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Semiclassical formula for oscillator strengths in atomic spectra

V. Kondratovich and J. B. Delos
Physics Department, College of William and Mary, Williamsburg, Virginia 23185

~Received 3 March 1997!

A simple semiclassical formula is given for the oscillator strengths of high Rydberg states of a hydrogen
atom in an electric field. The oscillator strength of a state is proportional to the square of the function
representing the quantum angular distribution of outgoing waves, evaluated at the classical angle of ejection
from the atom that sends the electron into a semiclassically quantized eigentrajectory. The formula gives an
interpretation of the envelopes of Stark manifolds in photoabsorption spectra; it is in good agreement with
quantum calculations. The formula may also be used for other integrable or near-integrable systems.
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INTRODUCTION

Semiclassical approximations are widely used for cal
lation of excited energy levels. The standard modern fram
work is the Einstein-Brillouin-Keller-Marcus~EBKM! torus
quantization method@1#. It is easy to use, it has been wide
applied, and it is known to give accurate energy levels
excited states ‘‘in the limit\→0.’’ However, it does not so
easily give other properties of quantum states. For exam
the calculation of oscillator strengths requires much m
work, and the accuracy of the results is less certain. In
paper we develop a simple expression for oscillator stren
for a hydrogen atom in an electric field, and we show
comparison with quantum calculations that the formula
accurate.

I. TORUS QUANTIZATION

The EBKM theory is also known as the~corrected! Bohr-
Sommerfeld quantization scheme, or as ‘‘torus quanti
tion.’’ The method begins from the presumption that, for t
system of interest, classical dynamics is integrable. If th
exists a canonical transformation from the original pha
space coordinates~p,q! to action-angle variables~I ,f!, then
the classical trajectories foliate phase-space as a famil
tori. Each torus is labeled by the values of the action va
ables,I , and the motion on each torus is quasiperiodic.

From this continuous family of tori, we pick out a particu
lar discrete set, the ‘‘eigentori,’’ or ‘‘eigentrajectories’’~Fig.
1!. These are the tori that have appropriately quantized
ues of action variables

I5~n1l/4!\, ~1!

wheren is a vector of integers, andl is the vector of Maslov
indices~in our casel52!. The energies of the eigentori

H~ I !5H„~n1l/4!\… ~2!

are approximations to the quantum energy levels of the
tem.
561050-2947/97/56~1!/5~4!/$10.00
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II. OSCILLATOR STRENGTHS

The oscillator strength densityDf (E) from a specified
initial statei is defined as

Df ~E!5(
n

f n
i d~E2En!, ~3!

wheref n
i is the oscillator strength for the transition from sta

i to staten,

f n
i 52z^cnuDuc i& z2~En2Ei!, ~4!

whereD is the relevant component of the dipole operator
The EBKM method can be used to calculate approxim

wave functions, and therefore to calculate all other obse
able properties of an atomic system; in particular, it can
used to calculate oscillator strengths. Some effort might

FIG. 1. Three trajectories of an electron in the final state w
m50 ~arbitrary units!. The external electric field is directed alon
thez axis. Bold lines show two closed trajectories with the ratio
periods equal to 1/2 and 2/3. Their shapes depend only on sc
energye5E/F1/2, and are shown fore521. The thin line is a part
of the eigentrajectory forn1535 andn253 in an external field of
282.39 V/cm. This trajectory corresponds to the ejection eigena
Q531.46°. It is quasiperiodic, not necessarily closed at the orig
R5 © 1997 The American Physical Society
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required, however. Primitive semiclassical wave functio
diverge at caustics and foci, and they have to be repai
also one typically needs some integral of the wave funct
to calculate the desired quantity~such as oscillator strength!.
From such integrals it may be difficult or impossible to e
tract simple analytical expressions, and the accuracy of s
expressions may be unknown. In contrast, quantum meth
are often easy to automate, and they give accurate num
but they might not give much physical insight.

III. CLOSED-ORBIT THEORY

A quite different semiclassical method is the period
orbit theory of Gutzwiller@2# and its application to atomic
spectra, which is called closed-orbit theory@3#. This theory is
especially useful for calculating the large-scale structure
the absorption spectrum of an atom in applied electric an
magnetic fields. This theory gives a simple formula for t
average oscillator strength density:

Df ~E!5Df 0~E!1(
k
Ck~E!sinDk~E!. ~5!

HereDf (E) is the same quantity as in Eq.~3!. Df 0(E) is the
‘‘background absorption’’—the oscillator strength dens
that would be present if the electron directly escaped fr
the atom and never returned. The sum is over all clo
orbits, including repetitions. A closed orbit is a path of t
electron that begins and ends at the nucleus~Fig. 1!. Dk(E)
is equal to the classical actionSk(E)5 Rp•dq around the
closed orbit, plus certain corrections associated with Mas
indices.Ck(E) is a quantity we call the recurrence amp
tude. In atomic units it is equal to@4#

Ck~E!5C~E2Ei !sinQkuY~Qk!u2Bk . ~6!

For this paper, the important quantity isuY(Qk)u2. HereQk
is the ejection angle and the return angle of thekth closed
orbit ~for a hydrogen atom in an electric field, the orbit r
turns to the nucleus from the same direction that it went o!.
Y(Q) is the angular distribution of outgoing waves as calc
lated from quantum mechanics. If there were no exter
fields applied to the atom, and if the laser were tuned to s
a frequency as to produce outgoing electrons with total
ergy equal to zero, then the resulting wave function would
the Green’s function acting on the dipole function times
initial state

GE50
1 Duc i&5C1@exp~ iA8r !/r 3/4#Y~u,w!, ~7!

with Y(u,w) being the angular distribution of these wav
@4#. For example, ifml50 in the initial and final states,

Y~u!5(
l

~21! lbl
i I ~ni ,l i ,l !Yl ,0~u,0!, ~8!

wherebl
i is a Clebsch-Gordan coefficient, andI (ni ,l i ,l ) is a

radial dipole integral between the initial state (ni ,l i) and the
regular zero-energy Coulomb radial wave function,

I ~ni ,l i ,l !5E
0

`

Rl
0,reg~r !Rni ,l i

~r !r 3dr. ~9!
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For example, if the initial state iss ( l50), and the radiation
is z polarized, thenY(u) is a constant times cosu. Finally,
Bk is the classical amplitude for the closed orbit,

Bk5r 0
21/4u]u f /]u i u1/2, ~10!

which is related to the divergence of neighbors from t
central closed orbit. Additional details are in Ref.@3#.

IV. CONNECTION

There must be a correspondence between Eqs.~3! and~5!,
since they both represent the same observable quantity.
the density of states, Berry and Tabor@5# established the
correspondence between Gutzwiller’s periodic-orbit form
and the EBKM formula. We have recently derived the co
responding connection between Eqs.~3! and ~5! for the os-
cillator strength density. The derivation is long, and the d
tails will be published in the future. Here we report that w
obtained from this connection a simple semiclassical form
for oscillator strengths of individual levels,f n

i . The deriva-
tion and the formula apply to general integrable and ne
integrable systems. Below we consider the case of a hy
gen atom in a uniform electric field.

V. HYDROGEN IN AN ELECTRIC FIELD

The Hamiltonian is

H5p2/221/r1Fz5E. ~11!

Azimuthal motion is ignorable~we take Lz50), and the
variables are separable using semiparabolic coordinates

u5~r1z!1/25r 1/2 cos~u/2!,
~12!

v5~r2z!1/25r 1/2 sin~u/2!.

Using also a scaled timet defined such thatdt/dt5r , the
effective Hamiltonian becomesH5Hu1Hv , where

Hu5pu
2/22Eu21Fu4/2511b,

~13!

Hv5pv
2/22Ev22Fv4/2512b.

In the Schro¨dinger equation we replacepu
2 by (u21]uu]u),

and similarly forpv
2. b is the separation constant, and h

the range21<b<1. From Eqs.~13! it follows that each
state is labeled by two parabolic quantum numbersn
5(n1 ,n2) corresponding to the two action variable
(I u ,I v), which are quantized as

I u~E,b!5~1/p!E
0

u0A2~11b1Eu2!2Fu4du

5~n111/2!\,
~14!

I v~E,b!5~1/p!E
0

v0A2~12b1Ev2!1Fv4dv

5~n211/2!\,
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where (u0 ,v0) are the turning points of theu or v motions
~first zero of the integrand!. These quantization condition
imply that both the energyE and the separation constantb
are quantized.

The separation constantb has an important physica
meaning. If we setbn5 cosQn , then Qn is the angle at
which thenth eigentrajectory intersects the origin~Fig. 1!.
Each eigentrajectory not only has a characteristic energy,
also a characteristic angle, which we call the ‘‘ejecti
angle’’: electrons going out from the nucleus in the directi
Qn with energyEn find themselves on thenth eigentorus@6#.

VI. SEMICLASSICAL FORMULA
FOR OSCILLATOR STRENGTH

The formula for the oscillator strength of each state is

f n
i 5RuY~Qn!u2, ~15!

R5~8p!~En2Ei!u]~E,b!/]~ I u ,I v!u. ~16!

FIG. 2. Photoexcitation spectrum from the 1s state of a hydro-
gen atom to Stark manifoldsn517 to 23~energy in hartrees; oscil
lator strength is dimensionless!. For these plots, the absorption line
were artificially widened. The semiclassical formula~15! ~upper
part of graphs! is compared to a quantum calculation~lower part of
graphs!; the latter was provided to us by Robicheaux. Light is p
larized parallel to (m50) or perpendicular to (m51) the electric
field. The bold lines are the envelopes of Stark manifolds. Th
envelopes repeatedly show the shape of the angular distributio
electrons ejected from the atom as explained in Fig. 3.
ut

The oscillator strength is proportional to the angular dis
bution of outgoing waves at the ejection angle of thenth
eigentorus. It also contains the Jacobian of the transfor
tion from the conserved quantitiesE andb to action vari-
ables (I u ,I v); this we have found to be a slowly varyin
factor.

Let us examine the consequences of this formula be
explaining it more fully. In first order, the energy levels, th

-

e
of

FIG. 3. Combined plot showing the semiclassical interpretat
of the envelopes of spectral lines in the photoabsorption spectr
an external electric field. Presented is the case of photoexcita
from the 1s initial state of a hydrogen atom by the laser field~a!
polarized parallel to the external field axis, which populates
final states withm50 and ~b! polarized perpendicularly, which
populates the final states withm51. Starting from the upper righ
part of plot~clockwise!: ~1! The factorR @Eq. ~16!# plotted against
the values ofuY(u)u2 is almost constant within a manifold.~2! The
graph of the angular distributionuY(u)u2, which is cos2u in case~a!
and sin2u in case~b!. ~3! The dependence of the ejection angleQ on
energy within a Stark manifold; the bullets show the ejection eig
valuesQn1 ,n2 ,m

vs eigenenergiesEn1 ,n2 ,m
. ~4! The resulting ab-

sorption spectrum—the oscillator strength densityDf (E) as a func-
tion of energy, with the envelope that essentially mimics the sh
of the angular distributionuY(u)u2.
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separation constant, and the ejection angle are given by
formulas@7#,

E521/~2n2!1~3/2!n~n12n2!F, ~17!

b5cosu5~n12n2!~22E!1/2, ~18!

E521/~2n2!1~3/2!n2FcosQ. ~19!

Here n is the principal quantum number (n5n11n21m
11) andm is the magnetic quantum number.@In all of our
calculations we show the exact numerical solutions to
semiclassical equations~14!; the qualitative behavior is un
derstood from the first-order equations~17!–~19!.#

In Fig. 2 we show Stark manifolds form50 andm51
with the principal quantum numbern varying from 17 to 23.
The lower manifolds are separated, but the higher ones
to overlap. Also in Fig. 2 our semiclassical formula~15! is
compared with a quantum calculation, kindly provided for
by Robicheaux. Note that in each manifold the oscilla
strengths show a characteristic shape—a hill form51 or a
valley form50.

This shape is a ‘‘map’’ of the angular distributio
uY(u)u2. Figure 3 illustrates the origin of the effect for th
manifoldn517. In Eq.~15!, the factorR is almost constan
within a manifold~it is plotted in the upper right corner o
Fig. 3 vs values of the angular distributionuY(u)u2). There-
fore the shape of the envelope of the peaks is determine
the angular distribution. Its graph as a function of eject
angleu is shown in the lower right corner of the Fig. 3. F
ionization from the 1s initial state of hydrogen by parallel
polarized light, this is proportional to cos2u @Fig. 3~a!#,
whereas for perpendicular polarization it is proportional
sin2u @Fig. 3~b!#. ~For ionization from higher states, or
spin-orbit coupling is important, the shape is more comp
cated.! The ejection angleu depends monotonically on en
ergy within the manifold@compare Eq.~19!#. In the lower
left part of Fig. 3, the bullets on this graph show the cor
cs
he
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art

s
r
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n
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spondence between the eigenvalues of energy and thos
ejection angle.~It is interesting that the extreme possib
ejection angles, 0 andp, can never be the eigenvalues. F
such ejection angles, the electron would stay on the field a
for an infinite time, violating the uncertainty principle. Fo
the envelope of the absorption lines, this cuts the tails fr
the graph ofuY(u)u2.) Finally, the graph of the oscillato
strength density vs energy is presented in the upper left
of Fig. 3, together with its envelope. The envelope theref
is a map of the shape of the angular distribution. It is
peated in every Stark manifold~whether they overlap or not!
as was seen in Fig. 2.

CONCLUSION

We give a semiclassical formula for oscillator strengt
for the high Rydberg states of a hydrogen atom in an app
electric field. The formula combines three concepts.~i!
Quantum: there is an angular distribution of electron wa
going out from the atom under the action of a laser field.~ii !
Semiclassical: each quantum state (n1 ,n2 ,m) corresponds to
a unique classical trajectory with quantized actions.~iii !
Classical: that trajectory has a unique ‘‘angle of ejecti
from the atom’’Q(n1 ,n2 ,m). The formula says: the oscil
lator strength to the (n1 ,n2 ,m) state is proportional to the
absolute square of the quantum angular function at the qu
tized ejection angle,f n1 ,n2 ,m5 const3uY(Qn1,n2,m

)u2. This
formula is tested against quantum calculations and is fo
to be accurate. It explains the shape of the envelope of pe
in the absorption spectra.
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