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I construct a quantum error correction code~QECC! in higher spin systems using the idea of multiplicative
group character. EachN-state quantum particle is encoded as fiveN-state quantum registers. By doing so, this
code can correct any quantum error arising from any one of the five quantum registers. This code generalizes
the well-known five qubit perfect code in spin-1/2 systems and is shown to be optimal for higher spin systems.
I also report a simple algorithm for encoding. The importance of multiplicative group character in constructing
QECCs will be addressed.@S1050-2947~97!50707-4#

PACS number~s!: 03.65.Bz, 02.10.Lh, 89.70.1c, 89.80.1h

RAPID COMMUNICATIONS

The Rapid Communications section is intended for the accelerated publication of important new results. Since manuscripts s
to this section are given priority treatment both in the editorial office and in production, authors should explain in their submittal
why the work justifies this special handling. A Rapid Communication should be no longer than 4 printed pages and must be acco
by an abstract. Page proofs are sent to authors.
lus
c
-
i

r
c
a
tu
e

en
t
ro
m
s

p
y

led
of

-
ss
ore
pin-
ific
d
-
spins
bil-
e a
the

g-

ach
so,
ne
t.
re
The power of a quantum computer is perhaps best il
trated by the powerful Shor quantum polynomial time fa
torization algorithm@1#. However, the real power of a quan
tum computer may be much more limited because it
extremely vulnerable to disturbance@2#. Nevertheless, Sho
pointed out later that the effect of quantum decoherence
be compensated for if we introduce redundancy in the qu
tum state in a suitable way. We first encode the quan
state into a larger Hilbert spaceH. Then we measure th
wave function in a suitable subspaceC of H. And finally we
apply a unitary transformation to the orthogonal complem
of C according to our measurement result; it is possible
correct quantum errors due to decoherence with the envi
ment @3#. This kind of scheme is now called the quantu
error correction code~QECC!. Since then, many QECC
have been discovered~see, for example, Refs.@4–10#! and
various theories on the QECC have also been develo
~see, for example, Refs.@7–14#!. In particular, the necessar
and sufficient condition for a QECC is@12–14#

^ i encodeuA†Bu j encode&5lA,Bd i j , ~1!

where u i encode& denotes the encoded quantum stateu i & using
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the QECC;A,B are the possible errors that can be hand
by the QECC; andlA,B is a complex constant independent
u i encode& and u j encode&.

Early QECCs deal with decoherence of individual spin1
2

particles with the environment. Besides, the information lo
to the environment is assumed to be unrecoverable. M
recently, Duan and Guo considered the decoherence of s
1
2 particles with the same environment. Based on a spec
model of the environment in thermal equilibrium, they foun
a new coding scheme@15#. Another investigation concen
trates on the mutual decoherence between the quantum
inside the quantum computer. Chau pointed out that the a
ity to correct quantum errors among various registers insid
quantum computer is equivalent to the ability to correct
quantum error of a single quantum higher spin particle@10#.
Thus, it is interesting to construct QECCs for quantum re
isters with higher spin.

The QECC for particles with spin higher than12 was found
by Chau using group-theoretical methods. He encodes e
quantum particle as nine quantum registers. And by doing
his code can correct any quantum error involving exactly o
quantum register@10#. Nonetheless, his code is not perfec1

So, it is natural to ask if it is possible to construct mo
economical codes for higher spin systems.

1See Ref.@4# for a precise definition of a perfect code.
R1 © 1997 The American Physical Society
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An affirmative answer is provided in this paper. I repor
way to encode each quantum particle as five quantum re
ters, which can correct an error in at most one of the fi
registers. I also show that this code is optimal in the se
that no QECC with codeword length less than five can c
rect a general one quantum register error. For spin-1

2 par-
ticles, this code is equivalent to the perfect codes discove
by Laflammeet al. @4# and Bennettet al. @14# up to unitary
transformations. As you will see in the derivation, the su
cess of this five-register code relies heavily on the sum
of the multiplicative group character of the finite additiv
groupZN .

The ~multiplicative! group character of the finite additiv
groupZN is a mapx:ZN→C satisfying@16#

x~a1b!5x~a!x~b! ~2!

for all a,bPZN . Thenx satisfies the sum rule@16#

(
mPZN

x~m!5HN if x is the trivial character,

0 otherwise.
~3!

More concretely, the above sum rule can be written as

(
m50

N21

vN
mk5HN if k50 modN,

0 for k51,2, . . . ,N21 modN,
~4!

wherevN is a primitiveNth root of unity.
To see how we use Eq.~4! to construct our five quantum

register code, let us begin by denoting theN mutually
orthogonal eigenstates in each quantum register
u0&,u1&, . . . ,uN21&. Then, I claim that the following encod
ing scheme can correct any quantum error occurring in
most one of the quantum registers

uk&°
1

N3/2 (
p,q,r50

N21

vN
k~p1q1r !1prup1q1k& ^ up1r &

^ uq1r & ^ up& ^ uq&[
1

N3/2 (
p,q,r50

N21

vN
k~p1q1r !1pr

3up1q1k,p1r ,q1r ,p,q& ~5!

for k50,1, . . . ,N21, where all the additions in the sta
kets and in the sum are moduloN.

Let me denote the one-bit quantum errorEa occurring at
the i th quantum register by the symbolEi ,a . To prove the
above claim, it suffices to show that Eq.~1! holds for any
quantum errorsA5Ei ,a andB5Ej ,b for 1< i< j<5.

First, I consider the case when (i , j )5(1,4) as a warm up
We have

^kencodeuE1,a
† E4,bukencode8 &

5
1

N3 (
p,q,r ,p8,q8,r 850

N21

vN
k8~p81q81r 8!1p8r 82k~p1q1r !2pr

3^p1q1kuEa
† up81q81k8&^p1r up81r 8&

3^q1r uq81r 8&^puEbup8&^quq8&
is-
e
e
r-

ed

-
le
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5
1

N3 (
p,q,r ,p8,q8,r 850

N21

vN
k8~p81q81r 8!1p8r 82k~p1q1r !2pr

3dq1r ,q81r 8dq,q8dp1r ,p81r 8

3^p1q1kuEa
† up81q81k8&^puEbup8&

5
1

N3 (
p,q,r50

N21

vN
~k82k!~p1q1r !

3^p1q1kuEa
† up1q1k8&^puEbup&

5dk,k8
1

N2 (
p,q50

N21

^p1quEa
† up1q&^puEbup&

[dk,k8L1,a;4,b , ~6!

whereL1,a;4,b is independent ofk. Thus, Eq.~1! holds when
( i , j )5(1,4). Using the same trick, it is easy to verify th
Eq. ~1! holds when (i , j )5(1,1), (2,2), (3,3), (4,4), (5,5)
(1,5), and (3,5).

Now, I proceed to the more difficult case when (i , j )
5(1,2). We have

^kencodeuE1,a
† E2,bukencode8 &

5
1

N3 (
p,q,r ,p8,q8,r 850

N21

vN
k8~p81q81r 8!1p8r 82k~p1q1r !2pr

3dp,p8dq,q8dq1r ,q81r 8^p1q1kuEa
† up81q81k8&

3^p1r uEbup81r 8&

5
1

N3 (
p,q,r50

N21

vN
~k82k!~p1q1r !^p1q1kuEa

† up1q1k8&

3^p1r uEbup1r &. ~7!

By relabelingx5p1q, y5p1r , andz5r , Eq. ~7! can be
rewritten as

^kencodeuE1,a
† E2,bukencode8 &5

1

N3 (
x,y,z50

N21

vN
~k82k!~x1z!

3^x1kuEa
† ux1k8&^yuEbuy&

5dk,k8
1

N2 (
x,y50

N21

^xuEa
† ux&^yuEbuy&

[dk,k8L1,a;2,b , ~8!

whereL1,a;2,b is independent ofk. Thus, Eq.~1! holds when
( i , j )5(1,2). In a similar way, one can show that Eq.~1! is
also true for (i , j )5(1,3).

Now, I move on to the case when (i , j )5(2,3). By direct
computation, we obtain

^kencodeuE2,a
† E3,bukencode8 &

5
1

N3 (
p,q,r ,p8,q8,r 850

N21

vN
k8~p81q81r 8!1p8r 82k~p1q1r !2pr
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3dp,p8dq,q8dp1q1k,p81q81k8^p1r uEa
† up81r 8&

3^q1r uEbuq81r 8&

5dk,k8
1

N3 (
p,q,r ,r 850

N21

vN
~r 82r !~k1p!^p1r uEa

† up1r 8&

3^q1r uEbuq1r 8&. ~9!

By relabelingx5r 82r , y5p1r , z5q1r , and u5p, Eq.
~9! can be written as

^kencodeuE2,a
† E3,bukencode8 &

5dk,k8
1

N3 (
u,x,y,z50

N21

vN
x~u1k!^yuEa

† uy1x&^zuEbuz1x&

5dk,k8
1

N2 (
x,y,z50

N21

^yuEa
† uy1x&^zuEbuz1x&

[dk,k8L2,a;3,b , ~10!

whereL2,a;3,b is independent ofk. Hence, Eq.~1! is also
satisfied when (i , j )5(2,3). Using similar methods, it can b
shown that Eq.~1! holds if (i , j )5(2,4), (2,5), and (3,4).

Finally, I consider the case when (i , j )5(4,5). By direct
computation, we find that

^kencodeuE4,a
† E5,bukencode8 &

5
1

N3 (
p,q,r ,p8,q8,r 850

N21

vN
k8~p81q81r 8!1p8r 82k~p1q1r !2pr

3dp1r ,p81r 8dq1r ,q81r 8dp1q1k,p81q81k8^puEa
† up8&

3^quEbuq8&

5
1

N3 (
p,q,r ,p8,q8,r 850

N21

vN
k8~p81q81r 8!1p8r 82k~p1q1r !2pr

3d2p1k,2p81k8d2q1k,2q81k8d2r2k,2r 82k8^puEa
† up8&

3^quEbuq8&. ~11!

Let us analyze the situation by considering the following t
subcases:

Subcase (a):If k2k8 is odd andN is even, then it is
impossible to find p,p8PZN such that
2p1k52p81k8modN. Hence, the existence of th
d2p1k,2p81k8 term in Eq. ~11! implies that
^kencodeuE4,a

† E5,bukencode8 &50.
Subcase (b):if either k2k8 is even orN is odd, then it is

possible to find p,p8PZN such that 2p1k52p8
1k8modN. That is to say, it make sense to rega
(k82k)/2 as an integer inZN . Then Eq.~11! becomes

^kencodeuE4,a
† E5,bukencode8 &

5
1

N3 (
p,q,r50

N21

vN
[ ~k82k!/2][3p12q1r2~3k82k!/2]

3 K puEa
† up2

k82k

2 L K quEbuq2
k82k

2 L
5dk,k8
1

N2 (
p,q50

N21

^puEa
† up&^quEbuq&

[dk,k8L4,a;5,b , ~12!

whereL4,a;5,b is independent ofk. Therefore, the encoding
scheme in Eq.~5! satisfies Eq.~1! for any (i , j ) with
1< i , j<5; and, hence, this scheme is able to correct a
quantum error arising at any one of the quantum register
promised.

The key idea used in this five-register code is~i! the mul-
tiplicative group character sum rule in Eq.~3!, ~ii ! the rela-
beling of some variables in the summation, and~iii ! the
strong correlation between the five quantum registers.2 Since
the sum rule in Eq.~3! plays a very important role in both th
five and the nine quantum register codes@10#, it will be
interesting to rewrite other existing QECCs for spin-1

2 par-
ticles in a form similar to that of Eq.~5!. This may provide a
way to generalize these codes to higher spin systems.

Back to the case whenN52. The above encoding schem
above can be explicitly written as

u0&°
1

A8
@ u00000&1u01100&1u10101&1u11001&1u11010&

2u10110&1u01111&2u00011&] ~13a!

and

u1&°
1

A8
@ u10000&2u11100&2u00101&1u01001&2u01010&

2u00110&1u11111&1u10011&]. ~13b!

This scheme can be transformed to the perfect code obta
by Laflammeet al. @4# ~and hence also Bennettet al.’s @14#!
by a simple unitary transformation: first permute the fi
quantum registers byP(13524), then add an extra phase
p to the encoding state wheneverp1r1k is even. That is to
say, Laflammeet al.’s perfect code can be written as

uk&°
1

A8(
p,q,r

~21!~p11!~r11!1k~p1q1r11!up1q11&

^ up& ^ up1r & ^ uq& ^ uq1r &, ~14!

for k50,1.
Now, I give a simple encoding algorithm for this cod

Using a series of quantum binary conditional-NOT gates,
may ‘‘copy’’ the stateuk,0,0,0,0& to uk,0,k,k,k& efficiently.
Next, we apply quantum discrete Fourier transforms sim
to that used in Shor’s algorithm@1,17,18# separately to the
third, fourth, and fifth quantum registers. Then, we add
additional phase ofvN

pr to the system using a Toffoli-like
gate @19,20#. We then use a series of quantum bina
conditional-NOT gates to ‘‘copy’’ the fourth register to th
second one. Finally, by suitably adding the quantum regis

2In other words, the high entanglement entropy in this code.
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together using reversible quantum logic gates, we obtain
quantum code as required. The entire encoding proce
can be summarized below:

uk,0,0,0,0&°uk,0,k,k,k&

°
1

N3/2 (
p,q,r50

N21

vN
k~p1q1r !uk,0,r ,p,q&

°
1

N3/2 (
p,q,r50

N21

vN
k~p1q1r !1pruk,0,p,q,r &

°
1

N3/2 (
p,q,r50

N21

vN
k~p1q1r !1pruk,p,r ,p,q&

°
1

N3/2 (
p,q,r50

N21

vN
k~p1q1r !1pr

3up1q1k,p1r ,q1r ,p,q&. ~15!

Finally, I present a proof of the optimality of the abov
QECC. More precisely, I will show that it is not possible
correct a general quantum error involving exactly one qu
tum register by encoding each quantum particle by four~or
less! quantum registers. Following Sec. V B in Ref.@12# ~see
also Ref.@21#!, I suppose that a single error correcting qua
tum code with codeword length four exists. Then one c
always write

u i encode&5 (
p,q,r ,s50

N21

apqrs
~ i ! up,q,r ,s& ~16!

for i50,1, . . . ,N21. Define the reduced density matrices
on
r

ys

A

e
re

-

-
n

rp8q8;pq
~ i !

5 (
r ,s50

N21

~ap8q8rs
~ i ! !*apqrs

~ i ! ~17!

for all i , and

~E~ i0 , j 0!! i j5H 1 if i5 i 0 and j5 j 0 ,

0 otherwise.
~18!

Now we consider the error operatorsE3,(i0 , j 0)
andE4,(i0 , j 0)

,
which act on the third and fourth register, respectively. S
poseu i encode&Þu j encode&; then from Eqs.~1!, ~16!, and ~17!,
one arrives at

r~ i !r~ j !50 ~19!

for all iÞ j . Similarly, we consider the actions ofE1,(i0 , j 0)

and E2,(i0 , j 0)
on the encoded registers. Puttingi5 j in Eq.

~1!, one arrives at

r~ i !5r~ j ! ~20!

for all i , j . From Eqs.~19! and ~20!, one concludes that al
the ~Hermitian! reduced density matricesr ( i ) are nilpotent.
However, this is possible only ifr ( i )50 and hence
apqrs
( i ) 50 for all i ,p,q,r ,s50,1, . . . ,N21. This contradicts

the assumption that(p,q,r ,s50
N21 apqrs

( i ) up,q,r ,s& encodes the
quantum stateu i &. Thus, the codeword length must be at lea
five. Consequently, the five quantum register code repo
here is optimal.
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