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Output coupling for an atom laser by state change

G. M. Moy* and C. M. Savage
Department of Physics and Theoretical Physics, The Australian National University, Australian Capital Territory 0200, Australia
(Received 25 March 1997; revised manuscript received 6 May)1997

We calculate the spectrum of a beam of atoms output from a single-mode atomic cavity. The output coupling
uses an internal-state change to an untrapped state. We present an analytical solution for the output energy
spectrum from a broadband coupler of this type. An example of such an output coupler, which we discuss in
detail, uses a Raman transition to produce a nontrapped [541850-2947P7)50308-§

PACS numbgs): 03.75.Be, 42.50.Vk, 42.50.Ct, 03.75.Fi

As a result of recent experiments in which a Bose-gested11]. A Raman transition can have an extremely nar-
Einstein condensat@8EC) has been produced in the labora- row linewidth so that lasers can be tuned so as to only couple
tory [1-4], there has been considerable interest in couplingitoms from a particular trap mode, due to energy conserva-
the atoms in a BEC out of a trap. This could produce ation.
continuous, coherent, directional beam of atoms—an atom We model here an output coupler based on change of
laser beanfi5—11]. While initial experiments have succeeded state, focusing on the specific case of a Raman output cou-
in coupling atoms out of a BEC by changing the internalPler. This uses two lasers tuned to a two-photon resonance to
state of the atoms to a nontrapped sfdf2 13, there is still couple atoms between an initial atomic state and a final
much to be understood about the output beam. In this papétomic state. We assume that each of the lasers is far detuned
we present an analytical solution for the output energy spedrom single photon resonance, giving an effective two-level
trum of atoms in a 5ing|e trapped mode Coup|ed to free spacgamiltonian. In this Hamiltonian we ignore the energies of
by a change of internal state. Our analysis is based on th@igher atomic modes of the trap. Initially these other modes
atom field input-output theory presented by Hdfd]. We  are empty, as we assume all the atoms are condensed in the
discuss the dependence of the spectrum on output couplifgfound mode. Ignoring these higher-energy modes for a later
strength, and relate these findings to the atom laser experiime is valid for very narrow linewidth Raman lasers that are
ment of Meweset al. [12]. only on resonance with the ground trap mode. This ensures

In a BEC a large number of bosonic atoms are cooled intdhat higher modes do not become populated by atoms in the
a single energy eigenstate of a trap. This is an important steutput state transferring back into the initial state at later
towards producing a monoenergetic beam of atoms. Nevefimes. In addition, population of other modes is suppressed
theless, we still have the problem of how to Coherenﬂyby Bose enhancement of transitions into the ground mode
Coup]e the atoms out of such a trap in a way that preservdg.l]. We also ignore the effects of atom-atom interactions.
their monoenergetic nature. There are many ways in whicH he resulting effective Hamiltonian is then of the form
atoms can be coupled out of a trap. The simplest method is to

turn off the trap[8,13]. The result of rapidly turning off the Heft=Hsyst Hexe Hint, @)
trap is to reproduce the BEC wave function in free space. In — .t

particular, the wave function momentum width is conserved. Hsys=hwoa'a, @
As a result, the atoms have the corresponding range of ener-

gies in frge space, and the monoenergetic nature of the origi- Heox= f dkﬁ?okblbk, 3)
nal BEC is lost. Fortunately, energy-conserving output cou-

pling is possible. One example is quantum-mechanical

tunneling of atoms through the trap walls. This is the atomic

analog to the use of partially transparent mirrors on an opti-

cal laser. Such a process has been considered in a model of

an atom laser proposed by Wiseman and Cdllgttit would ~ With

be difficult in practice, however, to use tunneling to produce )

sufficient fluxes of atoms due to the exponential dependence - 01

of the tunneling rate on the trap potential barrier. @o= w1+ o A ®)
Another approach to the output coupling problem would

be to change the internal state of the trapped atoms to an k2 Qg

Him=—iﬁJ dk[K(k,t)bkaT—K*(k,t)bla], 4

untrapped state. Experimentally such a method has been used W=yt m AL (6)
by implementing radio-frequency pulses to induce spin flips 2
on trapped atoms in a BE[12,13. The use of Raman tran- _PUZ e —or )tk (b b
sitions as a method of output coupling has also been sug- r(k ) =TV —ie (= eiy* (k—ky —ka)], (D)
pue_ iz ®)
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Here, the single trap mode is described by the creation op- o I\ ot —t)
eratora’ and is coupled by the Raman lasers to a continuous fodt Jodt (a'(t)a(t"))e 'k

spectrum of external modes described by creation operators IM(t)|2= s

b. iw; (hw,) is the energy of the tragoutpud atomic (a'(0)a(0))

state,f wg is the ground-state trap energy,is the mass of (13

the trapped atoms, anftk;, andk;_ are the momenta of This Fourier transform can be shown to be equivalent to Eq.
the two lasers inducing the Raman transition, with frequen-(lo) using the expressions fa(t) given by Hopg14]. Un-

cies wy and wy , respectively. Thusi(ky +ka) is the  torunately, the inverse Laplace transform required to obtain
total momentum kick received by atoms making the Ramary; (1), and hence the output spectrum, cannot be obtained
transition. (), ({,) is the Rabi frequency of the transition 5naytically for most physical situations. Moreover, numeri-

between the trappetutpu) state and the excited state that ¢4 golutions are unstable and can only be obtained in the
mediates the Raman transitioh; andA, are the detunings  |imits of short time or small coupling strength.

of the two Raman lasers from the excited state. We have g central result is an analytic solution for the spectrum
assumed that these are large to obtain an effective two-1evel ihe limit of broadband coupling. For simplicity, we con-
Hamiltonian by adiabatically eliminating the upper level. If gijer the case where the total momentum kick from the Ra-
the lasers are tuned close to the two-photon resonainge, man lasers is very small. That is, we assukge~— Ky, .
~A,. y(k) is the momentum-space wave function of theThjs s analogous to the output coupling experiments in
ground mode of the trag. is a coupling strength, given here \yhich the atoms receive a negligible momentum kick in
in terms of the Rabi frequencies and single-photon detuning:panging statd12,13. We also assume that the coupling
The Hamiltonian, Eqs2)—(4), describes an arbitrary out-  fynction «(k,t) is broad. The shape of(k,t) is given in
put coupling through state change from a single-mode SySgrms of the ground-state momentum wave function of the
tem to a continuous spectrum of external modes. In the folga, k) in Eq. (7). We consider here a harmonic trap, with

lowing we discuss the Raman coupling case, given by EG$; Gaussian ground state of standard deviatigrin wave-
(5)—(8) for definiteness. The results, however, can be eXy mber space, given by

tended to a general output coupler with the coupling strength

I' and the energieA@, and#% @, suitably defined. P(k)=(2maf) Yexi —K?/ (40f)]. (14)
We are interested in the output energy spectfinjb,),

which is the mean population density of the continuum ofSubstituting Eq(14) and Eq.(7) into Eq.(11) and taking the

free-space momentum eigenstate modes, labeled by the mbaplace transform of ’'(t), we obtain

mentum7 k. We obtain this by solving the Heisenberg equa- )

tions of motion for the operatora(t) and by(t), using our £(F)(8)= f“ dk|K(k’t)| 15

Hamiltonian given in Eqs(1)—(8). The Heisenberg equa- o s+idy

tions for a(t) are linear Volterra equations of the convolu-

tion type, and can be solved using Laplace transforms. These Ji

equations have been solved by Hdpd], with the resulting =I'c——=—=0G(r), (16)

output spectrum, in the case where initially the external STlwo

modes are empty, being given by

where
(bi(Ob (1) =|x(k,D)[X(a(0)a(0))M(t)[%,  (9) G(r)=exqr?](1- Erfr]), (17)
with r=\—im(s—iwg)/(hay), (18)
| 172
MKO=L i Feierieg | @0 C:_i<ﬁ7k) ’ o

and Erf is the error function. We must simplify this expres-
. sion for L(f")(s) in order to evaluate Eq10). We first note
f'(t):f dk| (k,t)|7e™" %, (1) that we can approximat&(r)~1 if |[r|<1. Noting that the
abscissa of convergeng&6] for the inverse Laplace trans-

) form, Eq.(10), is zero, we can set the real part®to any
ﬁ w (12) small, real positive humber in the inverse Laplace transform.
2m 0 We also assume here thaf is sufficiently broad thatw,

<f’wﬁ/m. Typically wq is of the order of hundreds of hertz

The final equality holds for the case when the lasers aréor atomic traps, with the atomic mass of order #bkg,
tuned to the two-photon resonance in free space, which wius this inequality will hold for broadband coupling with
assume hereC and £~ are the Laplace transform and in- 0x>2x10> m™*. The approximatiorjr|<1 then holds in
verse Laplace transform, respectively. T (t)|? term in  the regime where Ing)<#iof/m. Using the approximation
Eg. (9) determines the time dependence of the spectrum evds(r)~1 to calculateM (t) is, thus, equivalent to smoothing
lution and is related to the Fourier transform of the systenpver high (>ha§/m) frequency components in the time de-
two-time correlation functioda’(t")a(t”)) by pendence oM (t). As we increase the width of the coupling

k= 0= wp— w1 Ty =
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trarily broad ink space. Initially|M(t)|?> agrees with the
perturbative solutions presented by Hodef]. For longer
times, we can see that the spectrum reaches a stable shape.
For very large values of the coupling strength, the long-time
limit becomes very broad ik space. As a result, the shape of
the output spectrum, as given by E§), simply reflects the
momentum distribution of the cavity wave functigifk). As

a result there is no narrowing of linewidth in momentum
space. The recent experiment of Mevetsal. [12] is an ex-
ample of an output coupling with an extremely large cou-
pling strength. In these experiments a shogtssf pulse was
used to couple atoms out of a BEC, making a pulsed atom
laser.

We consider here a continuous coupler, turned on at time
t=0, and examine the resulting long-time spectrum in the
external modes described I} . We observe in Fig. 1 that

FIG. 1. Plot of [M(t)|* as a function Ofw and time fort —for jonger times|M\(t)|? narrows into a_sirfcfunction cen-
=0 s tot=5 s, andw ranging from 762 s 1o 783 S “about  tereq ahout the trap ground-state frequengy Eventually
the single-mode trap frequencyo~772 s 1. I'=1.8<10° 57 IM(t)|? reaches a stationary state with a Lorentzian-like
profile, as shown in Fig. 1. This long-time behavior is given

IM ) (%)

in momentum space, given by, , our solution forM,(t)

becomes valid for increasingly high frequencies, $jn(For by

an infinitely broad coupling, the approximati@{r)=1 be- i\/w—ke—iAkt

comes exact and our expression is equivalent to the form of IMM(t)= ——+W(y,8,a), (23
the general broadband coupling discussed by Hageé We toe VoA —Tc

substitute Eq(16) for £(f’)(s) with G(r)=1 into Eq.(10). . ) )
We then use the shift theorem for Laplace transfofh®, to ~ Wherea, 5, andy are the particular solutions to the cubic

write M(t) as discussed above, given by the expressions
Mk(t):eiwotﬁ_l{h(sllz)}(t) (20) a:e—i(577/12)(21/3w0/§1/3+ei(7/3)§1/3/541/3):iﬁ* '
’ (24)
where )
y= el(w/4)( 21/3w0/§1/3_ (45) 1/3/6) ’ (25)
h(p)= i (21 é=—27Tc+[—(27¢c)?+108w3]*2. (26)

[P?+i(wo+ 80)](p°+iwgp+Teyi)
The long-time expression fdvl(t), Eq. (23), contains two

H —1 1/ H
The inverse Laplace transfor _i{h(s 2% can be written  terms. The first of these terms dominates in the case of small
in terms of an integral involving ™ {h(p)} using a standard 1 \yhile the second dominates for very lareAs a result,

theorem([16]. In this integral, the inverse Laplace transform he |ong-time spectrum has two distinct behaviors, depend-
of h(p) is standard, after factorizing the cubic in the denom|-ing on the strength of the coupling. We consider the case of

nator asp+iwgp+Tcyi=(p—a)(p—B)(pP— 7). Finally,  siow coupling(smallT') initially. In this case, the long-time

we obtain expression foiM(t) is dominated by the first term in Eq.
A . (23) above, and the resulting long-time spectrum is given by
e idyt — el oK \/I—FC
M (t) = 7 122 TiwAy 1
wAi—1'“c at T\ 2
Vit (beb) =T[4y (k)| A2 T (27)
1 \/; : —1/2/:
VT ViTeLys i ot) | +W(a,B,7) Plots of the long-time spectrum, ER7), as a function of
wy are presented in Fig. 2 for various coupling strengths.
+W(B,a,y)+W(y,B,a), (22 Figure 2 shows that for increasing coupling strength the line-
width of the long-time spectrum increases. The values for
where I' chosen lie abouF'=4x10* s 2, which corresponds ap-
) . proximately to values of Raman laser Rabi frequencigs,
W(x.y.2)= x“exfL (x“+iwp)t] [1+ Erf(xyD)] ~2mx50 kHz and Q,~27x1.6 MHz and detuningA;
e (y—x)(z—X) (O +iwy) ' ~27X2.5 GHz similar to values presented [ihl]. How-

ever, much smaller or larger coupling strengths can be

and we have defineé,=#k?/(2m) and A= w,— w,. The  achieved by suitably adjusting the intensities of the lasers

function Ll‘,é’z(x) is a Laguerre polynomial. and their detunings. The figures assume a trap with ground-
Figure 1 shows the behavior (¥1,(t)|? as a function of  state frequencw,=27x123 s !, typical of magnetic traps
o, and time after we turn on the output coupling interaction.for ultracold atom$17]. A ground-state Gaussian with width

Initially |M(t)|? is small, and for short enough times, arbi- o,~10° m~! has been assumed, which corresponds to a
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distribution is not exactly Lorentzian, due to the presence of
wy in the second part of the denominator. However, for large
wq the spectrum is well approximated by a Lorentzian dis-
tribution of width |T'c|/\w.
it We have already noted that for large coupling rates the
6.0 width of the long-time limit of|M,|2, and hence of the long-
time spectrum, is increased. Wheh is very large,
4.0 ITcl/Jwo>a,,, the width of My(t) becomes large com-
PN pared withk(k,t), and the spectrum becomes dominated by
the cavity momentum spreagh(k). As a result, for suffi-
ciently fast couplingllargeI') the output spectrum changes
e significantly from the Lorentzian shape considered above,

(x107)

700 750 80 850 and instead reflects the momentum spread of the cavity. For
O, (s'l) very largel” the spectrum is centred about zero, and falls
away exponentially invw, space, as required for a Gaussian
distribution in momentum space given k).

In summary, we have shown how the long-time spectrum
from an output coupler based on state change depends on the
strength of the output coupling. For very strong coupling, the
. ) ) output spectrum is given by the cavity spectrum, and is very
position-space wave function of size of the order ok®.  proad in momentum space. As the strength of the coupling is
This value_?fak corresponds to a width i, space of  yeqyced, however, the long-time linewidth is correspond-
Ow ™~ 10" st ingly reduced. For small coupling strengths the linewidth is

For each of the graphs shown in Fig. 2, the Lorentzianeffectively Lorentzian, centered about the energy of the cav-
like spectrum is centered abouty, the ground-state fre- ity with a linewidth proportional to the coupling strength
guency of the single-mode trap, with the width of the specT .
trum dependent on the strength of the coupling, as mentioned
above. In all cases, however, the linewidth is much less than The authors would like to thank Joseph Hope for much
that which would be obtained if the trap were rapidly turnedadvice and many thoughtful discussions. This work was sup-
off; that is, O~ 10* s 1. We see from Eq(27) that the ported by the Australian Research Council.

FIG. 2. Plots of the long-time behavior éb/b,) as a function
of wy for various coupling strength§;=10" s~ 2 (dotted ling, T
=3x10* s 2 (solid ling), andT'=5x10* s 2 (dashed ling

[1] M. H. Andersonet al,, Science269, 198 (1995. Conference on Laser Spectroscppgited by M. Inguscio, M.
[2] C. C. Bradleyet al,, Phys. Rev. Lett75, 1687(1995. Allegrini, and A. Sass@dWorld Scientific, New York, 1996
[3] K. B. Daviset al, Phys. Rev. Lett75, 3969(1995. [11] G. M. Moy et al, Phys. Rev. A55, 3631(1997.
[4] M. O. Meweset al, Phys. Rev. Lett77, 416(1996. [12] M.-O. Meweset al., Phys. Rev. Lett78, 582 (1997.
[5] M. Holland et al., Phys. Rev. A54, R1757(1996. [13] M. R. Andrewset al,, Science275, 637 (1997.
[6] H. M. Wiseman and M. J. Collett, Phys. Lett. 202 246  [14] J. J. Hope, Phys. Rev. B5, 2531(1997.
(1995. [15] £7Hg(s—iwp)}(t)=€'' L g(s) }(1).
[7]H. M. Wisemanet al, Quantum Semiclassic. Op8, 737  [16] £L—Ug(s*}t)=37 Y2327 ue “2/) f(u)du, where
(1996. £ Hg(p)}(t)=1(t). See, for example, F. Oberhettingatral,,
[8] A. M. Guzmanet al,, Phys. Rev. A53, 977(1996. Tables of Laplace Transform&pringer-Verlag, New York,
[9] R. J. C. Spreeuwet al, Europhys. Lett32, 469(1995. 1973.

[10] M. Olshanii et al,, in Proceedings of the 12th International [17] M.-O. Meweset al, Phys. Rev. Lett77, 416 (1996.



