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Hydrodynamic excitations of Bose condensates in anisotropic traps
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The collective excitations of Bose condensates in anisotropic axially symmetric harmonic traps are investi-
gated in the hydrodynamic and Thomas-Fermi limit. We identify an additional conserved quantity, besides the
axial angular momentum and the total energy, and separate the wave equation in elliptic coordinates. The
solution is thereby reduced to the algebraic problem of diagonalizing finite-dimensional matrices. The classical
quasiparticle dynamics in the local-density approximation for energies of the order of the chemical potential is
shown to be chaotid.S1050-294{®7)51510-1]

PACS numbsgfs): 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.9&

The Bose condensates of alkali-metal atoms in magnetitact, this expectation is borne out for collective excitations
traps[1-3] offer a unique way to investigate the low-lying whose energies are neither very large nor very small com-
collective excitations in Bose condensafds-16. Experi-  pared to the chemical potentiedee below, which spoils all
mentally collective modes with a given symmetry have beerhopes of finding exact analytical solutions for the modes and
excited by time-dependent modulations of the trapping potheir spectrum in this energy range for axially symmetric
tential, and their evolution has been followed in real time by{raps. Why then are such solutions possible at energies in the
measurements of the resulting shape oscillations of the coflydrodynamic regime, i.e., for energies much smaller than
densates. The measurements performed so far have involvéte chemical potential?
turning off the trap after a given tinfd—6J, but in the future The answer is provided by the existence, in that regime,
they could even be performed nondestructively by elasti®f an additional conserved quantity, which we exhibit explic-
off-resonant light scatterinfi7]. Theoretically the collective itly below. lts existence permits the separation of the hydro-
modes have been analyzed by using the Bogoliubov equélynamic wave equation in elllptlc_al coordinates. Thereby the
tions or by linearizing the time-dependent Gross-Pitaevskifask of solving the wave equation can be reduced to the
equation around the time-independent condensate and solRurely algebraic problem of diagonalizing finite-dimensional
ing these equations numericallg,9] or analytically in vari- ~ matrices. We use this method to obtain the spectrum of the
ous approximationg10—16. Very good agreement between low-lying hydrodynamic modes as a function of the ratio of
the numerical and the experimental results has been foundthe axial and the radial trap frequencies. .

In a seminal paper Stringafil6] has shown how the A convenient starting point of our analysis is the linear-
coupled wave equations for the collective excitations ardzed hydrodynamic equations as derived 16]. They read
simplified in the hydrodynamic limit to become a single . Adrmha : h
second-order wave equation for density waves, and he ob- e=——y %, ==V PoX)Ve. @
tained analytical solutions for all its modes in spherically
symmetric harmonic traps and, remarkably, also for some 2;
its modes in axially symmetric harmonic traps. The latter ar
particularly important, because all experiments have bee
performed with traps of this symmetf¥—6).

In the present paper it is our goal to study in more detai
by analytical means the hydrodynamic wave equation in th

axially symmetric case. We wish to find an explanation why:. ina | h of th For th
at least some analytical solutions have been possible in thilve s-wave scattering length of the atoms. For the connec-

case and intend to use this insight to construct more solution" O_f Eq. (1) V\{ith the Bogoliubov equations s¢7]. The
in a systematic way. trapping potentialJ (x) is assumed to have the forb(x)

In principle the collective mode problem looks very dif- :(M/Z)‘*’S(Xeryz)+(M/2)“’§ZZ; The surface of the con-
ferent for isotropic and for axially symmetric traps: In the densate, in the Thomas-Fermi limit, is defined By= u.
isotropic case the rotational symmetry ensures that angulafFquations(1) are obtained by a gradient expansion and as-
momentum conservation gives two good quantum number$Umingdp andV ¢ to be small. Eliminatingv ¢ from both
and therefore the wave equation is separable in spheric&duations and making the ansata(x,t)=e"'“'(x), one
coordinates. For axial symmetry, however, only the axialobtains the time-independent wave equafit@] M w?y(x)
component of angular momentum remains a good quanturit — V -[#—U(X) ]V #(x), which holds inside the conden-
number, besides the energy, and one may expect that ttf&te. We look for boundary conditions on the surface of the

system, having three degrees of freedom, is not integrable. lcondensate that make the operat@=—-M"1V-[u

hese equations are valid on time scales much longer than
/. Hereg is the phase of the macroscopic wave function,
R‘p is the local perturbation of the number density in the
collective mode,pg(X) is the number density of the time-
independent condensate in the Thomas-Fermi approximation
18], po(x)=M/4mh?a[ u—U(X)]® (u—U(x)), whereu is

the chemical potential, andl anda are the mass and posi-
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—~U(X)]V Hermitian, so that for two eigenfunctiong, % =o' (&—1)(1- 7%, z=0'¢&n, where inside the conden-

with eigenvalueso?, @ 2 we have orthogonality according to Sateé now has the rangel, 1/’ ] while » has the same range
as before. The treatments in the two cases are equivalent via

(0’ o z)f dBxy* g the transformation connectingande’. In the following we
v shall present the equations for the casg>wy. The final
formulas for w? apply for w,=w, and w,<w,. After the

ZJ’ d3X[ y* Gy—YG* y* ] change of coordinates withr= e the operatorG takes the
v form
=—M‘1J df(u—U)(g* dglon—yay*1on)=0. & w; 1
Vv - 262 §2+ 772
HereV anddV denote the volume of the condensate and its
surface, respectively. Becauge- U vanishes on the bound- ) ooy 0 5 ) d
ary, it is enough to require that and its normal derivative X|[1-€e(1—7 )](9_5[1_6 (&+1)1(€ +1)(9_§

dylon remain bounded there. In the following it will be

useful to measure lengths in units of the radial Thomas- ) o J ) ) 5 0
Fermi radiusro=(2u/Mw3)Y? which brings the wave +[1-€%(¢ +1)]g7[1—6 (1=791(1—7n )5]
equation into the dimensionless forafy= Gy with

G=—(022V-[(1-eA)(1-p?) -2V, (2 (1-7)(1+€) \9¢
4
where we use cylindrical coordinatps= Vx“+y<,z and the  \hich is now separable. Thé dependence of its eigenfunc-
azimuthal angle¢, and definee’=1-wj/w?, which is  tions is taken care of by factoe™ with the integer azi-
positive for wo<w,. The operatoc commutes, of course, muthal quantum numben. Separating the operator §and
with the axial angular-momentum operafos= —i(d/d¢). 7 by making the ansat¥ ,(¢)¥,(»)e'™? for its eigenfunc-

=@+ DI1= A=)+ 7)) 0 )2]

However, there is an additional nontrivial operator tions we obtain two equations: one fdr,,
N d d m? 2¢2(1- %)y d
B=— V24 (x-V)2+3x. V + 2%/ 022, 3 (1= P — —

which commutes with., and withG, as one may check by 202 w2
direct calculation of the commutators. In the isotropic case - #112)
e

€=0, B may be expressed by the square of the angular mo-
mentum [?=[2+ £§+ L2 and G via B=2G/w3+L2 Be- the other for¥ . It turns out that both equations are identi-
cause of the existence of the three commuting operdiors cal if in the equation for¥, we substitutei ¢ for 7, i.e.,

L,, andB in the system with the three degrees of freegam ¥ (€)=Y ,(i£). The solution for one coordinate is the ana-
z, and¢, it is now manifest that the system is integrable, i_e_,lytlc.contllnuatlon _of the'solutlon of the other from the real to
the eigenvalues d can be labeled by the quantum numbersthe imaginary axis. It is easy to check that the separation

of L, andB. To see this explicitly we now look for variables constantg is just the eigenvalue of the operatBrfor the
2 . ) . .
in which the wave equation separates, and introduce Cy"n(_algenfunctlon\lfg(g)\lf,7( 7)exp(m¢). To do this one needs

drical elliptical coordinateg, », which in their oblate sphe- {0 expressB also in the elliptic coordinates:

v,=-p¥,; (5

roidal form [19] are defined byp=ca\(&2+1)(1- 77, . 1 J 9

z=o0¢n. These coordinates are orthogonal. Surfaces of B=———— —a—,§[1—62(§2+1)](§2+1)3—§

é=const are confocal ellipsoids with foci a=0, p=o. (&5 77)

Surfaces with constang are confocal hyperboloids with the J J

same foci. Forw,=w,, i.e., 0<e?<1, the foci atz=0 p - a—[l—ez(l— 7%)](1— 772)&—

=¢ are made to coincide with the foci of the ellipsoidal 7 7

Thomas-Fermi surface if we choose=e. The Thomas- £2+ 72 52

Fermi surface is given byr=(1/e>—1)Y2 Then the inte- - —2] . (6)

rior of the condensate is described bjn the rangd 0,¢1¢] (&+1)(1=7°) do

and 7 in the rangq —1,1]. Equations(5) contain m only quadratically. Therefore
For w,<w, the parametek? is no longer useful as it the energy levels are the same farm. Expanding V¥,

becomes negative. Instead one can deéiffe=1—w3/w5= for fixed |m| in terms of associated Legendre functions

— €%/(1— €%), which lies in the range ®¢’2<1. The foci  PIM () with coefficientsa, , where|m|</<o, we obtain

of the Thomas-Fermi ellipse now lie a=x*o¢’ where from Eq.(5) a second-order recursion relation for the coef-
o'=€'lJ1—€'%. Therefore we now need the prolate ficientsa, relating only even or only odd indices. The
spheroidal form of elliptical coordinategl9] with foci eigenstates therefore have even and odd parity. The recursion
at z=*¢’, p=0. These coordinates are defined py relation itself is straightforward to obtain but lengthy and
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TABLE I. The 43 lowest levels labeled by the quantum numbersN =1 + int[n/2], which can be symmetrized by a suitable
[m|<2n,j for (w,/wg)?=8.

n j m=0 m=1 m=2
0 0 0.000 000 00 1.000 000 00 1.414 21356
2 0 1.797 128 37 2.317 294 58 2.723416 01
1 0 2.828 427 12 3.000 000 00 3.162 277 66
4 0 2.911930 10 3.365376 41 3.731 31058
3 0 3.273 025 89 3.518 321 07 3.741 657 39
5 0 3.826 573 18 4.098 941 74 4.343 248 21
6 0 3.840 996 26 4.215 323 29 4.522 793 02
7 0 4.407 483 68 4.679 210 86 4.922 217 57
8 0 4.590 810 95 4.898 147 04 5.160 102 07
9 0 4.971 054 60 5.229 358 96 5.461 449 95
2 1 4.976 979 97 5.160 440 47 5.346 307 63
10 0 5.206 481 19 5.470 813 54 5.704 176 81
4 1 5.450 307 61 5.744 562 65 (6.041 424 3}
11 0 5.499 251 14 5.740 535 18 5.959 256 95
12 0 5.738 689 80 5.976 16320 (6.190 777 58

will not be written out here. The condition that the expansion

terminate at’ = (|m|+n) quantizes the eigenvalye

B=+[m)(n+[m[+3),

@)

which means tha’, becomes (% 5?)™? times a polyno-
mial of ordern.

In the isotropic casee=0, the operatoB can be diago-

nalized in spherical coordinates and its spectrum then foun

similarity transformation with a given diagonal matrix. For
fixed numbers, |m| we haveN different solutions forw?,
which we label by our third quantum numbef
=0,...,infn/2]. In the isotropic casee=0 the quantum
numberj can be expressed gs=(n—/+|m|)/2=n,, as
one finds by expressing the isotropic spectrum[18] in
terms of the new quantum numbersj<int[ n/2].

Calculating the first levelsw(n,j,m) we get with A
=(wo/w,)?

0?(0,0m)=wim|, ©(1,0m)=w3+ wjm|

2 K
0°(2,j(=0,2),m=w; §+2(|m|+1)>\

(—1)

— 5 [9-4(Im[+4)\

+4(|m[+2)2\2]H2

7
§+2(|m|+1))\

(—-1)!
— 5 [25+4(|Im|—4)\

®?(3,j(=0,1),m)=w?

®

I the limit A ~1—=0, which is relevant for the experiments

+4(|m|+2)2)\2]1’2) :

as B=(2n,+/)(2n,+/+3) with radial quantum number reported in[5], the mode frequencies farbitrary integer

n, and angular quantum numbgtr Together with the con-
nection ofG andB for isotropic traps this gives the result of

[16] for the spectrum in the isotropic case.
The eigenvalue condition fow? takes the form of the

characteristic equation of a tridiagonal matrix of dimension

1.0

0.5

0.0

-1.0

0.1

0.6

p

1.1

n=2j not too large can be expanded in the small parameter
A1 and are found as

w?(n,j,m)=wi(m|+2j(j+|m/+1)+O(\"b),

®?(n,0,00=w2(N(N+3)/4+O(1A7Y)). (9)
Remarkably, the leading-order term fom|,j both not van-
ishing is independent af, i.e., the levels consist in this case

of bands of closely spaced levels split only by small frequen-
cies of ordero?/ w.

Equation(8) contains, as special cases, the particular so-
lutions previously obtained by Stringdii6] (then=0,1; |
=0,1 modes for allm| and the twon=2; j=0,1; m=0
modes.

After our calculation had been completed and while this
paper was being prepared unpublished results became avail-
able[20], in which the mode frequenci&€8) were also found
by solving the wave equation directly via a polynomial an-
satz, which can be shown to be equivalent to ours. This
method works because, as we have shown above, no special
boundary conditions except regularity need to be imposed on

FIG. 1. Poincaresections of the effective classical dynamics in the wave function at the surface of the condensate. However,

cylindrical coordinatesp,z,¢, after the elimination of the con-

served axial angular momentulmy and the azimuthal angle, for

energyE/n=1. The cut through the three-dimensional energy sur-

face in the four-dimensional phase spagez(p,,p,) is taken at
z=0 and displayed in the scaled variabjgp, measured in units

the deepereasonfor the solvability of the equation, i.e., the
additional conservation law, has not been identified2i@)].
Because of the necessity to diagonalidedimensional
matrices the analytical determination of the’ by the
present method fok neither very small nor very large is

of V2u/me§ and\2mu, respectively. The anisotropy is chosen as possible up tdN=4, even though the formulas fof=3 and
w,lwe=+/8; the angular momentum was fixed agL,/E=0.2.

N=4 are too cumbersome to be of much practical value.
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However, it is straightforward to diagonalize the matricestion (Fig. 1). Indeed, we find the typical result for a mixed
numerically and to prepare a list of the numerical values ofphase space, a regular island of tpgorresponding to the
the eigenvalues for a given ratig e.g., for the experimental perturbations around a stable periodic orbit of the effective
valuex=1/8. In Table | we give such a list for the 43 lowest- (p,2) dynamicg, surrounded by higher-order elliptic islands
lying eigenvalues withm|=<2 in units of wy for A\=1/8,  and a chaotic sea.

together with their quantum numbens n, j. A numerical In conclusion, we have demonstrated that the quasiparti-
evaluation of the energy levels of the collective modes as gle dynamics in axially symmetric traps is chaotic for ener-
function of the scaling variablgl6] Na/d, for A=1/8 was  gjes comparable to the chemical potential, but for energies

recently reported if9]. HereN is the number of atoms and much smaller tham we found a third conserved variake
do=Vh/2M 0w, is a measure of the size of the ground state in m

the trap. The present results apply f08/dy— . Compar- commutirjg with the wave operat@ and axial angular mo-
ing our results with those if9] we find that the rate of mentumL,. As a consequence, the wave equation in this
convergence to the asymptotic cdsa/d,— depends on regime is proven to be integrable, which explains why some
the quantum numben and is much slower, e.g., for=6 solutions have already been found in the literature. We have
than forn=2. Form=0 we find four additional levelgwith separated the wave equations in elliptical coordinates, and
quantum numbers=5,7,8,9 andj=0) below the highest reduced the eigenvalue problem to the diagonalization of
m=0 level considered ifi9], where the motion of the levels finite-dimensional matrices, which is solved in terms of three
was tracked from the free-particle case to the strongly interinteger quantum numbens, n, j. As a final remark we
acting case. The explanation can be that levels having rathefiention that we have found even the fully anisotropic case
high frequency in the free trap can move down into the contg pe integrabl¢22]. Two conserved quantities can be iden-
sidered low-energy regime as the paramét@rdo is In- g0 in that case that reduce fo, and B in the axially

creased. o
. .. .symmetric limit.
Following the levels one can expect a number of avoided-

level crossings due to the nonintegrability of the system at
intermediate energies. We demonstrate the chaotisige
also [22]) of the corresponding classical system whose
Hamiltonian
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H(p,X) = Vege(p,x) —K3(x),

KX)=[u—U(X)]0 (u—U(x)) (10
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