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Separable wave equation for three Coulomb interacting particles

F. D. Colavecchia, G. Gasaneo,* and C. R. Garibotti
Centro Atómico Bariloche and Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas,

8400 San Carlos de Bariloche, Rı´o Negro, Argentina
~Received 12 June 1997!

We consider a separable approximation to the Schro¨dinger equation for the three-body Coulomb problem
and found its exact solution above the ionization threshold. This wave function accounts for different possible
asymptotic behaviors and reduces to the well-known product of three two-body Coulomb waves~C3! for
scattering conditions. The momenta and position-dependent modifications recently proposed for the Sommer-
feld parameters, as an improvement to the C3 model, are analyzed. We show how these changes can be
included in our model as a suitable physically based variations in the separable approximation for the wave
equation.@S1050-2947~98!01302-X#

PACS number~s!: 34.50.Fa, 34.10.1x, 03.65.Nk
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I. INTRODUCTION

The position of three particles in the center-of-mass fra
can be defined in closed form using a set of six variab
However, the choice of this set is by no means trivial, sin
it is dictated by the physical processes we are intereste
describing. Each set of variables leads to a particular exp
sion of the coupled six-dimensional Schro¨dinger equation.
The general solution of this equation is not known and
proximate wave functions should be considered instead.
usual method to circumvent this problem is to propose
full separability of the solution into six wave functions, ea
one related with a specific coordinate. In this way, the or
nal Schro¨dinger equation splits into six partial uncouple
equations and the complete solution has a set of six quan
numbers that represent integrals of motion of the simplifi
problem. The underlying assumption is that the simplifi
model portrays the most important features of the dynami
the problem.

In the three-body Coulomb problem, in addition to t
total energyE, there are two more exact quantum numb
that can be used to label the stationary state of the th
particles, these are the total orbital angular momentumL and
its projectionM along a space-fixed axis. These two qua
tum numbers represent a certain fundamental symm
property~isotropy! of our space and does not depend on
nature of interparticle interaction. Hence, the dynamical
pects of the system would be represented by the reduce
of three additional quantum numbers. The main shortcom
is that in the truly three-body Coulomb problem these ot
three quantum numbers do not exist and then the
dimensional Schro¨dinger equation cannot be totally sep
rated.

These considerations have led to different kinds of
proximate wave functions for the three-body Coulomb pro
lem along the years@1#. In particular, the high-energy elec
tron or ion collisions with atoms are treated with simp
models, which rely on separable wave functions where
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different factors correspond to solutions of two-body Co
lomb problems. One of the most thoroughly used is kno
as C3@2#. In the C3 model, the three-body wave function
represented as a product of three two-body Coulomb w
functions, one for each pair of particles. Each pair is cons
ered to interact separately with a relative energy on the t
body energy shell and with electric charges unscreened
the presence of the third particle. Through the years
model has been modified to obtain a better description of
dynamic of the three-body problem. Some of the modific
tions of the basic model include the introduction of velocit
dependent charges, and recently, position-dependent cha
@3,4#. Using theses charges, which represent the dynam
screening associated with the position or velocities of
particles, the new wave functions give a better description
the problem in contrast with the original model.

In this work we obtain a fully separable approximate s
lution of the three-body Coulomb problem above the thre
old of total breakup, suitable to describe the final state
ionizing collisions. We name this function C6 because it
built upon the superposition of a two-body continuum wa
function for each of the six independent subsystems. A p
ticular choice of the separation parameters restricts the
model to the usual C3 one. The modified C3 models can
obtained in a similar way, including relevant information
the dynamic of the real problem through the proper elect
of these parameters as a function of momenta or positio
the particles.

The plan of this paper is as follows. After discussing t
basic C6 model, Sec. II, we derive the well-known C3 wa
function. We discuss the different asymptotic behavior of
C6 model. In Sec. III we introduce the general form of t
approximate Hamiltonian, which straightforwardly leads
the variation of the basic model. Finally, conclusions of o
work are drawn in Sec. IV.

II. THE C6 MODEL

The Schro¨dinger equation for three particles with charg
Zi and massesmi ( i 51,2,3) can be expressed in any of th
following Jacobi pairs$r i j ,Ri j % as @5#
1018 © 1998 The American Physical Society
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F2
1

2m i j
¹ r i j

2 2
1

2n i j
¹Ri j

2 1 (
m51

3

VmGC~r i j ,Ri j !

5EC~r i j ,Ri j ! ~1!

with the reduced massesm i j 5mimj /(mi1mj ) and
n i j 5(mi1mj )mk /mi1mj1mk , while Vi5 ZjZk /r jk ( iÞ j
Þk) are the three Coulomb potentials. The eigenenergE
will be written considering that all the particles are in t
continuum. The ansatz

C5~2p!23eiK12–R121ik12–r12C~r12,R12! ~2!

removes the eigenenergy giving a wave equation for
function C. The set$k i j ,K i j % are the conjugated moment
Continuum states, which are the object under study in
work, are infinitely degenerate inL and appropriate linea
combinations should be defined regarding asymptotic bou
ary conditions. So, for high energy one may prefer to ab
donL andM for the sake of individual momenta of collidin
particles or other quantum numbers characteriz
asymptotic behavior of the wave functionC. To do that we
use the set of generalized parabolic coordinates introdu
by Klar @6#, which leads the wave equation in a very sym
metric form:

j15r 321 k̂23•r32, h15r 322 k̂23•r32,

j25r 131 k̂13•r13, h25r 132 k̂13•r13,

j35r 121 k̂12•r12, h35r 122 k̂12•r12, ~3!

where k̂13 and k̂23 are the unit vectors determined by th
directions of the relative momenta. This set of coordinate
adequate for the analysis of the scattering asymptotic be
ior. Thus the equation forC results:

DC5@D01D1#C50, ~4!

whereD0 andD1 are given by

D05 (
i 51,iÞ j Þk

3
2

m jk~j i1h i !
@Ai

11Ai
21m jkZjZk# ~5!

and

D15(
i 51

2

(
j 5 i 11

3
~21! i 11

mk
Bi•Bj , ~6!

where we have defined the following operators:

Ai
15j i

]2

]j i
2 1~11 ik jkj i !

]

]j i
,

Ai
25h i

]2

]h i
2 1~12 ik jkh i !

]

]h i
,

Bi5~¹ r jk
j i !

]

]j i
1~¹ r jk

h i !
]

]h i
. ~7!
e
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-
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As we can see these coordinates appear to be an ade
system to consider all the interactions and particles moti
equally. As we pointed out above, Eq.~4! is not totally sepa-
rable. Nevertheless, it is easy to see from Eq.~5! that if we
neglectD1 from this equation it can be solved in a close
form.

The usual C3 solution has been discussed by Klar@6#.
Here we will analyze a general solution for

D0C50, ~8!

which is a fully separable function:

C5)
i 51

3

f i~j i ,h i ! ~9!

and satisfies the equations

@Ai
11Ai

21m jkZjZk# f i~j i ,h i !5 1
2 Ci~j i1h i ! f i~j i ,h i !.

~10!

If we choose forf i the form f i(j i ,h i)5gi(j i)hi(h i) we can
easily see that the functionsgi(j i) and hi(h i) satisfy the
equations

FAi
11

m jk

2
~Cij i1ai !Ggi~j i !50, ~11!

FAi
21

m jk

2
~Cih i1bi !Ghi~h i !50, ~12!

with the constraints

(
i 51

3

Ci50 and ai1bi52ZjZk . ~13!

The solution of these equations can be obtained by tra
forming the confluent hypergeometric equation. The gene
solution of Eq.~4! when D1 is neglected can be written a
~see Appendix!

C5N )
l 51,lÞmÞn

3

e2 i ~kmn/2!~12g l !~j l2h l !

3 1F1S g l212 immnal /kmn

2g l
,1,2 ikmng lj l D

3 1F1S g l211 immnbl /kmn

2g l
,1,ikmng lh l D , ~14!

whereg l
2512 2mmnCl /kmn

2 .
By setting specific values for separation parameters

obtain solutions with a particular asymptotic behavior. In th
way, any fixed set of separation constants$al ,bl ,Cl% will
determine a unique asymptotic condition that the wave fu
tion will fulfill.

There are several choices in this case. IfCl are set such
that 2mmnCl /kmn

2 .1, the parametersg l will be imaginary,
transforming the oscillatory exponential factors in Eq.~14!
into exponentially increasing or decreasing functions a
leading to asymptotically diverging or decaying solution



ll
ty

t
e

e

io
ng

-
th
on
te
a

in

-

e
e
po
th

o

tu
s
6
a

ro
ts
od
.
n
th
a

et

io

e
on

e
the
ee-
ce.

bu-
nd
al

he

l be
di-
ters
s,
ed

mp-
ap-

n

ts.
im-

w

or

b
y of

set

l
in
of

an

ent
of

-

1020 57F. D. COLAVECCHIA, G. GASANEO, AND C. R. GARIBOTTI
depending on the sign ofg l . On the other hand, selectingCl

with the condition 2mmnCl /kmn
2 ,1 will lead to a real param-

eterg l . The confluent hypergeometric function has the we
known eikonal behavior when the variable goes to infini
i.e., 1F1(a,b,z)→(2z)2a for z→ ` and then, since the
complex parameter a includes a real par
R(a)5(g l21)/2g l,0, the asymptotic behavior of the wav
function will contain terms of orderz2R(a) that go to zero.
Any complex values forCl are simple combinations of th
previous cases.

From the above discussion it is clear that the elect
Cl50 is the unique way to obtain the correct outgoi

asymptotic behavior for the functionC̃C3 because the oscil
latory factor reduces to the unit and the first parameter of
hypergeometric functions is imaginary. These considerati
show that a careful choice of the separation parame
should be done to guarantee the physical properties of
wave function. In order to get the outgoing behavior
cluded in solutionCC3 we should selectCl5bl50.

The wave functionC is a solution of the separable ap
proximate six-dimensional Schro¨dinger equation. Therefore
it introduces a set of six quantum numbers that repres
integrals of motion of an underlying problem of three ind
pendent pairs of particles that interact though Coulombic
tentials. The set of quantum numbers associated with
problem will be the eigennumber of the three sets:

$Hi j ,Az
i j %, ~15!

whereHi j andAz
i j represent the Hamiltonian and the comp

nents of the Runge-Lenz vector along the direction ofk̂ i j ,
respectively. These sets represent a total of six quan
numbers. In this way we have obtained an approximated
lution for the three-body Coulomb problem that we call C
It is a generalization of the model known as C3, which w
introduced by Garibotti and Miraglia@2# and it is currently
used in collision theory.

In the two-body case, bound states can be derived f
continuum wave functions by introducing complex momen
An equivalent procedure can be performed in the three-b
case, for each pair of particles@7#. The solution given by Eq
~14! could be analytically continued to negative relative e
ergies to provide bound states with general values for
parabolic quantum numbers. Instead the C3 function is
outgoing wave and can be only extended to a restricted s
bound states.

The function C3 is obtained by choosing the separat
constantCi50 andbi50:

CC35eiK i–Ri1iki j –r i j

3 )
m,n51;n.m

3

Nmn1F1~ ia l ,1,2 i @kmnr mn1kmn•rmn# !

~16!

giving outgoing waves, or incoming waves selectingCi50
andai50. The Sommerfeld parametersa l are defined by

a l5
mmnZmZn

kmn
. ~17!
-
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It is well known that this model is an exact solution of th
three-body Coulomb problem only in an asymptotic regi
of the coordinate space, since

D1CC3;OS 1

r i j
2 D ~18!

when all interparticle distances tend to infinity@8#. Although
formally this approximation can reproduce correctly som
dominant features of the dynamics of the system only in
mentioned region, it was used as a solution for the thr
body Coulomb problem everywhere in the coordinate spa
It has been very successful in describing angular distri
tions of ionized electrons, for both electron impact a
photoionization@9,10#; nevertheless it suffers from sever
deficiencies@9#.

The C3 wave function is a usual approximation for t
three-body Coulomb problem. Modifications of Eq.~16!
have been proposed to obtain improved solutions and wil
shown in the following section. An example of these mo
fications is the position-dependent Sommerfeld parame
introduced by Berakdar@4# or the Sommerfeld parameter
which are functions of all three relative momenta introduc
by Berakdar and Briggs@3# and Jetzke and Faisal@11#. The
mentioned approximations are based on physical presu
tions, however, they can be associated with a particular
proach forD1 .

III. ALTERNATIVE C3 WAVE FUNCTIONS

In Sec. II we mention that the C3 wave function is a
approximate solution of Eq.~4!, which results from neglect-
ing D1 , with a particular choice of the separation constan
Different strategies have been formulated to modify and
prove this approximation, still maintaining the form~16! for
the wave function. In this section we want to show ho
particular approaches to theD1 term lead, in a straightfor-
ward way, to usual and well-known variations of the C3
C6 models@3,4,11#.

The Schro¨dinger equation for the three-body Coulom
problem is essentially nonseparable. The nonseparabilit
the Schro¨dinger equation is represented by the termD1 when
written in coordinates defined by~3!. It is commonly known
as the nonorthogonal kinetic energy and in the parabolic
~6! is a very involved function of the coordinates. WhenD1
is considered the Schro¨dinger equation is a six-dimensiona
coupled partial differential equation. If we are interested
including in some approximate way the neglected terms
D1 but keeping the function similar to the C3 model, we c
introduce the operatorD18 and separate the Schro¨dinger equa-
tion as

~D01D18!C50, ~19!

~D12D18!C50, ~20!

We should note that the solutions of this system repres
only a restricted subset of the complete set of solutions
Eq. ~4!. As above we neglect Eq.~20! and choose the opera
tor D18 such that the solutionC of Eq. ~19! keeps the forms
of Eqs.~14! or ~16!.
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A. Velocity-dependent charges

Recently different modifications to the C3 model ha
been introduced and used to evaluate the transition matrix
different collision processes. First we want to show how
introduction of momenta-dependent charges can be inclu
in the C3 model with a particular election ofD18 . As a start-
ing point we consider

D185(
i 51

3
x i~k!

r jk
5(

i 51

3
2x i~k!

j i1h i
, ~21!

wherex i(k) are momenta-dependent functions that will
selected according to physical criteria. The variable sep

tion proceeds as above, giving a wave functionC̃C6 as Eq.
~14! with new separation parametersã i , b̃ i restricted by

(
i 51

3

Ci50,

ã i1 b̃ i52@ZjZk1x i~k!#. ~22!

The separable functionC̃C6 is the solution of the problem o
three independent pairs of two-body system with modifi
Coulomb interactions. The set of dynamic charg
@ZjZk1x i(k)# introduces a correlation between the thr
motions through the parametersã i and b̃ i . As a three two-
body Coulomb problem we can obtain a solution with f
outgoing behavior by choosingCi50 and b̃ i50,

C̃C35eiK i–Ri1iki j –r i j )
m,n51;n.mÞ l

3

Nmn8

31F1~ i ã l ,1,2 i @kmnr mn1kmn•rmn# !, ~23!

or with incoming behavior whenCi50 andã i50. The three
Sommerfeld parametersã l are defined by

ã l5
mmn@ZmZn1x i~k!#

kmn
. ~24!

Now as a three-body Coulomb problem, the wave funct

~23! should verifyD18C̃5O(1/r jk
2 ). This condition imposes a

restriction over the functionsx i , which can be written as

(
i 51

3
mmnx i~k!

kmn
50. ~25!

This ensures that the parameters satisfy the Peterkop rel

and the wave functionC̃C3 is a good asymptotic solution in
the region known asV0 . Further modifications must be in
troduced to have a solution with the correct behavior in
regionsVk where particlek is far from the particlesi and j ,
which remain close to each other@12#.

A possible choice forx i has been proposed by Berakd
and Briggs@3# for a one-proton–two-electron system. For t
symmetric case where the modulus of the momenta of
electrons relative to the proton are equal they obtain
or
e
ed

a-

d
s

n

ion

e

e

xe15xe252
sin Q

4
,

xee52
sin Q

2
, ~26!

where 2Q is the angle between those momenta. This cho
for the final three-body wave gives a cross section for
e-H ionizing collision in very good agreement with exper
ments@3#.

Another approach that can be included in the previo
discussion has been proposed by Jetzke and Faisal@11#.
They consider a system ofN light charged particles, eithe
electrons or positrons, in the field of a nucleus of chargeZ.
They replace the action of thee-e field over an electron by
its component along thee-nucleus direction, such that th
i -electron remains in a central field with effective dynamic
charge:

a i /25Z1(
j Þ i

N vi•vi j v i

v i j
3 , ~27!

wherevi is the asymptotic velocity of thei -electron relative
to the nucleus andvi j 5vi2vj . For a heavy particle plus
two-electron system we have

x15
v1•v12v1

v12
3 , x252

v2•v12v2

v12
3 , x3521. ~28!

Therefore only two factors contibute to the wave function
Eq. ~23!. The x i given by Eqs.~26! and ~28! satisfies the
Peterkop condition~25! and then the resulting wave functio
has the correct asymptotic behavior.

Note that the obtained wave functions are totally se
rable; this means that there exist a set of six good quan
numbers. Again this corresponds to the set~15!. Neverthe-
less we must note that in this case the eigennumberAz

i j de-
pends of all the relative velocity-though the velocities dep
dent charges@ZjZk1x i(k)#.

B. Position-dependent charges

While the momenta-dependent charges have been wi
used, position-dependent effective charges have been
cently introduced in the description of the final state of
electron-atom ionization process@4#. The wave functionCB
proposed by Berakdar has the form of the C3 with the s
nificant difference that it includes position-dependent para
eters. This wave function has the form shown in Eq.~23!
with

ã l5a l85
mmn@ZmZn1x i8~r i j ,Ri j !#

kmn
. ~29!

To obtainCB the wave equation is written in the coordinat
setY5$j1 ,j2 ,j3 ,r 12,r 13,r 23%, which is composed by three
parabolic coordinates~3! and the other three are the distanc
between the particles. The parabolic coordinates define
orientation andr 12,r 13,r 23 the shape of the triangle forme
by the three particles. Other sets of variables could be u
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setting the parabolic coordinates according to outgoing
incoming asymptotic conditions for each pair of particles

It is possible to write the Schro¨dinger equation in the
coordinatesY and propose a separation similar to the form
D0 andD1 @4#:

D̃05 (
i 51,iÞ j Þk

3
2

m jkr jk
Fj i

]2

]j i
2 1~11 ik jkj i !

]

]j i
1m jkZjZkG ,

D̃15Rj1 ,j2 ,j3
~r 12,r 13,r 23!1S~j1 ,j2 ,j3 ,r 12,r 13,r 23!.

As we can seeD̃0 depends on the variablesj i and parametri-
cally on the other three variables. The operatorD̃1 is formed
by two partsR, which depend onr 12,r 13,r 23 and parametri-
e
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cally onj i , andS that mix all the variables. These operato
can be associated withHpar, H in , andHmix defined by Be-

rakdar@4#. The wave functionC̄B is obtained as before, ne
glectingD̃1C. Looking for a separable solution we write

D̃0CB50. ~30!

This equation can be solved in a closed form by proposin
separation of variables. Now the separation constants c
be chosen as a function of variables$r 12,r 13,r 23% and, in this
way, as a function ofall the Jacobi coordinates. Then if w
call this separation functionx̃ i , we can proceed as befor
and obtain the solution of Eq.~30! in terms of the Kummer
confluent hypergeometric functions:
CB5NeiK i–Ri1 ik i j –r i j )
m,n51,n.m

3

1F1S i
mmn@ZmZn1 x̃ i~r i j ,Ri j !r jk/2#

kmn
,1,2 ikmnjmD , ~31!
on
r

nc-

he
which, apart of a normalization constantN, is the same as
that given by Berakdar@4#, and wherex i85(r jk/2)x̃ i . How-
ever, there exists an important difference between the us
the parabolic coordinates~3! andY. If we use the set given
by Eq. ~3! it is possible to obtain a scattering wave functi
C6 with coordinate-independent parameters. The asymp
behavior in the regionV0 can be properly selected by choo
ing the separation constants@6#. Nevertheless usingY we
rewrite the equations in a such way that only one of th
asymptotic behaviors could be obtained. This is a direct c
sequence of the coordinate election. In that case, the w
function CB has the right behavior also in the regionsVk .
The application ofD̃1 over CB gives a function of order
O(1/d2) whered represents the set of coordinates that te
to infinity in every one of the corresponding regions@12#.
However, imposing the asymptotic behaviors to the wa
function is not sufficient to fix the functionsx i , and other
conditions are required. Berakdar imposes physical co
tions over the coordinate-dependent product of charge
order to verify the right behavior in the Wannier region.

C. Effective momenta

In Sec. III B we have shown that some physically bas
approximations to the wave functions can be derived wit
the C6 framework. All these wave functions can be view
as approximately separable solutions of some effective
tentials that give rise to modifications of the charges of
interacting particles. All these functions are asymptotica
correct in the regionV0 where all particles are far from eac
other. Besides, modifications in the relative momenta of
particles can be introduced to improve the description of
dynamic of the three-body Coulomb problem in the regio
Vk where the particlek is far from the particlesi and j ,
which remain close to each other. Then, we can think that
presence of particlek slightly modifies the wave function o
the pair (i , j ) introducing correlation between the motions
of

tic
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e
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e

the particles. However, we will consider that the functi
f k(jk ,hk) of ansatz~9! is weakly dependent on the othe
variableswk5$j i ,h i ,j j ,h j%. In other words,f k depends
parametrically on the other set of variableswk . Then Eq.~9!
in Vk reduces to

Ck5 f k~jk ,hk! )
l 5 i , j

f l~j l ,h l ! ~32!

and we are interested in solving the Schro¨dinger equation up
to orderO(1/j l

2,1/h l
2), l 5 i , j . We first note that

D1Ck5
~21! i 11

mj
@Bi ln Ei1Bj ln Ej #•~Bkf k!

1OS 1

j i , j
2 ,

1

h i , j
2 D , ~33!

whereEl represents the asymptotic expressions of the fu
tions f l :

f l→El1OS 1

j l
,

1

h l
D when $j l ,h l%→`

for all lÞk. Then we can proceed with the separation of t
full Schrodinger equation up to orderO(1/j i , j

2 ,1/h i , j
2 ) in the

following way:

@Ãl
11Ãl

21m lkZlZk#El~j l ,h l !5
1

2
Cl~j l1h l !El~j l ,h l !,

lÞk, ~34!
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@Ak
11Ak

21m i j ZiZj # f k~jk ,hk!

5
~21! i 11

2mj
~jk1hk!@Bi ln Ei1Bj ln Ej #•~Bkf k!

1
1

2
Ck~jk1hk! f k~jk ,hk!, ~35!

where

Ãl
15 ik lkj l

]

]j l
, Ãl

252 ik lkh l

]

]h l
for lÞk

while Ak
6 remain the same as in definitions~7!. It is easy to

see that the solutionsEl(j l ,h l) are products of eikonal wav
functions,

El~j l ,h l !5expF2S 1

2
2

1

2g l
2

immnal

kmn
D ln~kmng lj l !G

3expF S 1

2
2

1

2g l
1

immnbl

kmn
D ln~kmng lh l !G ,

whereal , bl , andg l were defined in Sec. II. If we conside
outgoing waves,El(j l ,h l) reduces to the usual form
El(j l)5exp@2ial ln(kmnjl)# with a l defined by Eq.~17!. Now
we can proceed with the solution of Eq.~35!. For the sake of
simplicity, we will restrict ourselves to the case where t
functions Ei(j i ,h i) and Ej (j j ,h j ) verify the outgoing
asymptotic behavior. ThenCk50 and using the definitions
of the differential operatorsBl @Eq. ~7!#, we have

@Ak
11Ak

21m i j ZiZj # f k~jk ,hk!

5~Dk i1Dk j !•F ~ r̂ i j 1 k̂ i j !
]

]jk
1~ r̂ i j 2 k̂ i j !

]

]hk
G f k ,

~36!

where we defined (lÞk)

Dk l5
~21! l 11m lk

ml

r i j

r lk
F ~ r̂ lk1 k̂ lk!

11 r̂ lk• k̂ lk

G .

As we noted before, since the right-hand side of Eq.~36!
contains a term differential in the functionf k , the separable
solution will have modified momenta instead of effecti
charges. These modifications in the momenta (Dk i1Dk j )
are of orderO(1/j i , j ,1/h i , j ), which contributes to orders
O(1/j i , j

2 ,1/h i , j
2 ) in the Schro¨dinger equation and can b

treated as a small constant. Then the equation reduces t
~10! with momentak̃ i j 5k i j 1Dk i1Dk j and the solution is
Eq.

f k~jk ,hk!

51F1S 2
im i j ak

2 k̃ i j

,1,2 i k̃ i j jkD 1F1S im i j bk

2 k̃ i j

,1,i k̃ i j hkD .

~37!

If we selectak52ZiZj ; bk50 we obtain the full solution in
Vk with outgoing asympotic conditions:

Ck51F1S 2
im i j ak

2 k̃ i j

,1,2 i k̃ i j jkD
3 )

l 5 i , j
expF2

im lkZlZk

klk

ln~klkj l !G , ~38!

which is equivalent to that derived by Alt and Mukhame
zhanov@12#. We would like to stress that this wave functio
results from the separability of the the wave equation in
set of parabolic coordinates. The solution~38! can be easily
extended to give a C6 wave function.

IV. SUMMARY

We have obtained a general solution of an approxim
wave equation for three particles interacting with Coulom
potentials, which we denote as C6. It is the product of
hypergeometric functions, each depending of one parab
coordinate. This solution depends on six separation c
stants. According to the choice of these constants we
obtain different asymptotic behaviors: outgoing, incomin
exploding, and decaying waves. A particular choice provid
the well-known C3 function.

Recent proposals of different authors improve the
wave by introducing momentum- and coordinate-depend
charges. These effective charges dynamically correlate
independent motions described by the C6 function. We sh
that to account for these charges the approximate wave e
tion must be modified, but it continues to be separable.

The use of the effective momenta enabled us to solve
Schrödinger equation in the region where one particle is
from the other two, which remain close. Furthermore, effe
tive momenta and charges can be combined, resulting in a
of separable wave functions. Anyway, the description of
correct wave function at non-asympotic distances could
quire the introduction of nonseparable approximatio
which leads to multivariable functions, some particular so
tions of the hypergeometric kind have been recently d
cussed@13#.

V. APPENDIX

The general form for the equation of the confluent hyp
geometric function used in Sec. II is@14#
w91F2A

z
12 f 81

bh8

h
2h82

h9

h8Gw81F S bh8

h
2h82

h9

h8D S A

2
1 f 8D1

A~A21!

z2 1
2A f8

z
1 f 91 f 822

ah82

h Gw50. ~A1!
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The solution of Eq.~A1! is

w5z2Ae2 f ~z!
1F1„a,b,h~z!…, ~A2!

whereA is a constant andf (z) andh(z) are arbitrary func-
tions. This equation gives us the possibility to obtain mo
general functions. Equation~11! can be associated with thi
equation through a change of function and variables. If
setzl52 ikmnj l , Eq. ~11! can be written as

wl91S 12zl

zl
Dwl82

1

2zl
S mnmCl

kmn
2 zl1

mmnal

ikmn
Dwl50.

The transformations from this equation to Eq.~A1! are not
unique. We selectA50, b51, andh(zl)5g lzl . This choice
determines the remaining functions:
,

e

e

f ~zl !5
g l21

2
zl , g l5122

mmnCl

kmn
2 , and

a5
1

2g l
Fg l212

immnal

kmn
G ,

and hence

wl~zl !5e@~g l21!/2#zl
1F1S 1

2g l
Fg l212

immnal

kmn
G ,1,zl D ,

which represents each factor of the C6 wave function.
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