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Resonant dissociative photoionization of H2 and D2

I. Sánchez and F. Martı´n
Departamento de Quı´mica C-9, Universidad Auto´noma de Madrid, 28049-Madrid, Spain

~Received 15 July 1997!

We present a theoretical study of dissociative photoionization of H2 and D2, with emphasis on resonant
effects through intermediate doubly excited states. The theory coherently includes competition between the
different dissociation and ionization channels, and makes use ofB-spline functions to represent both the
electronic and nuclear motions. We show that strong interference effects between resonant and nonresonant
amplitudes are responsible for unidentified peaks observed in recent experimenal works, and that, for photon
energies smaller than 28 eV, the various peaks can be explained in terms of a single1Su

1 doubly excited state.
@S1050-2947~98!01102-0#

PACS number~s!: 33.80.Eh, 33.80.Gj
:
s,

, t
ed
u

ct

th

tiv
w

ne
n

ED
io
a
e
to

H
pl
th

d
si

io
f
ic

nt
ro
n
a

sys-
H
on
iza-

i-
e
-

ng

ork
ear
sent
is-

rk
e
r a

te

s of
his
d in
tal

ibe
ual
ta-
c.
on-
Sec.
Fi-

VI.
d.

c-
the
I. INTRODUCTION

Dissociative photoionization of H2 is the process in
which a photon breaks the molecule into three fragments
1H11e2. It plays a fundamental role in interstellar cloud
planetary atmospheres, and plasma physics. Historically
first investigations of dissociative ionization were perform
in the early 1970s by analyzing the kinetic-energy distrib
tion ~KED! of the resulting protons@1–8# and its angular
dependence@9#. Experimental evidence of resonance effe
was obtained by Strathdee and Browning@10#, who observed
a pronounced peak in the KED that they attributed to
lowest 1Su

1 doubly excited state of H2. This interpretation
was later confirmed by theoretical calculations@11–13# that
were able to reproduce both the position and the qualita
shape of the resonance peak. After a decade of slo
progress~see Refs.@14,15# and references therein!, improved
experimental approaches have led to the discovery of
interesting features. For instance, very recently, Ito, Hall, a
Ukai @16# reported the existence of several peaks in the K
of protons and deuterons produced via dissociative photo
ization of molecular hydrogen and deuterium. These pe
were neither observed in previous works nor predicted th
retically, and, surprisingly, their positions do not seem
correspond to any known resonant state of H2 or D2. In a
different experimental approach, Heet al. @17# observed
some structure in the zero ion kinetic-energy spectrum of2
in the region of low photon energies. The use of sim
energy conservation arguments leads to the conclusion
this low-energy structure might correspond to a1Sg

1 doubly
excited state. However, this is very puzzling because the
polar model, which should be valid for the radiation inten
ties reported in that work, does not allow excitation of a1Sg

1

resonance. Finally, Latimer and co-workers@18,19# deter-
mined, from their measured KED spectra, autoionizat
widths for the lowest1Su

1 and 1Pu doubly excited states o
H2, in clear disagreement with the most recent theoret
calculations@20–23#.

In a previous work@24#, we showed that all these rece
experimental observations can be explained as resulting f
the strong interference between resonant and nonreso
dissociation processes. Here we explain the theoretical b
571050-2947/98/57~2!/1006~12!/$15.00
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that supports the previous interpretation, and present a
tematic study of resonant dissociative photoionization for2
and D2. In particular, we present KED spectra in the phot
energy range 25–28 eV, and total dissociative photoion
tion cross sections from the dissociation threshold (.19 eV!
up to .30 eV. We will compare our results with the exper
mental ones of Refs.@16,17#, and show that the interferenc
effects described in Ref.@24# exist for a wide range of pho
ton energies and for both H2 and D2.

Our theoretical method closely follows the pioneeri
ideas of Bardsley@25# and Hazi, Rescigno, and Kurilla@26#.
These authors provided an appropriate theoretical framew
to obtain a rigorous description of the electronic and nucl
motions, and the interference between them. In the pre
work we generalize this theoretical framework to study d
sociative photoionization of H2 and D2. For this purpose we
make use ofB-spline functions@27# to represent both the
electronic and nuclear wave functions. In a previous wo
@23#, we showed thatB-spline functions are able to provid
accurate energy positions and autoionization widths fo
large number of doubly excited states of H2. We will show
here that the use ofB splines leads to a similar accura
description of the nuclear motion. The advantage of usingB
splines is that one avoids solving the complicated system
integrodifferential equations that arise from the theory. T
is essential to account for interference effects not include
previous theoretical works, and to explain the experimen
findings.

The paper is organized as follows. In Sec. II we descr
in detail the theoretical method and its relation with the us
approximations reported in the literature. Our implemen
tion of the theory withB-spline functions is described in Se
III. All the technical aspects of the calculations, such as c
vergence tests, accuracy of the results, etc., are given in
IV. The results are presented and discussed in Sec. V.
nally, we end the paper with some conclusions in Sec.
Atomic units are used throughout unless otherwise state

II. THEORY

A. Photoionization cross section

In the following, we will assume that there is no intera
tion between vibrational and rotational motions, so that
1006 © 1998 The American Physical Society
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57 1007RESONANT DISSOCIATIVE PHOTOIONIZATION OF H2 AND D2
rotational wave functions can be factored out. Also, we w
use the dipole approximation to describe the phot
molecule interaction. For the sake of comparison with
perimental results, we will average the observable quant
upon all possible orientations. Under these conditions,
photoionization cross section for ionization from a sing
initial stateCgn is given by@28#

sav~E!5
4p2v

3c (
l

(
m

(
p

3U E dR^Cgn~r ,R!uep•DuCav lmE
1 ~r ,R!&U2

,

~1!

whereg andn indicate the initial electronic and vibrationa
state, respectively,v is the photon energy,ep is the photon
polarization vector,D is either r11r2 ~length gauge! or
(¹11¹2)/v ~velocity gauge!, andCav lmE

1 is the final state.
In the latter state, the superscript1 indicates the usual out
going boundary conditions in electron-molecule scatterinl
is the angular momentum of the ejected electron andm its z
component,E5Wgn1v, with Wgn the total energy of the
molecule in the initial state; anda and v denote, respec
tively, the electronic and vibrational states of the resid
molecular ion. The indexa includes all electronic quantum
numbers of the residual ion andv stands for either bound o
continuum vibrational states of the ion. The vectorr labels
all electronic coordinates, andR is the internuclear distance
In Eq. ~1!, and throughout the paper, integration overR is
written explicitly, and integration overr is indicated with the
usual bra-ket notation. As a consequence of the rotatio
average, Eq.~1! includes a sum over all possible polarizatio
directions. Hence the photoionization cross section is
same for linearly and circularly polarized photons.

B. Initial and final states

Neglecting relativistic effects, the Hamiltonian of the H2
molecule in the body-fixed frame can be decomposed
cording to

H~r ,R!5Hel~r ,R!1T~R!, ~2!

whereHel is the usual electronic Hamiltonian which depen
parametrically onR and contains all the potential-energ
terms~including the nucleus-nucleus repulsion!, andT is the
relative kinetic energy of the nuclei,

T~R!52
1

2m

d2

dR2 1
J~J11!

2mR2 , ~3!

with m denoting the reduced mass andJ the total orbital
angular momentum~electronic plus nuclear!.

We assume that the initial state is well described in
framework of the Born-Oppenheimer~BO! approximation,
i.e.,

Cgn~r ,R!5cg~r ,R!xn~R!, ~4!

where the electronic wave function satisfies
l
-
-
s
e

l

al

e

c-

e

@Hel2Eg~R!#cg~r ,R!50 ~5!

and the corresponding nuclear wave function

@T~R!1Eg~R!2Wgn#xn~R!50. ~6!

Eg(R) is the BO potential-energy curve of the initial ele
tronic state of the molecule. In the present work, the init
state will be the lowest1Sg

1 electronic state of H2 in the
lowest vibrational staten50. Therefore, application of the
dipole selection rules to Eq.~1! implies that only electronic
states of1Su

1 and 1Pu symmetries will be populated. Sinc
we will only consider photoionization that leaves the H2

1

ion in the 1ssg state, different values ofm will not be
coupled, so that we will drop the indexm from now on.
Also, due to our neglect of rotation-vibration interaction a
to the rotational average, we will considerJ50 in the initial
state.

In general, the final stateCav lE
1 cannot be written in such

a simple way as the initial state in Eq.~4!. Indeed when the
photon energy is large enough to populate doubly exc
states of the molecule, the final-state wave function rece
contributions from the nonresonant background as well
from the resonant doubly-excited states. This implies tha
realistic description of the nuclear wave function must ta
into account the interference effects between the direct
ization and autoionization processes. Thus we assume
there is a set of orthogonal resonant statesf r(r ,R) embed-
ded in the electronic continuum of H2, and define two or-
thogonal projection operators

Q5(
r 8

uf r 8~r ,R!&^f r 8~r ,R!u ~7!

and

P512Q. ~8!

The resonance energies are given by

Er~R!d rr 85^f r uHeluf r 8&. ~9!

Then the complete final-state wave function can be writte

Cav lE
1 5PCav lE

1 1QCav lE
1 . ~10!

Using the definition ofQ given in Eq.~7!, we can write

QCav lE
1 5(

r 8
f r 8~r ,R!jav lE

r 8 ~R!, ~11!

where the functionsjav lE
r (R) describe the relative motion o

the nuclei when the system is in thef r resonant state. Sub
stituting Eq.~10! in the Schro¨dinger equation

@H~r ,R!2E#Cav lE
1 ~r ,R!50, ~12!

and projecting intoP andQ subspaces, one obtains the sy
tem of coupled equations

~E2PHP!PCav lE
1 5PHQCav lE

1 , ~13!

~E2QHQ!QCav lE
1 5QHPCav lE

1 . ~14!
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1008 57I. SÁNCHEZ AND F. MARTÍN
A formal solution of Eq. ~13! can be written using the
Lippman-Schwinger equation

PCav lE
1 5PCav lE

01 1GP
1~E!PHQCav lE

1 , ~15!

whereGP
1 is the Green’s operator

GP
1~E!5 lim

h→0

1

E2PHP1 ih
, ~16!

andPCav lE
01 is the nonresonant scattering wave function t

satisfies the equation

~PHP2E!PCav lE
01 50. ~17!

Substituting Eq.~15! into Eq. ~14! one obtains an equatio
for the resonant wave functionQCav lE

1

~E2QHQ!QCav lE
1 5QHP@PCav lE

01

1GP
1~E!PHQCav lE

1 #. ~18!

Now we assume that the Born-Oppenheimer approxima
is valid for both the resonance statesf r(r ,R) and the non-
resonant continuum statesPCav lE

1 . This means that the BO
approximation is valid within theP andQ subspaces,

@T~R!,Q#5@T~R!,P#50, ~19!

and that the resonance-background coupling is due to
electronic interaction only, i.e.,

QT~R!P5PT~R!Q50. ~20!

From Eq.~18!, using Eqs.~11!, ~19!, and~20!, and projecting
with f r(r ,R) in the space of electronic coordinates, one o
tains

@E2Er~R!2T~R!#jav lE
r ~R!

5^f r uQHelPuPCav lE
01 &

1(
r 8

^f r uQHelPGP
1~E!PHelQuf r 8&jav lE

r 8 ~R!. ~21!

Now it is convenient to introduce the spectral resolution
GP

1(E),

GP
1~E!5 lim

h→0
(
a8 l 8

E(
v8
E( dE8

3
uPCa8v8 l 8E8

01
~r ,R!&

E2E81 ih
E dR8^PCa8v8 l 8E8

01
~r ,R8!u,

~22!

where*SdE8 represents a sum over bound states and an
tegral over continuum states of the molecule, and*Sv8 repre-
sents a sum over all boundvibrational states and an integra
over all dissociativestates~i.e., the vibrational continuum!.
Note that both integrals are not independent, and thatE8 is
an upper bound for the integral inv8. Using the spectra
resolution ofGP

1(E), Eq. ~21! can be written
t

n

he

-

f

n-

@E2Er~R!2T~R!#jav lE
r ~R!

5Vav lE
r ~R!1 lim

h→0
(
r 8

(
a8 l 8

E(
v8
E( dE8

3
Va8v8 l 8E8

r
~R!

E2E81 ih
E dR8Va8v8 l 8E8

r 8 * ~R8!jav lE
r 8 ~R8!, ~23!

where

Vav lE
r ~R!5^f r uQHelPuPCav lE

01 & . ~24!

For the case of an isolated resonance, Eq.~23! reduces to that
proposed by Bardsley@25# and Hazi, Rescigno, and Kurilla
@26#. It represents the nuclear motion when the electrons
in a quasistationary statef r . The matrix element in Eq.~24!
represents the coupling between the resonance state an
nonresonant wave function of energyE and vibrational state
v. Hence the two terms on the right-hand side of Eq.~23! are
the result of the autoionizing character of thef r state. In
particular, the last term represents the decay of the reso
state to the adjacent electronic continuum. This term is n
local due to the presence of thejav lE

r functions, and it can be
split into the usuald-function term and principal value term
using

lim
h→0

1

E2E81 ih
52 ipd~E2E8!1P

1

E2E8
. ~25!

Equation ~23! is exact in the framework of the Born
Oppenheimer approximation. Within this approximatio
PCav lE

01 can also be written as a product of electronic a
nuclear wave functions,

PCav lE
01 ~r ,R!5ca l e

01 ~r ,R!xv~R!, ~26!

whereca l e
01 (r ,R) is the nonresonant electron-scattering wa

function for a fixed position of the nuclei. It satisfies th
equation

@PHel~r ,R!P2E~R!#ca l e
01 ~r ,R!50, ~27!

with E(R)5E0(R)1e, where E0(R) is the BO potential-
energy curve of the residual ion ande is the kinetic energy of
the outgoing electron. The corresponding nuclear wave fu
tion xv is the solution of the equation

@T~R!1E0~R!2Wv#xv~R!50, ~28!

whereWv is the energy of the residual ion and

E5e1Wv . ~29!

Equation ~26! is often called, in the context of electron
molecule scattering theory, theadiabatic nuclei approxima-
tion @29#. It results from the validity of the BO approxima
tion for both the molecule and the residual molecular io
and from the boundary conditions that impose that the la
ion remains in a final vibrational statev. From the previous
equation, the matrix element of Eq.~24! is given by

Vav lE
r ~R!5^f r uQHelPuca l e

01 &xv~R!. ~30!
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57 1009RESONANT DISSOCIATIVE PHOTOIONIZATION OF H2 AND D2
Using Eqs.~15!, ~22!, and ~26!, the total wave function de
fined in Eq.~10! can be written

Cav lE
1 ~r ,R!5(

r 8
f r 8~r ,R!jav lE

r 8 ~R!1ca l e
01 ~r ,R!xv~R!

1 lim
h→0

(
r 8

(
a8 l 8

E(
v8
E( dE8

3
1

E2E81 ihE dR8Va8v8 l 8E8
r 8 * ~R8!

3jav lE
r 8 ~R8!ca8 l 8e8

01
~r ,R!xv8~R!, ~31!

with E5e1Wv in the second term andE85e81Wv8 in the
third one.

C. Relation with previous works

As mentioned above, Eq.~23! generalizes the method o
Bardsley @25# and Hazi, Rescigno and Kurilla@29# to the
case of several resonances. Another difference comes
the fact that we have employed the usual partial-wave exp
sion in electron-molecule scattering, while in the previo
works the authors made use of a single molecular continu
which includes, in principle, the contribution from differe
partial waves. Although the latter procedure may seem m
simple than the partial-wave expansion, practical calcu
tions are in fact cumbersome since discretized represe
tions of the ‘‘true’’ molecular continuum are not easy
obtain. Furthermore, the fact that Eq.~23! is nonlocal has
prevented one from obtaining a rigorous solution of t
nuclear motion within the BO approximation. Thus most p
vious works are based on the local approximation, which
be obtained from Eq.~23! in the following way. First we
assume that there is a single isolated resonancef r , so that
the sum over the indexr 8 reduces to a single term. This is
reasonable approximation provided that, for allR, the energy
separation between doubly excited states is much larger
the corresponding autoionization widths. Next we assu
that the electron energye is much larger than the vibrationa
spacing DW5Wv112Wv . This implies that the
^f r uQHelPuca l e

01 & matrix elements do not vary significantl
with v8 ~or, equivalently, withe), so that they can be ex
tracted from the integral*Sv8 in the last term of Eq.~23!.
Finally, if contribution from the closed vibrational channe
is negligible, we can write

E(
v8

uxv8&^xv8u.E(
v8

`

uxv8&^xv8u5d~R2R8!, ~32!

and Eq.~23! becomes

FE2Er~R!2dEr~R!1
i

2
G r~R!2T~R!Gjav lE

r ~R!

5Vav lE
r ~R!, ~33!

wheredEr(R) andG r(R) are, respectively, the energy shi
m
n-
s
m

re
-

ta-

-
n

an
e

dEr~R!5 (
a8 l 8
P E( de8

z^f r uQHelPuca8 l 8e8
01 & z2

e r2e8
~34!

and the autoionization width

G r~R!52p (
a8 l 8

z^f r uQHelPuca8 l 8er

01 & z2 ~35!

of the resonancer . Note that in Eqs.~34! and~35!, e r is the
local electron energye r5Er(R)2E0(R). Equation~33! is a
local second-order differential equation much easier to so
than the original nonlocal equation~23!. It was derived by
Bardsley@25# and Hazi, Rescigno, and Kurilla@29#, and used
by Kirby et al. @12# to study dissociative photoionization o
H 2 near the lowest1Su

1 doubly excited state. Several au
thors @26# made the additional assumption that the inhom
geneous term can be approximately writtenVav lE

r (R)
.@G r(R)/2p#1/2xv , which is a reasonable approximatio
when a single partial wave dominates the process.

Using the same approximations that led to Eq.~33!, the
total wave function given in Eq.~31! can be written

Cav lE
1 ~r ,R!5f r~r ,R!jav lE

r ~R!1ca l e
01 ~r ,R!xv~R!

1 lim
h→0

(
a8 l 8

E( de8
1

e r2e81 ih

3^f r uQHelPuca8 l 8e8
01 &* ca8 l 8e8

01
~r ,R!jav lE

r ~R!.

~36!

Contributions arising from the last term in Eq.~36! have not
been included in previous works. In this respect, we w
show below that the approximation

Cav lE
1 ~r ,R!5f r~r ,R!jav lE

r ~R!1ca l e
01 ~r ,R!xv~R!

~37!

is not a good one, and that inclusion of all the terms in E
~36! is essential for the validity of the local approximation

III. COMPUTATIONAL METHODS

A. Electronic wave functions

We define an interval@0,r max# and a basis of one-electro
functions,

f i lm~r !5r 21Bi
k~r !Ylm~ r̂ !, ~38!

where Ylm( r̂ ) is a spherical harmonic andBi
k is the i th B

spline of orderk @27#. TheBi
k functions are piecewise poly

nomials of degreek21 and are distributed along a knot s
quence defined in the@0,r max# interval. Additional knot
points are defined in the borders of the interval, so t
Bi

k(0)5Bi
k(r max)50 for all i , which is equivalent to enclos

ing the system in a box of sizer max. The H2
1 orbitals,wnm ,

are obtained by diagonalizing the H2
1 Hamiltonian in the

above basis, hence they are written

wnm5
1

r (
l 50

l max F(
i 51

N

ai
nlBi

k~r !GYlm~ r̂ !. ~39!



en

s

e
s

th
n

ith

d
l
on
n

-
a
t-

th

a
-

ia

c

te

ai
ls
m
ee

t

ar

l
ot

on-
-

ely

n
nant
so-

ent

on
ned
go-

e

.

1010 57I. SÁNCHEZ AND F. MARTÍN
In this work we have usedk58, r max560 a.u.,N5140, and
a linear knot sequence. We have included angular mom
up to l max58. Since we have 140B-spline functions per
angular momentum,sg orbitals are expansions of 700 term
( l 50, 2, 4, 6, and 8!, su orbitals of 560 terms (l 51, 3, 5,
and 7!, pg orbitals of 560 terms (l 52, 4, 6, and 8!, and so
on. Notice that as the spherical harmonics in Eq.~39! are
placed on the nuclear center of mass, the number ofl values
required to achieve converged H2

1 states is rather large. Th
present basis set has allowed us to perform calculation
the rangeR5025 a.u.~see Ref.@30#!.

We have used the resonant wave functionsf r obtained in
our previous works for the1Su

1 and 1Pu symmetries
@23,30#. They were obtained by diagonalizing the H2 Hamil-
tonian in a basis of configurations built from the H2

1 orbit-
als wnm mentioned above. For example, in the case of
1Su

1 symmetry, the expansion included 200 configuratio
(sgsu , pgpu , anddgdu), in which the lowest H2

1 orbital,
1ssg , was excluded in order to ensure orthogonality w
the P subspace.

The continuum wave functionsca l e
01 have been evaluate

using theL2 close-coupling approach@31#. For each channe
a l , we have defined a set of orthogonal uncoupled c
tinuum states~UCS’s! in the static exchange approximatio

za l e
0 ~r1 ,r2!5Q„Fa l~r1 , r̂ 2!%a l e~r 2!…, ~40!

whereQ is the symmetrization operator~we only consider
singlet states!, %a l e is the radial wave function of the con
tinuum electron, andFa l is the channel function, which is
state of H2

1 combined with the angular function of the sca
tered electron to give the correct channel symmetry. In
work we have used the UCS’s of Ref.@30#, which were built
using our calculated 1ssg orbital for H2

1 and a radial con-
tinuum wave function expanded in aB-spline basis with
well-defined angular momentuml . This procedure leads to
discrete spectrum$ea ln% and to discretized UCS wave func
tions z̃ a ln

0 that have been renormalized using the appropr
density of states. We have evaluated alla l open channels
with angular momentum up tol 57. As in Ref.@30#, inter-
channel coupling between the UCS’s has been introdu
using a Lippman-Schwinger equation@31#. The correspond-
ing Green’s function has been evaluated as described
Martı́n @32#. All these wave functions have provided accura
energy positions and widths for the H2 resonances~see Ref.
@23# for a detailed comparison with previous works!.

Finally, the ground state of the H2 molecule has been
evaluated using a one-electron orbital basis that cont
1ssg and 2ssg molecular orbitals, and Slater-type orbita
r n21exp(2gil r), which have been expanded over the sa
B-spline basis. The two-electron Hamiltonian has then b
diagonalized in a basis of two-electron configurations, up
a number of 400.

B. Nuclear wave functions

The initial vibrational wave function is written as a line
combination ofB-spline functionsBj

k of orderk,
ta

in

e
s

-

is

te

ed

by

ns

e
n
o

xn~R!5R21(
j

dn jBj
k~R!. ~41!

The coefficientsdn j are obtained by diagonalizing Eq.~6! in
the Bj

k basis. TheB splines are defined in an interva
@0,Rmax#. The knot sequence is linear with additional kn
points in the borders so thatBi(0)5Bi(Rmax)50 for all i .
Here we have used 240B splines withk58 andRmax512
a.u.

We use the same procedure to obtain thexv vibrational
functions associated with the nonresonant electronic c
tinuum state@see Eq.~28!#. This leads to both bound vibra
tional states and discretized vibrational statesx̃ v with ener-
giesW̃v that satisfy

@T~R!1E0~R!2W̃v# x̃ v~R!50, ~42!

with

^ x̃ vu x̃ v8&5dvv8 . ~43!

The continuum vibrational states normalized to ad function
on the energy scale are then given by

xv~R!5r1/2~W̃v! x̃ v~R!, ~44!

wherer is the density of states which can be approximat
written

r~W̃v!5
2

W̃v112W̃v21

. ~45!

The most difficult part is the evaluation of theja lvE
r wave

functions from Eq.~23!. These functions contain informatio
about the interference between the resonant and nonreso
dissociation processes. At photon energies for which re
nant effects in H2 are observed, theja lvE

r functions oscillate
strongly. Moreover, Eq.~23! is nonlocal, i.e., it couples the
jav lE

r functions associated to different channels and differ
energies. For these reasons, a numerical solution of Eq.~23!
is very difficult and much slower than an algebraic soluti
using an expansion in a finite state basis. We have defi
such a basis as the eigenfunctions resulting from the dia
nalization of the Schro¨dinger equation

@T~R!1Er~R!2Wk#Ỹk~R!50 ~46!

in the basis ofB-spline functions indicated above. Then w
use the$Ỹk% functions to expandjav lE

r . Substituting

jav lE
r ~R!5(

i
cav lE

r ,i Ỹ i~R! ~47!

into Eq.~23!, projecting into theỸk functions, and using Eq
~46!, one obtains the system of linear equations

(
i

cav lE
r ,i @~E2Wi !d i j 2Dj i

r #5Bav lE
r , j , ~48!

with
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Dj i
r 5 lim

h→0
(
r 8

(
a8 l 8

E(
v8

` E( dE8

3
1

E2E81 ihE dR8Ỹ j* ~R8!Va8v8 l 8E8
r

~R8!

3E dR9Va8v8 l 8E8
r 8 * ~R9!Ỹ i~R9! ~49!

and

Bav lE
r , j 5E dR8Ỹ j* ~R8!Vav lE

r ~R8!, ~50!

which provides the unknown coefficientscav lE
r ,i . In the pre-

vious equation, the integral overv8 ~the continuum part of
the vibrational spectrum! was performed using the quadr
ture provided by the discrete energy eigenvaluesW̃v8 of Eq.
~42!. This is a standard procedure used in many differ
situations involving the vibrational continuum of a molecu
@7,33#. It implies that thev8 integral is replaced by a sum
over discretized levels, and that theVav lE

r (R) matrix ele-

ments are replaced byṼav lE
r (R)5^f r uQHelPuca l e

01 & x̃ v(R)
@see Eq.~24!#. The integral overE8 is performed numerically
in a grid $Ek8% with a sufficiently small step sizeDEk8 . In
order to evaluate the contribution arising from the pole,
grid is chosen so that the pole conditionE5E8 is satisfied
exactly by one of the grid points. The values ofe8 that are
compatible with both the quadrature inv8 and E8 are ob-
tained from the energy conservation conditionEk85ek81W̃v8
@see Eq.~29!#. In general, the discretization procedure th
we used to evaluate the electronic continuum wave func
yields a discrete energy spectrum that is different from
$ek8% one resulting from the previous condition. This proble
is solved in practice by simply interpolating the calculat
Vav lE

r (R) matrix elements to the required energy. The sa
double-quadrature procedure has been used to evaluat
last term in Eq.~31!. Convergence of the results can b
checked by both decreasingDEk8 and increasing the densit
of continuum vibrational states. The latter can be achie
by enlarging the box where theB-spline basis is defined.

IV. CALCULATIONS

As mentioned above, the electronic wave functions u
in the present work were taken from Refs.@23,30#, in which
convergence of various electronic properties was discus
in detail. Figure 1 shows the potential-energy curves that
relevant for the present study. Since resonance effects
photon energies smaller than 30 eV are expected to be d
nated by the lowest doubly excited states, in all calculati
presented here we have included only the lowest1Su

1 state
and the lowest1Pu one. These states also have the larg
autoionization widths. They lie above the ionization thres
old at short and intermediate internuclear distances. AR
5Rc , their energies cross the ionization threshold, and
states lose their autoionizing character.~For instance, the
lowest 1Su

1 resonance, which is mainly described by
2psu2ssg configuration, crosses the 1ssg ionization thresh-
old at Rc.4.1 a.u.!. As R increases, the resonance sta
t

e

t
n
e

e
the

d

d

ed
re
or
i-

s

st
-

e

s

cross the 1ssgnll Rydberg series and dissociate in
H~1s!1H(n>2). However, these dissociation limits are n
well described by our calculatedf r states. Indeed, the part
tion of the problem into orthogonalP andQ subspaces im-
plies that all configurations containing the 1ssg orbital of
H2

1 are excluded from theQ subspace. In the region of lon
internuclear distances this procedure leads to states
equal contributions from covalent H1H configurations and
ionic H11H2 configurations. Hence the calculated sta
can never yield the correct dissociation limit H~1s!1H(n
>2). In order to solve this difficulty at long internuclea
distances, we used the diabatic potential-energy curves
culated by Borondo, Macı´as, and Riera@34# for R.6.0 a.u.
These curves tend to the correct dissociation limit, and h
been smoothly connected to our results forR<5.0 a.u. The
diabatic states of Ref.@34# were obtained by diagonalizing
the matrix of nonadiabatic couplings in a basis containing
lowest adiabatic states of the same symmetry~e.g., three
states in the case of the1Su

1 symmetry!. Since autoioniza-
tion below the threshold is not allowed, all electronic mat
elements involving the interaction between these diab
states and the nonresonant statesca l e

01 have been made zer
beyondRc . Also, in Eqs.~23! and~31! we replaced*SdE8 by
*dE8, i.e., excluded summation over bound electronic sta
because contributions from the latter to the ionization p
cess is expected to be negligible.

Now we focus on the accuracy of the calculated nucl
wave functions as well as on the resulting photoionizat
cross sections. First we analyze the accuracy of the me
that consists in expanding the nuclear wave funct
jav lE

r (R) in an L2 basis$Ỹ i(R)% built from B-spline func-
tions. For this purpose one has to compare with results
tained from numerical calculations. Since the latter are v
difficult to perform using Eq.~23! directly, we have carried
out such a test in the framework of the local approximat
discussed in Sec. II C@see Eq.~33!#. In Fig. 2 we present the
nuclear wave functionjav lE

r (R) associated with the lowes
1Su

1 doubly excited state, calculated by solving Eq.~33!

both numerically and using an expansion over theỸ i(R)
basis. The plotted wave function corresponds toE5
20.1723 a.u.~i.e., v527 eV! and Wv520.3824 a.u., and
has been obtained for the dominantl 51 partial wave~see
below!. The numerical solution has been obtained using
standard Numerov method following a procedure descri
by Allison @35#. TheỸ i(R) basis has been represented us
B-spline functions, as explained in Sec. II B. Then we solv

FIG. 1. Potential-energy curves of H2 and H2
1.
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1012 57I. SÁNCHEZ AND F. MARTÍN
Eq. ~33! using the method described in Sec. III B. In order
avoid unphysical border effects due to the presence of
artificial potential wall placed atR5Rmax, we included a
short-range absorbing potential in the close vicinity ofR
5Rmax. Introduction of this potential has no influence on t
description of the inner part of the wave functions, but
essential in order to fulfill the asymptotic behavior given
Eq. ~A1! ~see the Appendix for a more detailed discussio!.
Complex absorbing potentials have been widely used
many other contexts, and applications are well documen
in the literature@36#. Figure 2 shows that the wave function
calculated withB splines are indistinguishable from the n
merical ones except, of course, in the vicinity ofR5Rmax.
The L2 wave functions go to zero nearRmax, thus implying
that the procedure is accurate provided that the inte
@0,Rmax# contains the relevant interactions. Hence a go
check of the accuracy is invariance of the results when
box length is increased.

We also analyzed convergence of the results with res
to the number of angular momenta included in Eq.~1!. In
Fig. 3 we show the contribution of the different terms for t
1Su

1 final symmetry and a photon energyv520 eV. It can
be observed that convergence is achieved very rapidly:
term corresponding tol 51 is nearly three orders of magn
tude larger than that corresponding tol 53. This is so for all
photon energies investigated in this work. Hence, in orde
simplify the present calculations to a reasonable amoun
computer time, we have only retained the leading terml
51) to obtain all the results presented in Sec. V. Figur
shows that results obtained in this way will be affected by
error of 0.5% or less. It must be stressed here that this
cedure is not equivalent to the usual static exchange app
mation, which assumes that the outgoing electron is alw
in an l 51 continuum orbital@11#. Indeed, as mentione
above, our method allows for interchannel coupling betwe

FIG. 2. Nuclear wave functionjav lE
r of H2 for E520.1723 a.u.

~i.e., v527 eV! and Wv520.3824 a.u.~i.e., 1.6-eV protons! ob-
tained in the local approximation. Dotted line: numerical solution
Eq. ~33!; full line: algebraic solution in aB-spline basis using an
absorbing potential~see text!. ~a! Real part.~b! Imaginary part.
e
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different partial waves, i.e., the incoming~outgoing! electron
in the l 51 partial wave leads to outgoing~incoming! elec-
trons in all partial waves included in the basis. Therefo
inelastic scattering froml 51 to l 8Þ1 is included in the
present calculations. In the present work,l 8 goes from 0 up
to l max58.

We have also checked the accuracy of the quadrature
cedure explained in Sec. III by increasing the value ofRmax.
In all cases, the energy integrals have been performed u
DE850.01 a.u. In Fig. 4 we show the cross sections obtai
for two different values ofRmax. The effect of enlarging the
box from Rmax56 a.u. toRmax512 a.u. is only to provide
more points in the resulting cross section. We can see in
figure that the interpolated cross sections are practically
distinguishable for all values of the proton kinetic energ
This means that the cross sections for dissociative photo
ization are practically converged forRmax512 a.u. Inciden-
tally, cross sections for photoionization that leave the H2

1

ion in a bound vibrational state are also converged for
lowest values ofv. For highv, the value ofRmax could be
probably too small~the outer turning point is very far!, but
this would not be a serious constraint to evaluate total pho
ionization cross sections because the contribution from
region just below the dissociation threshold is very sm
@37#.

Finally, some comments are appropriate concerning

f

FIG. 3. Contribution of the different partial waves to the1Su
1

dissociative photoionization cross section of H2 at v520 eV.

FIG. 4. Invariance of the1Su
1 dissociative photoionization cros

sections with the size of the boxRmax used to define the nuclea
B-spline basis. Full line:Rmax512 a.u.; stars:Rmax56 a.u. The pho-
ton energy is 26 eV.
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57 1013RESONANT DISSOCIATIVE PHOTOIONIZATION OF H2 AND D2
invariance of the cross sections with respect to the ga
used in the calculations. In Ref.@30# we checked that, in the
fixed nuclei approximation, the electronic wave functions
to converged results in the velocity gauge. Although we
not try to reach convergence in the length gauge, the c
sections obtained in the latter gauge differed by less t
10%. Therefore, for the sake of consistency, all the res
presented in the following sections have been obtained u
the velocity gauge. It must be recalled here that, since we
using the Born-Oppenheimer approximation, results obtai
with the length and velocity gauges will never be identic
However, the differences are usually very small in the fram
work of this approximation, so that computation of cro
sections using a single gauge is still meaningful~see Ref.
@28# for a detailed discussion!.

V. RESULTS AND DISCUSSION

A. Differential cross sections

In Figs. 5 and 6 we show the calculated KED of proto
for the 1Su

1 and 1Pu final symmetries of H2 in the photon
energy rangev525–28 eV. Results for the D2 molecule are
shown in Figs. 7 and 8. As is well known@9#, for protons and
deuterons observed at 0° with respect to the polariza
vector of the incident radiation, the only contribution to t
cross section comes from the1Su

1 continuum, whereas fo
90° only the1Pu continuum is observed. For this reason,
Fig. 9 we compare the calculated1Su

1 cross section with the
spectra measured by Ito, Hall, and Ukai@16# at 0°. We do
not present any comparison at 90° because no resonant s
ture is observed either in our results or in the experime

FIG. 5. KED spectra of H2 for protons detected at 0° (1Su
1

contribution!.
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FIG. 6. KED spectra of H2 for protons detected at 90° (1Pu

contribution!.

FIG. 7. KED spectra of D2 for deuterons detected at 0° (1Su
1

contribution!.
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1014 57I. SÁNCHEZ AND F. MARTÍN
The comparison is made atv527 eV and, since the mea
surements are not given in an absolute scale, we have
malized the experimental spectra to the calculated values
eV. Agreement between theory and experiment is good.
have not tried to obtain results at photon energies higher
28 eV, because doubly excited states not included in

FIG. 8. KED spectra of D2 for deuterons detected at 90° (1Pu

contribution!.

FIG. 9. Comparison between the calculated KED spectra~full
line! and the experimental ones of Ref.@16# ~circles! for protons
and deuterons detected at 0° andv527 eV. ~a! H2. ~b! D2.
or-
t 3
e

an
ur

calculations begin to be populated. In fact, the agreem
between our results and those of Ref.@16# at v528 eV is
worse than at 27 eV and below.

In the absence of resonant effects, the cross section
creases almost exponentially as the proton energy incre
@7#. This kind of behavior is observed for the1Pu con-
tinuum, which is consistent with the experimental results
v<27 eV @16#. Resonant effects are not observed in th
case because the autoionization lifetimes of theQ1

1Pu
doubly excited states~see Fig. 1! are larger than the time
required for dissociation. The experiment of Ref.@16# shows
that in order to see resonance effects in the 90° spectrum
should go to higher photon energies (v>28 eV!, so that
Q2

1Pu doubly excited states, which have a much shor
autoionization lifetime, can be excited@38#. In contrast with
the 1Pu continuum, the KED spectrum for the1Su

1 symme-
try of H 2 ~see Fig. 5! shows the existence of several we
defined peaks in the whole range of photon energies inve
gated here~e.g., atv527 eV there exist two peaks at.1.5
and 3 eV!. The same peaks are obtained for D2, but they are
less apparent because the effective Franck-Condon regio
smaller than for H2 @16#. The low-energy peaks in Fig. 5
were observed very recently by Ito, Hall, and Ukai@16# and
they are well reproduced in our calculations~see Fig. 9!.
These peaks have not been assigned in previous works.
peak at higher energies has been observed by Strathdee
Browning@10#, and has been assigned to the lowestQ1

1Su
1

resonance, which has a short autoionization lifetime@23#.
The origin of the peaks observed in Figs. 5 and 7 can
explained with the help of Fig. 10~see also Ref.@24#!. This
figure shows the resonant and nonresonant contributions
arise from each term in the right-hand side of Eq.~31!. Three
important conclusions can be extracted from this analy
First, the nonresonant contribution exhibits the typical exp
nential decay of a KED spectra far from the resonance
gion. Second, the resonant contributions explain the e
tence of the high-energy peak. The same conclusion
obtained by Kirbyet al. @12# using a local approximation an
a wave function that only included the first resonant term
Eq. ~31!. However, note that the total resonant contributi
includes the first and third terms in Eq.~31!, and that the

FIG. 10. Contributions to the KED spectrum of H2 of the dif-
ferent terms entering the definition of the total wave function giv
in Eq. ~31!. Full line: exact results; dotted line: resonant contrib
tion corresponding to the first term in Eq.~31!; chain line: resonant
contribution corresponding to the third term in Eq.~31!; dashed
line: nonresonant contribution corresponding to the second term
Eq. ~31!.
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57 1015RESONANT DISSOCIATIVE PHOTOIONIZATION OF H2 AND D2
importance of both terms is comparable. The third and m
important conclusion that can be extracted from Fig. 10
that a simple incoherent addition of the resonant and n
resonant contributions does not lead to the low-energy p
Thus the origin of such a peak lies in the strong interfere
between the amplitudes associated with the resonant
nonresonant parts of the wave functions. Although the e
tence of interference effects is not surprising~e.g., they are
the basis of the Fano profiles observed in atomic photoe
tron spectroscopy@39#!, the large magnitude of the addition
peaks in the KED spectra is quite unexpected. Indeed,
can be even more pronounced than the resonance peak
~see, for instance, the spectrum atv525 eV in Fig. 5!. The
fact that these additional structures are not very far from
region where the cross section decreases very rapidly
explain why they have remained undetected for a long tim
and why they are not seen in the experimental spectra of2.
Indeed, in the latter case, the low-energy peaks are alw
below 1 eV~see Fig. 7! and the energy resolution used in th
experiment is probably too small to separate them from
exponentially decreasing background. It can be also
served that, asv increases, the positions of the peaks shift
higher energies. Moreover, atv527 eV and for H2, a third
peak starts to develop near the dissociation threshold, a
becomes quite apparent at 28 eV~see Fig. 5!. Although its
maximum lies below 1 eV, the experiment is able to rep
duce the high-energy side of the peak@16#. As a conclusion,
the present results show that the usual semiclassical pic
in which the resonance is populated more or less efficien
and then the nuclei separate as the superexcited mole
slides down the potential curveEr(R) toward larger internu-
clear separations is not substantiated. In particular, disc
ancies between theoretical and experimental autoioniza
widths @18,19# might be due to the use of this semiclassic
model to extract the widths from the measured spectra.

B. Integrated cross sections

We have integrated from 0 toEmax the KED spectra of
Figs. 5–8 for the1Su

1 and 1Pu symmetries and for variou
photon energies.Emax is the maximum energy available fo
the relative nuclear motion at a given photon energy,Emax
5Wgn1\v2E0(`). The resulting total dissociative photo
ionization cross sections are shown in Figs. 11~a! and 12~a!.
As for the KED spectra, the peaks observed here come f
the 1Su

1 channel, and practically no structure is obtained
the 1Pu channel. For H2, we have compared our results wi
the absolute measurements of Chunget al. @40#. It can be
seen that both experiment and theory agree in predictin
rapid rise of the total cross section abovev.27 eV. This is
mainly due to resonance effects through the lowest1Su

1

doubly excited state. Forv>30 eV, higher doubly excited
states are populated, but as they are not included in
present calculations, the theoretical cross section begin
decrease instead of keeping rising. Figures 11~b! and 12~b!
also include results obtained by stopping the integration
Ef50.08 eV (Ef!Emax). For the purpose of discussion, w
have also included in the figures the zero kinetic-ene
spectra measured by Heet al. @17# normalized to our results
at v520 eV. The latter have been obtained in arbitrary un
by collecting protons~and deuterons! with energy smaller
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than 0.01 eV (Ef50.02 eV!. We have not attempted to obtai
a ‘‘zero-energy’’ spectrum due to the large number of poi
required near the dissociation threshold. However, one
see that for both H2 and D2 we obtain two peaks almost in
the same positions as in the experiment. Furthermore,
Ef50.08 eV, the shapes of both structures tend to the exp
mental ones. In the case of the H2 molecule, the peak a

FIG. 11. Dissociative photoionization cross section of H2 as a
function of photon energy.~a! Total cross section. Line: presen
results; dots: experiment of Ref.@40#. ~b! Thin line: present results
for protons with energy smaller than 0.04 eV (Ef50.08 eV!; thick
line: experiment of Ref.@17# for protons with energy smaller tha
0.01 eV~normalized to the theory atv520 eV!.

FIG. 12. Same as Fig. 11 for D2.
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1016 57I. SÁNCHEZ AND F. MARTÍN
higher energies appear atv.29 eV, which is the energy
required to populate the lowest1Su

1 resonance state, assum
ing that this state is formed in a Franck-Condon transit
from the ground state@17#. The peak at lower energies is th
result of the interference of the lowest1Su

1 resonance with
the nonresonant background. In contrast with Ref.@17#, we
do not need to include a1Sg

1 resonance state to account f
this low-energy peak. The peaks observed atv>30 eV cor-
respond to resonant states not included in the present c
lations. Similar conclusions can be obtained in the case
the D2 molecule, although the resonance structures are e
more pronounced.

C. Validity of the local approximation

Figure 13 shows a comparison between the KED sp
trum of H2 presented in Fig. 5 for 27-eV photons and th
obtained using the local approximation~see Sec. II C!. Re-
sults obtained with the theory of Sec. II B and the local a
proximation are very close, but those obtained with the
proximate wave function~37! strongly differ from the
former. Furthermore, the discrepancies between length
velocity results are much smaller for the theory presente
Sec. II B and the local approximation~around 20%! than for
the local approximation that makes use of the simplifi
wave function~37!. In the latter case, the discrepancies b
tween gauges are of the same order of magnitude as
results themshelves. Consequently, a local approxima
that makes use of Eq.~37! instead of Eq.~36! is not able to
provide results to a quantitative level.

VI. CONCLUSION

We have presented a systematic study of dissocia
photoionization of H2 and D2 for photon energies below
.30 eV. The theoretical method makes use ofB-spline func-
tions to describe the electronic and nuclear motions, and
coupling between them. We have shown that strong inter
ence effects between resonant and nonresonant amplit
are responsible for the appearance of unexpected struc
in the dissociative photoionization spectra of H2 and D2.
Since these structures are the result of the quantal beha
of both electrons and nuclei, none of the semiclassical m

FIG. 13. Comparison between the KED spectrum of H2 for v
527 eV, obtained using the theory of Sec. II B~full line!, the local
approximation with the complete wave function of Eq.~36! ~dashed
line!, and the local approximation with the simplified wave functi
of Eq. ~37! ~dotted line!.
n
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els which have been previously applied to this problem c
account for the observed interference effects. Our anal
shows that the usual one-to-one correspondence betwee
served peaks and resonances is no longer valid to inter
dissociative photoionization spectra. Indeed, for photon
ergies smaller than 28 eV, the various peaks observed ex
mentally can be explained in terms of a single1Su

1 doubly
excited state. We have also investigated the validity o
local approximation to evaluate the final-state wave functi
and shown that it is a reasonable approximation provid
that the final-state wave function includes all the reson
terms arising from the theory as well as the interference
tween them.
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APPENDIX

The asymptotic behavior of theja lvE
r wave functions de-

fined in Eq. ~23! @or alternatively in Eq.~33!# is given by
@35#

ja lvE
r ;F~E!expF i S kvR2

1

2
Jp1lJD G , ~A1!

whereF(E) is a complex number,kv
252m@v2Er(`)# ~or,

equivalently, kv
252m@E2Wgn2Er(`)#, with Wgn the

ground-state energy!, andlJ5lJ
R1 ilJ

I is a complex phase
shift describing the scattering by a complex potential@see
Eq. ~23!#. From Eq.~A1!, the asymptotic behaviors of th
real and imaginary parts ofja lvE

r are

Re@ja lvE
r #;2A sin~ kvR2 1

2 Jp!1Bcos~ kvR2 1
2 Jp! ,

~A2!

Im@ja lvE
r #;B sin~ kvR2 1

2 Jp!1Acos~ kvR2 1
2 Jp! ,

~A3!

where

A5e2l I
@FRsinlR1FIcoslR#, ~A4!

B5e2l I
@FRcoslR2FIsinlR#, ~A5!

and

F5FR1 iFI . ~A6!

Equations~A2! and ~A3! show that the real and imaginar
components of the wave function have different amplitud
and phase shifts. By enclosing the system in a box of len
Rmax, both components are forced to vanish atR5Rmax,
which is not consistent with the above asymptotic behav
This problem is solved in practice by introducing an abso
ing potential in the vicinity ofR5Rmax. In this work we
have used an absorbing potential of the form
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y~R!5H 0 for R<R
iM ~R2R!2 for R.R,

~A7!

whereR5Rmax2«R ~with «R51 a.u.! andM530 a.u. The
large value ofM ensures that all the density is absorb
before the wave function reaches the borderR5Rmax. In a
nu

M

.

n,

m

J

.

n,
time-dependent picture, this avoids unphysical reflections
the potential wall atR5Rmax. Since«R is rather small com-
pared to the box size, the effect of the absorbing potentia
reduced to a very small region nearR5Rmax. In this way,
the wave function is practically unaffected forR,R ~see
Sec. III C!.
K.
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