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Multistable localized structures and superlattices in semiconductor optical resonators
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~Received 14 February 1997!

We report on the existence of various periodic transverse patterns and stable localized structures in the
optical field of a planar resonator, which exhibits the defocusing saturable nonlinearity of a semiconductor near
the band edge. We predict multistability of all feasible patterns as well as of the localized states. Being equal
as well as different, stable localized states can organize as clusters or new kinds of periodic patterns~super-
lattices!. The interaction of localized states via their oscillating tails allows the formation of patterns with the
same basic units but with different lattice spacing.@S1050-2947~97!50511-7#

PACS number~s!: 42.65.Sf, 42.65.Pc
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Since the early days of nonlinear optics the optical
sponse of nonlinear planar resonators has attracted muc
tention. Prominent nonlinear phenomena such as bistab
and various kinds of instabilities~modulational instability,
Hopf bifurcation! have been predicted theoretically and so
of them confirmed experimentally~for an overview see
@1–3# and the references therein!. Within the past severa
years spatial or spatiotemporal effects have moved into
center of interest. This concerns in particular the spontane
formation of different types of patterns and stable localiz
structures~SLSs!. The occurrence of SLSs and organiz
clusters were predicted in the limit of nascent optical bis
bility in the vicinity of critical points @4#. Further studies
revealed that the formation of SLSs is a more general p
nomenon. It could be identified in quasi-one-dimensio
resonators for a focusing Kerr nonlinearity in a wide para
eter range@5#. Later SLSs were predicted to occur in tw
dimensional cavities with saturable focusing@6# or saturable
absorptive media@7,8#. To the best of our knowledge n
multistability of patterns as well as SLSs could be identifi
in materials with a defocusing nonlinearity until now. B
huge nonlinearities of that kind appear in direct semicond
tors at photon energies slightly below the band edge. E
dently, it may be anticipated that effects like pattern and S
formation can be most easily experimentally verified in tho
materials. Hence, the aim of this paper is to prove that th
effects may occur in this particular environment, that the
patterns and SLSs exhibit multistability, and that new kin
of patterns on the basis of SLSs can be generated.

In what follows we restrict ourselves to high-finesse re
nators (finesse.10) that exhibit sharp and well-separat
Fabry-Pe´rot resonances. These resonances are characte
by a certain field structure perpendicular to the interfaces
the resonator. Following a well-established procedure~modal
or mean-field theory! ~see, e.g.,@9#! this mode profile can be
assumed constant and can thus be separated from the o
field. Hence the field equation that is left describes the tra
verse dynamics of the mode amplitudes, whereas the pro
only enter that equation via overlap integrals that determ
the normalization. The nonlinearly induced refractive ind
changes are assumed to be proportional to the densityN of
the excited carriers@10#. Because absorptive losses in t
cavity are small compared to the radiative ones the lig
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induced bleaching of absorption can be dropped in the e
lution equation for the transverse optical fieldu. The driving
force of the system is the incident field denoted byuin . The
equation of motion for the carrier densityN contains effects
such as saturation~saturation densityNs!, diffusion ~diffu-
sion lengthLd!, and recombination~recombination timeTr!.
The full set of normalized equations reads as

F i
]

]T
1

]2

]X2 1
]2

]Y2 1D1 i 2NGu~X,Y,T!5uin~X,Y,T!,

~1a!

F ]

]T
1

1

Tr
2

Ld
2

Tr
S ]2

]X2 1
]2

]Y2D GN~X,Y,T!

5~NS2N!uu~X,Y,T!u2, ~1b!

whereX andY are the transverse coordinates andT denotes
the time~for details of the normalization see@9#!. To make
contact with a typical experimental situation we specify t
configuration to be a 0.4876-mm-thick GaAs cavity sand-
wiched between two Bragg mirrors that consists of 15~top!
and 18~bottom! pairs ofl/4 AlAs-GaAs layers, respectively
For an excitation atl5897 nm the characteristic scalin
quantities are as follows: length, 1.5mm; time, 1 ps; incident
intensity, 7.531012 V2/m2; carrier density, 1.5310223 m23.
A recombination time of 1 ns and an ambipolar diffusio
constant of 22 cm2/s result inTr'1000,Ld'1. The satura-
tion density 1.531024 m23 yields the scaled valueNs510.
The scaling depends critically on the specific experimen
situation and may vary by more than one order of magnitu
Furthermore we would like to mention that all followin
considerations hold for vertical cavity surface emitting las
~VCSELs! operated below the threshold too. In that case
carrier densityN in the above equations has to be replac
by its deviation from the stationary value defined by t
driving current. In the same sense both the saturation den
and the detuning have to be reduced, respectively. Hence
VCSEL offers the additional opportunity to tune the effe
tive value of the saturation densityNs by changing the cur-
rent.

By solving Eq.~1! in the continuous plane-wave~CPW!
limit ~u5u0 , N5N0 , uin5uin

0 ! the intensitiesuu0u2 and
R3366 © 1997 The American Physical Society
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uuin
0 u2 can be expressed as functions of the carrier densityN0 .

A second parameter experimentally accessible is the de
ing D of the incident beam from the transmission resonan
For a given configuration the CPW solutions are entir
determined by their location in theD-N0 plane. Critical
points that mark the onset of instabilities are situated o
closed curve in this plane~see Fig. 1!. Unstable solutions are
located in the interior of that curve. Concerning the carr
density this curve is bounded by the saturation densityNs .
Destabilizations through both limit points and Hopf bifurc
tions exist. The latter ones only occur for fairly short reco
bination times compared to the photon lifetime (Tr,Ns/2
2A2Ns), e.g., in ring resonators. Thus they are not expec
to be relevant for the formation of SLSs in the configurati
studied here. In what follows we restrict ourselves to para
eter domains where no Hopf bifurcation appears.

For a given detuning~fixed experimental situation! the
system is restricted to a vertical line in theD-N0 plane~‘‘line
of excitation’’ in Fig. 1!. It corresponds to a hysteresis cur
~inset in Fig. 1!, which displays the input-output response
the resonator. Multivalued hysteresis loops occur if the ‘‘li
of excitation’’ crosses regions of CPW instability. Th
bistable parameter range in theD-N plane remains finite due
to the saturation of the carrier density. Likewise the nonl
early induced shift of the resonance is limited, which mea
that only a certain detuning below a critical value can
compensated. The boundary of the bistable domain is defi
as

Db~N0!5N0

2Ns2N0

Ns
6F S N0

Ns2N0

Ns
D 2

21G1/2

. ~2!

Thus, the existence of CPW bistability requires that detun
D and carrier densityN0 be bounded betweenNu ,N1 and
D l

b ,Du
b , respectively~see Fig. 1!

FIG. 1. Domains of CPW stability and instability in theD-N0

plane. The inset shows the hysteresis curve~response curve!, which
corresponds to an excitation along the dashed line. The dotted
marks the unstable portions; parameters:Tr51000, Ld51, Ns

510.
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Nu,15~Ns/2!~16A124/Ns! ,

Du
b5

3

8
Ns@112 cos~F/3!#,

D l
b5

3

8
Ns@112 cos~F/314p/3!#, ~3!

where cosF512(32/Ns
2) and2p<F<p.

In the wake of each bistable area in theD-N0 plane a
domain of modulational instability~MI ! appears. The size o
this MI domain is limited by diffusion. An analytical expres
sion for the boundary can be derived straightforwardly.

Another important conclusion can be drawn from Fig.
If the excitation is such that the detuning is located near
upper bound of the bistable domain MI may occur above
well as below the limit points~see Fig. 1!. This is in contrast
to the case without saturation. Consequently, for a fixed
put intensity a stable CPW solution can coexist with a mo
lationally unstable one~see dashed line in Fig. 1!. This is a
strong indication for the potential existence of at least t
types of SLSs, viz., bright SLSs~spikes! on a stable low-
transmission and dark SLSs~dips! on a stable high-
transmission background.

As it could be anticipated, MI may lead to the formatio
of stable patterns with the fundamental period related to
modulus of the wave vector of the perturbation where the
gain is maximum. To analyze how MI develops into patter
we performed a Fourier expansion similar to that in@11#,
keeping the zeroth- and first-order terms only. Branches
stationary solutions corresponding to different kinds of p
terns ~rolls, a hexagonal spike pattern, and a honeyco
structure! are displayed in Fig. 2. All stable patterns could
excited numerically by solving the full set of equations~1!
with the approximate solution as initial condition and b
using periodic boundary conditions~see Fig. 3!. Both solu-
tions agree qualitatively.

Some peculiarities are noteworthy. Even if there is
CPW bistability stable patterns may coexist with a CP
background. A similar type of pattern bistability was o
served for saturable absorptive media@12#. Moreover a small
region can be found where three stable patterns coexist~see
Fig. 3!. Furthermore a branch that describes the transit

ne

FIG. 2. Hysteresis of different pattern~result of Fourier expan-
sion, dashed lines: unstable!. The dots indicate the transition be
tween the two hexagonal patterns; parameters:Tr51000, Ld51,
Ns510, D510.716,kj

2'1.
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between both hexagon patterns can be identified. Simila
fects were found in solving, e.g., the Swift-Hohenberg eq
tion @11#. There the existence of a neutral mode was ide
fied as the relevant physical mechanism. As a matter of
the zeroth Fourier component of our expansion plays a s
lar role. But, in contrast to the above case Eq.~1a! contains a
genuine quadratic term, i.e., the coupling between field
carrier concentration that also supports the formation of h
agonal patterns.

Different combinations of the CPW solution and a patte
are possible. By a local change of the incident field a loc
ized vacancy can be introduced into the spike pattern, d
onstrating the possibility of erasing a single pattern unit@see
Fig. 3~b!#. Moreover, even single unit cells of a pattern m
exist on a CPW background. To numerically excite the
bright SLSs selectively a short excitation pulse is loca
added to the background intensity. By matching the be
shape~one- or two-dimensional Gaussian! and diameter to
those of the corresponding basic unit of the pattern the
ticular SLSs are selected. The arising stable SLSs are sh
in Fig. 4 and exhibit the common feature of oscillating tai

FIG. 3. Multistability of stable patterns:~a! roll pattern, ~b!
spike pattern with a local defect,~c! honeycomb pattern~carrier
concentration!. Parameters: same as in Fig. 2 anduuin

0 u253.27
31022.

FIG. 4. Multistability of SLSs; same parameters as in Fig. 3
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A bright stripe as the basic unit of a roll pattern can
excited by a one-dimensional Gaussian@Fig. 4~a!#. The SLS
shown in Fig. 4~b! is a residual of the hexagonal spike pa
tern. By increasing the beam diameter a stable bright r
develops, which is a basic unit of a honeycomb pattern@Fig.
4~c!#. The diameter of the ring agrees very well with the si
of a unit cell of the honeycomb pattern (d'6.2). If the beam
diameter grows larger higher-order filaments with rotatio
symmetry are excited@Fig. 4~d!#. The excitation of higher-
order SLSs by a further increase of the beam diameter
comes progressively difficult. Usually the excited area lo
its rotational symmetry due to the onset of MI and emits
hexagonal switching wave~Fig. 5!. Here, the transmitted
power increases steplike. This nonlinearly induced discre
ness is due to the fact that every basic unit of the patt
exhibits a remarkable robustness and switches up like a
form object. The hexagonal switching wave observed is
discrete counterpart of the homogeneous switching w
found for defocusing Kerr nonlinearities@6,13#.

The above examples for SLSs correspond to the situa
where the lower branch of the CPW solution is stable a
serves as the background. The opposite situation where
high-transmission state is stable and coexists with a SLS
also occur. This can be achieved by decreasing the diffus
length and choosing a detuning where the domain of M
below the boundary of the bistable domain~see Fig. 6!. The
resulting dark SLS~stable black holes in a stable high
transmission background! is a residual of a honeycomb pa
tern and is displayed in the inset of Fig. 6.

After having identified SLSs as residuals of different p
terns originating from modulationally unstable CPW so
tions we are now going to reverse the procedure. New p
terns can be formed with the above SLSs as basic u
where two alternative strategies are pursued. The S
shown in Fig. 4 represent a coexistence of the CPW ba
ground and a basic unit of a particular pattern. The conc
sion is now that it might be possible to form a period
pattern by periodically putting together different SLSs. Th
this is indeed feasible is shown in Fig. 7~a! where one bright
stripe @Fig. 4~a!# and rings@Fig. 4~c!# are combined. They
form a new periodic pattern but with an increased unit c

FIG. 5. Hexagonal switching wave; same parameters as in F
exceptTr51 to minimize the computing effort.
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Thus, the constraints concerning the size of the unit cell
lifted and lattices with different properties may be anti
pated. The alternative in forming new patterns consists
changing the spacing between the individual SLSs, wh
eventually constitute the pattern. All SLSs shown in Fig
exhibit oscillating tails. As already known from quite diffe
ent nonlinear evolution equations@14# SLSs with oscillating
tails may form bound states where the spacing attains
crete values. A hexagonal pattern that is composed of S
shown in Fig. 4~c! ~rings with central spikes! is plotted in
Fig. 7~b!. It exhibits features of both hexagonal patterns d
played in Fig. 3 because a low transmission background
exists with residuals of the honeycomb pattern. In contras
the honeycomb the SLSs forming the pattern are bound
their oscillating tails.

FIG. 6. Dark localized states. Shown are the domains of C
stability and instability in theD-N0 plane. The insets display th
SLS ~top! as well as the hysteresis curve~bottom!, which corre-
sponds to an excitation along the dashed line in theD-N0 plane
~dashed line unstable; parameters:Tr51000, Ld50.15, Ns510.
uuin

0 u251.8131022, D510!.
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In conclusion, we have studied the optical response o
resonator filled with a defocusing saturable material. First
identified various types of patterns that coexist with a sta
CPW background and show multistability for certain para
eters. Various SLSs can survive as residuals of these
terns. All SLSs on a low-transmission background may
exist in a certain parameter range, which represents s
kind of multistability of SLSs and patterns. This multistab
ity of SLSs might be of some interest for practical impl
mentations as, e.g., the coding of different signal levels
one site of an all-optical processor.

Different SLSs can be combined to form new patter
which may be considered as superlattices. The interactio
SLSs via their oscillating tails allows the formation of pa
terns with the same basic units but with different lattice sp
ing.

The research was carried out in the framework of
Sonderforschungsbereich 196, Deutsche Forschungsgem
schaft, Bonn.

FIG. 7. New kinds of patterns:~a! superlattice formed by hon
eycomb and rolls;~b! ringlike spike pattern bounded by oscillatin
tails, same parameters as in Fig. 4.
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