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Coherent states for the hydrogen atom
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We construct wave packets for the hydrogen atom labeled by the classical action-angle variables with the
following properties(i) The time evolution is exactly given by classical evolution of the angle variafiies.
angle variable corresponding to the position on the orbit is now noncompact and we do not get exactly the
same state after one period; however, the gross features do not change. In particular, the wave packet remains
peaked around the labelgii) The resolution of the identity using this overcomplete set involves exactly the
classical phase-space meastiie) The semiclassical limit is related to Bohr-Sommerfeld quantizatiion.
They are almost minimum uncertainty wave packets in position and momef@1®50-294{@7)51111-3

PACS numbd(s): 03.65.Ca, 32.80.Rm, 33.80.Rv

I. INTRODUCTION proposalg 5] for the coherent states of the hydrogen atom.
Some used the dynamical groups (80or SQ4,2). How-
Schralinger[1] attempted to construct wave packets for €Vver, a state of the class did not go into a state of the same
the hydrogen atom that were related to classical orbits. SucﬁIaSS under time evolution. Klaudg8] has constructed co-
a construction was easy for the harmonic oscillator, and thest erent states with the property that under time evolution

ese remain coherent states. Recently one of7licon-
are the well known coherent sta{@s3]. The hydrogen atom, gt ,cted a set of coherent states for the anharmonic oscillator

however, proved to be more difficult, and the question washat was unique when precise connection to the classical
not resolved at that time. The issue has become relevaphase space and dynamics was demanded.

again in connection with the Rydberg atoff®d in micro- We construct wave packets for the hydrogen atom labeled
wave cavities. Various considerations have led to different by classical phase-space variables.
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The definition of these variables and their relation to the 27
classical orbit are explained later. The angle variableow X fo dy|R,a,8,7,8,0)(R,a,B,7,4,6],
has the range-{ «,>). Note that only the bound-state spec-
trum has been used. Wave packets built out of scattering/here
states with similar properties can also be constructed using 1 (N7
our techniques, but they will not be considered here. We U do= lim = y de. (©)]
N-— oo — N

have the resolution of the identity in the subspace of the
Hilbert space spanned by the bound states, This corresponds to an averaging over an infinite number of
classical orbits. The measure is exactly the classical phase-

1 (e 1 space measure, which is invariant under canonical transfor-

1BS:FJ’0 dRU }ng d[(j+1/2A cosB] 2 mations. Under time evolution,
-1

|R,a,,8,'y,5,0)—t>|R,a,,8,7,5,0+w(R)t). (4)

o N The wave packets peak around the point in the cla}ssical
XJ daf d[(j+1/2)% cosd] phase space represented by the labels. The expectation val-
0 -1 ues of position and momenta do not exactly correspond to
the labels, and the wave packets are not of minimal uncer-
tainty, in contrast to the harmonic-oscillator coherent states.
*Electronic address: pushan@imsc.ernet.in But these features of the latter are present in the semiclassi-
"Electronic address: sharat@imsc.ernet.in cal limit.
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II. CORRESPONDENCE TO THE KEPLER PROBLEM z
The bound-state Kepler problem is conveniently de- n

scribed[8] by three action variables!,L,R and their corre-
sponding angle variables,,w,,w3. (These are related to
the variables in Ref[8] through J;=R, J,=2wL,
J3=27M, w;j=27ww;, i=1,2,3) The HamiltonianH in-
volves onlyR:

27°met
_ o

5

L is the magnitude of the total angular momentum, &hds
the z component of the angular momentum. The angle vari-
ablesw; andw, are also constants of motion in this problem
because their corresponding frequencies are zero. @gly
changes in time as

(t) 27 ; ith 1 47°me? ©

1) =——t with —¥=—-—7-+",

* T(R) T(R) R® X

whereT(R) is the time period of the orbit. FIG. 1. The classical elliptic orbitON: line of nodes.OA:

It has been observed [6,7] that the time evolution in Eq.  Maor axis.

(4) is possible only if the angle variabie; is extended to the . . .

covering spacewse (—,%). This is because the energy exp —iwyJ)exp —iwsdy)exp —iwyd,).

levels are incommensurate. After one period the wave packet i _ ) )

is not reproduced, though grossly it has the same featuredote that this rotation precisely corresponds to taking an

This uniquely fixes the dependence og: orbit in thex-y plane with the major axis along thedirec-
tion into the orbit labeled byR,L,M,w,ws,03).
IR,L,M ,wl,wz,w3>=;m Chim(R.LM,01,05,) We may exploit the dynamical @) symmetry of the hy-

drogen atom to fix the dependence loralso. In addition to
E,T(R)ws the conserved vectal related to rotational invariance, we
Xexp{ _'W) Inim). (7) have another conserved vectralong the major axigFig.

_ ) ) 2) related to the Laplace-Runge-Lenz vector. We have
Under rotation we require these wave packets to go into ongj+ K)2=(J—K)2=R?, J2=L2, and the eccentricity of the

another as these Iabe7Ls do: orbit ise= y1—L%/R?. The role of the vectoK is to deform
IR.L,M,w1,05,03)—|R,LM(R),01(R),wx(R),w3) the orbits by changing. The Q4) symmetry corresponds to
(8

V4
(R,L and w3 do not change under rotation of axes

w1 is the angle between the axis and the line of nodes
(i.e., the line of intersection between the orbital plane and the
X-y plané. w, is the angle between the line of nodes and the
major axis(Fig. 1). Also M/L=cosw,, wherew, is the in-
clination of the orbit(i.e., the angle between the normmeio
the orbit and thez axig). Thus under rotation of the orbit
around thez axis (by angley;), w, increases by, , while
w, andw, do not change. This uniquely requires the depen-
dence onw, to involve exp(iw;J,), wherel, is the genera-
tor of rotations about the axis. A rotation about the line of
nodes by an anglé, increasesv, by i, while keepingw,
and w, unchanged. This fixes the dependencexgrand w,
so that it involves expfiw;J)exp(—i w,Jy). This is because
the rotation about the line of nodes corresponds to
expiwd)expiyd,)exp,J,). Finally a rotation about
the normaln by the angley, increasesw, by i, while
keeping the other two angles constant. This rotation corre-
sponds to

exp(—i wyJ,)exp —iw,dy)exp

X (—igd)expliw,dy)expio,d;). X v
FIG. 2. The vectors) and K and the angles associated with
Therefore the dependence en, w;, w, is required to be  them.
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independent rotations of the vectodsK)/2 and —K)/2 13,,6)=e"1Dzg= 193y jj). (12)
in the three-dimensional space.

; . o This is precisely the rotation that takes theaxis to the
Consider a circular orbit in the-y plane. NowK =0 and

. ) L X : instantaneous axis of the classical spin. The correct semiclas-
J£K are in thez direction. Imagine a rotation ot K)/2 ~ gjcq) jimit requires the choichj) as seen below. Note that
about the 2 axis by an angtes and an equal and opposite \ye have precisely got the angular-momentum coherent state

rotation of J—K)/2. This will give a nonzer& of magni-  |3heled byw and 6. We now show that this has the right
tude R sinws along thex direction andJ of magnitude  gemiclassical limit and resolution of identity

R cosws along thez direction. Thus the orbit has been de-
formed into an elliptic orbit in thex-y plane with |‘]Z,9>:2 d}m(w)e‘im"“m}, (12
L/R=cosws, m

The above analysis shows the following. In order to havewhere

the correct transformation properties of the classical vari- 2j)! w\i—m w\itm
ablesR,L,M,w,w,,w3 under the full @4) symmetry, the d}m(w)z \/m (sin—) (cos—) . (13

dependence oR,L,w;,w, has to be via S 2 B 2 .
. .. L For largej, d}m(w) peaks at cas=m/j i.e., the dominant
e 'w1lzgioalygi02dzg T wsl Iyt Ky)/Zlglosl(0y=Ky)I2]) contributions come from the stategi~J,.

where coss=L/R and cos,=M/L. Classically this will ro- As J, and ¢ are action angle variables, the phase-space

tate and deform a circular orbit in they plane into the orbit measure il J,d¢. Now
with the labels R,L,M,w;,w5,w3) (without changing the }f‘] dJ jzw d6]3,,6%(3,,6]

size of the major axis Quantum mechanically the former hJ_; ~ /o R

corresponds to the stafe,n—1,n—1). Therefore we may 31

expect the coherent state to have the form => %f_ d(cosw)dl,(w)dl (o)[jm)(jm| (14
IR,L,M,w;,w;5,w3) m 1

32
=3 C,(Rye “Trgivadygivzd; = F 51 [imy(jm| (15)
n -1 (16

X e~ i0s(RyDgi(wgR2*n) | 0 g n 1), (9)  With the identificationd=(j+1/2)#. [This means that we

must associate the classich (j +1/2)A to the spin quan-
With a proper choice o€,(R) this will have the properties tum numberj.] Thus the angles» and 6 appearing in the
we require. However, we find that it is much more naturalangular-momentum-coherent-state Hd2) can be inter-
and convenient to use a different set of action angle varipreted as classical phase-space variables for a precessing
ables. Note the close relation to the angular-momentum caspin with 6 as the angle variable ang { 1/2)cosv as the
herent states. Note also that the angle variablesw, are  corresponding action variable.
involved in rotation about the third axis, whereas the angles
w, and ws related to the action variables are involved in IV. COHERENT STATES FOR THE HYDROGEN ATOM
rotation about the 1 and 2 axes. This is a general feature, as

In place of the conserved variablesM we will
seen below. p sSM,w,,w;

use other variables suggested by tHd)@ymmetry. We will

use the two @) subgroups in ©) generated byJ=K/2).
We define
Consider a spinning object with spin quantum numper IR, a@,B,7,8,6)
and gyromagnetic ratige in an external magnetic fielB in
:Ee z d-irec'gion. The Hamiltonian iﬁzHBJZ. Classically ZE C(R)ex;{—ia
e spin will precess about the axis with frequencyuB. 5
The action variable ig,, which measures the inclination to
the z axis and the angle variablee (0,27) is the azimuthal ~[I+K
angle of the precessing spin. We now show that, by requiring X exp{ - I,B( T)
the classical time evolution, semi-classical limit, and correct
rotation property for the statés, , #) labeled by the classical F{
Xexg —idl

Ill. COHERENT STATES FOR A PRECESSING SPIN

2

p(_iRaa)l" ). an
S v inlii-

3+R>

. A J-K
phase space of this system, we obtain uniquely the angular- 5

momentum coherent statf3] . We have

B =i 0\ . In place of quantum statefn,|,m) we are now using
|JZ’0>_§ Cn(J2)ex TMBmh,u_B li.m) (10 limy)|jm,) of (3+K)/2 and §—K)/2, respectively[The j
quantum number is the same because K)?=(J—K)?]. |

takes half integer values 11,3, .... We get thestates
Inlm) by going to the coupled basis

t
to reproduce the classical evolutidd, ,8)—|J,, 6+ uBt).
Under rotation by the angle¢s about thex axis,  goes to
o+, where coe=J,/J andJ is the classical spin to be
associated with the spin quantum numbern order that malimy=S ¢c™ . 2i411.m 18
|J,,6) have this property, we have to choose limg)ljms) % imyjmp| 21+ L1, m)- 18
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The new angles are related to the earlier angles as follows V. WAVE-PACKET PROPERTIES
(see Fig. 2 The (J+K)/2 rotation rotates the classical vec- | case of the harmonic-oscillator coherent stamsthe

tor J+K from the z axis to R sinBcosa, RsinBsin,  expectation values of the position and momentum operators
R cosB) without affecting 0—K)/2. Similarly the J—K)/2  are directly given by the real and imaginary parts of the label
rotation rotates the classical vectdrK from z axis to  z. Also they are minimal uncertainty states. For our coherent
(R sind cosy, R sindsiny, R coss). Therefore the projection states, these properties are not valid exactly, but are valid
of J on the z axis gives cog,=R(cosB+coss)/|J| asymptotically in the s_emiclgssical _regib?ﬂ. This is a con-
where |J|=Ry2+2 sing siné cos@—y)+2 co3 cosy. The ~ Sequence of the semiclassical limit of our coherent states,
: : N ... where the correspondence principle may be applied. Con-
line of nodes is alon@xJ and therefore has the direction . . AP X

cosines (sind siny-sing sina, —sinB cose—sins cosy). sider the expectation value of an operatm(rp,q) in a co-
Therefore cos)=(sindsiny-+singsiny)/|ON| with |ON|= herent state. For large valuesRf L, andM (in units of#),

. . —— = . , the coherent state is dominated by the stdtesn) with
R\/§|n2,8+sm2y+2 sing siny cos@—9). () S obtained by n~R/#, |~L/A, and m~M/#A. Now, the correspondence
taking the component oK along the line of nodes,

and therefore cdd=|K|(sin?8 cos2v—sirPy cos2)/|ON| principle relates the expectation value ®fto the value of
and |K|=R\2—2 sin8sind cos—7y) — 2 0B cosd. The the corresponding classical variad®yp,q) for the corre-

R . -~ sponding classical orbit. Thus, asymptotically, our coherent
orbit is S!”?p'y obtaln_ed from the vectoderK' and_J K states are wave packets peaked around position, momenta
because it is perpendicular doand has the major axis along

o ' . ) etc. corresponding to the action angle variables labeling
the directionk with magnitude R/277h)’a, wherea is the  yhem “Also, asymptotically they would be minimum uncer-

Bohr_radius. Also the eccentricity is given bg=  (jinty states. A more detailed consideration of these proper-
J1-J21(3%K)2. ties for small values of the action variables will be consid-

The classical phase-space measure in the new variablesdgad elsewhere.
dR d@ d((j +1/2)A cosB) da d((j +1/2)h cosd) dy. For
largeJ, the statdR,«, 3,7, 5, 0) gets its dominant contribu-
tion from m; = (j + 1/2)cog andm,=(j + 1/2)cos’. This is We have constructed wave packets for the hydrogen
exactly what is wanted by Bohr quantization of the actionatom, labeled by points of the classical phase space which
angle pairs because ¢&s(J+K),/R and co$=(J—-K),/R.  follow classical orbits very closely. They have the correct
Therefore we only have to fi€;(R) by requiring the correct semiclassical limit corresponding to Bohr quantization. In
semiclassical limit and resolution of identity. We want addition, they have the desirable property that the resolution
Ci(R) to peak atR=(2j+1)%, as Bohr quantization gives of identity involves exactly the classical phase-space mea-

VI. CONCLUSION

R=nf#. Also to get a resolution of identity we require sure. As a consequence of incommensurate energy levels,
1 (= ) our wave packets do not return to the original state after one
gfo dR[C(R)|*=1 (19 period, but the overall features do not change. One may in-

] T ) 5 terpret this as follows: the wave packet Haa infinite num-
for all j. For normalization we requirgj|C;(R)[*=1, where  per of internal degrees of freedom, which may not return to

j=03%,12, ... . All these requirements are met by the original state after a period.
(RIT)]
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