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Coherent states for the hydrogen atom
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We construct wave packets for the hydrogen atom labeled by the classical action-angle variables with the
following properties.~i! The time evolution is exactly given by classical evolution of the angle variables.~The
angle variable corresponding to the position on the orbit is now noncompact and we do not get exactly the
same state after one period; however, the gross features do not change. In particular, the wave packet remains
peaked around the labels.! ~ii ! The resolution of the identity using this overcomplete set involves exactly the
classical phase-space measure.~iii ! The semiclassical limit is related to Bohr-Sommerfeld quantization.~iv!
They are almost minimum uncertainty wave packets in position and momentum.@S1050-2947~97!51111-5#

PACS number~s!: 03.65.Ca, 32.80.Rm, 33.80.Rv
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I. INTRODUCTION

Schrödinger @1# attempted to construct wave packets f
the hydrogen atom that were related to classical orbits. S
a construction was easy for the harmonic oscillator, and th
are the well known coherent states@2,3#. The hydrogen atom
however, proved to be more difficult, and the question w
not resolved at that time. The issue has become rele
again in connection with the Rydberg atoms@4# in micro-
wave cavities. Various considerations have led to differe
th

c-
rin
sin
W
th

561050-2947/97/56~5!/3322~4!/$10.00
ch
se

s
nt

proposals@5# for the coherent states of the hydrogen ato
Some used the dynamical groups SO~4! or SO~4,2!. How-
ever, a state of the class did not go into a state of the s
class under time evolution. Klauder@6# has constructed co
herent states with the property that under time evolut
these remain coherent states. Recently one of us@7# con-
structed a set of coherent states for the anharmonic oscil
that was unique when precise connection to the class
phase space and dynamics was demanded.

We construct wave packets for the hydrogen atom labe
by classical phase-space variables.
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n51
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The definition of these variables and their relation to
classical orbit are explained later. The angle variableu now
has the range (2`,`). Note that only the bound-state spe
trum has been used. Wave packets built out of scatte
states with similar properties can also be constructed u
our techniques, but they will not be considered here.
have the resolution of the identity in the subspace of
Hilbert space spanned by the bound states,
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F E Gdu[ lim
N→`

1

N E
2Np

Np

du. ~3!

This corresponds to an averaging over an infinite numbe
classical orbits. The measure is exactly the classical ph
space measure, which is invariant under canonical trans
mations. Under time evolution,

uR,a,b,g,d,u&→
t

uR,a,b,g,d,u1v~R!t&. ~4!

The wave packets peak around the point in the class
phase space represented by the labels. The expectation
ues of position and momenta do not exactly correspond
the labels, and the wave packets are not of minimal unc
tainty, in contrast to the harmonic-oscillator coherent sta
But these features of the latter are present in the semicla
cal limit.
R3322 © 1997 The American Physical Society
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II. CORRESPONDENCE TO THE KEPLER PROBLEM

The bound-state Kepler problem is conveniently d
scribed@8# by three action variablesM ,L,R and their corre-
sponding angle variablesv1 ,v2 ,v3. ~These are related to
the variables in Ref @8# through J35R, J252pL,
J352pM , v i52pwi , i 51,2,3.! The HamiltonianH in-
volves onlyR:

H52
2p2me4

R2
. ~5!

L is the magnitude of the total angular momentum, andM is
the z component of the angular momentum. The angle v
ablesv1 andv2 are also constants of motion in this proble
because their corresponding frequencies are zero. Onlyv3
changes in time as

v3~ t !5
2p

T ~R!
t with

1

T~R!
5

4p2me4

R3
, ~6!

whereT(R) is the time period of the orbit.
It has been observed in@6,7# that the time evolution in Eq

~4! is possible only if the angle variablev3 is extended to the
covering space;v3P(2`,`). This is because the energ
levels are incommensurate. After one period the wave pa
is not reproduced, though grossly it has the same featu
This uniquely fixes the dependence onv3 :

uR,L,M ,v1 ,v2 ,v3&5(
nlm

Cnlm~R,L,M ,v1 ,v2 ,!

3expS 2 i
EnT~R!v3

2p\ D unlm&. ~7!

Under rotation we require these wave packets to go into
another as these labels do:

uR,L,M ,v1 ,v2 ,v3&→
R

uR,L,M ~R!,v1~R!,v2~R!,v3&
~8!

(R,L andv3 do not change under rotation of axes!.
v1 is the angle between they axis and the line of node

~i.e., the line of intersection between the orbital plane and
x-y plane!. v2 is the angle between the line of nodes and
major axis~Fig. 1!. Also M /L5cosv4, wherev4 is the in-
clination of the orbit.~i.e., the angle between the normaln to
the orbit and thez axis!. Thus under rotation of the orbi
around thez axis ~by anglec1), v1 increases byc1 , while
v2 andv4 do not change. This uniquely requires the dep
dence onv1 to involve exp(2iv1Ĵz), whereĴz is the genera-
tor of rotations about thez axis. A rotation about the line o
nodes by an anglec4 increasesv4 by c4 while keepingv1
andv2 unchanged. This fixes the dependence onv4 andv1

so that it involves exp(2iv1Ĵz)exp(2i v4Ĵy). This is because
the rotation about the line of nodes corresponds
exp(2iv1Ĵz)exp(2ic4Ĵy)exp(v1Ĵz). Finally a rotation about
the normaln by the anglec4 increasesv2 by c4 while
keeping the other two angles constant. This rotation co
sponds to

exp~2 iv1Ĵz!exp~2 iv4Ĵy!exp

3~2 ic2Ĵz!exp~ iv4Ĵy!exp~ iv1Ĵz!.

Therefore the dependence onv4 , v1 , v2 is required to be
-
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exp~2 iv1Ĵz!exp~2 iv4Ĵy!exp~2 iv2Ĵz!.

Note that this rotation precisely corresponds to taking
orbit in thex-y plane with the major axis along thex direc-
tion into the orbit labeled by (R,L,M ,v1 ,v2 ,v3).

We may exploit the dynamical O~4! symmetry of the hy-
drogen atom to fix the dependence onL also. In addition to
the conserved vectorJ related to rotational invariance, w
have another conserved vectorK along the major axis~Fig.
2! related to the Laplace-Runge-Lenz vector. We ha
(J1K )25(J2K )25R2, J25L2, and the eccentricity of the
orbit is e5A12L2/R2. The role of the vectorK is to deform
the orbits by changingL. The O~4! symmetry corresponds to

FIG. 1. The classical elliptic orbit.ON: line of nodes.OA:
major axis.

FIG. 2. The vectorsJ and K and the angles associated wi
them.
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independent rotations of the vectors (J1K )/2 and (J2K )/2
in the three-dimensional space.

Consider a circular orbit in thex-y plane. NowK50 and
J6K are in thez direction. Imagine a rotation of (J1K )/2
about the 2 axis by an anglev5 and an equal and opposit
rotation of (J2K )/2. This will give a nonzeroK of magni-
tude R sinv5 along the x direction andJ of magnitude
R cosv5 along thez direction. Thus the orbit has been d
formed into an elliptic orbit in thex-y plane with
L/R5cosv5.

The above analysis shows the following. In order to ha
the correct transformation properties of the classical v
ablesR,L,M ,v1 ,v2 ,v3 under the full O~4! symmetry, the
dependence onR,L,v1 ,v2 has to be via

e2 iv1Jze2 iv4Ĵye2 iv2Ĵze2 iv5@~ Ĵy1K̂y!/2#eiv5@~ Ĵy2K̂y!/2#,

where cosv55L/R and cosv45M/L. Classically this will ro-
tate and deform a circular orbit in thex-y plane into the orbit
with the labels (R,L,M ,v1 ,v2 ,v3) ~without changing the
size of the major axis!. Quantum mechanically the forme
corresponds to the stateun,n21,n21&. Therefore we may
expect the coherent state to have the form

uR,L,M ,v1 ,v2 ,v3&

5(
n

Cn~R!e2 iv1Jz
ˆ

e2 iv4Jy
ˆ

e2 iv2Jz
ˆ

3e2 iv5~K̂y/2!ei ~v3R3/2n2h3!un,n21,n21&. ~9!

With a proper choice ofCn(R) this will have the properties
we require. However, we find that it is much more natu
and convenient to use a different set of action angle v
ables. Note the close relation to the angular-momentum
herent states. Note also that the angle variablesv1 ,v2 are
involved in rotation about the third axis, whereas the ang
v4 and v5 related to the action variables are involved
rotation about the 1 and 2 axes. This is a general feature
seen below.

III. COHERENT STATES FOR A PRECESSING SPIN

Consider a spinning object with spin quantum numbej
and gyromagnetic ratiom in an external magnetic fieldB in
the z direction. The Hamiltonian isĤ5mBĴz . Classically
the spin will precess about thez axis with frequencymB.
The action variable isJz, which measures the inclination t
the z axis and the angle variableuP(0,2p) is the azimuthal
angle of the precessing spin. We now show that, by requi
the classical time evolution, semi-classical limit, and corr
rotation property for the statesuJz ,u& labeled by the classica
phase space of this system, we obtain uniquely the angu
momentum coherent states@9# . We have

uJz ,u&5(
m

Cm~Jz!expS 2 i

\
mBm\

u

mBD u j ,m& ~10!

to reproduce the classical evolution,uJz ,u&→
t

uJz ,u1mBt&.
Under rotation by the anglec about thex axis, v goes to
v1c, where cosv5Jz/J and J is the classical spin to be
associated with the spin quantum numberj . In order that
uJz ,u& have this property, we have to choose
e
i-

l
i-
o-
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g
t

r-

uJz ,u&5e2 iu Ĵze2 iv Ĵyu j j &. ~11!

This is precisely the rotation that takes thez axis to the
instantaneous axis of the classical spin. The correct semic
sical limit requires the choiceu j j & as seen below. Note tha
we have precisely got the angular-momentum coherent s
labeled byv and u. We now show that this has the righ
semiclassical limit and resolution of identity

uJz ,u&5(
m

djm
j ~v!e2 imuu jm&, ~12!

where

djm
j ~v!5A ~2 j !!

~ j 1m!! ~ j 2m!! S sin
v

2 D j 2mS cos
v

2 D j 1m

. ~13!

For large j , djm
j (v) peaks at cosv5m/j i.e., the dominant

contributions come from the statesm\'Jz .
As Jz and u are action angle variables, the phase-sp

measure isdJzdu. Now

1

hE2J

J

dJzE
0

2p

duuJz ,u&^Jz ,uu

5(
m

J

\E21

1

d~cosv!djm
j ~v!djm

j ~v!u jm&^ jmu ~14!

5
J

\

2

2 j 11
u jm&^ jmu ~15!

51, ~16!

with the identificationJ5( j 11/2)\. @This means that we
must associate the classicalJ5( j 11/2)\ to the spin quan-
tum numberj .] Thus the anglesv and u appearing in the
angular-momentum-coherent-state Eq.~12! can be inter-
preted as classical phase-space variables for a prece
spin with u as the angle variable and (j 11/2)cosv as the
corresponding action variable.

IV. COHERENT STATES FOR THE HYDROGEN ATOM

In place of the conserved variablesL,M ,v1 ,v2 we will
use other variables suggested by the O~4! symmetry. We will
use the two O~3! subgroups in O~4! generated by (Ĵ6K̂ /2).
We define

uR,a,b,g,d,u&

5(
j

Cj~R!expF2 iaS Ĵ1K̂

2 D G
3expF2 ibS Ĵ1K̂

2 D GexpF2 igS Ĵ2K̂

2 D
3expF2 idS Ĵ2K̂

2 D GexpS 2 iR3u

2n2h3 D u j j &u j j &. ~17!

In place of quantum statesun,l ,m& we are now using
u jm1&u jm2& of ( Ĵ1K̂ )/2 and (Ĵ2K )/2, respectively.@The j

quantum number is the same because (Ĵ1K̂ )25( Ĵ2K̂ )2]. j

takes half integer values 0,1
2 ,1,32 , . . . . We get thestates

unlm& by going to the coupled basis

u jm1&u jm2&5(
lm

Cjm1 jm2

lm u2 j 11,l ,m&. ~18!
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The new angles are related to the earlier angles as foll
~see Fig. 2!. The (Ĵ1K̂ )/2 rotation rotates the classical ve
tor J1K from the z axis to (R sinb cosa, R sinb sina,
R cosb) without affecting (Ĵ2K̂ )/2. Similarly the (Ĵ2K̂ )/2
rotation rotates the classical vectorJ2K from z axis to
(R sind cosg, R sind sing, R cosd). Therefore the projection
of J on the z axis gives cosc45R(cosb1cosd)/uJu
where uJu5RA212 sinb sind cos(a2g)12 cosb cosd. The
line of nodes is alongẑ3 Ĵ and therefore has the directio
cosines ~sind sing1sinb sina,2sinb cosa2sind cosg).
Therefore cosv5(sind sing1sinb sing)/uONu with uONu5
RAsin2b1sin2g12 sinb sing cos(a2d). V is obtained by
taking the component ofK along the line of nodes
and therefore cosV5uK u~sin2b cos2a2sin2g cos2d)/uONu
and uK u5RA222 sinb sind cos(a2g) 2 2 cosb cosd. The
orbit is simply obtained from the vectorsJ1K and J2K
because it is perpendicular toJ and has the major axis alon
the directionK with magnitude (R/2ph)2a, wherea is the
Bohr radius. Also the eccentricity is given bye5
A12J2/(J6K )2.

The classical phase-space measure in the new variab
dR du d„( j 11/2)\ cosb… da d„( j 11/2)\ cosd… dg. For
largeJ, the stateuR,a,b,g,d,u& gets its dominant contribu
tion from m15( j 11/2)cosb andm25( j 11/2)cosd. This is
exactly what is wanted by Bohr quantization of the acti
angle pairs because cosb5(J1K)z/R and cosd5(J2K)z/R.
Therefore we only have to fixCj (R) by requiring the correct
semiclassical limit and resolution of identity. We wa
Cj (R) to peak atR5(2 j 11)\, as Bohr quantization give
R5n\. Also to get a resolution of identity we require

1

\E0

`

dR uCj~R!u251 ~19!

for all j . For normalization we require( j uCj (R)u251, where

j 50,1
2 ,1,32 , . . . . All these requirements are met by

Cj~R!5exp~2R/2\!
~R/\! j

A~2 j !!
. ~20!

Thus we get the coherent state, as in Eq.~1!.
-

h,

.

s

is

V. WAVE-PACKET PROPERTIES

In case of the harmonic-oscillator coherent statesuz& the
expectation values of the position and momentum opera
are directly given by the real and imaginary parts of the la
z. Also they are minimal uncertainty states. For our coher
states, these properties are not valid exactly, but are v
asymptotically in the semiclassical region@7#. This is a con-
sequence of the semiclassical limit of our coherent sta
where the correspondence principle may be applied. C
sider the expectation value of an operatorÔ( p̂,q) in a co-
herent state. For large values ofR, L, andM ~in units of\),
the coherent state is dominated by the statesunlm& with
n'R/\, l'L/\, and m'M /\. Now, the correspondenc
principle relates the expectation value ofÔ to the value of
the corresponding classical variableO(p,q) for the corre-
sponding classical orbit. Thus, asymptotically, our coher
states are wave packets peaked around position, mom
etc. corresponding to the action angle variables labe
them. Also, asymptotically they would be minimum unce
tainty states. A more detailed consideration of these prop
ties for small values of the action variables will be cons
ered elsewhere.

VI. CONCLUSION

We have constructed wave packets for the hydrog
atom, labeled by points of the classical phase space w
follow classical orbits very closely. They have the corre
semiclassical limit corresponding to Bohr quantization.
addition, they have the desirable property that the resolu
of identity involves exactly the classical phase-space m
sure. As a consequence of incommensurate energy le
our wave packets do not return to the original state after
period, but the overall features do not change. One may
terpret this as follows: the wave packet has~an infinite num-
ber of! internal degrees of freedom, which may not return
the original state after a period.
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