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Low-energy elementary excitations of a trapped Bose-condensed gas
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We develop a method of finding analytical solutions of the Bogolyubov—de Gennes equations for the
excitations of a Bose condensate in the Thomas-Fermi regime in harmonic traps of any asymmetry and
introduce a classification of eigenstates. In the case of cylindrical symmetry we emphasize the presence of an
accidental degeneracy in the excitation spectrum at certain values of the projection of orbital angular momen-
tum on the symmetry axis and discuss possible consequences of the degeneracy in the context of new signa-
tures of Bose-Einstein condensati$81050-294{07)51410-7

PACS numbsg(s): 03.75.Fi, 34.20.Cf

The recent realization of Bose-Einstein condensatiortinction between the condensate oscillations and the oscilla-
(BEC) in trapped alkali-metal atom gaskis-3], followed by  tions of a classical gas in the hydrodynamic regime.
the second generation of experimepts-8|, has opened the We consider a Bose-condensed gas in an external har-
possibility of investigating macroscopic quantum phenomenanonic potentiaV(r)=M3;w?r?/2 with frequenciesn; and
in these systems. For understanding the macroscopic quaassume a pair potential of the atom-atom interaction of the
tum behavior of a trapped Bose-condensed gas, especialfgrm U(R)=U §(R), whereU =4=#2%a/M, a is the scatter-
important is the character of elementary excitations of théng length, andV the atom mass. Then the grand-canonical
trapped condensate, which to a large extent is predeterminddamiltonian of the system is written as
by the interaction between atoms. In dilute gases the interac-
tion is primarily binary and is characterized by a single pa-
rametera, the s-wave scattering length. This allows one to
develop a transparent theory that can be tested experimen-
tally. XW(r), 1)
At present theoretical investigations of elementary excita-

tions of trapped Bose condensates include analytical SO'HNhere‘if(r) is the field operator of atoms, andthe chemi-
tions for the spectrum of low-energy excitations in spheri-ca| potential. The field operator can be represented as a sum
cally symmetric harmonic traps in the Thomas-Fermi regimeof the above-condensate part and the condensate wave func-
[9] and numerical analysis of the eigenfunctions andy,. W,=(W), which is ac number:\if=\if’+\lf0 (see

eig.ene.nergies of the excitations in the traps of spheri'cal anﬁs]). Assuming that the condensate density greatly exceeds
cylindrical symmetry[10—-14. In the latter case the eigen- the density of above-condensate particles we omit the terms

fr_equenmes of the lowest excnatlon_s, as thqse measured b;},roportional 1’3 and¥ 4 in Eq. (1) and write the Hamil-
Jin et al. [4,8] and Meweset al. [7] in experiments, they tonian in the form

have also been found analyticall9,15,16,13.

Most interesting are the low-energy excitations, i.e., the . 52 A
excitations with energies much smaller than the chemical |3|=|3|0+J dr[qf’T(r){—mAﬁLv(r)—M}\p’
potential (mean-field interaction between partidleas they

%2 1 -

Hzf dr ¥T(r) — o AT V() —pt 5T ()P (r)

are essentially of collective character. Previous studies re- 1_ R R R R
vealed that the eigenfrequencies of condensate oscillations ~ +5U [4]Wo(r) |28 T(r)W' (r)+Wiw T(r) ¥ (r)
are strongly different from those of a collisionless thermal

gas[4,7,8, but are rather close to the frequencies of a ther- w28 A

mal gas in the hydrodynamic regini&6,17. In this paper HWTWI(NWI(N] @)
we develop a method of finding analytical solutions of the

Bogolyubov—de Gennes equations for the spectrum and 52 1
Wave.func'tlons' of the cor_1densate excitations in the Thomas- HO:j dr\IfB‘(r)[ —AHV() -t —U|‘I’o(f)|2
Fermi regime in harmonic traps of any type of asymmetry 2M 2

and introduce a classification of eigenstates. We analyze the
structure of the excitation spectrum in the case of cylindrical
symmetry and find an accidental degeneracy at certain values ) . ) )
of the projection of orbital angular momentum on the sym-1he Gross-P|ta2evsk|| equation o normalized by the con-
metry axis. We address the question of how the accidentdlition J|Wo(r)|*dr=No (No is the number of particles in the
degeneracy can manifest itself, providing us with a clear diseondensatefollows directly fromH, in Eg. (3),

XWo(r). )
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h? ~ v, &2 Aw
2 _ ~ 0 ~ 0~
_WA+V(r)+U|\I’0| Wo=uWy. (4) (1—y2) —Af++f+q,—O]+E A2f+—3qf—0Af+
Owing to Eq.(4) the part of the Hamiltonian, which is linear x| ¢ AV, AV, 2f 2¢
in ¥’ [and not included in Eq(2)], becomes equal to zero. B T, * v,/ * =274, (13
The Hamiltonian(2) is bilinear in the operator‘i", v'T and ~
can be reduced to a diagonal form [ LRy 4+ (1-y))f AV, N _2 X2
v, 2
H=Hq,+ >, E,blb 5 ~ ~ ~
i 2 o © AVor _ax( V0|, 52 Y0 2f
T, MR e )

by using the Bogolyubov transformation generalized to an
inhomogeneous cas&’ (r)=3,[(u,(r)b,—v*(r)b’] [19]. =28%f_. (14
Hereb,, b’ are creation and annihilation operators of el-

ementary excitations. The Hamiltonian takes the f@&nif
the functionsu,,, v, satisfy the equations

Here we have omitted the index and written the terms
proportional tof? separately.

The low-energy excitationsH<u or e{<<1) are prima-
rily localized inside the condensate spatial region. At char-
u,+U0|¥ol%(2u,~v,)=(u+E,u,, (6 acteristic distances from the condensate boundary

sy>maxel,({le)*, (15)

v,+U|¥o%(2v,~u,)=(n—E,v, (7) we can omit all terms proportional &’ in Egs.(13) and
(14), and use the Thomas-Fermi approximation for the con-
densate wave functiofsee[21,27))

‘IIO: VnOm(l_yz)! ySlv (16)

following from Eq. (4) in which the kinetic energy term
AV, is neglected. Then, using the substitutibn(y)
The Hamiltonian(5) does not contain the recently discussed— ¢, (1—y2)*1/2p(y), we obtain the equation
term originating from the presence of the “momentum” op- B
erator of the condensaf20], since this term does not affect GW+2£2W=0, (17)
the elementary excitations.

Equations(6), (7), and (4) represent a complete set of \here the operato@ is given by
equations for finding the wave functions,v, and energies
E, of the excitations. We will discuss the case of repulsive

ﬁZ
(—WAJrV(r)

ﬁZ
( - mA‘l‘V(I’)
(W, is taken regl and are normalized by the condition

J’ dr(u,ul,—v,v5)=46,, . (8)

(a>0) interparticle interaction in the Thomas-Fermi regime G=(1—)/2)A—22i Yi(wil )2l dy; . (18
(m~nNomU>fw;, Noy is the maximum condensate density
where the presence of a small parameter The relation between the normalization coefficie@ts and

o C_ follows from Egs.(10), (11), (17), and(18):
{(=hol2u<l 9
C_=¢(C,. (19

— 1 A :
feur:];r?tgi ngg,{ggsﬂ:s Ft?rs?Tvglfxr:tzeEz(]@l;a:;(;nsar:gz A:[)ha e The solution(16) can be used in Eq$10) and(11) from
y ) ) T i R the very beginning for finding the wave functions and spec-
terms of dimensionless clgenenerge=" E,/fhw and coor-  trym of elementary excitations with energids,>#w; .
dinatesy;=r,/l;, wherel;=(2u/mw;) " is the characteris- However, for the excitations with energies comparable to the
tic size of the condensate in thth direction: trap frequencies, this would lead to an incorrect result. The
L reason is that the wave functions of such excitations vary
—¢%Au,+y%u,+(2u,—v,)ne=(1+2%¢,)u,, (10) over a distance comparable with the size of the condensate.
Hence, the kinetic energy of the condensate, omitted in the
_ 22K 2 A (1 derivation of Eq.(16), and the kinetic energy of the excita-
FAvytyte, (20,7 U ne=(1=242,)v,, (1Y) tions are equally important. This is taken into account in our
e 5 — derivation of Eqs(13) and(14), relying on the exact expres-
— AWy Vot ngWo=W,. (12 sjon for ¥, In principle, the exact equatior{&3) and (14)
. can be used to obtain a systematic expansion of the excita-
Here A=3(w;/w)?3*/dy?, and y?=3,y?. With the di- tion wave functions and energies in thgarameter.
mensionless condensate density=|¥q(r)|%/ngm, from Eq. In the case of spherical symmetry;= = ) the exci-
(12), Egs.(10) and(11) are reduced to the fourth-order dif- tations are characterized by the orbital angular momerntum
ferential equations for the functiofs.=u,*v,: and its projectiorm. The solution of Eq(17) has the form
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W=x"2P(x)Y,(8,¢), whereY,,, is a spherical harmonic, two other equations can be any of the three linearly depen-
x=y?, and the radial functiof(x) is governed by a hyper- dent equation§?=lsijbi=0.

geometric differential equation For cylindrically symmetric traps ¢;=w,=w,, o3
= w,) the projection of the orbital angular momentum on the
d?p 5\ |dP (&2 | z axis, m, is a conserved quantity. The eigenstates of the

X(1=X) O +| 1+ 57 I+ X lax t (7 - 5) P=0. excitations can be labeled by the quantum numbins and

(20 the axial parityP,. The radial parity describing the behavior
of the eigenfunctions with respect to simultaneous inversion

The solution of Eq(20), convergent ak=0, is the hyper- of the two radial coor_dinates [st] for evenm ano_l[—] for
geometric function that converges ®t>1 only when re- odd m. The polynomialsW can be represented in the form

: o : - =pmB h d the dimen-
duced to a polynomial. This immediately gives the energy’’— P nm(p,Z)eXme(ﬁ), wherep and z aré the dimen
spectrum poly y e gyS|onless axial and radial coordinates, &g, polynomials of

powern=N-m. Each term of the polynomia,, has the
En=fwe,=fo(2n’+2nl+3n+1)2, (21  form z":p"», wheren, andn,, are positive integers. The sum
_ o _ n,+n, takes the values 0,2. . ,n for evenn, and 1,3, . . .n
wheren is a positive integer. The solutions of E@0) are  for oddn. The integem,, is even,n, being even for even
classical Jacobi polynomiaR| *2%(1—2y?) and, withthe ~ (P,=[+1]), and odd for odd (P,=[—1]). The polynomials
normalization condition$8) and(19), we obtain Bnm(p,2) and eigenenergids,,,=#,, can be found from
the equation

1/2,
4n+21+3 1-y?)]=12
fLo ( )| (1-y )} yPUF120(1 o2 2 (@ml+1) o 7 5
K enié (1-p2-)| =+ ——— 42— | -2 p—
ap? p dp Fri ap
XYim(0,¢), (22
2
wherel.=(2u/Mw?)'? is the size of the condensate. The +,BZZi ) Q”m_m) B,(p,2)=0, 23)
spectrum21) coincides with that found by Stringd®] from Iz a)i

the analysis of the density fluctuations in the hydrodynami

approach. . . =w,/ v, is the ratio of the axial to radial frequency.

i In the nonsymmetric case with; # w,# w3, the operator At given m and n the number of eigenmodes=(n
G is invariant under the inversion of any of the three spatialy 2)/2 for evenn, andk=(n+1)/2 for oddn. The eigenen-
coordinates. Therefore, the polynomialé determined by ergies can be found from thkth order secular equation

Eq. (17) can be labeled by the corresponding parits:  defS]=0, whereS is thekx k matrix (i,j=1,2, . .. k):
[+,%,=]. Another quantum number is the orddrof the

polynomialW. For evenN the functionW contains the pow- (Q
J

Svhich follows directly from Eg.(17). The quantity 8

2
nm

ers ofy equal toN,N—2, ... 0, and for oddN the powers > —Iml | 8ij—2(k—j)(k—i+[m[+1)(8;+ & _1j)
w
are equal tdN,N—2, ... ,1. P
In fact, there are only two independent parities, since — BA[2i—1—(—1)"](2i —1)8,/2
I1;P,= (- 1)N. The first few eigenstates can easily be found. !
For N=1 we have three eigenstates describing the conden-  +i[2i—(—1)"]8,1;} - (24)

sate center-of-mass oscillations with the trap frequencie

Accordingly, there are three eigenfunctions<y; with pari- - = Jm =
ties P;=[—]. The corresponding eigenfrequencies &le BOm_CO”TC’t andQOm_— |m.|‘*’P' The casen—_l corres.ponds.
— to the radial oscillations, in combination with the axial oscil-

—we=w;. In the case oN=2 we again obtain three eigen- |.,n¢ of the center of mass of the condensate. Here we have
states corresponding to the condensate center-of-mass os@-

lations. The eigenfunctions aM/=y;y; (i#j), the parities 1m*Z and Qg = y|m|w,+ w,. In both cases the coupling

. . ——> between the radial and axial motion is absent, and the con-
Pi=P=[—], and the eigenirequencie@= yow; +wj. In densate frequencie®,,, and(,,, are the same as those for

addition, there are three eigenstates with-2 and parities ; ; - -
; ., a classical gas in the hydrodynamic regi(see[16,17).
Pi=[+] for all i. They correspond to the quadrupole oscil- For n=2 the coupling between the radial and axial de-

ITart:ons_ of ;he (t:_ondensatt()a, thgttcenter of mass being at res@}rees of freedom becomes important, and the condensate os-
€ eigentunclions can be written as cillation frequencies will be different from the frequencies of

ﬁ:or n=0 (jm|=1) we have purely radial oscillations, with

3 o a classical hydrodynamic gas.nf=2 there are two coupled
Weel+ D) byl w))?y?. shape oscillations of the condensate with frequen€lgs,
=t given by
There are three different sets of coefficiebisorresponding .
to the three eigenfrequenci€¥ determined by the secular %=[2|m|+2+§,82

equation d¢tS]=0, whereS is the 3x3 matrix

P

§j=1+(2-0%0f)s,;. = \(ml+2- 3822+ 26%(|m|+ V]2, (29)

The coefficientsb; are determined by the system of three |n the simplest case ah=0, Eq.(25) gives the frequencies
linear equations. The first one %°_,b;+(Q% w?)=0. The  of the quadrupole shape oscillations of the condensate. The
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frequencieﬂzto and the frequency of quadrupo|e radial os- (27) is characteristic only for the condensate. In fact, this

cillations Q, were found in the hydrodynamic approach in €quation corresponds to the accidental degeneracy only in
[9]. They were also obtained [15] by considering the con- the limit {—0. The non-Thomas-Fermi corrections, in par-
densate evolution under a weak modulation of the trap freficular those associated with the existence¥of and the
guencies, in16] from the Hamiltonian of the scaling dynam- condensate excitations outside the Thomas-Fermi spatial re-
ics, and in[13] on the basis of a variational approach. Thegion y?<1, result in the extra splitingQ~ Q,,, between
frequencied) y, and(},, were measured in the experiment of the condensate eigenfrequendiég,, andQ,,. For realistic
Jin et al. [4] for B=/8 and calculated numerically for this values{~0.1, such as those achieved in the experiments of
trapping geometry irﬁlo]_ The frequ(-}n(;ieﬂzi0 were found Jin et al. [8], N is already Comparable to the difference of
in the experiment of Mewest al.[7] for 3=0.08. the condensate frequené€y,,, from Q,, of a classical hy-
For n=3 we have two coupled-shape oscillations, whichdrodynamic gas. It is important, however, that the splitting
are now also coupled to the oscillations of the center of mas${2 can be compensated by a slight changegdfom that
of the condensate. In this case we obtain determined by Eq(27), inducing the same splitting of the
opposite sign between the Thomas-Fermi condensate fre-
guencies),, and Q5.
The presence of the accidental degeneracy can strongly
influence the picture of the condensate oscillations. The cou-
+ \/(|m|+2—§,82)2+ 68%(|m|+1)]¥2. (26)  Pling between the degenerate modes is provided by the in-
teraction terms in the Hamiltoniafl), which are propor-
Interestingly, for certain values of the projection of the tional tow’3 and¥'* and omitted above in the derivation of
orbital angular momenturm, we find an accidental degen- the Bogolyubov—de Gennes equations. Therefore, deriving
eracy in the spectrum of excitations. The simplest exampl@nly one of the degenerate modes, it is feasible to expect the
concerns the frequencie®; = w,v|m[+ % and Q,,. As  appearance of oscillations representing a superposition of the
follows from Eq.(25), Q,,=;, for the projectionm sat-  two modes. This phenomenon ensures a clear distinction be-
isfying the condition tween the condensate oscillations and the oscillations of a
) classical hydrodynamic gas and, hence, can be a signature of
p*=|m[+3 (27) BEC for the gas in the hydrodynamic regime.

+

— = [2|m|+2+3p2
Wp

and, accordingly, integep®=3. Forﬁz@ we havem
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