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| construct a quantum error correction cd@@ECQO in higher spin systems using the idea of multiplicative
group character. Eadi-state quantum particle is encoded as fixstate quantum registers. By doing so, this
code can correct any quantum error arising from any one of the five quantum registers. This code generalizes
the well-known five qubit perfect code in spin-1/2 systems and is shown to be optimal for higher spin systems.
| also report a simple algorithm for encoding. The importance of multiplicative group character in constructing
QECCs will be addressefiS1050-294{@7)50707-4

PACS numbgs): 03.65.Bz, 02.10.Lh, 89.7&.c, 89.80+h

The power of a quantum computer is perhaps best illusthe QECC;A,B are the possible errors that can be handled
trated by the powerful Shor quantum polynomial time fac-by the QECC; and 4 g is a complex constant independent of
torization algorithn{1]. However, the real power of a quan- |i, .3 and|jencoad-
tum computer may be much more limited because it is Early QECCs deal with decoherence of individual spin-
extremely vulnerable to disturbanf2]. Nevertheless, Shor particles with the environment. Besides, the information loss
pointed out later that the effect of quantum decoherence cafy the environment is assumed to be unrecoverable. More

be compensated for if we introduce redundancy in the quaryecently, Duan and Guo considered the decoherence of spin-

tsut;es}[gzg ;nlgr;g:t?-lbillgevr\;agbzﬁ f;fﬁzsnvsgdﬁ]éggu?:"’tﬂteu”% particles with the same environment. Based on a specific

o . X model of the environment in thermal equilibrium, they found
wave funct_lon in aswtable_subspa@eof H. And finally we a new coding schemEl5]. Another investigation concen-
apply a unltz_iry transformation to the orthogor_1aj complgmen{rates on the mutual decoherence between the quantum spins
of C according to our measurement result; it is possible to

correct quantum errors due to decoherence with the enviror%rJSIde the quantum computer. Chau pointed out that the abil-

ment[3]. This kind of scheme is now called the quantum'ty to correct quantum errors among variou's.registers inside a
error correction cod¢QECO. Since then, many QECCs quantum computer is equivalent to tr_le ab|I|ty to correct the
have been discovere@ee, for example, Ref$§4—10]) and quantum error of a single quantum higher spin parfti@).

various theories on the QECC have also been develope-BhUS’ it Is interesting to consiruct QECCs for quantum reg-

_ - isters with higher spin.
gsnedeiszc;fri cei)e(ﬁ;négi,dﬁiiﬁz‘orl j])(.glgé)grg:zul_alr,qthe Necessay  The QECC for particles with spin higher thamvas found
by Chau using group-theoretical methods. He encodes each

quantum particle as nine quantum registers. And by doing so,
(i encodbATB|j encodd = Aagdij, (1) his code can correct any quantum error mvolymg exactly one
quantum registef10]. Nonetheless, his code is not perféct.
So, it is natural to ask if it is possible to construct more
where|igncoqe denotes the encoded quantum stajeusing  economical codes for higher spin systems.

*Electronic address: hfchau@hkusua.hku.hk 1See Ref[4] for a precise definition of a perfect code.
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An affirmative answer is provided in this paper. | report a
way to encode each quantum particle as five quantum regis-
ters, which can correct an error in at most one of the five
registers. | also show that this code is optimal in the sense
that no QECC with codeword length less than five can cor-
rect a general one quantum register error. For $ppar-
ticles, this code is equivalent to the perfect codes discovered
by Laflammeet al. [4] and Bennettt al.[14] up to unitary
transformations. As you will see in the derivation, the suc-
cess of this five-register code relies heavily on the sum rule
of the multiplicative group character of the finite additive
groupZy .

The (multiplicative) group character of the finite additive
groupZy is a mapy:Zy— C satisfying[16]

x(a+b)=x(a)x(b) )

for all a,be Zy. Theny satisfies the sum rulel6]

56
1 N—-1
:W E wlﬁl’(p’+q’+r’)+p’r’f (p+q+r)—pr
p.a.r,p’.q",r'=0
><5q+r’q/+rfaq'q/5p+r‘p/+r/
X(p+a+KELp +a’ +k' )(p|Egp")
1 N—-1
= (k" =k)(p+g+r)
ng,q;:o N
X(p+q+k[E}p+g+k )(p|Eglp)
L Nt
= dkw 2.2 (P+alElp+a)(plEglp)
p.q=0
=0k Niaag (6)

[ N if yis the trivial character,
0

More concretely, the above sum rule can be written as

k

wherewy is a primitive Nth root of unity.

To see how we use E@) to construct our five quantum
register code, let us begin by denoting the mutually
orthogonal eigenstates in each quantum register
[0),/1), ... /N=1). Then, I claim that the following encod-

> x(m)=

meZy otherwise.

if k=0 modN,

N—-1
mk__
m§=:O N for k=1,2,... N—1 mod,

(4)

ing scheme can correct any quantum error occurring in at

most one of the quantum registers

N-1
|k>H>m/zp qEr:O oy P p g+ ky@[p+r)

N—-1
Blg+r)e|p)ela)=—zm X wgPrITrer
N p,q,r=0

©)

for k=0,1,...,N—1, where all the additions in the state
kets and in the sum are modula

Let me denote the one-bit quantum erEgy occurring at
the ith quantum register by the symbg| ,. To prove the
above claim, it suffices to show that E@.) holds for any
quantum errorA=E; , andB=E; z for 1<i<j<5.

First, | consider the case when)=(1,4) as a warm up.

X|p+qg+k,p+r,g+r,p,q)

We have
< kencodJaEI,aE4,ﬁ| kéncode}
1 N—-1

>

p.a.r,p’.q’,r'=0
X(p+q+KIEl|p'+q'+k'}p+r|p’ +r')

X(q+r|q'+r'"){(p|Eglp"){ala")

- wKI’(p’+q’+r')+p’r’—k(p+q+r)—pr

by

whereA ;.4 g is independent ok. Thus, Eq(1) holds when
(i,j)=(1,4). Using the same trick, it is easy to verify that
Eqg. (1) holds when {,j)=(1,1), (2,2), (3,3), (4,4), (5,5),
(1,5), and (3,5).

Now, | proceed to the more difficult case whenj}
=(1,2). We have

< kencodJaEI,aEz,ﬁ| k(’encodé

1 N-1
= E wl&’(p’+q’+r’)+p’r’—k(p+q+r)—pr
p.q.r.p’.q",r'=

X 5p'p,5q’q,5q+ryq,+r,<p+q+k|E:;|p’+q’+k’>
><<p+r|EB|p’+r’>

N—-1
1 .
:mpq§r=0 w,(\‘k k)(p+q+r)<p+q+k|EL|p+q+k’>

X(p+r|Eglp+r). (7)

By relabelingx=p+q, y=p+r, andz=r, Eq. (7) can be
rewritten as

=z
[

w(k' —k)(x+2)

1N
<kencodJEEI,aE2,ﬁ| kéncode} = ﬁg .
X,y,z2=0

X (x+KIELIx+K }y[Egly)

1 N—1

:5k,k'N7 Z <X|EZ|X><Y|E,B|Y>
x,y=0

=k N1a28 (8
whereA ., g is independent ok. Thus, Eq(1) holds when
(i,))=(1,2). In a similar way, one can show that Ef) is
also true for (,j)=(1,3).

Now, | move on to the case when,|)=(2,3). By direct
computation, we obtain

<kencodJaE£,aE3,B| k(’encodé
1 N—-1

E>

p.q.r,p’.q",r'=0

kK'(p"+q"+r")+p'r’'—k(p+q+r)—pr
N
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N—-1

X 8y 11 Oy 1 O e ,(p+r|ET|p’+r’> 1
p.p' “q.q9’ “p+a+k,p’+q’ +k @ +

=0 /—2 p|E0z|p alEglg
k,k sz'q:()( S B )

X(q+r[Eglq’+r")
N—-1

1 [ , = 5k,k’A4,a;5,ﬂ ' (12)
:5k,k’m 2, oy P p+r|Eljp+r)
p.gr.ri=0 whereA, .55 is independent ok. Therefore, the encoding
X{(q+r|Eglg+r"). (99 scheme in Eq.(5) satisfies Eqg.(1) for any (i,j) with

1<i,j=<5; and, hence, this scheme is able to correct any
By relabelingx=r'—r, y=p+r, z=q+r, andu=p, Eq. quantum error arising at any one of the quantum registers as

(9) can be written as promised.
The key idea used in this five-register codéijshe mul-
i / tiplicative group character sum rule in E@), (ii) the rela-
{KencodbB2 .l Kencoad beling of some variables in the summation, afiié) the
N—1 . . . .
B 1 X(U+K) + strong correlation between the five quantum registSmce
= Ok N3, xyzz=0 on" T Y[ELlYy XNZIE[Z+X)  the sum rule in Eq(3) plays a very important role in both the
'N'_’l five and the nine quantum register codd®)], it will be
T interesting to rewrite other existing QECCs for spipar-
= Ok N2, yzz:O (YIEaly+x)(Z|Eglz+X) ticles in a form similar to that of Eq5). This may provide a
" way to generalize these codes to higher spin systems.
=0k N2w3p (10 Back to the case whei=2. The above encoding scheme

above can be explicitly written as
where A, .35 is independent ok. Hence, Eq.(1) is also
satisfied wheni(j)=(2,3). Using similar methods, it can be 1
shown that Eq(1) holds if (i,j)=(2,4), (2,5), and (3,4). |0>HEHOOOOW|01100+|10103>+|11001>+|11010
Finally, | consider the case whem,[)=(4,5). By direct
computation, we find that

—|10110+|01112—|00011)] (139
< kencodJ!Ejl,aES,M kéncod% and
1 N-1
= E wK"(p’+q’+r')+p’r’—k(p+q+r)—pr 1
N, qrp’ g’ =0 |1>HE[MOOOQ—|1110()—|0010])+|01001)—|0101()
><é\p+r,p’+r’5q-%—r,q’+r’5p-¢—q+k,p’-¢—q’+k’<p|Elhy|p/>
/ —(00110+ (11111 +|1001D]. 1
1 N1 (0 a4+t (Pt atr)—pr This scheme can be transformed to the perfect code obtained
N 2, Y P P pra P by Laflammeet al.[4] (and hence also Benneit als [14])
P.a.r.pnari=0 by a simple unitary transformation: first permute the five
X 62p+k'2p,+k,52q+k,2q,+k,§2r,k12r,,k/<p|E£|p’> quantum registers bip(13524), then add an extra phase of
, 7 to the encoding state whene r+kis even. That is to
X (alEgla’). (11) J il

say, Laflammeet als perfect code can be written as

Let us analyze the situation by considering the following two 1

subcases: Ky —= > (—1)PFDr+D+kprarr+ln i g4 1)
Subcase (a)lf k—k’ is odd andN is even, then it is 8p.a.r

impossible to find p,p’' eZy such that

2p+k=2p’+k'modN. Hence, the existence of the

Ozp+kzp+kr  term in  Eq. (11 implies that . k=01

(KencoobEd oEs gl Kencoad =0 _ o Now, | give a simple encoding algorithm for this code.
Subcase (b)if eitherk—k' is even oM is odd, then itis  ysing a series of quantum binary conditional-NOT gates, we

possible to find p,p’eZy such that D+k=2p"  may “copy” the state|k,0,0,0,0 to |k,0k.k.k) efficiently.

+k'modN. That is to say, it make sense to regardnext, we apply quantum discrete Fourier transforms similar

elp)elptry®|g)elq+r), (14

(k' =k)/2 as an integer iffy. Then Eq.(11) becomes to that used in Shor's algorithiil,17,1§ separately to the
third, fourth, and fifth quantum registers. Then, we add an
(KencodbE b «Es 8l Kencoad additional phase o} to the system using a Toffoli-like
N—1 gate [19,20. We then use a series of quantum binary
_ 1 WK —k)/2][3p+2g+r (3K —k)/2] conditional-NOT gates to “copy” the fourth register to the
ng,q,,:o N second one. Finally, by suitably adding the quantum registers

k'—k k' —k
X Ellp— —— Eslg— ——
PIE./P 2 ><q| /3|q 2 > 2In other words, the high entanglement entropy in this code.
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together using reversible quantum logic gates, we obtain the , N-1 , _
quantum code as required. The entire encoding procedure P arpa= 2 (@5 abars 17)
can be summarized below: r.s=0
k,0,0,0,0—|k,0,k,k,k) for all i, and
_ 1 if i=igand j=j,,
1 k(p+q+r) (Eioio)i=] 0 otherwise (18)
=, 2, on ko p.g) .
YN—l Now we consider the error operatdes ;. andEy ;).
1 K(p+q+1)+pr which act on the third and fourth register, respectively. Sup-
=N Er:o N |k,0,p,q,r) POSE i encode # | j encoae; then from Egs.(1), (16), and (17),
P one arrives at
N—1 . .
1 pph=0 (19)

ki
= 270 onP TPk p,r,p,0)
p.a.r= for all i#]j. Similarly, we consider the actions &,

00
N-1 andE, ;. on the encoded registers. Putting j in Eq.
1 k(p+q-+r)+pr “olo)
R > wPrartnte (1), one arrives at
p,q,r=0
= ,0) 20
X|p+qg+k,p+r,q+r,p,q). (15 p=p 20

] o for all i,j. From Egs.(19) and (20), one concludes that all
Finally, I present a proof of the optimality of the above i, (Hermitian reduced density matrices\” are nilpotent.
QECC. More precisely, | will show that it is not possible to However, this is possible only ifp®=0 and hence
correct a general quantum error involving exactly one quan-.() _q for all i p,q.r,5=0,1 N—1. This contradicts
tum register by encoding each quantum particle by faur hpqrs o h ’Eh’,,l O ' q h
less quantum registers. Following Sec. V B in REE2] (see '€ assumption tha p.ar s=0%pars P20, S) encodes the
also Ref[21]), | suppose that a single error correcting quan_quantum stat@i ). Thus, the codeword length must be at least

tum code with codeword length four exists. Then one carﬂve' Consequently, the five quantum register code reported
ere is optimal.

always write
N—1 I would like to thank E. Knill and R. Laflamme for point-
I )= E o) 1P.G.1,S) (16) ing out a mistake in the earlier version of this manuscript,
encod pars=0 A and M. Grassl for pointing out the use of REE2] to prove
the optimality of this code. In addition, valuable discussions
fori=0,1,... ,N—1. Define the reduced density matrices with M. Ben-Or are gratefully acknowledged.
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