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Semiclassical formula for oscillator strengths in atomic spectra
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A simple semiclassical formula is given for the oscillator strengths of high Rydberg states of a hydrogen
atom in an electric field. The oscillator strength of a state is proportional to the square of the function
representing the quantum angular distribution of outgoing waves, evaluated at the classical angle of ejection
from the atom that sends the electron into a semiclassically quantized eigentrajectory. The formula gives an
interpretation of the envelopes of Stark manifolds in photoabsorption spectra; it is in good agreement with
qguantum calculations. The formula may also be used for other integrable or near-integrable systems.
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PACS numbd(s): 32.60+i

INTRODUCTION Il. OSCILLATOR STRENGTHS

Semiclassical approximations are widely used for calcu- The oscillator strength densitp(E) from a specified

lation of excited energy levels. The standard modern frame'—nltlal statel is defined as

work is the Einstein-Brillouin-Keller-MarcuéEBKM) torus )
quantization methofil]. It is easy to use, it has been widely Df(E)=>, fl8(E—E,), 3
applied, and it is known to give accurate energy levels for "
exc[ted states In the I'm.'hﬂo'” However, it does not so Wherefin is the oscillator strength for the transition from state
easily give other properties of quantum states. For examplg,to staten
the calculation of oscillator strengths requires much more '
work, and the accuracy of the results is less certain. In this fl =2|(4| D] ) A(En—E)), (4)
paper we develop a simple expression for oscillator strengths
for a hydrogen atom in an electric field, and we show bywhereD is the relevant component of the dipole operator.
comparison with quantum calculations that the formula is  The EBKM method can be used to calculate approximate
accurate. wave functions, and therefore to calculate all other observ-
able properties of an atomic system; in particular, it can be
|. TORUS QUANTIZATION used to calculate oscillator strengths. Some effort might be
The EBKM theory is also known as theorrected Bohr- Z
Sommerfeld quantization scheme, or as “torus quantiza-
tion.” The method begins from the presumption that, for the
system of interest, classical dynamics is integrable. If there
exists a canonical transformation from the original phase-
space coordinate®,q) to action-angle variabled, ), then

From this continuous family of tori, we pick out a particu-
lar discrete set, the “eigentori,” or “eigentrajectoriegFig.
1). These are the tori that have appropriately quantized val-
ues of action variables

the classical trajectories foliate phase-space as a family of ; /;«Qy‘ v
tori. Each torus is labeled by the values of the action vari- \\’/Q /
ables,|, and the motion on each torus is quasiperiodic. ~~ 4”

| =(n+ N4, (1)

wheren is a vector of integers, anxlis the vector of Maslov

VWIS : > : ! FIG. 1. Three trajectories of an electron in the final state with
indices(in our caseh=2). The energies of the eigentori

m=0 (arbitrary unit3. The external electric field is directed along
the z axis. Bold lines show two closed trajectories with the ratio of
H(1)=H((n+N4)h) 2) periods equal to 1/2 and 2/3. Their shapes depend only on scaled
energye=E/FY2, and are shown foe=—1. The thin line is a part
of the eigentrajectory fon;=35 andn,=3 in an external field of
are approximations to the quantum energy levels of the sys282.39 V/cm. This trajectory corresponds to the ejection eigenangle
tem. ©®=31.46°. It is quasiperiodic, not necessarily closed at the origin.
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required, however. Primitive semiclassical wave functiong=or example, if the initial state & (I=0), and the radiation
diverge at caustics and foci, and they have to be repaireds z polarized, thenY(#) is a constant times cas Finally,
also one typically needs some integral of the wave functiorB, is the classical amplitude for the closed orbit,
to calculate the desired quantitsuch as oscillator strength
From such integrals it may be difficult or impossible to ex- By=ro ¥ a6:156,|*? (10)
tract simple analytical expressions, and the accuracy of such
expressions may be unknown. In contrast, quantum methodghich is related to the divergence of neighbors from the
are often easy to automate, and they give accurate numbeggntral closed orbit. Additional details are in RES].
but they might not give much physical insight.

IV. CONNECTION

I1l. CLOSED-ORBIT THEORY
There must be a correspondence between Bysand(5),

A quite different semiclassical method is the periodic-since they both represent the same observable quantity. For
orbit theory of Gutzwiller[2] and its application to atomic the density of states, Berry and Tab& established the
spectra, which is called closed-orbit the@8}. This theory is  correspondence between Gutzwiller's periodic-orbit formula
especially useful for calculating the large-scale structure ofind the EBKM formula. We have recently derived the cor-
the absorption spectrum of an atom in applied electric and/oresponding connection between E3). and (5) for the os-
magnetic fields. This theory gives a simple formula for thecillator strength density. The derivation is long, and the de-

average oscillator strength density: tails will be published in the future. Here we report that we
obtained from this connection a simple semiclassical formula
_ - for oscillator strengths of individual level$, . The deriva-
Df(E)=Dfy(E)+ 2, C(E)sinA(E). 5 . - on
(E) o) Zk «(E) «(E) © tion and the formula apply to general integrable and near-

integrable systems. Below we consider the case of a hydro-
HereDf(E) is the same quantity as in E@). Df,(E) is the gen atom in a uniform electric field.
“background absorption"—the oscillator strength density
that would be present if the electron direqtly escaped from V. HYDROGEN IN AN ELECTRIC FIELD
the atom and never returned. The sum is over all closed
orhits, including repetitions. A closed orbit is a path of the The Hamiltonian is
electron that begins and ends at the nucldtg. 1). A (E)
is equal to the classical actioB(E)=;p-dq around the H=p%2- 1 +Fz=E. (13)
closed orbit, plus certain corrections associated with Maslov o
indices. C,(E) is a quantity we call the recurrence ampli- AZimuthal motion is ignorablgwe takel,=0), and the

tude. In atomic units it is equal tat] variables are separable using semiparabolic coordinates
C(E)=C(E-E)sO,Y(01B,.  (© u=(r+2)=r' cod612), 12
For this paper, the important quantity|%(©,)|?. Here®, v=(r—2)">=r2sin(6/2).

is the ejection angle and the return angle of ktle closed

orbit (for a hydrogen atom in an electric field, the orbit re- Using also a scaled time defined such thatit/dr=r, the
turns to the nucleus from the same direction that it went.out effective Hamiltonian become¥=H,+H,, where

Y(®) is the angular distribution of outgoing waves as calcu-

lated from quantum mechanics. If there were no external Hy=pi2— EW?+Fu*2=1+8, 13
fields applied to the atom, and if the laser were tuned to such
a frequency as to produce outgoing electrons with total en- H,= pf/Z— Ev?—Fv%2=1-p.

ergy equal to zero, then the resulting wave function would be )
the Green’s function acting on the dipole function times theln the Schrdinger equation we replaqeﬁ by (u~ta,ud,),

initial state and similarly forp?. B is the separation constant, and has
N ) a the range—1<p<1. From Egs.(13) it follows that each
Ge_oD|ii)=CalexpiV8r)/r¥Y(0,¢), (7)  state is labeled by two parabolic quantum numbers

=(n4,n,) corresponding to the two action variables

with Y(6,¢) being the angular distribution of these Waves(I ), which are quantized as
usrstov/

[4]. For example, ifm;=0 in the initial and final states,

|U(E,5):(1/w)f0u°¢2(1+g+ Eu®)—Fu“du

Y(6)=2 (=1)'bil(n,11.DYi 6.0, ®
Whgrebi isa _CIebsch-Gordan coef_fi(_:i_ent, ah@; l;,1) isa =(ny+1/2)%, (14)
radial d|pole_|ntegral between the _|n|t|al state (| i)_ and the o
regular zero-energy Co;lomb radial wave function, I|,(E,B)=(1/m) fo J2(1= B+ Ev?) + Fuldv
I(ni,li,n:Jo RY™Y1)Ry, 4 (N)r3dr. 9) (12,
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FIG. 2. Photoexcitation spectrum from the 4tate of a hydro-
gen atom to Stark manifolds= 17 to 23(energy in hartrees; oscil-
lator strength is dimensionless$-or these plots, the absorption lines
were artificially widened. The semiclassical formules) (upper
part of graphsis compared to a quantum calculatidower part of
graphs; the latter was provided to us by Robicheaux. Light is po- e
larized parallel to (h=0) or perpendicular tori=1) the electric ) ) ) o .
field. The bold lines are the envelopes of Stark manifolds. These FIG. 3. Combined plot showing the semiclassical interpretation

envelopes repeatedly show the shape of the angular distribution cﬂi the envelopes of spectral lines in the photoabsorption spectra in
electrons ejected from the atom as explained in Fig. 3 an external electric field. Presented is the case of photoexcitation

from the Is initial state of a hydrogen atom by the laser fié¢&l
polarized parallel to the external field axis, which populates the
final states withm=0 and (b) polarized perpendicularly, which
populates the final states with=1. Starting from the upper right
part of plot(clockwise: (1) The factorR [Eq. (16)] plotted against

where (Ug,v() are the turning points of the or v motions
(first zero of the integrand These quantization conditions
imply that both the energf and the separation constg8t

are quantized. _ . the values ofY(#6)|? is almost constant within a manifol2) The
The separation constan8 has an important physical g anp of the angular distributidiy(6)|2, which is co26 in case(a)

meaning. If we se{8,= co,, then O, is the angle at  and sidgin case(b). (3) The dependence of the ejection an@len
which thenth eigentrajectory intersects the origifig. 1).  energy within a Stark manifold; the bullets show the ejection eigen-
Each eigentrajectory not only has a characteristic energy, b%m%@n n,.m VS eigenenergie&, , n. (4) The resulting ab-
also a characteristic angle, which we call the “ejectionsorption spectrum—the oscillator strength denSify(E) as a func-

angle”: electrons going out from the nucleus in the directiontion of energy, with the envelope that essentially mimics the shape
0, with energyE,, find themselves on theth eigentorug6].  of the angular distributionY (6)|2.

VI. SEMICLASSICAL FORMULA The_ oscillator s;rength is proportior_1al to the angular distri-
FOR OSCILLATOR STRENGTH bgtlon of outgoing waves at the ejection angle of tith
eigentorus. It also contains the Jacobian of the transforma-
The formula for the oscillator strength of each state is tion from the conserved quantitids and 8 to action vari-
ables (y.,!,); this we have found to be a slowly varying
=R[Y(0,)[%, (15  factor.
Let us examine the consequences of this formula before
R=(8m)(E,—E)|d(E,B)d(1,1,)]. (16) explaining it more fully. In first order, the energy levels, the
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separation constant, and the ejection angle are given by trepondence between the eigenvalues of energy and those of

formulas[7], ejection angle.(It is interesting that the extreme possible
ejection angles, 0 and, can never be the eigenvalues. For
E=—1/(2n*+(3/2n(n;—ny)F, (17 such ejection angles, the electron would stay on the field axis
for an infinite time, violating the uncertainty principle. For
B=cos=(n;—n,)(—2E)*2, (18

the envelope of the absorption lines, this cuts the tails from
the graph of|Y(6)|%.) Finally, the graph of the oscillator
strength density vs energy is presented in the upper left part
of Fig. 3, together with its envelope. The envelope therefore
is a map of the shape of the angular distribution. It is re-
epeated in every Stark manifolevhether they overlap or npt

as was seen in Fig. 2.

E=—1/(2n?)+(3/2)n’FcoMW. (19

Here n is the principal quantum numben€n;+n,+m
+1) andm is the magnetic quantum numbém all of our
calculations we show the exact numerical solutions to th
semiclassical equatiord4); the qualitative behavior is un-
derstood from the first-order equatio(is’)—(19).]

In Fig. 2 we show Stark manifolds fon=0 andm=1 CONCLUSION
with the principal guantum numbervarying from 17 to 23. . ) ) i
The lower manifolds are separated, but the higher ones start Y& give @ semiclassical formula for oscillator strengths
to overlap. Also in Fig. 2 our semiclassical formyltes) is  [or the high Rydberg states of a hydrogen atom in an applied
compared with a quantum calculation, kindly provided for uséléctric field. The formula combines three concep(s.
by Robicheaux. Note that in each manifold the oscillatorQuantum: there is an angular distribution of electron waves
strengths show a characteristic shape—a hillrfor 1 or a going out from the atom under the action of a laser fiéid.
valley for m=0. Sem|_cIaSS|caI: e_ach quantum state 0y, m) _correspc_)nq§ to

This shape is a “map” of the angular distribution & unique cIaSS|ca_I trajectory with _quan‘t‘lzed actlohg.) .
IY(6)|2. Figure 3 illustrates the origin of the effect for the Classical: that”trajectory has a unique “angle of ejection
manifoldn=17. In Eq.(15), the factorR is almost constant oM the atom”®(ny,nz,m). The formula says: the oscil-
within a manifold it is plotted in the upper right corer of |ator strength to ther(;,n,,m) state is proportional to the
Fig. 3 vs values of the angular distributidvi(6)|2). There- a}bsolut_e square of the quantum angular function ?t thg guan-
fore the shape of the envelope of the peaks is determined dized ejection anglef, ) m= constx<|Y(On, o, m)|*. This
the angular distribution. Its graph as a function of ejectionformula is tested against quantum calculations and is found
angled is shown in the lower right corner of the Fig. 3. For to be accurate. It explains the shape of the envelope of peaks
ionization from the % initial state of hydrogen by parallel- in the absorption spectra.
polarized light, this is proportional to ct& [Fig. 3a)],
V\{hereas for perpendigulqr p_olarization .it is proportionallto ACKNOWLEDGMENTS
siré [Fig. 3b)]. (For ionization from higher states, or if
spin-orbit coupling is important, the shape is more compli- This research was supported by the National Science
cated) The ejection angled depends monotonically on en- Foundation and by the Office of Naval Research. We thank
ergy within the manifold’compare Eq(19)]. In the lower F. Robicheaux for the quantum calculations, and J. Shaw for
left part of Fig. 3, the bullets on this graph show the corre-suggesting them and for many helpful conversations.
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