In this
way, any fixed set of separation constafis,b;,C,} will
determine a unique asymptotic condition that the wave func-
tion will fulfill.

There are several choices in this caseC|fare set such
that ZanC,/kﬁm> 1, the parametery; will be imaginary,
transforming the oscillatory exponential factors in Ety)
into exponentially increasing or decreasing functions and
leading to asymptotically diverging or decaying solutions,
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depending on the sign af;. On the other hand, selectiri) It is well known that this model is an exact solution of the
with the condition 2¢mC, /k3,,<1 will lead to a real param- three-body Coulomb problem only in an asymptotic region
etery, . The confluent hypergeometric function has the well-of the coordinate space, since
known eikonal behavior when the variable goes to infinity,
ie., 1F1(a,b,z2)—(—2)"2 for z— o and then, since the
complex parameter a includes a real part
R(a)=(v,—1)/2y,<0, the asymptotic behavior of the wave
function will contain terms of ordez” *® that go to zero. when all interparticle distances tend to infini8]. Although
Any complex values folC, are simple combinations of the formally this approximation can reproduce correctly some
previous cases. dominant features of the dynamics of the system only in the
From the above discussion it is clear that the electiormentioned region, it was used as a solution for the three-
C,=0 is the unique way to obtain the correct outgoingbody Coulomb problem everywhere in the coordinate space.

asymptotic behavior for the functiof s because the oscil- It has be_en very successful in describing angylar distribu-
latory factor reduces to the unit and the first parameter of thd0nS of ionized electrons, for both electron impact and
hypergeometric functions is imaginary. These considerationgh0toionization[9,10; nevertheless it suffers from several
show that a careful choice of the separation parameterdeficiencieq9]. o o
should be done to guarantee the physical properties of any 1he C3 wave function is a usual approximation for the
wave function. In order to get the outgoing behavior in-fhree-body Coulomb problem. Modifications of E(L6)
cluded in solutior¥ .3 we should select, =b,=0. have be_en proposeq to obta_un improved solutions and will pe
The wave function¥ is a solution of the separable ap- s_hov_vn m_the foIIOW|_n_g section. An example of these modi-
proximate six-dimensional Schiinger equation. Therefore f|cat|ons is the position-dependent Sommerfeld parameters
it introduces a set of six quantum numbers that represerifiroduced by Berakda4] or the Sommerfeld parameters,
integrals of motion of an underlying problem of three inde-Which are functions 'of all three relative mome_nta introduced
pendent pairs of particles that interact though Coulombic poPY Bérakdar and Briggk3] and Jetzke and Faispl1]. The

tentials. The set of quantum numbers associated with thig'e€ntioned approximations are based on physical presump-
problem will be the eigennumber of the three sets: tions, however, they can be associated with a particular ap-
proach forD; .

1
DW¥ea~ O( r—f) (18)
ij

{HI AL, (15)
) ) lll. ALTERNATIVE C3 WAVE FUNCTIONS
whereH" andAY represent the Hamiltonian and the compo-

nents ct’.f tTe I?rl:]nge-Ler;z vector al?ng ;[hf Idlr;act!orkl(pt " approximate solution of Eq4), which results from neglect-
respectively. 1hese sSets represent a total of Six guan uri?lg D,, with a particular choice of the separation constants.

PL:.mbeer' tlhn tms wag \(/jve (r:lavle obt')[alnetc)jl an ?ﬁﬁrox'mat“e(ég%ifferent strategies have been formulated to modify and im-
ution for the three-body .oulomb probiem thal we ca ‘prove this approximation, still maintaining the forth6) for
It is a generalization of the model known as C3, which wa he wave function. In this section we want to show how

introduced by Garibotti and Miraglig2] and it is currently particular approaches to th2, term lead, in a straightfor-

used in collision theory. i D
In the two-body case, bound states can be derived fror\é\lgr?n(\;vo? eyI:s[t:? :' il]aal and well-known variations of the C3 or

continuum wave functions by introducing complex moments.
An equivalent procedure can be performed in the three-bod
case, for each pair of particl€g]. The solution given by Eq.

(14) could be analytically continued to negative relative en-
ergies to provide bound states with general values for th
parabolic quantum numbers. Instead the C3 function is a

outgoing wave and can be only extended to a restricted set iS considered the Schdinger equation is a six-dimensional

bound states. coupled partial differential equation. If we are interested in
The function C3 is optamed by choosing the SeD"’Ir"jlt'orfncluding in some approximate way the neglected terms of
constantC;=0 andb;=0:

D, but keeping the function similar to the C3 model, we can

In Sec. Il we mention that the C3 wave function is an

The Schrdinger equation for the three-body Coulomb
?Sroblem is essentially nonseparable. The nonseparability of
the Schrdinger equation is represented by the t&mwhen
written in coordinates defined H). It is commonly known

s the nonorthogonal kinetic energy and in the parabolic set
?) is a very involved function of the coordinates. WHhen

W = el KiRi+ikij Ty introduce the operatdd; and separate the Scldiager equa-
&3 tion as
3
X 1 NpniFa(ia, 1= i[Knd mot Ko Fmal) (Do +D})¥=0, (19
m,n=1;n>m
(16 (D,—Dy¥=0, (20
giving outgoing waves, or incoming waves selectibg=0 e should note that the solutions of this system represent
anda;=0. The Sommerfeld parametess are defined by only a restricted subset of the complete set of solutions of
Eqg. (4). As above we neglect E§20) and choose the opera-
alzf“mnzmzn (17) tor D; such that the solutio® of Eqg. (19) keeps the forms

Knn of Eqgs.(14) or (16).
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A. Velocity-dependent charges sin
Recently different modifications to the C3 model have Xel™Xe2™ — g
been introduced and used to evaluate the transition matrix for
different collision processes. First we want to show how the sin ®
introduction of momenta-dependent charges can be included Xee™ =~ —% (26)
in the C3 model with a particular election bf; . As a start-
ing point we consider where ® is the angle between those momenta. This choice
3 3 for the final three-body wave gives a cross section for the
r_ xi(k) _ 2xi(K) e-H ionizing collision in very good agreement with experi-
D=2 , (D)
-1 Ik =1 &t ments[3].

Another approach that can be included in the previous
where x;(k) are momenta-dependent functions that will bediscussion has been proposed by Jetzke and Fpldal
selected according to physical criteria. The variable separaFhey consider a system of light charged particles, either
tion proceeds as above, giving a wave funcﬂfaes as Eq. electrons or positrons, in the field of a nucleus of chatge

(14) with new separation parameteas, b; restricted by They replace the action of theee fielt_d over an electron by
its component along the-nucleus direction, such that the

3 i-electron remains in a central field with effective dynamical
> C;=0, charge:
i=1
N
= = fp=z+y WYY 2
a+0;=2[Z,Zi+ xi(K)]. (22) ail2=Z+ 7 (27)

J#i Uij

The separable functioW ¢ is the solution of the problem of wherey; is the asymptotic velocity of the-electron relative
three independent pairs of two-body system with modifiedo the nucleus and;;=v;—v;. For a heavy particle plus
Coulomb interactions. The set of dynamic chargeswo-electron system we have

[Z;Z+ xi(k)] introduces a correlation between the three

motions through the parameteas andb;. As a three two- _ViVigug _ o VarViup — 1. (@8
body Coulomb problem we can obtain a solution with full =T XeT w3, T

outgoing behavior by choosing,=0 andb;=0,
Therefore only two factors contibute to the wave function in

_ _ _ 3 Eg. (23). The x; given by Eqgs.(26) and (28) satisfies the
W= e'Ki-RitikijTij H N/on Peterkop conditiori25) and then the resulting wave function
m,n=1;n>ms| has the correct asymptotic behavior.
X 1F1(1a1, L= [ Kool mant Ko Fro])s 23) Note that the obtained wave functions are totally sepa-

rable; this means that there exist a set of six good quantum
numbers. Again this corresponds to the €). Neverthe-
less we must note that in this case the eigennum¥jede-
pends of all the relative velocity-though the velocities depen-
dent charge$Z;Z,+ xi(k)].

or with incoming behavior whe@; =0 anda;=0. The three
Sommerfeld parameteis, are defined by

~ ::Uvmn[zmzn"'Xi(k)]

Q) kmn (24)

B. Position-dependent charges

Now as a three-body Coulomb problem, the wave function While the momenta-dependent charges have been widely

(23) should verifyDi\T’=O(1/rj2k). This condition imposes a used, position-dependent effe_ct!ve charge; have been re-
restriction over the functiong;, which can be written as cently mtroduc.ed'ln t'he description of the final stlate of an
electron-atom ionization procep4]. The wave functionV g
3 (K) proposed by Berakdar has the form of the C3 with the sig-
E HmoXit®) =0. (25) nificant difference that it includes position-dependent param-
i=1 Kmn eters. This wave function has the form shown in E2B)
with
This ensures that the parameters satisfy the Peterkop relation
and the wave functioﬁf’cg is a good asymptotic solution in “=al :/’“mn[zmszrXi'(riJ Rij)]
the region known as$),. Further modifications must be in- = Kmn '
troduced to have a solution with the correct behavior in the
regions(), where particlek is far from the particles andj, To obtainV g the wave equation is written in the coordinates
which remain close to each othilr2]. setY ={¢&;,&,,€3,r 12, 13,1 23}, Which is composed by three
A possible choice fory; has been proposed by Berakdar parabolic coordinate®) and the other three are the distances
and Briggd 3] for a one-proton—two-electron system. For thebetween the particles. The parabolic coordinates define the
symmetric case where the modulus of the momenta of therientation and ;,,r3,r,3 the shape of the triangle formed
electrons relative to the proton are equal they obtain by the three particles. Other sets of variables could be used,

(29
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setting the parabolic coordinates according to outgoing ocally on¢;, andS that mix all the variables. These operators
incoming asymptotic conditions for each pair of particles. can be associated witH 5, Hi,, andH, defined by Be-

It is possible to write the Schdinger equation in the rakdar[4]. The wave functionVg is obtained as before, ne-

(IBDOO;(:]IQBDIEQ[E]?.nd propose a separation similar to the formerglectingﬁlllf. Looking for a separable solution we write
0 1 .

3 2 92 1+ik J . DoW¥g=0. (30
i — + -|—| . ) — + ) i ’
i=1i%j#k Mikljk 4 (9§i2 ( ik&i) JE mikZiZk

Bo

This equation can be solved in a closed form by proposing a
~ separation of variables. Now the separation constants could
D1=Rg ¢,.6,(F12.713.729) T S(£1,82,83,12,713,T 29)- be chosen as a function of variables,,r 13, »5 and, in this
_ way, as a function o#ll the Jacobi coordinates. Then if we
As we can se®, depends on the variablgsand parametri-  call this separation functiofy;, we can proceed as before
cally on the other three variables. The operddgris formed and obtain the solution of Eq30) in terms of the Kummer
by two partsR, which depend om,,,r43,r,3 and parametri- confluent hypergeometric functions:

3 -
Wo=NeKiRkr [ LF,|i Mml ZmZnt+ Xi(Vij  Rij) /2]

m,n=1n>m kmn

’1-_ikmn§m ) (31)

which, apart of a normalization constaN{ is the same as the particles. However, we will consider that the function
that given by Berakdd], and wherey; = (r,/2)x;. How-  fk(&«.m) of ansatz(9) is weakly dependent on the other
ever, there exists an important difference between the use gBriablesw,={&,7;,&;,7;}. In other words,f, depends
the parabolic coordinatg8) andY. If we use the set given parametrically on the other set of variabigg. Then Eq.(9)

by Eq.(3) it is possible to obtain a scattering wave functionin €, reduces to

C6 with coordinate-independent parameters. The asymptotic

_behavior in the r_egiomo can be properly selected_ by choos- U= f (& 70 H fL(&,m) (32)

ing the separation constanii§]. Nevertheless usingy’ we =

rewrite the equations in a such way that only one of these
asymptotic behaviors could be obtained. This is a direct con-

sequence of the coordinate election. In that case, the wa d we are interested in solving the Salinger equation up

function Wg has the right behavior also in the regioflg.  © OrderO(1/&r/n), 1=i,j. We first note that
The application ofD; over ¥y gives a function of order .

O(1/d?) whered represents the set of coordinates that tend (—1)'*1t

to infinity in every one of the corresponding regigri<]. DW= m: [Bi In &+Bj In &]-(Bfy)

However, imposing the asymptotic behaviors to the wave )

function is not sufficient to fix the functiong;, and other
conditions are required. Berakdar imposes physical condi-
tions over the coordinate-dependent product of charges in
order to verify the right behavior in the Wannier region.

+0

1 1
2 77—2) , (33
i "

whereé&, represents the asymptotic expressions of the func-
tions f, :
C. Effective momenta
In Sec. lll B we have shown that some physically based
approximations to the wave functions can be derived within fi—&§+0
the C6 framework. All these wave functions can be viewed
as approximately separable solutions of some effective po-

tentials that give rise to modifications of the charges of theq, 11 | #k. Then we can proceed with the separation of the
interacting particles. All these functions are asymptoticallyy Schrodinger equation up to ordé)(l/fiz-,llniz-) in the
correct in the regiof), where all particles are far from each following way: ! !

other. Besides, modifications in the relative momenta of the
particles can be introduced to improve the description of the
dynamic of the three-body Coulomb problem in the regions ., ~_ 1

Q, where the particlek is far from the particles and j, (A" + A+ miZiZd& (& 1’7I):§CI(§I+’7I)5I(§I '),
which remain close to each other. Then, we can think that the

presence of particli slightly modifies the wave function of

the pair {,j) introducing correlation between the motions of [#k, (39

11
ga) when {&,7}—
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[Ag +A+mi ZiZ () (& )
_com B, In &+B; In &]-(B,f Tpijae pijbi
_Z—rnj(§k+ 77|()|: i n i+ j n J]( k k) :1F1 - — ,1,_|k|J§k 1F]_ Tllllklj K | -
+ Eck(fk+ 70 Fi( € 7)) (39 (37)
If we selecta,=2Z;Z;; b,=0 we obtain the full solution in
where QO with outgoing asympotic conditions:
~ d ~ d I ijay L~
Al =iké —, A =-ik — for I#k Wy=1F —711,_”(“&()
| k€l T | K G R, ij
while A, remain the same as in definitiofi®. It is easy to i e Z) Zi
see that the solution§ (&, ,7,) are products of eikonal wave X H exg — —In(ké) |, (39
functions, I=i. Ik

1 1 igna which is equivalent to that derived by Alt and Mukhamed-
E(& ., )= ex;{ — <— — — 2 n(Kyy §|)} zhanov[12]. We would like to stress that this wave function

2 2y Kmn results from the separability of the the wave equation in the
set of parabolic coordinates. The soluti@®8) can be easily

Xex;{(%— 2i+ "“km“b'> (K, m)}, extended to give a C6 wave function.
Y mn

IV. SUMMARY
wherea,, b, andy, were defined in Sec. Il. If we consider . ) )
outgoing waves, & (& ,m) reduces to the usual form We have_ obtained a gene_ral S(_)Iutlon pf an approximate
£(&)=exf —iq In(k&)] with o, defined by Eq(17). Now ~ Wave equation for three particles interacting with Coulomb

we can proceed with the solution of E5). For the sake of potentials, whjch we _denote as C6. It i; the product of si>_<
simplicity, we will restrict ourselves to the case where thehyPergeometric functions, each depending of one parabolic

functions &(&,7;) and &(&,n;) verify the outgoing coordinate. Th'is solution depends on six separation con-
asymptotic behavior. The@,=0 and using the definitions stants. According to the choice of these constants we can

of the differential operators, [Eq. (7)], we have obtain different asymptotic behaviors: outgoing, incoming,
! ' exploding, and decaying waves. A particular choice provides

the well-known C3 function.
(A +A+ i ZiZ1 ) Recent proposals of different authors improve the C3
wave by introducing momentum- and coordinate-dependent
oA 9 A d charges. These effective charges dynamically correlate the
(rij +kij) E"'(rij —kij) a_}fk: independent motions described by the C6 function. We show
k G that to account for these charges the approximate wave equa-
(36)  tion must be modified, but it continues to be separable.
. The use of the effective momenta enabled us to solve the
where we defined! ¢ k) Schralinger equation in the region where one particle is far
from the other two, which remain close. Furthermore, effec-
tive momenta and charges can be combined, resulting in a set
: of separable wave functions. Anyway, the description of the
correct wave function at non-asympotic distances could re-
quire the introduction of nonseparable approximations,
which leads to multivariable functions, some particular solu-
tions of the hypergeometric kind have been recently dis-
cussed13].

:(Ak|+AkJ)

(=D u rij (Tt ki)

m Ik

Ak|:

As we noted before, since the right-hand side of B2f)
contains a term differential in the functidi, the separable
solution will have modified momenta instead of effective
charges. These modifications in the momen;(+ Ak;)
are of orderO(1/¢; ;,1/7;;), which contributes to orders
O(1/&,,1/97;) in the Schidinger equation and can be
treated as a small constant. Then the equation reduces to Eq. The general form for the equation of the confluent hyper-
(10) with momentaFijzkijJrAkiJrAkj and the solution is  geometric function used in Sec. Il [i44]

V. APPENDIX

Y P T L
T h h'

A(A—1) 2Af’ , ah’?
+——t —+ "+
z z h

w'+ w=0. (A1)

h h'

b WY (A
h 7 n)\2
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The solution of Eq(Al) is n—1 LmrCi
f(z)=—F%—2z, »n=1-2-7—, and

w=z""e @ |F,(a,b,h(2)), (A2) Kmnn

whereA is a constant andi(z) andh(z) are arbitrary func- .

tions. This equation gives us the possibility to obtain more a— i [%_1_ | mnd)

general functions. Equatiofil) can be associated with this 2y Kmn |’

equation through a change of function and variables. If we

setzj=—ikmné, EQ. (1) can be written as and hence

" 1-z , 1 [ puamC Mmndy
Wit T Wi T | e AT T W= 1 i

| | mn mn W|(Z|):e[(yl_1)/2]zllFl<g{'}ﬂ_l_ I(mn | ,1,Z|),

The transformations from this equation to E&1) are not ! mn

unique. We selecA=0, b=1, andh(z)= v,z . This choice

determines the remaining functions: which represents each factor of the C6 wave function.
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