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Low-energy elementary excitations of a trapped Bose-condensed gas

P. Öhberg,1 E. L. Surkov,2,3 I. Tittonen,4 S. Stenholm,1 M. Wilkens,4 and G. V. Shlyapnikov2,3

1Helsinki Institute of Physics, P.O. Box 9, FIN-00014 University of Helsinki, Finland
2Russian Research Center Kurchatov Institute, Kurchatov Square, 123182 Moscow, Russia

3FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands
4Fakultät für Physik, Universita¨t Konstanz, D-78434 Konstanz, Germany

~Received 29 April 1997!

We develop a method of finding analytical solutions of the Bogolyubov–de Gennes equations for the
excitations of a Bose condensate in the Thomas-Fermi regime in harmonic traps of any asymmetry and
introduce a classification of eigenstates. In the case of cylindrical symmetry we emphasize the presence of an
accidental degeneracy in the excitation spectrum at certain values of the projection of orbital angular momen-
tum on the symmetry axis and discuss possible consequences of the degeneracy in the context of new signa-
tures of Bose-Einstein condensation.@S1050-2947~97!51410-7#

PACS number~s!: 03.75.Fi, 34.20.Cf
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The recent realization of Bose-Einstein condensat
~BEC! in trapped alkali-metal atom gases@1–3#, followed by
the second generation of experiments@4–8#, has opened the
possibility of investigating macroscopic quantum phenom
in these systems. For understanding the macroscopic q
tum behavior of a trapped Bose-condensed gas, espec
important is the character of elementary excitations of
trapped condensate, which to a large extent is predeterm
by the interaction between atoms. In dilute gases the inte
tion is primarily binary and is characterized by a single p
rametera, the s-wave scattering length. This allows one
develop a transparent theory that can be tested experim
tally.

At present theoretical investigations of elementary exc
tions of trapped Bose condensates include analytical s
tions for the spectrum of low-energy excitations in sphe
cally symmetric harmonic traps in the Thomas-Fermi regi
@9# and numerical analysis of the eigenfunctions a
eigenenergies of the excitations in the traps of spherical
cylindrical symmetry@10–14#. In the latter case the eigen
frequencies of the lowest excitations, as those measure
Jin et al. @4,8# and Meweset al. @7# in experiments, they
have also been found analytically@9,15,16,13#.

Most interesting are the low-energy excitations, i.e.,
excitations with energies much smaller than the chem
potential ~mean-field interaction between particles!, as they
are essentially of collective character. Previous studies
vealed that the eigenfrequencies of condensate oscillat
are strongly different from those of a collisionless therm
gas@4,7,8#, but are rather close to the frequencies of a th
mal gas in the hydrodynamic regime@16,17#. In this paper
we develop a method of finding analytical solutions of t
Bogolyubov–de Gennes equations for the spectrum
wave functions of the condensate excitations in the Thom
Fermi regime in harmonic traps of any type of asymme
and introduce a classification of eigenstates. We analyze
structure of the excitation spectrum in the case of cylindri
symmetry and find an accidental degeneracy at certain va
of the projection of orbital angular momentum on the sy
metry axis. We address the question of how the accide
degeneracy can manifest itself, providing us with a clear d
561050-2947/97/56~5!/3346~4!/$10.00
n

a
n-
lly
e
ed
c-
-

n-

-
u-
-
e
d
d

by

e
al

e-
ns
l
r-

d
s-
y
he
l
es
-
al
-

tinction between the condensate oscillations and the osc
tions of a classical gas in the hydrodynamic regime.

We consider a Bose-condensed gas in an external
monic potentialV(r )5M( iv i

2r i
2/2 with frequenciesv i and

assume a pair potential of the atom-atom interaction of
form U(R)5Ũd(R), whereŨ54p\2a/M , a is the scatter-
ing length, andM the atom mass. Then the grand-canoni
Hamiltonian of the system is written as

Ĥ5E dr Ĉ†~r !F2
\2

2M
D1V~r !2m1

1

2
Ũ Ĉ†~r !Ĉ~r !G

3Ĉ~r ! , ~1!

whereĈ(r ) is the field operator of atoms, andm the chemi-
cal potential. The field operator can be represented as a
of the above-condensate part and the condensate wave

tion C05^C&, which is a c number: Ĉ5Ĉ81C0 ~see
@18#!. Assuming that the condensate density greatly exce
the density of above-condensate particles we omit the te

proportional toĈ83 andĈ84 in Eq. ~1! and write the Hamil-
tonian in the form

Ĥ5Ĥ01E dr H Ĉ8†~r !F2
\2

2M
D1V~r !2m GĈ8

1
1

2
Ũ @4uC0~r !u2Ĉ8†~r !Ĉ8~r !1C0

2Ĉ8†~r !Ĉ8†~r !

1C0*
2Ĉ8~r !Ĉ8~r !#J , ~2!

Ĥ05E drC0* ~r !F2
\2

2M
D1V~r !2m1

1

2
ŨuC0~r !u2G

3C0~r ! . ~3!

The Gross-Pitaevskii equation forC0 normalized by the con-
dition * uC0(r )u2dr5N0 (N0 is the number of particles in the

condensate! follows directly fromĤ0 in Eq. ~3!,
R3346 © 1997 The American Physical Society
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S 2
\2

2M
D1V~r !1Ũ uC0u2DC05mC0 . ~4!

Owing to Eq.~4! the part of the Hamiltonian, which is linea

in Ĉ8 @and not included in Eq.~2!#, becomes equal to zero

The Hamiltonian~2! is bilinear in the operatorsĈ8, Ĉ8† and
can be reduced to a diagonal form

Ĥ5H01(
n

Enb̂n
†b̂n ~5!

by using the Bogolyubov transformation generalized to

inhomogeneous case:Ĉ8(r )5(n@(un(r )b̂n2vn* (r )b̂n
†# @19#.

Here b̂n , b̂n
† are creation and annihilation operators of

ementary excitations. The Hamiltonian takes the form~5! if
the functionsun , vn satisfy the equations

S 2
\2

2M
D1V~r ! Dun1ŨuC0u2~2un2vn!5~m1En!un , ~6!

S 2
\2

2M
D1V~r ! D vn1ŨuC0u2~2vn2un!5~m2En!vn ~7!

(C0 is taken real!, and are normalized by the condition

E dr ~unun8
* 2vnvn8

* !5dnn8 . ~8!

The Hamiltonian~5! does not contain the recently discuss
term originating from the presence of the ‘‘momentum’’ o
erator of the condensate@20#, since this term does not affec
the elementary excitations.

Equations~6!, ~7!, and ~4! represent a complete set o
equations for finding the wave functionsun ,vn and energies
En of the excitations. We will discuss the case of repuls
(a.0) interparticle interaction in the Thomas-Fermi regim
(m'n0mŨ@\v i , n0m is the maximum condensate density!,
where the presence of a small parameter

z5\v̄/2m!1 ~9!

(v̄5) iv i
1/3) allows us to simplify the equations for the e

ementary excitations. First, we write Eqs.~6!, ~7!, and~4! in
terms of dimensionless eigenenergies«n5En /\v̄ and coor-
dinatesyi5r i / l i , wherel i5(2m/mv i

2)1/2 is the characteris-
tic size of the condensate in thei th direction:

2z2D̃un1y2un1~2un2vn! n̄05~112z«n!un , ~10!

2z2D̃vn1y2vn1~2vn2un! n̄05~122z«n!vn , ~11!

2z2D̃C01y2C01 n̄0C05C0 . ~12!

Here D̃5( i(v i /v̄)2]2/]yi
2 , and y25( i yi

2 . With the di-

mensionless condensate densityn̄05uC0(r )u2/n0m from Eq.
~12!, Eqs.~10! and ~11! are reduced to the fourth-order di
ferential equations for the functionsf n65un6vn :
n

e

~12y2!H 2D̃ f 11 f 1

D̃C0

C0
J 1

z2

2
F D̃2f 123

D̃C0

C0
D̃ f 1

2D̃S f 1

D̃C0

C0
D 13S D̃C0

C0
D 2

f 1G52«2f 1 , ~13!

H 2D̃~12y2! f 21~12y2! f 2

D̃C0

C0
J 1

z2

2
F D̃2f 2

2
D̃C0

C0
D̃ f 223D̃S f 2

D̃C0

C0
D 13S D̃C0

C0
D 2

f 2G
52«2f 2 . ~14!

Here we have omitted the indexn and written the terms
proportional toz2 separately.

The low-energy excitations (E!m or «z!1) are prima-
rily localized inside the condensate spatial region. At ch
acteristic distances from the condensate boundary

dy@max@«z,~z/«!1/2# , ~15!

we can omit all terms proportional toz2 in Eqs. ~13! and
~14!, and use the Thomas-Fermi approximation for the c
densate wave function~see@21,22#!

C05An0m~12y2!, y<1 , ~16!

following from Eq. ~4! in which the kinetic energy term
z2D̃C0 is neglected. Then, using the substitutionf 6(y)
5C6(12y2)61/2W(y), we obtain the equation

ĜW12«2W50 , ~17!

where the operatorĜ is given by

Ĝ5~12y2!D̃22(
i

yi~v i /v̄ !2]/]yi . ~18!

The relation between the normalization coefficientsC1 and
C2 follows from Eqs.~10!, ~11!, ~17!, and~18!:

C25«zC1 . ~19!

The solution~16! can be used in Eqs.~10! and~11! from
the very beginning for finding the wave functions and sp
trum of elementary excitations with energiesEn@\v i .
However, for the excitations with energies comparable to
trap frequencies, this would lead to an incorrect result. T
reason is that the wave functions of such excitations v
over a distance comparable with the size of the condens
Hence, the kinetic energy of the condensate, omitted in
derivation of Eq.~16!, and the kinetic energy of the excita
tions are equally important. This is taken into account in o
derivation of Eqs.~13! and~14!, relying on the exact expres
sion for C0. In principle, the exact equations~13! and ~14!
can be used to obtain a systematic expansion of the ex
tion wave functions and energies in thez parameter.

In the case of spherical symmetry (v i5v̄5v) the exci-
tations are characterized by the orbital angular momentul
and its projectionm. The solution of Eq.~17! has the form
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W5xl /2P(x)Ylm(u,f), whereYlm is a spherical harmonic
x5y2, and the radial functionP(x) is governed by a hyper
geometric differential equation

x~12x!
d2P

dx2
1F l 1

3

2
2S l 1

5

2D xGdP

dx
1S «2

2
2

l

2D P50 .

~20!

The solution of Eq.~20!, convergent atx50, is the hyper-
geometric function that converges atx→1 only when re-
duced to a polynomial. This immediately gives the ene
spectrum

Enl5\v«nl5\v~2n212nl13n1 l !1/2, ~21!

wheren is a positive integer. The solutions of Eq.~20! are
classical Jacobi polynomialsPn

( l 11/2,0)(122y2) and, with the
normalization conditions~8! and ~19!, we obtain

f 65F ~4n12l 13!

l c
3 G 1/2F ~12y2!

«nlz
G61/2

yl Pn
~ l 11/2,0!~122y2!

3Ylm~u,f! , ~22!

where l c5(2m/Mv2)1/2 is the size of the condensate. Th
spectrum~21! coincides with that found by Stringari@9# from
the analysis of the density fluctuations in the hydrodynam
approach.

In the nonsymmetric case withv1Þv2Þv3 , the operator
Ĝ is invariant under the inversion of any of the three spa
coordinates. Therefore, the polynomialsW determined by
Eq. ~17! can be labeled by the corresponding paritiesPi5
@6,6,6#. Another quantum number is the orderN of the
polynomialW. For evenN the functionW contains the pow-
ers of y equal toN,N22, . . . ,0, and for oddN the powers
are equal toN,N22, . . . ,1.

In fact, there are only two independent parities, sin
) iPi5(21)N. The first few eigenstates can easily be foun
For N51 we have three eigenstates describing the cond
sate center-of-mass oscillations with the trap frequenc
Accordingly, there are three eigenfunctionsW}yi with pari-
ties Pi5@2#. The corresponding eigenfrequencies areV

5v̄«5v i . In the case ofN52 we again obtain three eigen
states corresponding to the condensate center-of-mass
lations. The eigenfunctions areW}yiyj ( iÞ j ), the parities
Pi5Pj5@2#, and the eigenfrequenciesV5Av i

21v j
2. In

addition, there are three eigenstates withN52 and parities
Pi5@1# for all i . They correspond to the quadrupole osc
lations of the condensate, the center of mass being at
The eigenfunctions can be written as

W}11(
i 51

3

bi~v̄/v i !
2yi

2 .

There are three different sets of coefficientsbi corresponding
to the three eigenfrequenciesV determined by the secula
equation det@S#50, whereS is the 333 matrix

Si j 511~22V2/v i
2!d i , j .

The coefficientsbi are determined by the system of thr
linear equations. The first one is( i 51

3 bi1(V2/v̄2)50. The
y

c

l

e
.
n-
s.

cil-

st.

two other equations can be any of the three linearly dep
dent equations( i 51

3 Si j bi50.
For cylindrically symmetric traps (v15v25vr , v3

5vz) the projection of the orbital angular momentum on t
z axis, m, is a conserved quantity. The eigenstates of
excitations can be labeled by the quantum numbersN, m and
the axial parityPz . The radial parity describing the behavio
of the eigenfunctions with respect to simultaneous invers
of the two radial coordinates is@1# for evenm and@2# for
odd m. The polynomialsW can be represented in the form
W5r umuBnm(r,z)exp(imf), where r and z are the dimen-
sionless axial and radial coordinates, andBnm polynomials of
powern5N2m. Each term of the polynomialBnm has the
form znzrnr, wherenz andnr are positive integers. The sum
nz1nr takes the values 0,2, . . . ,n for evenn, and 1,3, . . . ,n
for odd n. The integernr is even,nz being even for evenn
(Pz5@1#), and odd for oddn (Pz5@2#). The polynomials
Bnm(r,z) and eigenenergiesEnm5\Vnm can be found from
the equation

F ~12r22z2!S ]2

]r2
1

~2umu11!

r

]

]r
1b2

]2

]z2D 22S r
]

]r

1b2z
]

]zD 12S Vnm
2

vr
2

2mD GBnm~r,z!50 , ~23!

which follows directly from Eq. ~17!. The quantity b
5vz /vr is the ratio of the axial to radial frequency.

At given m and n the number of eigenmodesk5(n
12)/2 for evenn, andk5(n11)/2 for oddn. The eigenen-
ergies can be found from thekth order secular equation
det@S#50, whereS is thek3k matrix (i , j 51,2, . . . ,k):

Si j 5S Vnm
2

vr
2

2umu D d i j 22~k2 j !~k2 i 1umu11!~d i j 1d i 21,j !

2b2$@2i 212~21!n#~2i 21!d i j /2

1 i @2i 2~21!n#d i 11,j% . ~24!

For n50 (umu>1) we have purely radial oscillations, wit
B0m5const andV0m5Aumuvr . The casen51 corresponds
to the radial oscillations, in combination with the axial osc
lations of the center of mass of the condensate. Here we h
B1m}z andV1m5Aumuvr

21vz
2. In both cases the coupling

between the radial and axial motion is absent, and the c
densate frequenciesV0m andV1m are the same as those fo
a classical gas in the hydrodynamic regime~see@16,17#!.

For n>2 the coupling between the radial and axial d
grees of freedom becomes important, and the condensat
cillation frequencies will be different from the frequencies
a classical hydrodynamic gas. Ifn52 there are two coupled
shape oscillations of the condensate with frequenciesV2m

6

given by

V2m
6

vr
5@2umu121 3

2 b2

6A~ umu122 3
2 b2!212b2~ umu11!#1/2. ~25!

In the simplest case ofm50, Eq.~25! gives the frequencies
of the quadrupole shape oscillations of the condensate.
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frequenciesV20
6 and the frequency of quadrupole radial o

cillations V02 were found in the hydrodynamic approach
@9#. They were also obtained in@15# by considering the con
densate evolution under a weak modulation of the trap
quencies, in@16# from the Hamiltonian of the scaling dynam
ics, and in@13# on the basis of a variational approach. T
frequenciesV02 andV20

2 were measured in the experiment
Jin et al. @4# for b5A8 and calculated numerically for thi
trapping geometry in@10#. The frequenciesV20

6 were found
in the experiment of Meweset al. @7# for b50.08.

For n53 we have two coupled-shape oscillations, whi
are now also coupled to the oscillations of the center of m
of the condensate. In this case we obtain

V3m
6

vr
5@2umu121 7

2 b2

6A~ umu122 5
2 b2!216b2~ umu11!#1/2. ~26!

Interestingly, for certain values of the projection of th
orbital angular momentumm, we find an accidental degen
eracy in the spectrum of excitations. The simplest exam
concerns the frequenciesV1m5vrAumu1b2 and V2m . As
follows from Eq.~25!, V2m

2 5V1m for the projectionm sat-
isfying the condition

b25umu13 ~27!

and, accordingly, integerb2>3. For b5A3 we havem
50, i.e., the frequency of quadrupole shape oscillationsV20

2

coincides with the frequency of axial oscillationsV10. In the
trapping geometry of Jinet al., whereb5A8, Eq.~27! gives
umu55.

Although the condensate frequenciesV2m do not signifi-
cantly differ from those for a classical gas in the hydrod
namic regime~the difference does not exceed 10%; form
50 see@16#!, the accidental degeneracy determined by
an

et

n,
tt.

E

n,

n,

n,
ev

E

C

-

ss

le

-

.

~27! is characteristic only for the condensate. In fact, t
equation corresponds to the accidental degeneracy onl
the limit z→0. The non-Thomas-Fermi corrections, in pa
ticular those associated with the existence ofC0 and the
condensate excitations outside the Thomas-Fermi spatia
gion y2,1, result in the extra splittingdV;zV1m between
the condensate eigenfrequenciesV1m andV2m . For realistic
valuesz;0.1, such as those achieved in the experiments
Jin et al. @8#, dV is already comparable to the difference
the condensate frequencyV2m from V2m of a classical hy-
drodynamic gas. It is important, however, that the splitti
dV can be compensated by a slight change ofb from that
determined by Eq.~27!, inducing the same splitting of the
opposite sign between the Thomas-Fermi condensate
quenciesV1m andV2m .

The presence of the accidental degeneracy can stro
influence the picture of the condensate oscillations. The c
pling between the degenerate modes is provided by the
teraction terms in the Hamiltonian~1!, which are propor-

tional toĈ83 andĈ84 and omitted above in the derivation o
the Bogolyubov–de Gennes equations. Therefore, deriv
only one of the degenerate modes, it is feasible to expect
appearance of oscillations representing a superposition o
two modes. This phenomenon ensures a clear distinction
tween the condensate oscillations and the oscillations o
classical hydrodynamic gas and, hence, can be a signatu
BEC for the gas in the hydrodynamic regime.
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