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Hydrodynamic excitations of Bose condensates in anisotropic traps
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The collective excitations of Bose condensates in anisotropic axially symmetric harmonic traps are investi-
gated in the hydrodynamic and Thomas-Fermi limit. We identify an additional conserved quantity, besides the
axial angular momentum and the total energy, and separate the wave equation in elliptic coordinates. The
solution is thereby reduced to the algebraic problem of diagonalizing finite-dimensional matrices. The classical
quasiparticle dynamics in the local-density approximation for energies of the order of the chemical potential is
shown to be chaotic.@S1050-2947~97!51510-1#
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The Bose condensates of alkali-metal atoms in magn
traps@1–3# offer a unique way to investigate the low-lyin
collective excitations in Bose condensates@4–16#. Experi-
mentally collective modes with a given symmetry have be
excited by time-dependent modulations of the trapping
tential, and their evolution has been followed in real time
measurements of the resulting shape oscillations of the
densates. The measurements performed so far have invo
turning off the trap after a given time@4–6#, but in the future
they could even be performed nondestructively by ela
off-resonant light scattering@7#. Theoretically the collective
modes have been analyzed by using the Bogoliubov eq
tions or by linearizing the time-dependent Gross-Pitaev
equation around the time-independent condensate and
ing these equations numerically@8,9# or analytically in vari-
ous approximations@10–16#. Very good agreement betwee
the numerical and the experimental results has been fou

In a seminal paper Stringari@16# has shown how the
coupled wave equations for the collective excitations
simplified in the hydrodynamic limit to become a sing
second-order wave equation for density waves, and he
tained analytical solutions for all its modes in spherica
symmetric harmonic traps and, remarkably, also for some
its modes in axially symmetric harmonic traps. The latter
particularly important, because all experiments have b
performed with traps of this symmetry@4–6#.

In the present paper it is our goal to study in more de
by analytical means the hydrodynamic wave equation in
axially symmetric case. We wish to find an explanation w
at least some analytical solutions have been possible in
case and intend to use this insight to construct more solut
in a systematic way.

In principle the collective mode problem looks very d
ferent for isotropic and for axially symmetric traps: In th
isotropic case the rotational symmetry ensures that angu
momentum conservation gives two good quantum numb
and therefore the wave equation is separable in sphe
coordinates. For axial symmetry, however, only the ax
component of angular momentum remains a good quan
number, besides the energy, and one may expect tha
system, having three degrees of freedom, is not integrabl
561050-2947/97/56~4!/2533~4!/$10.00
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fact, this expectation is borne out for collective excitatio
whose energies are neither very large nor very small co
pared to the chemical potential~see below!, which spoils all
hopes of finding exact analytical solutions for the modes a
their spectrum in this energy range for axially symmet
traps. Why then are such solutions possible at energies in
hydrodynamic regime, i.e., for energies much smaller th
the chemical potential?

The answer is provided by the existence, in that regim
of an additional conserved quantity, which we exhibit expl
itly below. Its existence permits the separation of the hyd
dynamic wave equation in elliptical coordinates. Thereby
task of solving the wave equation can be reduced to
purely algebraic problem of diagonalizing finite-dimension
matrices. We use this method to obtain the spectrum of
low-lying hydrodynamic modes as a function of the ratio
the axial and the radial trap frequencies.

A convenient starting point of our analysis is the linea
ized hydrodynamic equations as derived in@16#. They read

ẇ52
4p\a

M
dr, dṙ52

\

M
“•r0~x!“w . ~1!

These equations are valid on time scales much longer
\/m. Herew is the phase of the macroscopic wave functio
dr is the local perturbation of the number density in t
collective mode,r0(x) is the number density of the time
independent condensate in the Thomas-Fermi approxima
@18#, r0(x)5M /4p\2a@m2U(x)#Q„m2U(x)…, wherem is
the chemical potential, andM anda are the mass and pos
tive s-wave scattering length of the atoms. For the conn
tion of Eq. ~1! with the Bogoliubov equations see@17#. The
trapping potentialU(x) is assumed to have the formU(x)
5(M /2)v0

2(x21y2)1(M /2)vz
2z2. The surface of the con

densate, in the Thomas-Fermi limit, is defined byU5m.
Equations~1! are obtained by a gradient expansion and
sumingdr and“w to be small. Eliminating“w from both
equations and making the ansatzdr(x,t)5e2 ivtc(x), one
obtains the time-independent wave equation@16# Mv2c(x)
52“•@m2U(x)#“c(x), which holds inside the conden
sate. We look for boundary conditions on the surface of
condensate that make the operatorĜ52M 21

“•@m
R2533 © 1997 The American Physical Society
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2U(x)#“ Hermitian, so that for two eigenfunctionsc, c̃

with eigenvaluesv2, ṽ 2 we have orthogonality according t

~v22ṽ 2!E
V
d3xc* c̃

5E
V
d3x@c* Ĝc̃2c̃Ĝ* c* #

52M 21E
]V

d f~m2U !~c* ]c̃ /]n2c̃]c* /]n!50 .

HereV and]V denote the volume of the condensate and
surface, respectively. Becausem2U vanishes on the bound
ary, it is enough to require thatc and its normal derivative
]c/]n remain bounded there. In the following it will b
useful to measure lengths in units of the radial Thom
Fermi radius r 05(2m/Mv0

2)1/2, which brings the wave

equation into the dimensionless formv2c5Ĝc with

Ĝ52~vz
2/2!“•@~12e2!~12r2!2z2#“ , ~2!

where we use cylindrical coordinatesr5Ax21y2,z and the
azimuthal anglef, and definee2512v0

2/vz
2 , which is

positive forv0,vz . The operatorĜ commutes, of course
with the axial angular-momentum operatorL̂z52 i (]/]f).
However, there is an additional nontrivial operator

B̂52“

21~x•“ !213x•“1e2]2/]z2 , ~3!

which commutes withL̂z and withĜ, as one may check by
direct calculation of the commutators. In the isotropic ca
e50, B̂ may be expressed by the square of the angular
mentum L̂25L̂x

21L̂y
21L̂z

2 and Ĝ via B̂52Ĝ/v0
21L̂2. Be-

cause of the existence of the three commuting operatorsĜ,
Lz , andB̂ in the system with the three degrees of freedomr,
z, andf, it is now manifest that the system is integrable, i.
the eigenvalues ofĜ can be labeled by the quantum numbe
of Lz andB̂. To see this explicitly we now look for variable
in which the wave equation separates, and introduce cy
drical elliptical coordinatesj, h, which in their oblate sphe
roidal form @19# are defined byr5sA(j211)(12h2),
z5sjh. These coordinates are orthogonal. Surfaces
j5const are confocal ellipsoids with foci atz50, r5s.
Surfaces with constanth are confocal hyperboloids with th
same foci. Forvz>v0 , i.e., 0<e2<1, the foci atz50 r
5s are made to coincide with the foci of the ellipsoid
Thomas-Fermi surface if we chooses5e. The Thomas-
Fermi surface is given byjTF5(1/e221)1/2. Then the inte-
rior of the condensate is described byj in the range@0,jTF#
andh in the range@21,1#.

For vz<v0 the parametere2 is no longer useful as i
becomes negative. Instead one can definee82512vz

2/v0
25

2e2/(12e2), which lies in the range 0<e82 ,1. The foci
of the Thomas-Fermi ellipse now lie atz56s8 where
s85e8/A12e82. Therefore we now need the prola
spheroidal form of elliptical coordinates@19# with foci
at z56s8, r50. These coordinates are defined byrr
s

-

e
o-

,

n-

f

5s8A(j221)(12h2), z5s8jh, where inside the conden
satej now has the range@1,1/e8# while h has the same rang
as before. The treatments in the two cases are equivalen
the transformation connectinge ande8. In the following we
shall present the equations for the casevz.v0 . The final
formulas for v2 apply for vz>v0 and vz<v0 . After the
change of coordinates withs5e the operatorĜ takes the
form

Ĝ52
vz

2

2e2

1

j21h2

3F @12e2~12h2!#
]

]j
@12e2~j211!#~j211!

]

]j

1@12e2~j211!#
]

]h
@12e2~12h2!#~12h2!

]

]h

1
@12e2~j211!#@12e2~12h2!#~j21h2!

~12h2!~11j2!
S ]

]f D 2G ,

~4!

which is now separable. Thef dependence of its eigenfunc
tions is taken care of by factorseimf with the integer azi-
muthal quantum numberm. Separating the operator inj and
h by making the ansatzCj(j)Ch(h)eimf for its eigenfunc-
tions we obtain two equations: one forCh ,

F d

dh
~12h2!

d

dh
2

m2

12h2
1

2e2~12h2!h

12e2~12h2!

d

dhGCh

2
2v2/v1

2

12e2~12h2!
Ch52bCh ; ~5!

the other forCj . It turns out that both equations are iden
cal if in the equation forCh we substitutei j for h, i.e.,
Cj(j)[Ch( i j). The solution for one coordinate is the an
lytic continuation of the solution of the other from the real
the imaginary axis. It is easy to check that the separa
constantb is just the eigenvalue of the operatorB̂ for the
eigenfunctionCj(j)Ch(h)exp(imf). To do this one needs
to expressB̂ also in the elliptic coordinates:

B̂5
1

e2~j21h2!
H 2

]

]j
@12e2~j211!#~j211!

]

]j

2
]

]h
@12e2~12h2!#~12h2!

]

]h

2
j21h2

~j211!~12h2!

]2

]f2J . ~6!

Equations ~5! contain m only quadratically. Therefore
the energy levels are the same for6m. ExpandingCh
for fixed umu in terms of associated Legendre functio
Pl

umu(h) with coefficientsal , whereumu<l <`, we obtain
from Eq. ~5! a second-order recursion relation for the co
ficients al relating only even or only odd indicesl . The
eigenstates therefore have even and odd parity. The recu
relation itself is straightforward to obtain but lengthy an
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will not be written out here. The condition that the expansi
terminate atl max5(umu1n) quantizes the eigenvalueb

b5~n1umu!~n1umu13! , ~7!

which means thatCh becomes (12h2) um/2u times a polyno-
mial of ordern.

In the isotropic casee50, the operatorB̂ can be diago-
nalized in spherical coordinates and its spectrum then fo
as b5(2nr1l )(2nr1l 13) with radial quantum numbe
nr and angular quantum numberl . Together with the con-
nection ofĜ andB̂ for isotropic traps this gives the result o
@16# for the spectrum in the isotropic case.

The eigenvalue condition forv2 takes the form of the
characteristic equation of a tridiagonal matrix of dimensi

FIG. 1. Poincare´ sections of the effective classical dynamics
cylindrical coordinatesr,z,f, after the elimination of the con-
served axial angular momentumLz and the azimuthal anglef, for
energyE/m51. The cut through the three-dimensional energy s
face in the four-dimensional phase space (r,z,pr ,pz) is taken at
z50 and displayed in the scaled variablesr,pr measured in units
of A2m/mv0

2 andA2mm, respectively. The anisotropy is chosen
vz /v05A8; the angular momentum was fixed asv0Lz /E50.2.

TABLE I. The 43 lowest levels labeled by the quantum numbe
umu<2,n, j for (vz /v0)258.

n j m50 m51 m52

0 0 0.000 000 00 1.000 000 00 1.414 213 56
2 0 1.797 128 37 2.317 294 58 2.723 416 01
1 0 2.828 427 12 3.000 000 00 3.162 277 66
4 0 2.911 930 10 3.365 376 41 3.731 310 58
3 0 3.273 025 89 3.518 321 07 3.741 657 39
5 0 3.826 573 18 4.098 941 74 4.343 248 21
6 0 3.840 996 26 4.215 323 29 4.522 793 02
7 0 4.407 483 68 4.679 210 86 4.922 217 57
8 0 4.590 810 95 4.898 147 04 5.160 102 07
9 0 4.971 054 60 5.229 358 96 5.461 449 95
2 1 4.976 979 97 5.160 440 47 5.346 307 63

10 0 5.206 481 19 5.470 813 54 5.704 176 81
4 1 5.450 307 61 5.744 562 65 ~6.041 424 31!

11 0 5.499 251 14 5.740 535 18 5.959 256 95
12 0 5.738 689 80 5.976 163 20 ~6.190 777 58!
n

d

N511 int@n/2#, which can be symmetrized by a suitab
similarity transformation with a given diagonal matrix. Fo
fixed numbersn, umu we haveN different solutions forv2,
which we label by our third quantum numberj
50, . . . , int@n/2#. In the isotropic casee50 the quantum
number j can be expressed asj 5(n2l 1umu)/25nr , as
one finds by expressing the isotropic spectrum of@16# in
terms of the new quantum numbersn, j < int@n/2#.

Calculating the first levelsv(n, j ,m) we get with l
5(v0 /vz)

2

v2~0,0,m!5v0
2umu, v2~1,0,m!5vz

21v0
2umu

v2
„2,j ~50,1!,m…5vz

2S 3

2
12~ umu11!l

2
~21! j

2
@924~ umu14!l

14~ umu12!2l2#1/2D
v2

„3,j ~50,1!,m…5vz
2S 7

2
12~ umu11!l

2
~21! j

2
@2514~ umu24!l

14~ umu12!2l2#1/2D . ~8!

In the limit l21→0, which is relevant for the experiment
reported in@5#, the mode frequencies forarbitrary integer
n>2 j not too large can be expanded in the small param
l21 and are found as

v2~n, j ,m!5v0
2
„umu12 j ~ j 1umu11!1O~l21!… ,

v2~n,0,0!5vz
2
„n~n13!/41O~l21!… . ~9!

Remarkably, the leading-order term forumu, j both not van-
ishing is independent ofn, i.e., the levels consist in this cas
of bands of closely spaced levels split only by small frequ
cies of ordervz

2/v0 .
Equation~8! contains, as special cases, the particular

lutions previously obtained by Stringari@16# ~the n50,1; j
50,1 modes for allumu and the twon52; j 50,1; m50
modes!.

After our calculation had been completed and while t
paper was being prepared unpublished results became a
able@20#, in which the mode frequencies~8! were also found
by solving the wave equation directly via a polynomial a
satz, which can be shown to be equivalent to ours. T
method works because, as we have shown above, no sp
boundary conditions except regularity need to be imposed
the wave function at the surface of the condensate. Howe
the deeperreasonfor the solvability of the equation, i.e., th
additional conservation law, has not been identified in@20#.

Because of the necessity to diagonalizeN-dimensional
matrices the analytical determination of thev2 by the
present method forl neither very small nor very large i
possible up toN54, even though the formulas forN53 and
N54 are too cumbersome to be of much practical val

-

s
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However, it is straightforward to diagonalize the matric
numerically and to prepare a list of the numerical values
the eigenvalues for a given ratiol; e.g., for the experimenta
valuel51/8. In Table I we give such a list for the 43 lowes
lying eigenvalues withumu<2 in units of v0 for l51/8,
together with their quantum numbersm, n, j . A numerical
evaluation of the energy levels of the collective modes a
function of the scaling variable@16# Na/d0 for l51/8 was
recently reported in@9#. HereN is the number of atoms an
d05A\/2Mv0 is a measure of the size of the ground state
the trap. The present results apply forNa/d0→`. Compar-
ing our results with those in@9# we find that the rate of
convergence to the asymptotic caseNa/d0→` depends on
the quantum numbern and is much slower, e.g., forn56
than forn52. Form50 we find four additional levels~with
quantum numbersn55,7,8,9 andj 50) below the highest
m50 level considered in@9#, where the motion of the level
was tracked from the free-particle case to the strongly in
acting case. The explanation can be that levels having ra
high frequency in the free trap can move down into the c
sidered low-energy regime as the parameterNa/d0 is in-
creased.

Following the levels one can expect a number of avoid
level crossings due to the nonintegrability of the system
intermediate energies. We demonstrate the chaoticity~see
also @22#! of the corresponding classical system who
Hamiltonian

H~p,x!5AeHF
2 ~p,x!2K2~x! ,

eHF~p,x!5
p2

2M
1U~x!2m12K~x!,

K~x!5@m2U~x!#Q„m2U~x!… ~10!

is the Bogoliubov quasiparticle energy in local density a
proximation@21# by examining a typical Poincare´ cross sec-
s
f

a

n

r-
er
-

-
t

e

-

tion ~Fig. 1!. Indeed, we find the typical result for a mixe
phase space, a regular island of tori@corresponding to the
perturbations around a stable periodic orbit of the effect
(r,z) dynamics#, surrounded by higher-order elliptic island
and a chaotic sea.

In conclusion, we have demonstrated that the quasipa
cle dynamics in axially symmetric traps is chaotic for en
gies comparable to the chemical potential, but for energ

much smaller thanm we found a third conserved variableB̂

commuting with the wave operatorĜ and axial angular mo-

mentum L̂z . As a consequence, the wave equation in t
regime is proven to be integrable, which explains why so
solutions have already been found in the literature. We h
separated the wave equations in elliptical coordinates,
reduced the eigenvalue problem to the diagonalization
finite-dimensional matrices, which is solved in terms of thr
integer quantum numbersm, n, j . As a final remark we
mention that we have found even the fully anisotropic ca
to be integrable@22#. Two conserved quantities can be ide

tified in that case that reduce toL̂z and B̂ in the axially
symmetric limit.
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