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Multistable localized structures and superlattices in semiconductor optical resonators
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We report on the existence of various periodic transverse patterns and stable localized structures in the
optical field of a planar resonator, which exhibits the defocusing saturable nonlinearity of a semiconductor near
the band edge. We predict multistability of all feasible patterns as well as of the localized states. Being equal
as well as different, stable localized states can organize as clusters or new kinds of periodic (matpams
lattices. The interaction of localized states via their oscillating tails allows the formation of patterns with the
same basic units but with different lattice spacif§1050-294®7)50511-7

PACS numbes): 42.65.Sf, 42.65.Pc

Since the early days of nonlinear optics the optical re-induced bleaching of absorption can be dropped in the evo-
sponse of nonlinear planar resonators has attracted much dition equation for the transverse optical field The driving
tention. Prominent nonlinear phenomena such as bistabilitforce of the system is the incident field denotedugy. The
and various kinds of instabilitieémodulational instability, —equation of motion for the carrier density contains effects
Hopf bifurcation have been predicted theoretically and somesuch as saturatiofsaturation densityN;), diffusion (diffu-
of them confirmed experimentallyfor an overview see Sion lengthLy), and recombinatiofrecombination timeT,).
[1-3] and the references therginwithin the past several The full set of normalized equations reads as
years spatial or spatiotemporal effects have moved into the
center of interest. This concerns in particular the spontaneous
formation of different types of patterns and stable localized
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structures(SLS9. The occurrence of SLSs and organized (1a)
clusters were predicted in the limit of nascent optical bista-
bility in the vicinity of critical points[4]. Further studies [ g 1 Li[a# &
revealed that the formation of SLSs is a more general phe- —t == (—24— —ZHN(X,Y,T)
aT T, T, \ax® oY

nomenon. It could be identified in quasi-one-dimensional
resonators for a focusing Kerr nonlinearity in a wide param- =(Ng—N)[u(X,Y,T)|?, (1b)
eter rangg5]. Later SLSs were predicted to occur in two-

dimensional cavities with saturable focusii§] or saturable whereX andY are the transverse coordinates dndenotes
absorptive medig7,8]. To the best of our knowledge no the time(for details of the normalization s¢8]). To make
multistability of patterns as well as SLSs could be identifiedcontact with a typical experimental situation we specify the
in materials with a defocusing nonlinearity until now. But configuration to be a 0.487@m-thick GaAs cavity sand-
huge nonlinearities of that kind appear in direct semiconducwiched between two Bragg mirrors that consists of(tp)
tors at photon energies slightly below the band edge. Eviand 18(bottom pairs ofA/4 AlAs-GaAs layers, respectively.
dently, it may be anticipated that effects like pattern and SLS-or an excitation ath =897 nm the characteristic scaling
formation can be most easily experimentally verified in thoseguantities are as follows: length, L&n; time, 1 ps; incident
materials. Hence, the aim of this paper is to prove that thesitensity, 7.5< 10*2 V4m?, carrier density, 1.510 2 m™3,
effects may occur in this particular environment, that theséA recombination time of 1 ns and an ambipolar diffusion
patterns and SLSs exhibit multistability, and that new kindsconstant of 22 c#s result inT,~1000,L4~1. The satura-
of patterns on the basis of SLSs can be generated. tion density 1.5x 10°* m2 yields the scaled valull,= 10.

In what follows we restrict ourselves to high-finesse reso-The scaling depends critically on the specific experimental
nators (finesse 10) that exhibit sharp and well-separated situation and may vary by more than one order of magnitude.
Fabry-Peot resonances. These resonances are characterizedrthermore we would like to mention that all following
by a certain field structure perpendicular to the interfaces ofonsiderations hold for vertical cavity surface emitting lasers
the resonator. Following a well-established procedmedal  (VCSELS operated below the threshold too. In that case the
or mean-field theory(see, e.g.}9]) this mode profile can be carrier densityN in the above equations has to be replaced
assumed constant and can thus be separated from the optitgl its deviation from the stationary value defined by the
field. Hence the field equation that is left describes the transdriving current. In the same sense both the saturation density
verse dynamics of the mode amplitudes, whereas the profileand the detuning have to be reduced, respectively. Hence the
only enter that equation via overlap integrals that determin&/ CSEL offers the additional opportunity to tune the effec-
the normalization. The nonlinearly induced refractive indextive value of the saturation densily; by changing the cur-
changes are assumed to be proportional to the deNsity  rent.
the excited carrier$10]. Because absorptive losses in the By solving Eq.(1) in the continuous plane-wav&€PW)
cavity are small compared to the radiative ones the lightfimit (u=uy, N=Ng, up,=u) the intensities|uy|? and
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FIG. 1. Domains of CPW stability and instability in theN,

plane. The inset shows the hysteresis cyresponse curyewhich
corresponds to an excitation along the dashed line. The dotted line

marks the unstable portions; parametefs=1000, L4=1, Ng

=10.

|uf,)1|2 can be expressed as functions of the carrier dehgjty
A second parameter experimentally accessible is the detun-
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ing A of the incident beam from the transmission resonance.
For a given configuration the CPW solutions are entlrelyWhere co§>=1—(32/N§) and — r<®d <.

determined by their location in thA-N, plane. Critical
points that mark the onset of instabilities are situated on Ao

In the wake of each bistable area in theN, plane a
main of modulational instabilityMI) appears. The size of

closed curve in this planesee Fig. 1. Unstable solutions are s \| domain is limited by diffusion. An analytical expres-
located in the interior of that curve. Concerning the carriergign for the boundary can be derived straightforwardly.

density this curve is bounded by the saturation derNity

Another important conclusion can be drawn from Fig. 1.

Destabilizations through both limit points and Hopf bifurca- |f the excitation is such that the detuning is located near the
tions exist. The latter ones only occur for fairly short recom-upper bound of the bistable domain MI may occur above as

bination times compared to the photon lifetim&, £ N/2

well as below the limit point¢see Fig. L This is in contrast

—\2Ny), e.g., in ring resonators. Thus they are not expectedo the case without saturation. Consequently, for a fixed in-
to be relevant for the formation of SLSs in the configurationput intensity a stable CPW solution can coexist with a modu-
studied here. In what follows we restrict ourselves to paramtationally unstable oné¢see dashed line in Fig).1This is a

eter domains where no Hopf bifurcation appears.

For a given detuningfixed experimental situatignthe

system is restricted to a vertical line in theN, plane(“line oS!
of excitation” in Fig. 1. It corresponds to a hysteresis curve fransmission background.

(inset in Fig. 3, which displays the input-output response of
the resonator. Multivalued hysteresis loops occur if the “line
of excitation” crosses regions of CPW instability. The
bistable parameter range in thAeN plane remains finite due
to the saturation of the carrier density. Likewise the nonlin-
early induced shift of the resonance is limited, which mean
that only a certain detuning below a critical value can b
compensated. The boundary of the bistable domain is define

as

AP(Ng) =Ny

2Ns— N
N

n

Ns_ N0

Ns
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strong indication for the potential existence of at least two
types of SLSs, viz., bright SLS&pikes on a stable low-
transmission and dark SLS&ips on a stable high-

As it could be anticipated, Ml may lead to the formation
of stable patterns with the fundamental period related to the
modulus of the wave vector of the perturbation where the Ml
gain is maximum. To analyze how MI develops into patterns
we performed a Fourier expansion similar to that[id],
keeping the zeroth- and first-order terms only. Branches of
Sstationary solutions corresponding to different kinds of pat-
erns (rolls, a hexagonal spike pattern, and a honeycomb
ructure are displayed in Fig. 2. All stable patterns could be
excited numerically by solving the full set of equatiofis
with the approximate solution as initial condition and by
using periodic boundary conditiorisee Fig. 3. Both solu-
tions agree qualitatively.

Some peculiarities are noteworthy. Even if there is no
CPW bistability stable patterns may coexist with a CPW
background. A similar type of pattern bistability was ob-

Thus, the existence of CPW bistability requires that detuningserved for saturable absorptive mefliZ]. Moreover a small

A and carrier densityN, be bounded betweeN,,N; and

AP A

b

. respectively(see Fig. 1

region can be found where three stable patterns coésest
Fig. 3. Furthermore a branch that describes the transition
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FIG. 3. Multistability of stable patternsia) roll pattern, (b)
spike pattern with a local defectc) honeycomb patteriicarrier
concentration Parameters: same as in Fig. 2 ahd;|2:3.27
X102,

between both hexagon patterns can be identified. Similar ef-
fects were found in solving, e.g., the Swift-Hohenberg equa-
tion [11]. There the existence of a neutral mode was identi-
fied as the relevant physical mechanism. As a matter of fact
the zeroth Fourier component of our expansion plays a simi-
lar ro_le. But, in Cpntrast tq the above Ca_se B Contal_ns a FIG. 5. Hexagonal switching wave; same parameters as in Fig. 3
genuine quadratp term, i.e., the coupling betweep field a”gxceptTr=1 to minimize the computing effort.

carrier concentration that also supports the formation of hex-

agonal patterns. A bright stripe as the basic unit of a roll pattern can be

Different combinations of the CPW solution and a patternexcited by a one-dimensional Gaussj&ig. 4a)]. The SLS
are possible. By a local change of the incident field a localshown in Fig. 4b) is a residual of the hexagonal spike pat-
ized vacancy can be introduced into the spike pattern, dentern. By increasing the beam diameter a stable bright ring
onstrating the possibility of erasing a single pattern {sée  develops, which is a basic unit of a honeycomb patf€ig.

Fig. 3(b)]. Moreover, even single unit cells of a pattern may4(c)]. The diameter of the ring agrees very well with the size
exist on a CPW background. To numerically excite theseof a unit cell of the honeycomb patterd+6.2). If the beam
bright SLSs selectively a short excitation pulse is locallydiameter grows larger higher-order filaments with rotational
added to the background intensity. By matching the beansymmetry are excite@Fig. 4(d)]. The excitation of higher-
shape(one- or two-dimensional Gaussjaand diameter to order SLSs by a further increase of the beam diameter be-
those of the corresponding basic unit of the pattern the pacomes progressively difficult. Usually the excited area loses
ticular SLSs are selected. The arising stable SLSs are shovits rotational symmetry due to the onset of Ml and emits a
in Fig. 4 and exhibit the common feature of oscillating tails. hexagonal switching wavéFig. 5. Here, the transmitted
power increases steplike. This nonlinearly induced discrete-
ness is due to the fact that every basic unit of the pattern
exhibits a remarkable robustness and switches up like a uni-
form object. The hexagonal switching wave observed is the
discrete counterpart of the homogeneous switching wave
found for defocusing Kerr nonlinearitig¢§,13].

The above examples for SLSs correspond to the situation
where the lower branch of the CPW solution is stable and
serves as the background. The opposite situation where the
high-transmission state is stable and coexists with a SLS may
also occur. This can be achieved by decreasing the diffusion
length and choosing a detuning where the domain of Ml is
below the boundary of the bistable domasee Fig. 6. The
resulting dark SLS(stable black holes in a stable high-
transmission backgrounds a residual of a honeycomb pat-
tern and is displayed in the inset of Fig. 6.

After having identified SLSs as residuals of different pat-
terns originating from modulationally unstable CPW solu-
tions we are now going to reverse the procedure. New pat-
terns can be formed with the above SLSs as basic units
where two alternative strategies are pursued. The SLSs
shown in Fig. 4 represent a coexistence of the CPW back-
ground and a basic unit of a particular pattern. The conclu-
sion is now that it might be possible to form a periodic
pattern by periodically putting together different SLSs. That
this is indeed feasible is shown in Fig.a¥ where one bright
stripe [Fig. 4(a)] and rings[Fig. 4(c)] are combined. They
FIG. 4. Multistability of SLSs; same parameters as in Fig. 3. form a new periodic pattern but with an increased unit cell.
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FIG. 7. New kinds of patternga) superlattice formed by hon-
eycomb and rolls(b) ringlike spike pattern bounded by oscillating

FIG. 6. Dark localized states. Shown are the domains of CPWails, same parameters as in Fig. 4.

stability and instability in theA-Ny plane. The insets display the
SLS (top) as well as the hysteresis cur¢eottom), which corre-
sponds to an excitation along the dashed line in AWM, plane
(dashed line unstable; parameteiis:=1000, L4=0.15, Ng=10.
|u9|?2=1.81x10"2, A=10).

In conclusion, we have studied the optical response of a
resonator filled with a defocusing saturable material. First we
identified various types of patterns that coexist with a stable
CPW background and show multistability for certain param-
eters. Various SLSs can survive as residuals of these pat-

Thus, the constraints concerning the size of the unit cell argsrns. Al SLSs on a low-transmission background may co-

lifted and lattices with different properties may be antici-

exist in a certain parameter range, which represents some

pated. The alternative in forming new patterns consists ining of multistability of SLSs and patterns. This multistabil-

changing the spacing between the individual SLSs, Whicf}[y

of SLSs might be of some interest for practical imple-

eventually constitute the pattern. All SLSs shown in Fig. 4entations as, e.g., the coding of different signal levels at

exhibit oscillating tails. As already known from quite differ-
ent nonlinear evolution equatiof$4] SLSs with oscillating

one site of an all-optical processor.
Different SLSs can be combined to form new patterns,

tails may form bound states where the spacing attains di§yhich may be considered as superlattices. The interaction of
crete values. A hexagonal pattern that is composed of SLS§| ss via their oscillating tails allows the formation of pat-

shown in Fig. 4c) (rings with central spikesis plotted in

terns with the same basic units but with different lattice spac-

Fig. 7(b). It exhibits features of both hexagonal patterns disp.

played in Fig. 3 because a low transmission background co-

exists with residuals of the honeycomb pattern. In contrastto The research was carried out in the framework of the
the honeycomb the SLSs forming the pattern are bound b$onderforschungsbereich 196, Deutsche Forschungsgemein-

their oscillating tails.

schaft, Bonn.

[1] N. B. Abraham and W. J. Firth, J. Opt. Soc. Am.73 951
(1990.

[2] L. A. Lugiato, in Chaos, Solitons & FractaléPergamon Press,
New York, 1994, Vol. 4, pp. 1251-1258.

[3] L. A. Lugiato, Wang Kaige, and N. B. Abraham, Phys. Rev. A
49, 2049(1994).

[4] M. Tlidi, P. Mandel, and R. Lefever, Phys. Rev. Let8, 640
(1994).

[5] Moloney and H. M. Gibbs, Phys. Rev. Le&8, 2209(1987).

[6] N. N. Rosanov and G. V. Khodova, J. Opt. Soc. AniZ,B057
(1990.

[7]W. J. Firth and A. J. Scroggie, Phys. Rev. L€et6, 1623
(1996.

[8] M. Brambilla, L. A. Lugiato, and M. Stefani, Europhys. Lett.
34, 109(1996.

[9] F. Lederer, T. Peschel, and U. Peschel, Pure Appl. @35
(1993.

[10] N. Finlayson, E. M. Wright, and G. |. Stegeman, IEEE J.
Quantum Electron26, 770(1990.

[11] C. B. Price, Phys. Lett. A94, 385(1994.

[12) W. J. Firth and A. J. Scroggie, Europhys. Lef6, 521
(19949.

[13] W. J. Firth, I. Galbraight, and E. M. Wright, J. Opt. Soc. Am.
B 12, 1005(1995.

[14] B. A. Malomed, Phys. Rev. B7, 2874(1993.



