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Output coupling for an atom laser by state change

G. M. Moy* and C. M. Savage
Department of Physics and Theoretical Physics, The Australian National University, Australian Capital Territory 0200, Austra

~Received 25 March 1997; revised manuscript received 6 May 1997!

We calculate the spectrum of a beam of atoms output from a single-mode atomic cavity. The output coupling
uses an internal-state change to an untrapped state. We present an analytical solution for the output energy
spectrum from a broadband coupler of this type. An example of such an output coupler, which we discuss in
detail, uses a Raman transition to produce a nontrapped state.@S1050-2947~97!50308-8#

PACS number~s!: 03.75.Be, 42.50.Vk, 42.50.Ct, 03.75.Fi
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As a result of recent experiments in which a Bos
Einstein condensate~BEC! has been produced in the labor
tory @1–4#, there has been considerable interest in coup
the atoms in a BEC out of a trap. This could produce
continuous, coherent, directional beam of atoms—an a
laser beam@5–11#. While initial experiments have succeede
in coupling atoms out of a BEC by changing the intern
state of the atoms to a nontrapped state@12,13#, there is still
much to be understood about the output beam. In this pa
we present an analytical solution for the output energy sp
trum of atoms in a single trapped mode coupled to free sp
by a change of internal state. Our analysis is based on
atom field input-output theory presented by Hope@14#. We
discuss the dependence of the spectrum on output coup
strength, and relate these findings to the atom laser exp
ment of Meweset al. @12#.

In a BEC a large number of bosonic atoms are cooled
a single energy eigenstate of a trap. This is an important
towards producing a monoenergetic beam of atoms. Ne
theless, we still have the problem of how to coheren
couple the atoms out of such a trap in a way that prese
their monoenergetic nature. There are many ways in wh
atoms can be coupled out of a trap. The simplest method
turn off the trap@8,13#. The result of rapidly turning off the
trap is to reproduce the BEC wave function in free space
particular, the wave function momentum width is conserv
As a result, the atoms have the corresponding range of e
gies in free space, and the monoenergetic nature of the o
nal BEC is lost. Fortunately, energy-conserving output c
pling is possible. One example is quantum-mechan
tunneling of atoms through the trap walls. This is the atom
analog to the use of partially transparent mirrors on an o
cal laser. Such a process has been considered in a mod
an atom laser proposed by Wiseman and Collett@6#. It would
be difficult in practice, however, to use tunneling to produ
sufficient fluxes of atoms due to the exponential depende
of the tunneling rate on the trap potential barrier.

Another approach to the output coupling problem wou
be to change the internal state of the trapped atoms to
untrapped state. Experimentally such a method has been
by implementing radio-frequency pulses to induce spin fl
on trapped atoms in a BEC@12,13#. The use of Raman tran
sitions as a method of output coupling has also been s
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gested@11#. A Raman transition can have an extremely n
row linewidth so that lasers can be tuned so as to only cou
atoms from a particular trap mode, due to energy conse
tion.

We model here an output coupler based on change
state, focusing on the specific case of a Raman output c
pler. This uses two lasers tuned to a two-photon resonanc
couple atoms between an initial atomic state and a fi
atomic state. We assume that each of the lasers is far det
from single photon resonance, giving an effective two-le
Hamiltonian. In this Hamiltonian we ignore the energies
higher atomic modes of the trap. Initially these other mod
are empty, as we assume all the atoms are condensed i
ground mode. Ignoring these higher-energy modes for a l
time is valid for very narrow linewidth Raman lasers that a
only on resonance with the ground trap mode. This ensu
that higher modes do not become populated by atoms in
output state transferring back into the initial state at la
times. In addition, population of other modes is suppres
by Bose enhancement of transitions into the ground m
@11#. We also ignore the effects of atom-atom interactio
The resulting effective Hamiltonian is then of the form

Heff5Hsys1Hext1H int , ~1!

H sys5\ṽ0a†a, ~2!

Hext5E dk\ṽkbk
†bk , ~3!

H int52 i\E dk@k~k,t !bka
†2k* ~k,t !bk

†a#, ~4!

with

ṽ05v11v02
V1

2

D1
, ~5!

ṽk5v21
\k2

2m
2

V2
2

D2
, ~6!

k~k,t !5G1/2@2 ie2 i ~v2L2v1L!tc* ~k2k1L2k2L!#, ~7!

G1/25
V1V2

D1
. ~8!
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Here, the single trap mode is described by the creation
eratora† and is coupled by the Raman lasers to a continu
spectrum of external modes described by creation opera
bk

† . \v1 (\v2) is the energy of the trap~output! atomic
state,\v0 is the ground-state trap energy,m is the mass of
the trapped atoms, and\k1L and \k2L are the momenta o
the two lasers inducing the Raman transition, with frequ
cies v1L and v2L , respectively. Thus\(k1L1k2L) is the
total momentum kick received by atoms making the Ram
transition.V1 (V2) is the Rabi frequency of the transitio
between the trapped~output! state and the excited state th
mediates the Raman transition.D1 andD2 are the detunings
of the two Raman lasers from the excited state. We h
assumed that these are large to obtain an effective two-l
Hamiltonian by adiabatically eliminating the upper level.
the lasers are tuned close to the two-photon resonanceD1
'D2. c(k) is the momentum-space wave function of t
ground mode of the trap.G is a coupling strength, given her
in terms of the Rabi frequencies and single-photon detun

The Hamiltonian, Eqs.~2!–~4!, describes an arbitrary out
put coupling through state change from a single-mode s
tem to a continuous spectrum of external modes. In the
lowing we discuss the Raman coupling case, given by E
~5!–~8! for definiteness. The results, however, can be
tended to a general output coupler with the coupling stren
G and the energies\ṽ0 and\ṽk suitably defined.

We are interested in the output energy spectrum^bk
†bk&,

which is the mean population density of the continuum
free-space momentum eigenstate modes, labeled by the
mentum\k. We obtain this by solving the Heisenberg equ
tions of motion for the operatorsa(t) and bk(t), using our
Hamiltonian given in Eqs.~1!–~8!. The Heisenberg equa
tions for a(t) are linear Volterra equations of the convol
tion type, and can be solved using Laplace transforms. Th
equations have been solved by Hope@14#, with the resulting
output spectrum, in the case where initially the exter
modes are empty, being given by

^bk
†~ t !bk~ t !&5uk~k,t !u2^a†~0!a~0!&uMk~ t !u2, ~9!

with

Mk~ t !5L21H 1

@s1L~ f 8!~s!#~s1 idk!
J ~ t !, ~10!

f 8~ t !5E dkuk~k,t !u2e2 idkt, ~11!

dk5ṽk2ṽ02v1L1v2L5
\k2

2m
2v0 . ~12!

The final equality holds for the case when the lasers
tuned to the two-photon resonance in free space, which
assume here.L andL21 are the Laplace transform and in
verse Laplace transform, respectively. TheuMk(t)u2 term in
Eq. ~9! determines the time dependence of the spectrum e
lution and is related to the Fourier transform of the syst
two-time correlation function̂a†(t8)a(t9)& by
p-
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uMk~ t !u25

E
0

t

dt8E
0

t

dt9^a†~ t8!a~ t9!&e2 ivk~ t82t9!

^a†~0!a~0!&
.

~13!

This Fourier transform can be shown to be equivalent to
~10! using the expressions fora(t) given by Hope@14#. Un-
fortunately, the inverse Laplace transform required to obt
Mk(t), and hence the output spectrum, cannot be obtai
analytically for most physical situations. Moreover, nume
cal solutions are unstable and can only be obtained in
limits of short time or small coupling strength.

Our central result is an analytic solution for the spectru
in the limit of broadband coupling. For simplicity, we con
sider the case where the total momentum kick from the
man lasers is very small. That is, we assumek1L'2k2L .
This is analogous to the output coupling experiments
which the atoms receive a negligible momentum kick
changing state@12,13#. We also assume that the couplin
function k(k,t) is broad. The shape ofk(k,t) is given in
terms of the ground-state momentum wave function of
trap,c(k) in Eq. ~7!. We consider here a harmonic trap, wi
a Gaussian ground state of standard deviationsk in wave-
number space, given by

c~k!5~2psk
2!21/4exp@2k2/~4sk

2!# . ~14!

Substituting Eq.~14! and Eq.~7! into Eq.~11! and taking the
Laplace transform off 8(t), we obtain

L~ f 8!~s!5E
2`

`

dk
uk~k,t !u2

s1 idk
~15!

5Gc
Ai

As2 iv0

G~r !, ~16!

where

G~r !5exp@r 2#~12 Erf@r # !, ~17!

r 5A2 im~s2 iv0!/~\sk
2!, ~18!

c52 i S mp

\sk
2D 1/2

, ~19!

and Erf is the error function. We must simplify this expre
sion forL( f 8)(s) in order to evaluate Eq.~10!. We first note
that we can approximateG(r )'1 if ur u!1. Noting that the
abscissa of convergence@16# for the inverse Laplace trans
form, Eq. ~10!, is zero, we can set the real part ofs to any
small, real positive number in the inverse Laplace transfo
We also assume here thatsk is sufficiently broad thatv0

!\sk
2/m. Typically v0 is of the order of hundreds of hert

for atomic traps, with the atomic mass of order 10226 kg,
thus this inequality will hold for broadband coupling wit
sk@23105 m21. The approximationur u!1 then holds in
the regime where Im(s)!\sk

2/m. Using the approximation
G(r )'1 to calculateMk(t) is, thus, equivalent to smoothin
over high (.\sk

2/m) frequency components in the time d
pendence ofMk(t). As we increase the width of the couplin
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in momentum space, given bysk , our solution forMk(t)
becomes valid for increasingly high frequencies, Im(s). For
an infinitely broad coupling, the approximationG(r )51 be-
comes exact and our expression is equivalent to the form
the general broadband coupling discussed by Hope@14#. We
substitute Eq.~16! for L( f 8)(s) with G(r )51 into Eq.~10!.
We then use the shift theorem for Laplace transforms@15#, to
write Mk(t) as

Mk~ t !5eiv0tL21$h~s1/2!%~ t !, ~20!

where

h~p!5
p

@p21 i ~v01dk!#~p31 iv0p1GcAi !
. ~21!

The inverse Laplace transformL21$h(s1/2)% can be written
in terms of an integral involvingL21$h(p)% using a standard
theorem@16#. In this integral, the inverse Laplace transfor
of h(p) is standard, after factorizing the cubic in the denom
nator asp31 iv0p1GcAi 5(p2a)(p2b)(p2g). Finally,
we obtain

Mk~ t !5
e2 iDkt

vkDk
22G2c2 F2eivktiAiGc

Apt
1 ivkDk

1
1

2
Ap

t
iAiGcL1/2

21/2~ ivkt !G1W~a,b,g!

1W~b,a,g!1W~g,b,a! , ~22!

where

W~x,y,z!5
x2exp@~x21 iv0!t#

~y2x!~z2x!~x21 ivk!
@11 Erf~xAt !# ,

and we have definedvk5\k2/(2m) and Dk5vk2v0. The
function L1/2

21/2(x) is a Laguerre polynomial.
Figure 1 shows the behavior ofuMk(t)u2 as a function of

vk and time after we turn on the output coupling interactio
Initially uMk(t)u2 is small, and for short enough times, arb

FIG. 1. Plot of uMk(t)u2 as a function ofvk and time for t
50 s to t55 s, andvk ranging from 762 s21 to 783 s21 about
the single-mode trap frequency,v0'772 s21. G51.83103 s22.
of

-

.

trarily broad in k space. InitiallyuMk(t)u2 agrees with the
perturbative solutions presented by Hope@14#. For longer
times, we can see that the spectrum reaches a stable s
For very large values of the coupling strength, the long-ti
limit becomes very broad ink space. As a result, the shape
the output spectrum, as given by Eq.~9!, simply reflects the
momentum distribution of the cavity wave functionc(k). As
a result there is no narrowing of linewidth in momentu
space. The recent experiment of Meweset al. @12# is an ex-
ample of an output coupling with an extremely large co
pling strength. In these experiments a short, 5ms rf pulse was
used to couple atoms out of a BEC, making a pulsed a
laser.

We consider here a continuous coupler, turned on at t
t50, and examine the resulting long-time spectrum in
external modes described bybk

† . We observe in Fig. 1 tha
for longer times,uMk(t)u2 narrows into a sinc2 function cen-
tered about the trap ground-state frequencyv0. Eventually
uMk(t)u2 reaches a stationary state with a Lorentzian-l
profile, as shown in Fig. 1. This long-time behavior is giv
by

lim
t→`

Mk~ t !5
iAvke

2 iDkt

AvkDk2Gc
1W~g,b,a!, ~23!

wherea, b, andg are the particular solutions to the cub
discussed above, given by the expressions

a5e2 i ~5p/12!~21/3v0 /j1/31ei ~p/3!j1/3/541/3!5 ib* ,
~24!

g5ei ~p/4!~21/3v0 /j1/32~4j!1/3/6! , ~25!

j5227iGc1@2~27Gc!21108v0
3#1/2. ~26!

The long-time expression forMk(t), Eq. ~23!, contains two
terms. The first of these terms dominates in the case of s
G, while the second dominates for very largeG. As a result,
the long-time spectrum has two distinct behaviors, depe
ing on the strength of the coupling. We consider the case
slow coupling~small G) initially. In this case, the long-time
expression forMk(t) is dominated by the first term in Eq
~23! above, and the resulting long-time spectrum is given

^bk
†bk&5Guc~k!u2

1

~Dk
21uGcu2/vk!

. ~27!

Plots of the long-time spectrum, Eq.~27!, as a function of
vk are presented in Fig. 2 for various coupling strengt
Figure 2 shows that for increasing coupling strength the li
width of the long-time spectrum increases. The values
G chosen lie aboutG543104 s22, which corresponds ap
proximately to values of Raman laser Rabi frequencies,V1
'2p350 kHz and V2'2p31.6 MHz and detuning,D1
'2p32.5 GHz similar to values presented in@11#. How-
ever, much smaller or larger coupling strengths can
achieved by suitably adjusting the intensities of the las
and their detunings. The figures assume a trap with grou
state frequencyv052p3123 s21, typical of magnetic traps
for ultracold atoms@17#. A ground-state Gaussian with widt
sk'106 m21 has been assumed, which corresponds t
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position-space wave function of size of the order of 2mm.
This value of sk corresponds to a width invk space of
svk

'104 s21.
For each of the graphs shown in Fig. 2, the Lorentzia

like spectrum is centered aboutv0, the ground-state fre-
quency of the single-mode trap, with the width of the spe
trum dependent on the strength of the coupling, as mentio
above. In all cases, however, the linewidth is much less t
that which would be obtained if the trap were rapidly turn
off; that is, sv '104 s21. We see from Eq.~27! that the

FIG. 2. Plots of the long-time behavior of^bk
†bk& as a function

of vk for various coupling strengths,G5104 s22 ~dotted line!, G
533104 s22 ~solid line!, andG553104 s22 ~dashed line!.
k

l

-

-
ed
n

distribution is not exactly Lorentzian, due to the presence
vk in the second part of the denominator. However, for la
v0 the spectrum is well approximated by a Lorentzian d
tribution of width uGcu/Av0.

We have already noted that for large coupling rates
width of the long-time limit ofuMku2, and hence of the long
time spectrum, is increased. WhenG is very large,
uGcu/Av0@svk

, the width of Mk(t) becomes large com

pared withk(k,t), and the spectrum becomes dominated
the cavity momentum spreadc(k). As a result, for suffi-
ciently fast coupling~largeG) the output spectrum change
significantly from the Lorentzian shape considered abo
and instead reflects the momentum spread of the cavity.
very largeG the spectrum is centred about zero, and fa
away exponentially invk space, as required for a Gaussi
distribution in momentum space given byc(k).

In summary, we have shown how the long-time spectr
from an output coupler based on state change depends o
strength of the output coupling. For very strong coupling,
output spectrum is given by the cavity spectrum, and is v
broad in momentum space. As the strength of the couplin
reduced, however, the long-time linewidth is correspon
ingly reduced. For small coupling strengths the linewidth
effectively Lorentzian, centered about the energy of the c
ity with a linewidth proportional to the coupling strengt
G.

The authors would like to thank Joseph Hope for mu
advice and many thoughtful discussions. This work was s
ported by the Australian Research Council.
@1# M. H. Andersonet al., Science269, 198 ~1995!.
@2# C. C. Bradleyet al., Phys. Rev. Lett.75, 1687~1995!.
@3# K. B. Davis et al., Phys. Rev. Lett.75, 3969~1995!.
@4# M. O. Meweset al., Phys. Rev. Lett.77, 416 ~1996!.
@5# M. Holland et al., Phys. Rev. A54, R1757~1996!.
@6# H. M. Wiseman and M. J. Collett, Phys. Lett. A202, 246

~1995!.
@7# H. M. Wiseman et al., Quantum Semiclassic. Opt.8, 737

~1996!.
@8# A. M. Guzmanet al., Phys. Rev. A53, 977 ~1996!.
@9# R. J. C. Spreeuwet al., Europhys. Lett.32, 469 ~1995!.

@10# M. Olshanii et al., in Proceedings of the 12th Internationa
Conference on Laser Spectroscopy, edited by M. Inguscio, M.
Allegrini, and A. Sasso~World Scientific, New York, 1995!.

@11# G. M. Moy et al., Phys. Rev. A55, 3631~1997!.
@12# M.-O. Meweset al., Phys. Rev. Lett.78, 582 ~1997!.
@13# M. R. Andrewset al., Science275, 637 ~1997!.
@14# J. J. Hope, Phys. Rev. A55, 2531~1997!.
@15# L21$g(s2 iv0)%~t!5eiv0tL1$g(s)%(t).
@16# L21$g(s1/2)%~t!5 1

2 p21/2t23/2*0
` ue2u2/(4t) f (u)du, where

L21$g(p)%(t)5 f (t). See, for example, F. Oberhettingeret al.,
Tables of Laplace Transforms~Springer-Verlag, New York,
1973!.

@17# M.-O. Meweset al., Phys. Rev. Lett.77, 416 ~1996!.


