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Resonant dissociative photoionization of K and D,
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We present a theoretical study of dissociative photoionization pfakRd D,, with emphasis on resonant
effects through intermediate doubly excited states. The theory coherently includes competition between the
different dissociation and ionization channels, and makes use-gfline functions to represent both the
electronic and nuclear motions. We show that strong interference effects between resonant and nonresonant
amplitudes are responsible for unidentified peaks observed in recent experimenal works, and that, for photon
energies smaller than 28 eV, the various peaks can be explained in terms of a Sifigleubly excited state.
[S1050-294{@8)01102-0

PACS numbsd(s): 33.80.Eh, 33.80.Gj

I. INTRODUCTION that supports the previous interpretation, and present a sys-
tematic study of resonant dissociative photoionization for H
Dissociative photoionization of K is the process in and D,. In particular, we present KED spectra in the photon
which a photon breaks the molecule into three fragments: Henergy range 25—28 eV, and total dissociative photoioniza-
+H*+e". It plays a fundamental role in interstellar clouds, tion cross sections from the dissociation threshetd.9 eV)
planetary atmospheres, and plasma physics. Historically, théP to =30 eV. We will compare our results with the experi-
first investigations of dissociative ionization were performedmental ones of Ref§16,17, and show that the interference
in the early 1970s by analyzing the kinetic-energy distribu-effects described in Ref24] exist for a wide range of pho-
tion (KED) of the resulting protong1—8] and its angular N energies and for both Hand D,. _ _
dependencé9]. Experimental evidence of resonance effects  Our theoretical method closely follows the pioneering
was obtained by Strathdee and Brownjai], who observed 1d€@s of Bardsley25] and Hazi, Rescigno, and Kurill&6].

a pronounced peak in the KED that they attributed to theThese authors provided an appropriate theoretical framework

lowest '3 doubly excited state of bl This interpretation to obtain a rigorous description of the electronic and nuclear

| firmed by th ical calculatiddd —13 th motions, and the interference between them. In the present
was later confirmed by theoretical calculatidd -1 that work we generalize this theoretical framework to study dis-

were able to reproduce both the position and the qualitativg,.iative photoionization of Kland D,. For this purpose we
shape of the resonance peak. After a decade of slowgfake yse ofB-spline functions[27] to represent both the
progresgsee Refs[14,15 and references thergirimproved  glectronic and nuclear wave functions. In a previous work
experimental approaches have led to the discovery of neyv3) we showed thaB-spline functions are able to provide
interesting features. For instance, very recently, Ito, Hall, angyccyrate energy positions and autoionization widths for a
Ukai [16] reported the existence of several peaks in the KEIqarge number of doubly excited states of.HWe will show
of protons and deuterons produced via dissociative photoioryere that the use oB splines leads to a similar accurate
ization of molecular hydrogen and deuterium. These peakgescription of the nuclear motion. The advantage of using
were neither observed in previous works nor predicted theogpjines is that one avoids solving the complicated systems of
retically, and, surprisingly, their positions do not seem tojieqrodifferential equations that arise from the theory. This
correspond to any known resonant state of & D. In @ s essential to account for interference effects not included in
different experimental approach, Het al. [17] observed revious theoretical works, and to explain the experimental
some structure in the zero ion kinetic-energy spectrum of H findings.
in the region of low photon energies. The use of simple The paper is organized as follows. In Sec. Il we describe
energy conservation arguments leads to the conclusion thg{ getail the theoretical method and its relation with the usual
this low-energy structure might correspond t6%y doubly  approximations reported in the literature. Our implementa-
excited state. However, this is very puzzling because the dijon of the theory withB-spline functions is described in Sec.
polar model, which should be valid for the radiation intensi-|||_ All the technical aspects of the calculations, such as con-
ties reported in that work, does not allow excitation df%,  vergence tests, accuracy of the results, etc., are given in Sec.
resonance. Finally, Latimer and co-workdfs8,19 deter-  |V. The results are presented and discussed in Sec. V. Fi-
mined, from their measured KED spectra, autoionizatiomally, we end the paper with some conclusions in Sec. VI.
widths for the lowest'> | and 11, doubly excited states of Atomic units are used throughout unless otherwise stated.
H,, in clear disagreement with the most recent theoretical
calculationg20-23. Il. THEORY

In a previous worK24], we showed that all these recent
experimental observations can be explained as resulting from
the strong interference between resonant and nonresonantIn the following, we will assume that there is no interac-
dissociation processes. Here we explain the theoretical basi®n between vibrational and rotational motions, so that the

A. Photoionization cross section
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57 RESONANT DISSOCIATIVE PHOTOIONIZATION OF K AND D, 1007

rotational wave functions can be factored out. Also, we will [He— Eg(R)]hg(r,R)=0 (5
use the dipole approximation to describe the photon-

molecule interaction. For the sake of comparison with ex-and the corresponding nuclear wave function
perimental results, we will average the observable quantities

upon all possible orientations. Under these conditions, the [T(R)+Eg4(R) = Wqg,]x,(R)=0. (6)
photoionization cross section for ionization from a single

L E,(R) is the B ial- f the initial elec-
initial stateW, is given by[28] ¢(R) is the BO potential-energy curve of the initial elec

tronic state of the molecule. In the present work, the initial
2 state will be the lowest3 electronic state of H in the
4w . . g L
3c E 2 E lowest vibrational stater=0. Therefore, application of the
bomop dipole selection rules to Eql) implies that only electronic

04 (E)=

2 states of'S ! and 11, symmetries will be populated. Since
Xf dR(W4,(r,R)[€- D[V 1, ime(r,R)| we will only consider photoionization that leaves the H
ion in the Iso, state, different values o will not be

@ coupled, so that we will drop the index from now on.
Also, due to our neglect of rotation-vibration interaction and
to the rotational average, we will conside+ 0 in the initial
state.

In general, the final stat# | = cannot be written in such

“F avlm a simple way as the initial state in E@l). Indeed when the
In 'the latter state, thg .supe.rscrrptlndlcates the usual out- photon energy is large enough to populate doubly excited
going boundary conditions in electron-molecule scattering; siates of the molecule, the final-state wave function receives
is the angular momentum of the ejected electron@its 2 contriputions from the nonresonant background as well as
componentE=Wg, +, with Wy, the total energy of the  from the resonant doubly-excited states. This implies that a
molecule in the initial state; and andv denote, respec- realistic description of the nuclear wave function must take
tively, the electronic and vibrational states of the residuainto account the interference effects between the direct ion-
molecular ion. The index: includes all electronic quantum jzation and autoionization processes. Thus we assume that
numbers of the residual ion amdstands for either bound or there is a set of orthogonal resonant state&,R) embed-
continuum vibrational states of the ion. The veatdabels  geq in the electronic continuum of 4 and define two or-
all electronic coordinates, ariflis the internuclear distance. thogonal projection operators
In Eq. (1), and throughout the paper, integration oweiis
written explicitly, and integration ovaris indicated with the
usual bra-ket notation. As a consequence of the rotational Q:Z: | e (1R &1 (1,R)| (7)
average, Eq(l) includes a sum over all possible polarization '
directions. Hence the photoionization cross section is thend
same for linearly and circularly polarized photons.

whereg and v indicate the initial electronic and vibrational
state, respectivelyy is the photon energyg, is the photon
polarization vector,D is eitherr,+r, (length gaugg or
(V1+V,)/w (velocity gaugg andW¥ ) |- is the final state.

P=1-Q. (8
B. Initial and final states The resonance energies are given by
Neglecting relativistic effects, the Hamiltonian of the, H _
molecule in the body-fixed frame can be decomposed ac- E(R) 8y = (| Hel 1) 9
cording to Then the complete final-state wave function can be written
H(riR):He|(rvR)+T(R)1 (2) ;v|E:P\I,;U|E+Q\I,ZU|E- (10)

whereH,, is the usual electronic Hamiltonian which depends

parametrically onR and contains all the potential-energy

terms(including the nucleus-nucleus repulsjpandT is the ,

relative kinetic energy of the nuclei, Q‘I’ZME:Z ¢/ (r,R) E4ie(R), (13)
r

Using the definition ofQ given in Eq.(7), we can write

2
i d_2 w (3) where the functiong’, < (R) describe the relative motion of
2p dR® - 2uR the nuclei when the system is in thfg resonant state. Sub-
stituting Eq.(10) in the Schrdinger equation

T(R)=—

with u denoting the reduced mass addthe total orbital

angular momentunfelectronic plus nuclear [H(r,R)—E]¥ . (r,R)=0, (12
We assume that the initial state is well described in the

framework of the Born-OppenheiméBO) approximation, and projecting intd® andQ subspaces, one obtains the sys-

ie., tem of coupled equations

W o, (1,R) = (1, R)x,(R), 4 (E-PHP)PV ;e =PHQV e, (13

where the electronic wave function satisfies (E-QHQ)QY ., e=QHPY¥ c. (14
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A formal solution of Eq.(13) can be written using the [E-E(R)—T(R)]&,1e(R)
Lippman-Schwinger equation

PWY =PWOt +GE(E)PHQY e, (15 =V, e(R+1Im> > ii dE’

avl
7—0r’ o'l

whereGy is the Green’s operator

Vowre R [
. _ me dR'V, e (RDEe(RY), (23
GP(E)_J]ITOE—PHPH 7’ (16) 7
where
andPW?" _ is the nonresonant scattering wave function that ; 0+
satisfies the equation Veuie(R) =( ([ QHePIPY oie) (24)
_ 0+ _ For the case of an isolated resonance,(E8) reduces to that
(PHP=E)PW e =0. (17 proposed by Bardslej25] and Hazi, Rescigno, and Kurilla
Substituting Eq(15) into Eq. (14) one obtains an equation _[26]. It represents the nuclear motion when the electrons are
for the resonant wave functio@¥ " in a quasistationary stagg, . The matrix element in Eq24)
represents the coupling between the resonance state and the
(E—QHQ)Q‘I'ZNE:QHP[P‘I’?,LE nonresonant wave function of energyand vibrational state

. . v. Hence the two terms on the right-hand side of &3) are
+Gp(E)PHQV ,,ie]l. (18 the result of the autoionizing character of the state. In

) .. particular, the last term represents the decay of the resonant
Now we assume that the Born-Oppenheimer approximatioQsie to the adjacent electronic continuum. This term is non-

is valid for both the resonance statgg(r,R) and the non- 5c4) due to the presence of tik, ¢ functions, and it can be
resonant continuum stat&sV’,,, . This means that the BO gt into the usuals-function term and principal value term

approximation is valid within thé®> andQ subspaces, using
[T(R),Q]=[T(R),P]=0, (19 1 1
im ————=—-i78(E-E ) +P——. (25
and that the resonance-background coupling is due to the n—0ETE 17 E-E

electronic interaction only, i.e., ) i .
Equation (23) is exact in the framework of the Born-

QT(R)IP=PT(R)Q=0. (20 Oppenheimer approximation. Within this approximation
_ o PwO' c can also be written as a product of electronic and
From Eq.(18), using Egs(11), (19), and(20), and projecting  pyclear wave functions,
with ¢,(r,R) in the space of electronic coordinates, one ob-

tains PWaE(r. R)= o/l R)x,(R), (26
[E-E/(R)—T(R)1&,, (R Wherewgﬁe(r,R) is the nonresonant electron-scattering wave
o+ function for a fixed position of the nuclei. It satisfies the
=(¢r|QHeP|PV e equation

[PHe(r,R)P—ER) ]9 (r,R) =0, (27)

ale

+ 2 (¢ QHPGA(E)PHaQl ¢ ) Elie(R). (2D
' with £(R)=Ey(R) + €, where Eo(R) is the BO potential-
Now it is convenient to introduce the spectral resolution ofénergy curve of the residual ion aads the kinetic energy of

Gy (E), the outgoing electrpn. The corresppnding nuclear wave func-
tion y, is the solution of the equation
ci®=-im > ¥ ¥ de [T(R)+ Eo(R)~ W, 1, (R)=0, (29
77*>001’|’ v/

whereW, is the energy of the residual ion and

PWOr L (1R))
X v de’(Pxpg,*U,,,E,(r,R')|, E=et+W,. (29

E-E'+ipg

(220  Equation(26) is often called, in the context of electron-
molecule scattering theory, treiabatic nuclei approxima-

whereJ dE’ represents a sum over bound states and an inon [29]. It results from the validity of the BO approxima-
tegral over continuum states of the molecule, Endrepre-  tion for both the molecule and the residual molecular ion,
sents a sum over all boundbrational states and an integral and from the boundary conditions that impose that the latter
over all dissociativestates(i.e., the vibrational continuum ion remains in a final vibrational state From the previous
Note that both integrals are not independent, and Bias ~ equation, the matrix element of E®4) is given by
an upper bound for the integral im’. Using the spectral i ot
resolution ofG/ (E), Eq. (21) can be written Vewle(R) =( ¢ | QHeP|¢a/ ) xu(R). (30
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Using Egs.(15), (22), and(26), the total wave function de- H.Plu°" 2
fined in Eq.(10) can be written SE,(R)= > Pi de’ K| QMaPlovre)] (34)
all! €—¢€'
‘I’ZU|E(r.R)=Z ¢r,(r,R)§ra’le(R)+ wii.i(r,R)xU(R) and the autoionization width
r!
T.(R)=2m HeP| w2 P (35)
n IimE 2 i i dE’ r( E, |<¢r|Q el |¢a| fr>|
7—0r’" a'l” Yo’

of the resonance. Note that in Eqs(34) and(35), ¢, is the
v 1 J’ 4RIV * (R) local electron energy, =E,;(R) —Ey(R). Equation(33) is a
E-E'+ip a'v’l'E! local second-order differential equation much easier to solve
. than the original nonlocal equatid3). It was derived by
X Ee(RIY (LR X, (R), (31  Bardsley[25] and Hazi, Rescigno, and Kuril[29], and used
by Kirby et al. [12] to study dissociative photoionization of
with E= e+ W, in the second term anBl' =’ +W,, in the ~ Hz near the lowest'X doubly excited state. Several au-
third one. thors[26] made the additional assumption that the inhomo-
geneous term can be approximately writtdf, c(R)
=[T,(R)/27]*?x,, which is a reasonable approximation
when a single partial wave dominates the process.
As mentioned above, Eq23) generalizes the method of Using the same approximations that led to E2B), the
Bardsley[25] and Hazi, Rescigno and Kurillg29] to the total wave function given in E¢31) can be written
case of several resonances. Another difference comes from
the fact that we have employed the usual partial-wave expant? wyie(r,R)= ¢ (r,R) €Ly (R) + #9/(1,R) x,(R)
sion in electron-molecule scattering, while in the previous

C. Relation with previous works

works the authors made use of a single molecular continuum +1lim > de’ ;,

which includes, in principle, the contribution from different n—0a’l’ g—€ +ip

partial waves. Although the latter procedure may seem more

simple than the partial-wave expansion, practical calcula- X<¢r|QHeIP|¢2T|'E'>* ¢2T|rer(f,R)§LU|E(R)-
tions are in fact cumbersome since discretized representa- (36)

tions of the “true” molecular continuum are not easy to

obtain. Furthermore, the fact that E@3) is nonlocal has  Contributions arising from the last term in E@6) have not

prevented one from obtaining a rigorous solution of thepeen included in previous works. In this respect, we will
nuclear motion within the BO approximation. Thus most pre-show below that the approximation

vious works are based on the local approximation, which can

be obtained from Eq(23) in the following way. First we ‘P;U,E(r,R)=¢r(r,R)§;U|E(R)+ z,bgf;(r,R)XU(R)

assume that there is a single isolated resonahceso that (37

the sum over the index’ reduces to a single term. Thisis a | _ . .
reasonable approximation provided that, forRlthe energy IS nota good one, and that inclusion of all the terms in Eq.
separation between doubly excited states is much larger thdg®) is essential for the validity of the local approximation.
the corresponding autoionization widths. Next we assume

that the electron energyis much larger than the vibrational ll. COMPUTATIONAL METHODS

spacing AW=W, ,—W,. This implies that the
(| QHeP|#°)) matrix elements do not vary significantly

ale

with v’ (or, equivalently, withe), so that they can be ex- We define an intervdlO,r 5] and a basis of one-electron

tracted from the integra}, in the last term of Eq(23).  functions,
Finally, if contribution from the closed vibrational channels
is negligible, we can write

A. Electronic wave functions

fum(r)=r"1BXr)Y™(r), (39)

* where Y'™(r) is a spherical harmonic anéf is theith B
i |Xu'><Xv'|”—“$ | Xv )Xo |= 8(R=R"), (32 spline of orderk [27]. The B functions are piecewise poly-
o’ v’ nomials of degre&—1 and are distributed along a knot se-
quence defined in th¢O0, . interval. Additional knot
and Eq.(23) becomes points are defined in the borders of the interval, so that
B:((O)= B:‘(rmax) =0 for all i, which is equivalent to enclos-
[ ; ing the system in a box of sizg,,,. The H," orbitals, ¢,
E-E(R)—6E(R)+ 5T (R)~T(R) | £ie(R) are obtained by diagonalizing the,f Hamiltonian in the
above basis, hence they are written
ZVLUIE(R)’ (33)

I max

1
(an:_z

_ . Y!™(r). (39)
where 6E,(R) andT’,(R) are, respectively, the energy shift ri=o

N
ai“'Bik(r)
=1
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In this work we have useki=8, r =60 a.u.,N=140, and N
a linear knot sequence. We have included angular momenta (R)=R"™ E d,;B (41)
up to I ,,,=8. Since we have 14®-spline functions per

angular momentumy orbitals are expansions of 700 terms 1pe coefficientsd,; are obtained by diagonalizing E¢) in

(1=0, 2, 4, 6, and B o, orbitals of 560 termsl=1, 3, 5, e B! basis. TheB splines are defined in an interval

and 9, g orbitals of 560 terms|=2, 4, 6, and 8 and so ¢ Rmax] The knot sequence is linear with additional knot
on. Notice that as the spherical harmonics in E2) are points in the borders so th& (0)=B,(R,,)=0 for all i.
placed on the nuclear center of mass, the numbénafues .o \ve have used 248 splirlles witr|1k=8 andRo..=12
required to achieve converged,H states is rather large. The , mex
present basis set has allowed us to perform calculations in

the rangeR=0-5 a.u.(see Ref[30)). , ~ functions associated with the nonresonant electronic con-
We have used the resonant wave functignobtained in - in,ym statgsee Eq(28)]. This leads to both bound vibra-

. l + l . -
our previous works fqr the E“. and .r.I“ SYMmEUes i, nal states and discretized vibrational stateswith ener-
[23,30. They were obtained by diagonalizing the Hamil- . .
giesW, that satisfy

tonian in a basis of configurations built from the, Horbit-

als ¢,,,, mentioned above. For example, in the case of the

13 © symmetry, the expansion included 200 configurations

(ogoy, mgmy, andgyé,), in which the lowest H* orbital, with

1soy, was excluded in order to ensure orthogonality with

the P subspace <3(du|;v’>: avv’ . (43)
The continuum wave functiong?,. have been evaluated

using thel.? close-coupling approadi81]. For each channel The continuum vibrational states normalized té function

al, we have defined a set of orthogonal uncoupled conen the energy scale are then given by

tinuum stategUCS’s) in the static exchange approximation

We use the same procedure to obtain jhevibrational

[T(R)+Eo(R)—W,]x,(R)=0, (42)

Xo(R1=p"(W,) X, (R), (44)
0 (r1,r)=0(D 4(r1,r2)0mcr2), (400  Wherep is the density of states which can be approximately
“e “ ¢ written
where ® is the symmetrization operatgwe only consider (\7\/ )= 2 (45)
singlet states o, is the radial wave function of the con- PAy ~v+l_\7\'lvfl.

tinuum electron, and ,, is the channel function, which is a

state of H,* combined with the angular function of the scat-  The most difficult part is the evaluation of ti§e,, e wave
tered electron to give the correct channel symmetry. In thisunctions from Eq(23). These functions contain information
work we have used the UCS’s of R80], which were built  about the interference between the resonant and nonresonant
using our calculated sy orbital for H,* and a radial con-  dissociation processes. At photon energies for which reso-
tinuum wave function expanded in B-spline basis with nant effects in H are observed, thg,, ¢ functions oscillate
well-defined angular momentul This procedure leads to a strongly. Moreover, Eq(23) is nonlocal, i.e., it couples the
discrete spectrunfie,n} and to discretized UCS wave func- ¢ ' functions associated to different channels and different
tions g"a,n that have been renormalized using the appropriatenergies. For these reasons, a numerical solution ofZ3).
density of states. We have evaluated @ll open channels is very difficult and much slower than an algebraic solution
with angular momentum up tb=7. As in Ref.[30], inter-  using an expansion in a finite state basis. We have defined
channel coupling between the UCS’s has been introducesuch a basis as the eigenfunctions resulting from the diago-
using a Lippman-Schwinger equatif®l]. The correspond- nalization of the Schidinger equation

ing Green’s function has been evaluated as described by

Martin [32]. All these wave functions have provided accurate [T(R)+E(R) = WY (R)=0 (46)
energy positions and widths for the,Hesonancegsee Ref.
[23] for a detailed comparison with previous woyks in the basis oB-spline functions indicated above. Then we

Finally, the ground state of the Hmolecule has been use the{Y,} functions to expand",z . Substituting
evaluated using a one-electron orbital basis that contains
1so, and Xo, molecular orbitals, and Slater-type orbitals

9 g
r"~Yexp(—yr), which have been expanded over the same Eare(R)= 2 Cav'EY (R) (47)
B -spline basis. The two-electron Hamiltonian has then been

diagonalized in a basis of two-electron configurations, up tquq Eq.(23), projecting into theYk functions, and using Eq.
a number of 400. (46), one obtains the system of linear equations

B. Nuclear wave functions 2 Chile (E-W)&;—Dj;]1= B, (48)

The initial vibrational wave function is written as a linear
combination ofB-spline functionsB}‘ of orderk, with
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Dii=lim2 > i i dE’ 00} %0
7}4)0 rI 0(/|I vl g
_ =3
1 < s 04} 00 S
X ; 'Y ! rr = ! 2 @
E—E’+|anRYJ(R)V“'E(R) ) — 2
] H, (X%, g
o ~ w 08| H (XL 110%
X f ARV, ;e (ROYH(R') (49 X)) |8

12 F 0

and

00 10 20 30 40 50 60
) Internuclear distance (a.u.)
B,) =de'Y* R)Vi,e(R), 50
avlE § (ROVaye(R) 50 FIG. 1. Potential-energy curves of,Hnd H*.
which provides the unknown coefficierd:@l‘,'E. In the pre-  cross the %ogynlIh Rydberg series and dissociate into
vious equation, the integral over (the continuum part of H(19+H(n=2). However, these dissociation limits are not
the vibrational spectrujnwas performed using the quadra- well described by our calculateg, states. Indeed, the parti-

ture provided by the discrete energy eigenvaligs of Eq.  tion of the problem into orthogon&® andQ subspaces im-
(42). This is a standard procedure used in many differenplies that all configurations containing thesd, orbital of
situations involving the vibrational continuum of a molecule H, " are excluded from th@ subspace. In the region of long
[7,33). It implies that theyv' integral is replaced by a sum internuclear distances this procedure leads to states with
over discretized levels, and that thé,c(R) matrix ele- equal contributions from covalent+H configurations and

1 - Cme e : :
ments are replaced byEwIE(R):<¢r|QHeIP|¢O+>Xv(R) ionic H"+H™ configurations. Hence the calculated states

ale . . .. ..
see Eq(24)]. The integral oveE’ is performed numerically a7 NEver yield the correct d'|s'somat|on I|m|t(IS)+H(n
[ a249] 9 b Y =2). In order to solve this difficulty at long internuclear

in a grid {E,} with a sufficiently small step sizAE, . In . S )

N - distances, we used the diabatic potential-energy curves cal-
order to evaluate the contribution arising from the pole, theculated by Borondo, Méas, and Rierd34] for R>6.0 a.u
grid is chosen so that the pole conditiei=E’ is satisfied y ' ' R

. ) These curves tend to the correct dissociation limit, and have
exactly _by one of the grid points. The_valuesaﬁ,fthat A" been smoothly connected to our results Rs5.0 a.u. The
cqmpatlble with both the quadraFure irf a}nd E ?reNOb' diabatic states of Ref34] were obtained by diagonalizing
tained from the energy conservation conditBf= e, +W,:  the matrix of nonadiabatic couplings in a basis containing the
[see EQ.(29)]. In general, the discretization procedure that|gwest adiabatic states of the same symmeéy., three
we used to evaluate the electronic continuum wave functioRisies in the case of theS " symmetry. Since autoioniza-
yields a discrete energy spectrum that is different from th;o pelow the threshold is not allowed, all electronic matrix
{ex} one resulting from the previous condition. This problemgjements involving the interaction between these diabatic
is solved in practice by simply interpolating the calculatedgiates and the nonresonant statds, have been made zero
V!, ie(R) matrix elements to the required energy. The SaM&eyondR, . Also, in Egs.(23) and(31) we replace dE’ by
double-quadrature procedure has been used to evaluate thge' je. excluded summation over bound electronic states

last term in Eq.(31). Convergence of the results can be pecause contributions from the latter to the ionization pro-
checked by both decreasingey and increasing the density cess is expected to be negligible.

of continuum vibrational states. The latter can be achieved Now we focus on the accuracy of the calculated nuclear

by enlarging the box where tH&-spline basis is defined.  wave functions as well as on the resulting photoionization
cross sections. First we analyze the accuracy of the method
IV. CALCULATIONS that consists in expanding the nuclear wave function

As mentioned above, the electronic wave functions use(frav'E(R) In an L* basis{Y;(R)} built from B-sp!me func-
in the present work were taken from Reff3,30, in which t|qns. For this purpose one hqs to compare with results ob-
convergence of various electronic properties was discussééa'r.‘ed from numenca! calculatlong. Since the latter are very
in detail. Figure 1 shows the potential-energy curves that ar ifficult to perfor_m using Eq(23) directly, we have ca_rrled_
relevant for the present study. Since resonance effects rfnﬁ!.lt such a test in the framework of th_e local approximation
photon energies smaller than 30 eV are expected to be donffiScussed in Sec. II_(Sere Eq(33)]. In Fig. 2 we present the
nated by the lowest doubly excited states, in all calculationdUclear wave functior,,, g(R) associated with the lowest
presented here we have included only the lowss{ state >y doubly excited state, calculated by solving E§3)
and the lowest'II, one. These states also have the largesboth numerically and using an expansion over ¥gR)
autoionization widths. They lie above the ionization thresh-basis. The plotted wave function corresponds He=
old at short and intermediate internuclear distancesRAt —0.1723 a.ufi.e., =27 e\) andW,=—0.3824 a.u., and
=R., their energies cross the ionization threshold, and thdas been obtained for the domindrt1 partial wave(see
states lose their autoionizing charactéfor instance, the below. The numerical solution has been obtained using a
lowest 13 resonance, which is mainly described by astandard Numerov method following a procedure described
2po2saogy configuration, crosses thesd, ionization thresh- by Allison [35]. TheY|(R) basis has been represented using
old at R;=4.1 a.u). As R increases, the resonance statesB-spline functions, as explained in Sec. Il B. Then we solved
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FIG. 3. Contribution of the different partial waves to thg ;
dissociative photoionization cross section of bt =20 eV.

different partial waves, i.e., the incomirigutgoing electron
0 2 4 6 8 10 12 in thel =1 partial wave leads to outgoingncoming elec-

R (a.u.) trons in all partial waves included in the basis. Therefore,
inelastic scattering from=1 to I'#1 is included in the
present calculations. In the present wdrkgoes from 0 up
0l max=8-

We have also checked the accuracy of the quadrature pro-
cedure explained in Sec. Il by increasing the valu&gg,.
In all cases, the energy integrals have been performed using

Eq. (33) using the method described in Sec. Il B. In order to2E' =0.01 a.u. In Fig. 4 we show the cross sections obtained
avoid unphysical border effects due to the presence of thfPr two different values oRn. The effect of enlarging the
artificial potential wall placed aR=Ry,, we included a POX from Rps,=6 a.u. toRy,,=12 a.u. is only to provide
short-range absorbing potential in the close vicinity of ~MOre points in the resulting cross section. We can see in the
— Rax. Introduction of this potential has no influence on thefigure that the interpolated cross sections are practically in-
description of the inner part of the wave functions, but jsdistinguishable for all values of the proton kinetic energy.
essential in order to fulfill the asymptotic behavior given in 1NiS means that the cross sections for dissociative photoion-
Eq. (A1) (see the Appendix for a more detailed discussion 'Z&tion are practically converged fyq=12 a.u. InC|de+n-
Complex absorbing potentials have been widely used iﬁally_, cross sections fpr photoionization that leave the"H
many other contexts, and applications are well documentelp™ in @ bound vibrational state are also converged for the
in the literaturg36]. Figure 2 shows that the wave functions l0west values ob. For highv, the value ofRp, could be

calculated withB splines are indistinguishable from the nu- Probably too smallthe outer turning point is very farbut
merical ones except, of course, in the vicinity RE Ryay. this would not be a serious constraint to evaluate total photo-

The L2 wave functions go to zero ne&,.,, thus implying ionization cross sections because the contribution from the

that the procedure is accurate provided that the intervfegion just below the dissociation threshold is very small
[0,Rnax] contains the relevant interactions. Hence a goo 37 N ) _
check of the accuracy is invariance of the results when the Finally, some comments are appropriate concerning the
box length is increased.

We also analyzed convergence of the results with respect
to the number of angular momenta included in EQ. In
Fig. 3 we show the contribution of the different terms for the
13 final symmetry and a photon energy=20 eV. It can
be observed that convergence is achieved very rapidly: the
term corresponding tb=1 is nearly three orders of magni-
tude larger than that correspondinglte3. This is so for all
photon energies investigated in this work. Hence, in order to
simplify the present calculations to a reasonable amount of
computer time, we have only retained the leading tetm (
=1) to obtain all the results presented in Sec. V. Figure 3 0 ‘ ‘ ‘ ‘
shows that results obtained in this way will be affected by an 0 P ! 2 3 4 °

. roton Kinetic Energy (eV)

error of 0.5% or less. It must be stressed here that this pro-
cedure is not equivalent to the usual static exchange approxi- FIG. 4. Invariance of thés. dissociative photoionization cross
mation, which assumes that the outgoing electron is alwaysections with the size of the bdR ., used to define the nuclear
in an =1 continuum orbital[11]. Indeed, as mentioned B-spline basis. Full lineR,,=12 a.u.; starsR,,,=6 a.u. The pho-
above, our method allows for interchannel coupling betweeron energy is 26 eV.

FIG. 2. Nuclear wave functiod,,, ¢ of H, for E=—0.1723 a.u.
(i.e., w=27 eV) andW,=—0.3824 a.u(i.e., 1.6-eV protonsob-
tained in the local approximation. Dotted line: numerical solution of
Eq. (33); full line: algebraic solution in &8-spline basis using an

absorbing potentialsee text (a) Real part.(b) Imaginary part.
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FIG. 5. KED spectra of H for protons detected at 0°'% FIG. 6. KED spectra of H for protons detected at 90I(,,

contribution. contribution.

invariance of the cross sections with respect to the gauge
used in the calculations. In R€B0] we checked that, in the
fixed nuclei approximation, the electronic wave functions led
to converged results in the velocity gauge. Although we did
not try to reach convergence in the length gauge, the cross
sections obtained in the latter gauge differed by less than
10%. Therefore, for the sake of consistency, all the results
presented in the following sections have been obtained using
the velocity gauge. It must be recalled here that, since we are
using the Born-Oppenheimer approximation, results obtained
with the length and velocity gauges will never be identical.
However, the differences are usually very small in the frame-
work of this approximation, so that computation of cross
sections using a single gauge is still meaninggge Ref.
[28] for a detailed discussion

V. RESULTS AND DISCUSSION
A. Differential cross sections

In Figs. 5 and 6 we show the calculated KED of protons
for the '3 and I, final symmetries of H in the photon
energy rangey =25-28 eV. Results for the Pmolecule are
shown in Figs. 7 and 8. As is well know#], for protons and
deuterons observed at 0° with respect to the polarization
vector of the incident radiation, the only contribution to the
cross section comes from th& | continuum, whereas for
90° only theII, continuum is observed. For this reason, in
Fig. 9 we compare the calculatéd, cross section with the
spectra measured by Ito, Hall, and Ukab] at 0°. We do

Cross Section (10~°Mb/eV)

hv=25eV |

L

O L
0
D" Kinetic Energy (eV)

1 2 3 4 5

not present any comparison at 90° because no resonant struc-FIG. 7. KED spectra of B for deuterons detected at 02

ture is observed either in our results or in the experimentscontribution.
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S 61 i FIG. 10. Contributions to the KED spectrum of, if the dif-
B hv=26eV ferent terms entering the definition of the total wave function given
8 in Eq. (31). Full line: exact results; dotted line: resonant contribu-
@ 3+ . tion corresponding to the first term in E@21); chain line: resonant
o contribution corresponding to the third term in E®1); dashed
o line: nonresonant contribution corresponding to the second term in
0 R Eq. (31)
6 =0
hv=25eV ) )
calculations begin to be populated. In fact, the agreement
3l 4 between our results and those of Rf6] at w=28 eV is
worse than at 27 eV and below.
In the absence of resonant effects, the cross section de-

0 0 ‘ 1 2 3 4 ‘ 5 creases almost exponentially as the proton energy increases
[7]. This kind of behavior is observed for thHI, con-
tinuum, which is consistent with the experimental results for
FIG. 8. KED spectra of B for deuterons detected at 90°I], ~ @<27 eV [16]. Resonant effects are not observed in this
contribution. case because the autoionization lifetimes of @e 11,
doubly excited stateg¢see Fig. 1 are larger than the time
The comparison is made at=27 eV and, since the mea- requ.ired for dissociation. The experim-ent of Réf6] shows
surements are not given in an absolute scale, we have ndfiat in order to see resonance effects in the 90° spectrum one
malized the experimental spectra to the calculated values at%mlild go to higher photon energies%28 eV), so that
eV. Agreement between theory and experiment is good. W&2 11y doubly excited states, which have a much shorter
have not tried to obtain results at photon energies higher tha‘?\Utol'on'Z""t'o_” lifetime, can be excit¢d8]. In coTtrast with
28 eV, because doubly excited states not included in oufh€ ‘I, continuum, the KED spectrum for thi | symme-
try of H, (see Fig. 5 shows the existence of several well-
defined peaks in the whole range of photon energies investi-
T gated herde.g., atw=27 eV there exist two peaks at1.5
0.006 1 and 3 eV. The same peaks are obtained foy, Dut they are
(a) less apparent because the effective Franck-Condon region is
smaller than for H [16]. The low-energy peaks in Fig. 5
were observed very recently by Ito, Hall, and Uk&6] and
they are well reproduced in our calculatiofsee Fig. 9.
DY These peaks have not been assigned in previous works. The
0.000 0 1 2 3 4 5 peak at higher energies has been observed by Strathdee and
H* Kinetic Energy (eV) Browning[10], and has been assigned to the low@st 'S
resonance, which has a short autoionization lifetifaa].
The origin of the peaks observed in Figs. 5 and 7 can be
explained with the help of Fig. 1&Gee also Refl.24]). This
figure shows the resonant and nonresonant contributions that
arise from each term in the right-hand side of B{). Three
important conclusions can be extracted from this analysis.
First, the nonresonant contribution exhibits the typical expo-
nential decay of a KED spectra far from the resonance re-
0 1 2 3 4 5 gion. Second, the resonant contributions explain the exis-
D* Kinetic Energy (eV) tence of the high-energy peak. The same conclusion was
obtained by Kirbyet al.[12] using a local approximation and
FIG. 9. Comparison between the calculated KED spedtrh & wave function that only included the first resonant term in
line) and the experimental ones of R§L6] (circles for protons  EQ. (31). However, note that the total resonant contribution
and deuterons detected at 0° anek 27 eV.(a) H,. (b) D,. includes the first and third terms in E¢31), and that the

D" Kinetic Energy (eV)

0.003 F 1

Cross Section (Mb/eV)

0.006

0.003

Cross Section (Mb/eV)
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importance of both terms is comparable. The third and more
important conclusion that can be extracted from Fig. 10 is
that a simple incoherent addition of the resonant and non-
resonant contributions does not lead to the low-energy peak.
Thus the origin of such a peak lies in the strong interference
between the amplitudes associated with the resonant and
nonresonant parts of the wave functions. Although the exis-
tence of interference effects is not surprisif@gg., they are

the basis of the Fano profiles observed in atomic photoelec-
tron spectroscop}39]), the large magnitude of the additional 0.00 ; ; : ;
peaks in the KED spectra is quite unexpected. Indeed, they 0.02
can be even more pronounced than the resonance peak itself
(see, for instance, the spectrumeat 25 eV in Fig. 5. The

fact that these additional structures are not very far from the
region where the cross section decreases very rapidly may
explain why they have remained undetected for a long time,
and why they are not seen in the experimental spectra,of D
Indeed, in the latter case, the low-energy peaks are always
below 1 eV(see Fig. 7 and the energy resolution used in the

experiment is probably too small to separate them from the 000 =™ 30 =
exponentially decreasing background. It can be also ob-
served that, a& increases, the positions of the peaks shift to

higher energies. Moreover, at=27 eV and for b, a third . 11, Dissociative photoionization cross section of & a
peak starts to develop near the dissociation threshold, and fiinction of photon energy(a) Total cross section. Line: present
becomes quite apparent at 28 €ée Fig. %. Although its  yesults; dots: experiment of R#0]. (b) Thin line: present results
maximum lies below 1 eV, the experiment is able to repro-or protons with energy smaller than 0.04 e¥;€0.08 eV); thick
duce the high-energy side of the pddl6]. As a conclusion, line: experiment of Ref[17] for protons with energy smaller than
the present results show that the usual semiclassical pictutge01 eV (normalized to the theory ab=20 eV).
in which the resonance is populated more or less efficiently,
and then the nuclei separate as the superexcited molecuigan 0.01 eV £=0.02 e\j. We have not attempted to obtain
slides down the potential cuni (R) toward larger internu-  a “zero-energy” spectrum due to the large number of points
clear separations is not substantiated. In particular, discrepequired near the dissociation threshold. However, one can
ancies between theoretical and experimental autoionizatiogee that for both K and D, we obtain two peaks almost in
widths [18,19 might be due to the use of this semiclassicalthe same positions as in the experiment. Furthermore, for
model to extract the widths from the measured spectra.  £,=0.08 eV, the shapes of both structures tend to the experi-
mental ones. In the case of the, Hnolecule, the peak at

(=
-
(9]

o
S

0.05 |

Total Cross Section (Mb)

0.01 f

Cross Section (Mb)

Photon energy (eV)

B. Integrated cross sections

We have integrated from O t6,,, the KED spectra of 0.10 ' ' ' '
Figs. 5-8 for the'S, and IT, symmetries and for various D e -
\ . . : i —— D*+D+e
photon energiest, .« is the maximum energy available for
the relative nuclear motion at a given photon ene@y,y
=Wy, +hw—Ey(*). The resulting total dissociative photo- 0.05 b i

ionization cross sections are shown in Figs(al&nd 1Za).
As for the KED spectra, the peaks observed here come from
the 13 channel, and practically no structure is obtained in
the 11, channel. For H, we have compared our results with
the absolute measurements of Chustgal. [40]. It can be 0.00 : : t :
seen that both experiment and theory agree in predicting a
rapid rise of the total cross section abave-27 eV. This is
mainly due to resonance effects through the low&s{
doubly excited state. Fap=30 eV, higher doubly excited
states are populated, but as they are not included in the
present calculations, the theoretical cross section begins to
decrease instead of keeping rising. Figuretbland 12b)
also include results obtained by stopping the integration in
E=0.08 eV (€;<<&Enay- For the purpose of discussion, we

; : : L 0.000 . ' : L
have also included in the figures the zero kinetic-energy 20 25 30 35
spectra measured by Hg al.[17] normalized to our results Photon energy (eV)
at w=20 eV. The latter have been obtained in arbitrary units
by collecting protongand deuteronswith energy smaller FIG. 12. Same as Fig. 11 for D

Total Cross Section (Mb)

0.010 ¢ k

0.005 f 1

Cross Section (Mb)
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els which have been previously applied to this problem can
account for the observed interference effects. Our analysis
shows that the usual one-to-one correspondence between ob-
served peaks and resonances is no longer valid to interpret
. dissociative photoionization spectra. Indeed, for photon en-
ergies smaller than 28 eV, the various peaks observed experi-
mentally can be explained in terms of a singl&, doubly
excited state. We have also investigated the validity of a
local approximation to evaluate the final-state wave function,

v and shown that it is a reasonable approximation provided
t 2 3 4 5 that the final-state wave function includes all the resonant
Proton Kinetic Energy (eV) terms arising from the theory as well as the interference be-

FIG. 13. Comparison between the KED spectrum of fAr o tween them.
=27 eV, obtained using the theory of Sec. Il line), the local

0.006

0.004

0.002 |

Cross Section (Mb/eV)

0.000
0

approximation with the complete wave function of Eg6) (dashed ACKNOWLEDGMENTS
line), and the local approximation with the simplified wave function . .
of Eq. (37) (dotted ling. This work was supported by the DGICYT Project No.

PB93-0288-C02-01. I. S. acknowledges the Ministerio de

. ] o Educacim y Ciencia for a research contract.
higher energies appear at=29 eV, which is the energy

required to populate the IoweéEj resonance state, assum-
ing that this state is formed in a Franck-Condon transition
from the ground statgl7]. The peak at lower energies isthe  The asymptotic behavior of th€,, . wave functions de-
result of the interference of the lowesk | resonance with fined in Eq.(23) [or alternatively in Eq.(33)] is given by
the nonresonant background. In contrast with R&7], we  [35]
do not need to include éE; resonance state to account for

this low-energy peak. The peaks observedat30 eV cor-
respond to resonant states not included in the present calcu-
lations. Similar conclusions can be obtained in the case of
the D, molecule, although the resonance structures are evaphere F(E) is a complex numberkf=2,u[w— E,()] (or,

APPENDIX

1
§L|UE~f(E)ex+(kvR——Jw+ A,

. } (AD

more pronounced. equivalently, ki=2u[E—Wy,—E,(*)], with W, the
N o ground-state energyand X ;=\T+i\} is a complex phase
C. Validity of the local approximation shift describing the scattering by a complex potenfisde

Figure 13 shows a comparison between the KED specEd. (23)]. From Eqg.(Al), the asymptotic behaviors of the
trum of H, presented in Fig. 5 for 27-eV photons and thatreal and imaginary parts df,, are
obtained using the local approximatigsee Sec. Il € Re-
sults obtained with the theory of Sec. Il B and the local ap- R &, ]~ — A sin( k,R— %Jw) +Bcos( k,R— %Jw),
proximation are very close, but those obtained with the ap- (A2)
proximate wave function(37) strongly differ from the
former. Furthermore, the discrepancies between length a”dlm[§r| [~B sin(k R— %Jw) +Acos(k R— %Jw),
velocity results are much smaller for the theory presented in a v Y (A3)
Sec. Il B and the local approximatidgaround 20% than for
the local approximation that makes use of the simplifiedynere
wave function(37). In the latter case, the discrepancies be-
tween gauges are of the same order of magnitude as the
results themshelves. Consequently, a local approximation
that makes use of E¢37) instead of Eq(36) is not able to | )
provide results to a quantitative level. B=e [ Frco R~ F'sin\R], (A5)

A=e N[ FRsin\R+ Fcoa\R], (A4)

VI. CONCLUSION and

We have presented a systematic study of dissociative F=FR+iF. (AB6)
photoionization of H and D, for photon energies below
=30 eV. The theoretical method makes us®edpline func-  Equations(A2) and (A3) show that the real and imaginary
tions to describe the electronic and nuclear motions, and theomponents of the wave function have different amplitudes
coupling between them. We have shown that strong interferand phase shifts. By enclosing the system in a box of length
ence effects between resonant and nonresonant amplitudBg,,y, both components are forced to vanishRat Ry,
are responsible for the appearance of unexpected structuresich is not consistent with the above asymptotic behavior.
in the dissociative photoionization spectra of, ldnd D,.  This problem is solved in practice by introducing an absorb-
Since these structures are the result of the quantal behaviorg potential in the vicinity ofR=R,. In this work we
of both electrons and nuclei, none of the semiclassical modaave used an absorbing potential of the form



R=R
R>R,

for

UR=1iM(R=R)? for

(A7)

whereR=R.— er (With eg=1 a.u) andM =30 a.u. The
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time-dependent picture, this avoids unphysical reflections by
the potential wall aR=R,,. Sinceeg is rather small com-

pared to the box size, the effect of the absorbing potential is
reduced to a very small region nelBr= R, .. In this way,

large value ofM ensures that all the density is absorbedthe wave function is practically unaffected fR<R (see

before the wave function reaches the borBetR,,,,. In a
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