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The standard single-shot estimate for the phase of a single-mode pulse of light is the argument of the
complex amplitude of the field. This complex amplitude can be measured by heterodyne detection, in which
the local oscillator is detuned from the system so that all quadratures are sampled equally. Because different
guadratures do not commute, such a measurement introduces noise into the phase estimate, with a variance
scaling asN™ %, whereN is the maximum photon number. This represents the shot-noise limit or standard
guantum limit(SQL). Recently, one of upH.M. Wiseman, Phys. Rev. Leff5, 4587(1995] proposed a way
to improve upon this: a real-time feedback loop can control the local oscillator phase to be equal to the
estimated system phase pla#2, so that the phase quadrature of the system is measured preferentially. The
phase estimate used in the feedback loop at tiisea functional of the photocurrent from time 0 up to time
t in the single-shot measurement. In this paper we consider a very simple feedback scheme involving only
linear electronic elements. Approaching the problem from semiclassical detection theory, we obtain analytical
results for asymptotically large photon numbers. Specifically, we are able to show that the noise introduced by
the measurement has a variance scalingNag’?. This is much less than the SQL variance, but still much
greater than the minimum intrinsic phase variance which scaldd ds We briefly discuss the effect of
detector inefficiencies and delays in the feedback 106050-294®7)06407-X]

PACS numbd(s): 42.50.Dv, 42.50.Lc

[. INTRODUCTION formed simply using a photodetector. In principle this can
precisely determine the number of photons in the pulse. The
The division of radio broadcasting into amplitude modu-chief practical limitation is from detector inefficiencies,
lation and frequency modulation channels neatly illustratesvhich are now quite small. However, phase is a different
the two simplest ways to encode information into an electromatter. The ideal form of phase measurement is known as a
magnetic field: in the intensity or in the phase. The ultimatecanonical phase measuremght Unfortunately, there is no
limits to the channel capacity for any form of communicationknown way to realize such a measurement and neither is
is set by quantum mechanics, and communication via théhere ever likely to b§2]. There are, nevertheless, imperfect
electromagnetic field is no exception to this. Of course radidechniques for phase measurements which can be realized.
broadcasting operates nowhere near any quantum limit, bideterodyne detection is one exampld. These techniques
in the future it may be useful to push technology to the limitare imperfect because they introduce excess noise into the
where every bit of intensity, or phase information, in everymeasurement result. The variance of this introduced noise
available mode of the field is used. scales inversely with the photon number. This is the charac-
Communication near this ultimate quantum lifldQL) teristic scaling of the shot-noise limit or standard quantum
would require not only the ability to engineer states whichlimit (SQL) of phase noise. This excess variance is far above
code information with minimum errofthat is, states with the intrinsic phase variandghe UQL) for a state which is
very well-defined intensity or phagsebut also the ability to optimized to have a minimum phase variance. Thus a UQL
estimate the intensity or phase accurately frosinglemea- communication system based on phase would not be possible
surement. In communication the single-shot requirement is aith standard phase measurement schemes.
matter of optimization rather than absolute necessity, since a There is one case in which the SQL for phase measure-
certain amount of redundancy could be built into the com-ments can be simply surpassed; that is if one assumes that
munications system, by sending every pulse twice, for exbefore starting the measurement one already knows the phase
ample. However, there are other possible applications imf the system to be within a small uncertaintyfo<1. In
which it would be necessary, such as the precision measuréhis case one can obtain an estimate of the system phase in
ments of weak signals. If such signals had an extraterrestrialhich the excess variance is much smaller than that of the
origin then they would be essentially nonrepeatable, and so BQL by using homodyne detection. Homodyne detection in-
would be desirable to make a measurement which is as gootblves passing the mode to be measured through a 50/50
as possible on each pulse. beam splitter, in order to combine it with an intense field
If the relevant information were encoded in the intensity(treated classicallycalled the local oscillator. By choosing
of the pulse, then the desired measurement could be pethe local oscillator phas® to be equal tap+ /2, the dif-
ference photocurrent from the two output ports of the beam
splitter yields a measurement of the phase quadrature
*Electronic address: wiseman@physics.ug.edu.au Xp=ae '*+a’e'®, wherea is the annihilation operator of
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This novel idea ofadaptivesingle-shot measurements was
proposed recently by one of (], but it turns out that it has
been proposed, in a different context, at least once bg&re
Itis a sort of quantum feedback which is quite different from
that investigated previousligee Ref[7] for a review in that

it has no effect on the evolution of the system.

In Ref. [5] it was shown numerically that an adaptive
phase measurement does surpass the SQL for states with
large photon numbers. However, it is very difficult with nu-
merical results to determine just how much better an adap-
tive measurement is, because the system size must be ex-
tremely large to obtain valid scaling laws. An analytical
result was obtained in Ref5], but it pertained to a system
which contained at most one photon. In this case, the adap-
tive technique is as good as a canonical phase measurement,
whereas the standard technique is definitely inferior. This
result for a single-photon field is obviously of little practical
use for communication.

In this work we are concerned with obtaining analytical
results for adaptive phase measurements of fields with large

FIG. 1. Diagram for the experimental apparatus for making anintensities. The approach adopted is to consider measure-
adaptive phase measurement. Thin dashed lines indicate light rayg€nts on coherent states with large coherent amplitudes.
and the thin continuous line labeled BS represents a 50/50 bearhhis yields asymptotic results which can easily be general-
splitter. Medium lines represent electro-optic devices: photodetedzed to states other than coherent states. As well as being
tors (PD) and an electro-optic phase modulatBOM). Thick lines  analytically tractable, the approach using coherent states is
represent electrical components: a subtractor, a multiplier, an intemuch simpler conceptually than that used in RBf. That is
grator, a signal generat¢®G), a signal processor, and a digital read because a coherent field can be treated semiclassically: the
out giving the measured value @fe[0,27). The necessity for field itself evolves deterministically and the noise in the mea-
these particular electrical elements alone is a consequence of tRgirement is due to the shot noise of the photoelectric effect:
feedback algorithm explained in Sec. II. a constant classical driving field causes the ejection of a pho-

toelectron at Poisson-distributed times. Thus the results of
the mode to be measured. Also assuming also that the angec. Il of this paper may be understood using only semiclas-
plitude r of the field is reasonably well definedvith  sical concepts. The results of Sec. lIl, which generalize those
r>1,6r) and is also known prior to the measurement, therof Sec. Il for phase-optimized states, require a small knowl-

Local
Oscillator

SG

Signal

$=4.6692...*— processor

the phase of the field is very well approximated by edge of quantum estimation theory which is summarized in
Sec. lll. Section IV concludes with a discussion of experi-
ae ?+afe?® ae '¢—alel¢ mental practicality.
d~p+ o =¢+ o . (1)

Il. SEMICLASSICAL PHASE ESTIMATION

However, by making these assumptions, one is really remov-

ing the problem from the realms of phase measurements. A ) ] )

true phase measurement ideally should not rely on any prior We wish to consider phase measurements of a single-

knowledge of the amplitude of the field, and certainly shoulgmode pulse of the electromagnetic fle_ld. Let us consider this

not rely upon any prior knowledge of that phase. The heteroPulse to be close to a plane wave with a transverse Area

dyne measurements mentioned above are true phase médld let us fix our spatial position to be that of a presumed

surements in this sense, although they are not particularlperfect photodetector covering the arda Then, since we

accurate measurements. are using a semiclassical argument, this pulse will produce at
While not being a true phase measurement, the phagge detector position a classical time-varying electric field of

quadrature measurement by homodyne detection suggedhe form

how it may be possible to construct a true phase measure-

ment, which should be superior in accuracy to a heterodyne E(t)=(

measuremeniand so surpass the SQIRather than measur-

ing a quadrature of predefined phase, the phase of the local ) ) .

oscillator could be adjusted during the course of the meaWherea is a complex number ana(t) is a real and positive

surement to measure thestimatedphase quadrature of the Mode function which is normalized so that

system by homodyne detection. Here the estimated phase of .

the system would have to be inferred from the photocurrent J u(t)dt=1, 2.2)

recordso far from thesinglepulse. That is to say, the local 0

oscillator phase would be continuously adjusted by a feed-

back loop to be in a quadrature with the estimated systerwhereT is some total time which is necessarily much greater

phase over the course of a single measurertesd Fig. L. than o1, so that the pulse can be essentially monochro-

A. Semiclassical photodetection theory

2h wu(t)

1/2
—iwt
T ) R4 ae 1], 2.1)
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matic. This is essential in order for quantum effects to pro- o en(t)—on_(1)

vide the limit to the phase uncertainty. If the characteristic [(t)=lim lim T gt

spectral width of the pulsE~ [§|u’(t)|dt=T 1 is too large A=0p—ee

then the phase uncertainty will be dominated by the uncer- =u(t)2 Rd ae 07+ Ju(h) &t 2
tainty I in the frequency which gives¢~T'/w. In all that (H2Rea | (DL, @7
follows we assume this uncertainty to be negligible. where £(t) =lim 5_.o[ W, (t)— SW_(t)]/6t is a Gaussian

In Eqg. (2.1) the complex amplituder is dimensionless
and defined in such a way that if all of the energy of the field
were converted to photoelectrotas will occur at our perfect
detectoy, the rate of photoelectron production would be, to a
very good approximation,

white-noise ternj10] with the autocorrelation function
(E(E))=a(t—t"). (2.9

Thus the signal photocurrent is proportional to the quadra-

eoE3(1) Ac ture of the system with phask(t), plus the shot noise due
A= T=|a|2u(t), (2.3 to the local oscillator.
where the bar oveE?(t) indicates an average over many B. Heterodyne

optical cyzcles. This .rate. Is dgrived fro”.‘ the power of .the A true phase measurement must determine the phase of
bea;neoE (_t)AC’ which is qe“‘_’ed from its e”ergy density the system with equal accuracy, regardless of the value of
€E"(t). Given the normalizatior(2.2), and the indepen- h4t phase. The standard way to do this is to sample all
dence of the photoelectron-production events, the total NUMyuadratures equally. This can be achieved by heterodyne de-
ber of photoelectrons will be a Poisson-distributed numbefaction where the local oscillator phade(t) is given by

: 2
n with mean|a|®, , _ , _ _ ®(0)—tA. Here A is the detuning of the local oscillator
This method of detection obviously yields no information ¢ the system, which is much less than but much

about the phase at. To do this requires mixing the System qeater than the characteristic pulse bandwibthThis en-
with a local oscillator of known phase at a beam splitter. FOIgres that over the course of the pulse, the phase of the
simplicity, we assume that the local oscillator has the samgyadrature changes sufficiently rapidly for all quadratures to
mode functionu(t) as the system, and a much larger inten-pe measured with equal accuracy. This is to be contrasted
sity. Sp_eC|f|caIIy, we assume the local oscillator electric field,ip homodyne detection where the local oscillator is reso-
to be given by[9] nant with the system so tha is a constant and only one
2hwu(t)| 2 quadrature is measured. While this latter measurement is cer-
ELO(t):(—A) B Rge itti®M] (2.4 tainly phase sensitive, it can only be used to estimate the
€oAC phase if the system phase and amplitude are approximately
whereg is a dimensionless real number and the local osciI—kn%ﬁgstiﬁzczirﬁh;?g’_a;Fg)pli'geiitg‘ ItEhe (Izr\t;)odvtljgt?ene. that
lator phased(t) is a function which is arbitrary but slowly 9 N g.{e.0), we .
varying compared tast. We now put the system pulse into the heterodynz FI)IhOtOCfl:r:‘em has a detgrmlnr:stlc parlt which
. ; : . varies sinusoidally with frequency under the envelope
one port of a 50/50 beam splitter, and the local oscillator into (t). The amplitu?j/e of thesg osciﬁ\ations is proportiongl to

the other. If the two output ports are covered by perfec |- while their phase is proportional to arg(— (0). The

h rs then the r f ph ion in th r . > ;
iF?s otodetectors then the rate of photodetectio those po c%mplex amplitudex can therefore be estimated by taking

the complex Fourier transform of the photocurrent at the
Ao =2u(t)|axpe W2, (2.5 appropriate frequenck. That is, we need to take the integral
of the photocurrent over the time internd@,T), multiplied
In the desired limi{3>|a/, the rate of photodetections at the by the kernel expfitA)
two output ports will be dominated by the local oscillator.
Consider a time intervalt,t+ st) where 6t is very small A det (1)l #0)-ta] 2.9
compared to the time over which the pulse shape changes 0 ' '
~u(t)/|u’(t)|, but very large compared to the mean time
between detections [ B2u(t)]~*. The first condition allows 1. General formulas
us to treatu(t) as a constant over that interval, so that the i ) )
number of photodetections in each detector will be a Poisson ' Ne integral of the photocurrent which we desire can be
process with mean . &t. The second condition makes this Written in a more generally applicable way as
mean much greater than one so that the Poisson process can
be approximated by a Gaussian A= det 1(t)el®), (2.10
0

ONL()=N_(t)St+ VAL (1) W (1), (2.6)

whereSW..(t) represent independent Gaussian random varil Nis can be evaluated as
ables of mean zero and variange
The signal of interest is the difference between the pho- A=a—-a*B+tio, (211
tocurrents at the two ports. This can be defined rigorously in
terms of the noncommuting limits where we have used E¢R.2) and defined another integral
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T ot principle is that the local oscillator phase be adjusted over
B=- JO dte*Mu(t) (212 the course of the measurement to be equal to the estimated
system phase plus/2 in order to get information about the
and a random variable estimated phase quadrature of the system. That is to say, we
set
T .
o= fo PO Ju(dw(b), (2.13 D(t)=p(t)+ /2. (2.19

wheredW(t) = £(t)dt is an infinitesimal Wiener increment Here the hat orp(t) indicates that it is an estimator of the

[10]. It is easy to verify that this random variable satisfies System phase. It is not an operator. The estimate is made on
the basis of the measurement result obtained so far, over the

(0)=0; (|lo|»=1; (o?=(B). (2.14  course of the detection from time O to timeThis implies
that it must be some functional of the photocurrér(s):s
2. Specific results e[0t)}. Using the formal apparatus of quantum measure-

ment theory, one of us has sho8] that the full photocur-
éent{l (s):se[04)} is not relevant, but rather only the two
complex functionals

The immediately preceding formulas are true for all func-
tions®(t). For the present case of heterodyne detection, w
can go further and find

t .
B=— dete2“b(°)*2imu(t)~l“/A, (2.15 A= fods I(s)e!™), (2.20
0
wherel“' is th.e _spectral wid;h of the pulsg as before. In the B,=— ftds egiqp(s)u(s), (2.21)
appropriate limitA>T", the integralB vanishes. The same 0

argument cannot be used to show thatvanishes because

£(t) is & correlated and so has a characteristic time which igvhich is a considerable simplification. Fo=T these inte-
always much shorter thah ~*. However, it is evident from grals Ar,By are the resultsA and B already introduced.
Eq. (2.14 that(o?) vanishes. This result, together with the Thus, they arise naturally in the semiclassical picture, and it
other results in Eq(2.14, completely characterize, be- IS not necessary to understand the theory of f&ifto fol-
cause it is a Gaussian random variafiteing the sum of low the argument presented here.

independent Gaussian random variabfés)dt]. Thus for The crucial question is what to choose fpft). In this
heterodyne detection, the complete measurement is charagork we choose

terized by the complex number

P(t)=argA,. (2.22

} ) ) This is motivated by the following considerations.
whereo is a phase-lr;dependent complex Gaussian random (1) 1t is suggested by the above analysis for heterodyne
variable satisfying|o|?)=1. detection.
To estimate the phase of the field, we take the argument () As shown by one of ug5], it gives the best possible
of the resultA. We are interested in the high-intensity limit yagyt if the system has at most one photon.
|@|>1, which would be the most useful for communication. (3) As will be shown, it gives the feedback algorithm
In this limit, the noise termr is small compared te. Thus

A=a+io, (2.19

it is possible to treat it as a perturbation to the phase mea- I(t)dt
surement. In other words, the measured phase is given by ddb(t)= ——, (2.23
t
dre=argA=arg a)+Im(io/a)+0(1/al?). (2.17) JOU(S)ds

Obviously the most likely phase result is asg( as desired.
Without loss of generality we can taketo be real. Then the
most likely phase igh,o=0 and the uncertainty in the phase
estimate is determined by the variance

which should be easy to implement experimentally because
it is linear in the instantaneous photocurré(t).

(4) As will be shown, it can be approximately solved
analytically.

2\ -2 *\2y_ 1 -2 Before proceeding further, it is convenient to introduce a
(Pher=(2a) A(oF0™))=za"", (218 new time variable

where it is not difficult to show that the next higher-order ¢
term is of ordere ™ 4. Thus for largew, the prepared phase of v= j u(s)ds, (2.24
the coherent state can be estimated quite accurately, with an 0

uncertainty of order L. o _ _ S
which is a monotonic function of physical tinte[because

u(t) is assumed non-negativewhich maps[0,T] into

[0,1]. In terms of this variable, the photocurrent is equal to
In this section we introduce an adaptive scheme to mea-

sure the phase. As explained in the Introduction, the guiding I(v)dv=2 Rd ae'*®]dv +dW(v), (2.29

C. Adaptive mark |
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wheredW(v) = £(t) Vu(t)dt is an infinitesimal Wiener in- do.= —2a sine.dx+ V2/X dW(X). 23
crement[10] obeying the Ito rul§ dW(v)]?=dv. Thus the x ex b (234
photocurrent itself also obey$(v)dv]?=dv. This equation is formally equivalent to the highly damped

Now the complex measurement resf (2.20 which is  grownian motion of a particle in a periodic potentd{)
to be used for the phase estimate is defined by the initial — 2acosp, in which the temperature varies as the recipro-

conditionAy=0 and the Ito stochastic differential equation cal of the time[10]. Clearly, for short times, the phase esti-

dA, =6 @] (v)dv. (2.26 mate will vary wildly, as the amount of noise in this equation
diverges as ¥ asx—0, while the size of the deterministic
Using the adaptive algorithrt2.22 implies that term is constant. Thus the initial condition for this equation

(the phase which one would guess on the basis of no infor-
mation whatsoevérs immaterial as it becomes randomized

|A| immediately. This is whyp, was not included in the formal

solutions forA [(2.30 and(2.31)]. The physical reason for

This is a nonlinear complex stochastic differential equationys gjivergence is that at short times one has very little in-
which is best treated by changing variables |&l7 and  formation on which to base a phase estimate, so it is not

dA,=

@,=arg(A,). Using the Ito calculu§10] we first find surprising that the estimate is unstable. As time increases the
2 ax N . noise term reduces, and for times a~* (wherea>1 is the
dAl;=A7 (dA,) +(dAD)A, + (dAT)(dA,) =dv, regime of interest the deterministic term becomes much

(2.28 larger than the noise term. Thus the phase will settle towards
so that| A, |?=v. Substituting this result into Eq2.27 gives  one of the minima of the potential, namely=2n for n an

integer.
R dA, (dA)?] I(v)dv At the end of the pulsévhenx=2), the obvious number
de,=Im[dInA,J=Im| —— - oA |~ N to pick as the result of the phase measurement is the phase
v v v estimate currently in use by the adaptive algoritt@r22),
(229 that is
Thus the total solution is
b= o= argA, (2.39
vl(v)dv
A, = \/_exr{ f ] (2.30  which is the same as that used for heterodyne detection. To
o precisely evaluate the accuracy of this estimate, it would be
and at the end of the measurement necessary to find the SO'UtiO&X of Eq (234) for x=2.
Unfortunately, it is not possible to solve this equation exactly
- (1 (v)dv because of the nonlinearity of the deterministic term. How-
A=e'?=ex Ijo N (2.3)  ever, as argued above, for some timg being finitely

greater thamy~* but finitely less than 2, the phasgg, will
Since the local oscillator phase is given by come to lie near @ for n an integer. We choose=0
®(v)=o,+ 72, we haved®=do. Thus without loss of generality and linearize E.34 around
! =0. The result, which will be valid for;<x<2, is
I(v)dv . .

& (2.32 doy=—2a@,dx+ 2 dW(X), (2.39

which has the solution

dd(v)=

which is the simple algorithm quoted above E2.23). This
feedback procedure is represented in Fig. 1. The instanta- )
neous photocurrent(t) is multiplied by a function propor- §o=§ox e2a<xl—2)+f e2“<x‘2)\/ﬂdv\/(x). (2.37)
tional to [[Hu(s)ds] 2 generated by a signal generator. ! X1
The result is then integrated and the resulting current pro-
duces in an electro-optic modulator a proportional phasdhe variance for the mark | phase estimate= ¢ is there-
shift ®. Using the expressio2.25 for the photocurrent, fore
this algorithm gives the following nonlinear stochastic dif- , 1

. . Loon n —X1
ferential equation for the phase estimatg: <¢,2>=(<p)2<1>e‘4“(2‘xl)+ jo dy e_4ay1—y/2'

de,=v Y4 —2asing,dv+dW)], (2.33 (2.39

where we have again set to be real for convenience, and Now the integrand in this integral is easily bounded using the

have used the relatiof® (v) = @, + /2. following relations(which are valid in the range of integra-
In order to attempt a solution of E(R.33) it is convenient tion):

to change time variables once againxtez\/g, which is a 1 N2 —Inx

monotonic mapping of 0,1] onto [0,2]. In terms of this exp(ly)< <exp{—ly). (2.39

variable 1-y/2 2—Xg




56 ADAPTIVE SINGLE-SHOT PHASE MEASUREMENTS: A ... 949

Hence, from the finiteness 662 ), x, and 2—x, we finally To evaluate the accuracy of this mark |l measurement, we
1 ) o .
obtain in the limit of largen once again assume to be real and positive without loss of
generality. Since

1 N
(¢7)= @+0(072)+0[674“(27X1)]- (2.40 A=explie), (2.45

To leading order this is independent »f and fpxl, which we have from Eq(2.43

justifies our approach. Note that although it is small for large B=1+a Yioc—expig)]. (2.46
a, this variance is larger than that from heterodyne detection

by a factor ofa. That is to say, the excess noise of the markrecall that this variable determines the phase-dependent mo-
| adaptive phase measurement scheme is far above the SQhents ofo

D. Adaptive mark || (0?)=(By=1—a Yexpi¢)). (2.47
If the above resul2.38 were the end of the story, then it . . . .
would be a sad ending indeed for adaptive phase measurgl;O;N |t7 1was shown n the pre(i?dlng section  that
ments. Fortunately, it is not the end of the story because &)~ a ~<1. Thus(exp(¢))=1+0(a ), and we have
minor modification of the above measurement scheme yields oy _1 _2
a result which is far better, instead of being far worse, than a (09)=1-a""+0(a™). (2.48

standard phase measurement. This modification is simply tQ, . . N A g

change the final phase estimage while keeping the adap- t_ﬁzms,.coupled tW'tfh the f?Ct thfgﬂ Z;% mo:.'lgat.es :]hztit the

tive algorithm precisely the same. To derive this improved'm""g':i"’“ty p;_ar 0‘; IS atlh mos I (ad ), uniike-in tegro'

phase estimate, it is instructive first to examine why the mar yne detection where the real and imaginary parts- @ire
oth of order unity. Also unlike in heterodyne detectionis

| phase estimateb,=argA is so bad. Recall that for hetero- . ! ; o
dyne detection we hali= a+ i, whereo was a noise term not necessarily a Gaussian random variable. Although it is
' ' _given by the sum of Gaussian random variables

so that¢=argA made good sense then. But for the more
general case

1
=i | e*®dw 2.4
A=a—a*B+tio, (2.41 7 Ifoe W), (249

as already stateflEq. (2.11)], and B+#0 for the adaptive these are not independent becauddv) depends on

measurement. This indicates that the second inteBral dw(v') for v’ <w.

should be taken into account in determining the final phase From Eqs(2.44 — (2.46), the mark Il phase estimate can

estimateg. Note thato is not a measurement result which is pe written as

available to the experimenter; it is the shot noise which can-

not be separated from the signal unless known. But it is dy=ard2cosp—a *+a texp—ig)ic] (2.50

the phase ofxr which we are trying to estimate se cannot

be assumed known. The only available results are the two

integralsB and A, the first involving only local oscillator =ImIn

phaseg(which is an experimentally controlled paramétend

the second involving the measured photocurrent as well. R R
What we desire is some function & and B which is  Now since(¢?)~a 1, ¢ can be treated as a small variable

proportional toa plus a noise term, so that its argumentof order ™2 Keeping real terms up to order ! and

would be a suitable estimate of the phase. The simplest suégmaginary terms up to order 2 in Eq. (2.50, we find

function is

(2.5)

io

1
A+BA*=qa(1—|B|?) +i(c—Bo*). (2.42 ¢u=lmln(l—z+5 : (2.52

Int f the ti iable, th ItB is gi b . ~
n terms ot the fime variavle, the resufis 1S given by Here we have discarded the tewar/(2«) because the real

B— ld 2id(v) 24 part offpo can be shown to b®(«a 1), while its imaginary
o ve : (2.43 part is at mostO(a~%?). Expanding the logarithm finally
yields
from which it is obvious that its absolute value is less than .
unity. Thus, the argument &+ BA* is, ignoring the noise & :U+<T (1+ i
term, argr. We therefore choose as our mark Il phase esti- I da 2a
mate the function

+o(a™?). (2.53

From Eq.(2.48 we have
¢|| =arQIA+ BA*) (244)
((c+0*))=2+2[1—-a +o(a™1)], (259
This choice can also be justified from a more sophisticated
argument using quantum measurement thé8ty so that the mark Il phase variance is
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1 It is not possible to prove an uncertainty relation of the

(o) = 22 W+0(0f3)- (2595  form (2.56 using the standard definition of variance
V(6)=(6%—(6)2. This is easy to see, sind@?) is evi-
To leading order, this is one half the size of the variance of dlently bounded iff is confined to the intervel0,2m), yet

heterodyne phase measurement of a coherent state of tNén)=0 if the state is a number state. Moreover, the stan-
same amplitude. A little extra calculation shows that the erdard phase variance is actually not well defined at all, be-

ror term is, in factO(a ™). causef could be taken to be an element[@k), 6,+ 27) for
any real6,. Different choices forg, will yield (sometimes
E. Intrinsic and extrinsic phase noise wildly) different results for the standard variance. For these

) ) ) ) reasons, the Holevo phase variance is a far superior measure
Given that the uncertainty in a mark Il adaptive measureqs the spread in a distributio(6). For states having a

menltl of tr?e prr}]ase of a cohde_rent state is onfly a factdEld/ distribution P(6) which is narrow and symmetric about
smaller than the corresponding uncertainty from a standard o i eacy to verify that

phase measurement, it might be thought that it is an exag-
geration to claim, as we have done, that the adaptive mark Il VRO =((6—0)2 2
scheme is far better than the standard scheme. In fact it is not (O)=((6=0)°), 258

an exaggeration, but to understand why it is necessary tgg that the standard phase variance is a good approximation
consider intrinsic and extrinsic phase Uncertainty. In the diSto the Holevo phase variance in this case. This justifies our
cussion so far we considered our system to be in a coheregke of the standard variance so far in this paper. In future,
state, and calculated the variance in the phase measured Whenever we write/(¢) for any cyclic variableg, we will
three different detection schemes, without enquiring into thgneanv*( ¢).

origin of that phase uncertainty. Because the phase variance Now a coherent state is a minimum uncertainty state for
is different in the three schemes, it is apparent that at leaginy pair of canonically conjugate quadrature operators. It is
two of them(those with the greater VarianOG‘Hust put noise therefore not surprising that it is a'so7 to a very good ap-
into the measurement result which is not inherent to the Sy%roximation’ a minimum uncertainty state for number and
tem. We call such introduced noise extrinsic phase noiseshase, at least if it has a large coherent amplifid®. The
while that which is inherent to the system we call intrinsic nymber distribution for a coherent state is Poissonian, so

phase noise. . . . . V(n)=n=|al? Substituting this into the Holevo relation
In the semiclassical picture which we have been using, i 2.56) yields

appears that there is no intrinsic uncertainty in the phas
arge of the state; all of the noise results from the shot noise
in the measurement. One could imagine that a different mea- (02):V( 0)=
surement scheme, not involving photodetection, could deter-

mine « precisely in a single measurement. This is of coursgyhere we have takea to be real. This is the intrinsic phase
not correct, because of quantum mechanics. In the quantungariance of a coherent state. Subtracting it from the variances
mechanical picture, at least some of the phase noise in thgyr the results of the various measurement schemes examined

measurement result is due to the intrinsic phase noise of ahove thus gives the extrinsic noise introduced by those mea-
coherent state, and that noise will turn up in any measuresyrements. We find to leading orderdn 2,

ment of the phase, no matter how it is done. Thus the intrin-
sic phase noise can be defined to be the spread in the prob- 1 4
ability distribution P(6) for obtaining the resulp from the Veor bhed = Veor 6) = Ez*‘O(a ), (2.60
best possible phase measurement. We will follow REfin
calling such a measurement the canonical phase measure- 1
ment, so thatd is really shorthand forp.,,, and we will Veor @1) = Veo ) = 4—+O(a72), (2.6
. . . . . o
explain briefly in Sec. Ill how it is derived.
To estimate the intrinsic uncertainty in the phase, we 1
make use of the following uncertainty relation between num- Veod @1) = Ve )= =5 + O(a™%). (2.62
ber and phase, proved by Holej/bl] 8a

(2.59

el

1 From these results we see that the variavi¢é,,) is due
V(n)VH(9)= R (2.56 almost entirely to the intrinsic phase variance of the coherent
state. The extrinsic noise in the mark Il adaptive phase mea-

This is a relation between the uncertainty in the numbef ~ Surement is a factor @ " smaller than the extrinsic mea-

photons in a system, and the intrinsic uncertainty in its phasgUr€ment of a heterodyne measurentaitiich is equal to the
6. Here V(n) is simply the variance for the operator intrinsic phase variance of the coherent staléis is why it

n=a'a, while V"(6) is defined by ?s correct to say that the adaptive mark Il phase measurement
is much better than a standard phase measurement such as by
VH(9) = |<ei h—2-1, (2.57 heterodyne detection. It also implies that by using nonclassi-

cal states, with a smaller phase uncertainty than coherent
whered is the result of a canonical phase measurement witlstates of the same mean photon number, it would be possible
distributionP(6). In ignorance of any common term for this for V(¢,) to be much smaller tha¥(¢e). Such nonclassi-
VH(8), we will call it the Holevo phase variangé2]. cal states cannot be described within the semiclassical theory
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we have used so far. For this reason, we turn in Sec. Il to thezes that in the semiclassical limit, the “mean” phages

quantum theory of phase estimation. what one would expect from classical intuition. Consider
first an arbitrary quantum state). Then
I, QUANTUM PHASE ESTIMATION

A. Quantum estimation theory (e')= J’ doe *(y|F ()| )
Before talking specifically of the quantum theory of phase

estimation, we will summarize the general theory of quantum 1 & _
estimation as explained in Refil6,17. Let the quantum Zﬂf dpe'? ZO (lm)(n|¢) €M VH
system immediately before the measurement begins have the nm= 37

density operatop. Let the set of all possible measurement

resultsh be denoted). Being a quantum-mechanical mea-

surement, the result will in general be a random variable, so = >} (plmy(m+ 1| pYHm o1 - (3.9
we can only talk abou®(E) =Pr(\ € E), the probability that m=0 '

the measurement result will be obtained in some subset

ECQ. Then the most general possible formula R(E) is ~ NOW for the semiclassical limit we wani))=|«), a coher-
- ent state of amplitude: having the number state representa-

P(E)=Tr{pF(E)], (3.  tion

whereF is a mapping from() onto the set of positive op- lf2r2
erators. That is, for any particular, F(\) is an operator (nla)y=e \/T 3.9
with a positive semidefinite spectrum, and

This gives
F(E):j F(N)dN. (3.2
NeE . o
<el¢>:2 I:)m\/:Hm m+1» (310}

Note thatF(\) is not necessarily a projector, or even pro- m m+1

portional to a projector. To ensure that the normalization _ 2

conditionP(Q) =1 is satisfied for all states, F must satisfy where Pyy=|(m[a)|*. Since all elements dfi are assumed

the completeness condition positive, we have the “mean” phasp=arg(e'*)=arga, as
desired.

F(Q)=1. (3.3 According to the above arguments, a phase measurement

is defined in terms of the POVM3.5 with H a positive
SinceP(\) is a measure on the s&, F(\) is known as a matrix with all elements real and positive and diagonal ele-
positive-operator-valued measueOVM) on the set). ments equal to unity. The positivity condition on the matrix
Now consider the case where the measured quantity is tobviously requires that the off-diagonal elements be less than
be a phaseb, so thatF is a POVM onQ)=[0,27). The fact  or equal to unity. A unique phase measurement is defined by
that ¢ is a cyclic variable implies th& should be invariant specifying that all of the off diagonal elements be equal to
under a translation of the phask— ¢+ 6. Now a phase unity. This is what has recently been called a canonical phase
translation is effected by the unitary operator measuremenfl], although its uniqueness was recognized
R(#) =exp(a’ad), wherea'a is the number operator. Thus very early in the history of quantum theof¥8]. In realistic
the invariance of can be written as phase measurements the off-diagonal elemelpts will be
less than unity, but foom—n|=1 andm>1 they should be
R(OF(P)R(—0)=F(d+0)VO,pe. (34  close to unity if the measurement is to be a good phase

] » measurement, as will be seen below. In fact, in all of the
It can be shown that this condition guarantees B@t) can  measurements we examine, we have

be written as

h(m)=1—H, s 1<O(m~Y?), (3.12
F(¢)=5= E [m)(n|e'*™ MH (3.5 For a canonical measurememtm) is identically zero.
whereH is a positive Hermitian matrix angn) is a number B. Determining h(m)
state. The completeness conditigh3) implies that Let us consider a coherent state) with o>1 real, and

an arbitrary phase measurement with the POV ). We
have just shown that the mean phase(e® will be
arge=0, but we wish now to consider the spreaddin As
discussed in Sec. Il E, this can also be measured from
(e'?). From Eq.(3.10 we have, fora real,

VYm=0H = 1. (3.6

The rotational invariance conditidi3.4) does not capture all
that we understand intuitively by saying thatis a measure-
ment of phase. For example, R ¢) satisfies Eq(3.4), then
so will F(¢+ ) for any e Q). To remove this and other
degeneracies we simply impose the extra conditionkhbe (el?y= 2 P

a real matrix with all positive elements. This choice guaran- ym

[1 h(m)], (3.12
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where P, is the photon number distribution for a coherentnumber. In this paper we will consider the former of these,
state andh(m) is as defined above E@3.11). Now P, is  because it yields answers more simply.
sharply peaked arounth= «? with a variance ofa?. Thus Let the maximum photon number allowed be dendted
we can expand the sum abaut o to get Then the general problem to be solved is to find the 1
. , coefficientsy,, defining the state
P\ om+1 3(ém+1)
<e¢>_m2:0 Pm 1 2a2 + 8a4

N
|w>=n§0 aln), (3.19

X[1—-h(a?)—h'(a?)dm— 3 h"(a?)(5m)?],
subject to the normalization constrailf] y/,|2=1, which

(313 minimizes the Holevo variance
where Sm=m—a?. Now if h(m)~m~P for large m and .
_ N
some positive powerp (as will be shown then V(g)=|(e)| 1, (3.20

h'(a?)=0(h(a?)/a?) and h"(a?)=0(h(a?)/a*. Thus

from the moments oP,, we find where from Eq(3.8),

" =1—(8a?)"t—h(a®)+0(a ¥ +0(h(a®) a?). : <
(e'?)=1-(8a? (@) +0(a"")+0(h(a) (3).14) (e ) =(y| mzo|m><m+1|Hm,m+l|¢>. (3.29)

The (Holevo) phase variance of a distribution is defined

above Eq(2.57 as|(e)|~2—1. In this case we thus have Minimizing the phase variance is equivalent to maximizing

the modulus of(e'?). Since the phase of this expectation

V(#)=[(4a?) "1+ 2h(a?)][1+O0(a"2)+O(h(a?))]. value is arbitrary, we can cho_os_e it to be real. Then we can
(3.15  Testate our aim to be to maximize the expectation value of
the operator

Now for a canonical measurememntm) =0, so only the first

leading term is retained. This represents the intrinsic phase N |my(m+1|+|m+1)(m|

variance of a coherent state, as established above using the COSp= Z [1—h(m)] 5 ,

uncertainty relatior(2.59. If h(m)#0, we see that 2(a?) m=0 (3.22

can be interpreted as the extrinsic phase variance introduced '

by the measurement. Referri_ng t.o Ed;_ﬁO){Z.GZ), we see whereH , . 1=1—h(m)=H,,, 1 as before. Finally, since

that we can make the following identifications: we are working in a finite subspace of the total Hilbert space,

it is trivial that the state which maximizes the expectation

~ -1 -2
e M) ==(8m) =+ O(m~%), (3.16 value of cog is the eigenstate of this operator with the larg-
_ U -1 1 est eigenvalue. Thus the problem reduces to one of finding
hy(m)=(8m™5) ™"+ 0(m™), (3.17 the eigenvaluea, of the operator3.22).
hy(m)=(16m*?) ~*+0O(m™?). (3.18 1. Canonical measurement

That is to say, from the semiclassical results for the mea- For canonical measurements we hdyen)=0 and the
sured phase variance of a large-amplitude coherent state vizgoblem becomes exactly soluble. The operator

have been able to identify the important POVM matrix ele-
mentsH, .+ 1=1—h(m) for all three measurement schemes
in the largem limit. These are the only elements we require 2 0039:m§_:0 [[m}{m+1]+|m+1)(m[] (3.23
for the analysis of the following section. -

N—-1

has eigenvalues
C. Optimized-state phase estimation

In Sec. Il of this paper we derived from semiclassical No=2 cos(—
photodetection theory the variance in the phase of a coherent K N+2
state measured using three different schemes. As explained
at the end of that section, because a coherent state hasc@rresponding to the eigenstates
relatively large intrinsic phase uncertainty, a better figure of
merit is the variance in the phase of a state which has been N (m+1)mk
optimized to have a low phase variance. The different detec- | i) E sin(—
tion schemes will in general have different optimized states. m=0 N+2
Of course, the optimization has to be constrained by some- o ) )
thing, because even the variance of the measured phase ofgnce, the minimum Holevo variance achievable from a ca-
coherent statée) will go to zero asa—c. There are two nonical measurement is
obvious ways to constrain the states which are to be opti-

ar
COS{ N+2

k=1,...N+1 (3.24)

[m). (3.2

-2 2

mized: by putting an upper bound on the photon number 1= 77
(N+2)?

states it is allowed to populate; and by fixing its mean photon

+O(N™%. (3.2




56 ADAPTIVE SINGLE-SHOT PHASE MEASUREMENTS: A ... 953

To leading order this agrees with the result obtained byis to say, we can ignore the boundary conditioryatl and
Summy and Pegfil9], although they used the standard vari- let the string become semi-infinite. Then the normalizable
ance rather than the more natural Holevo variance. solutions are the well-known Airy functions

2. Physically achievable measurements i(y) < Ai(z+b3y), (3.39

There are three physically achievable phase measur
ments which we have analyzed, namely, heterodyne, ad
tive mark |, and adaptive mark Il. In all of thed&m) is

: . . re
nonzero, and an analytical solution to the problem is nof’jl

a(?(:)r y>0, wherez, is thekth real zero of the Airy function
%atisfyingo> z,>2z,>---. The corresponding eigenvalues

possible. Instead, we look for an approximate asymptotic a=—b?%,. (3.35
solution forN>1. In all three cases we can write to leading
order[see Eqs(3.16—(3.18] The smallest eigenvalue 4. In this case the solutiof8.34)

h(m)=cm™P (3.27 has a single zero, at=0. The corresponding value faris

— — - _ 2/3\j—2(1+p)/3
for some positive powep=1/2 and positive coefficiert of 2=N\=2cN"P+(=2y)(2cp)™N P (339

order unity. ForN>1 we can treat the photon numberas
a continuous variable andy(m)=¢,, as a twice-
differentiable function. Then, noting that
N-1 V(¢)=[(e'?)|72=1=2-\;+0((2-11)?). (3.37)
—2+ 2, [|m}(m+1|+|m+1){m|] (3.28
m=0

Since A=2|(e'#)|~2, the minimum Holevo variance is
given by

Thus we have arrived at the expression we desire, the mini-
mum phase variance for the states optimized for the various
is a finite-difference approximation to the second derivativedetection schemes, with a constrained maximum photon
operator with Dirichlet boundary conditions, we can use thenumberN. Usingz;~ — 2.338 and substituting in the coeffi-

approximation cientsc and powers for h(m) from Egs.(3.16—(3.18), we
i obtain
2 cosp~2+ ——2h(m). (3.29
% am ( V(dped= 3 N"1+0.92780 43, (3.39

This assumes that the phase variance is very small, as is the 12 1
case in practice. From this we find that the eigenvalue equa- V(g))= 3z N “*+O(N"7), (3.39
tion we have to solve is

2 V(¢y)= 5 N~%*+0.765N ", (3.40

J
- W+2cm_p> Yp(m)y=(2—-N)y(m), (3.30

We do not give an expression for the next-to-leading term in
) V(¢,) because it is uncertain due to the uncertainty in
which is equivalent to a time-independent Sehingier equa-  h(m) expressed in Eq3.17.
tion with the boundary conditiong/(0)=(N)=0. Note To leading order, we see the expected results due to the
that the “potential-energy” term is lowest at=N, which  noise introduced by the measurements, and we see the great
suggests that the solution of lowest “energy” will be local- superiority of the adaptive mark Il scheme over the standard
ized in that region. (heterodyng scheme. Our results for heterodyne detection
We are interested in the solution to E®.30 with the  disagree with the power law “derived” numerically by
largest eigenvaluk. For largeN this eigenvalue will be very  D’'Ariano and Parig20] for reasons to be explored in a fu-
close to 2, as it is equal to(Rosp). Also, since the solution  ture paper. The second term in each is due to the intrinsic
will be localized atm~N, the potential-energy term can be phase uncertainty of the states, and becomes negligible com-
linearized about that point. Changing variables topared to the leading term @6— . The width of the wave

y=1-N""m we thus transform E¢(3.30 to function y(y) is of orderb =3~ N(P~2)3 which also goes to
5 zero asN— sincep=23/2. This confirms that the solution
<_ (9—2+by P(y)=ah(y), (3.30) z,bm.is concentrat(_ed ap%N..This argument also helps us to
ay estimate the regime in which we expect the asymptotic re-

sults to be accurate. More than 0.995 of the area under the

subject to the boundary conditiong1)=(0)=0, where  |3rgest peak of the Airy function is confined to the interval

N2y “p [—z;,—2z;+5]. Thus the width of)(y) can be estimated as
= N2 =M= 2¢N"5), (3.32 5b~ 13 The assumption that(y) was concentrated at the
b=2cpN2 P, (3.33 lower end of the intervdl0,1] would then seem reasonable if

5b~¥<1/2. From Eq.(3.33, we can thus estimate that our
This has the form of the time-independent Scfinger equa- a@symptotic results will be valid if
tion for a bead on a frictionless vertical string attached at the
floor and ceiling. Since we are interested in the solution of Nz(ﬁ
lowest energymaximum\), we can ignore the ceiling. That 2cp

1U(2~-p)

(3.41
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Thus for an adaptive mark | measurement we requireRef.[5]. By contrast, the mark Il adaptive scheme does much
N=400; for heterodyné&=4000; and for adaptive mark Il better than the SQL, with a variance lying intermediate to the
N=3x10. If these requirements are met then the estimateSQL and the UQL.

(3.38—(3.40 should be good. However the converse is not

necessarily true: the estimaté€s38—(3.40 may be reason- B. Experimental practicalities

able even for considerably smaller photon numbérsrhis

will be explored in a future paper, The asymptotic results presented above are very encour-

aging, in that they show that it is possible to make a phase
measurement which is much closer to the ultimate quantum
IV. DISCUSSION limit than previously thought possible. However, to achieve

A. Summary such a limit it would be necessary to create pulses of light

) . with very large photon number and which are highly non-
We have analyzed four different single-shot phase meag|assical. At least at first, an experimental attempt to realize

surements schemes: canonical, heterodyne, adaptive markife adaptive phase measurements proposed here would prob-

and adaptive mark Il. The first of these is the best possiblg )y yse a coherent light pulse, as this is much more readily
phase measurement, but is not realizable physically. The segyailaple. This is exactly the scenario considered in Sec. II,
ond is one of the standard techniquasich are all equiva-  gng gave the following results:

lent) which is available to experimentalists at the present

time. The last two are also experimentally realizable, and are 1 1

based on the proposal in R§h]. The essential feature of the VeoH &)= Ala]? + 8lal’ (4.5
adaptive measurements is that they use a feedback loop to

change the detection system over the course of a measure- 1

ment of a single pulse, using the results of the measurement Vo Phed = W +0(|a| ™), (4.6)

up to that time. Both adaptive schemes use the same feed-
back algorithm. The difference between them is that the 1
mark Il adaptive scheme uses an improved formula for the Vo &)= _1+o(|a|—2)_ 4.7
final phase estimate of the system, using all of the recorded 4| al

measurement data. Thus there would be an easily measurable difference be-

clalsnsittr:!l? g;%i;igvrf tp{;\cl;re aﬂiﬂtrii ﬁﬂt?ﬂgltytﬂiz t|)sa zﬁgfigigr?tet?{lveen the three measurement schemes, although it would not
: ) y -show the dramatic difference in scaling betweén,(¢,)
derive asymptotic results for large photon number. A canoni: . .
) and Vin(dne) presented earlier. However, these scalings
cal phase measurement is the best measurement of phase . :
. o .__must be taken with a grain of salt, because there are many
allowed by quantum mechanics, so the minimum canonical

hase variance for a state of maximum photon numMbara other practical considerations which we have ignored which
P S e P : will tend to spoil these ideal results. Below we discuss two
measure of the minimum intrinsic phase variance of such a e ”
. i ; . ?f these “spoilers.
state. This variance represents the ultimate quantum limi
(UQL) to phase measurements. The minimum phase vari-
ances of the other three schemes is therefore a measure of the S _
intrinsic phase variance plus the variance of the extrinsic Detector inefficiency is well known as a destroyer of sub-
phase noise introduced by the measurement. In the limit 0PQL measurements. It might be thought that the adaptive
asymptotically largeN the extrinsic noise will always domi- Measurements proposed here would be even more vulnerable
nate. to having a detector efficiency less than one, because they
We find that the four measurement schemes have minicely on feeding back the measurement results. If the detectors

mum phase variances which scale in the following simpleare inefficient then the information being fed back is unreli-

1. Detector inefficiency

ways with maximum photon numbét: able, and the performance of the device might be expected to
suffer particularly badly. Fortunately this is not the case, as
Viin( Pear) = m°N"2, (4.2 can be proven quite simply. The effect of a detector of effi-
ciency z is completely equivalent to that of passing the pulse
Viin( 1) =3N %2, (4.2)  through a beam splitter of transmittange For a coherent
state| a) this has the simple effect of transforming it into the
Vi Pred =3N"1, (4.3  coherent staté\7a). Thus the resultg4.5—(4.7) remain
true, with « replaced byy7a, and the difference between
Viin( )= tN"12, (4.4  the measurement schemes will still be clear. However, for

n=<1/2, the phase variance from the adaptive mark Il scheme
The heterodyne measurement result represents the shot-nol#l be greater than that from a standafieterodyng mea-
limit or standard quantum limitSQL), because &~ ! scal-  surement withp=1. In this sense, we can say that it is
ing is the minimum achievable from semiclassical state)e€cessary to havg>1/2 in order to do better than the SQL.
(that is, states which are mixtures of coherent sjafeke Recall that for the adaptive mark Il measurement with
mark | adaptive scheme is thus much worse than the SQL fop=1 the phase variance of a coherent state is almost entirely
large photon numbers. The only attraction of this scheme iglue to the intrinsic phase variangy| 2. With »<1 this is
that it is the unique scheme which is as good as a canonic&lo longer true, because the intrinsic phase noise should still
measurement for states with at most one photon, as shown e reckoned from the original state), not from |\7a).
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Thus the noise introduced by the measurement is muchklectro-optic elements of the loop will have some character-
larger. This follows through to the minimum phase varianceistic response function. In that case, the total feedback loop
of a state with constrained maximum numbér We find  will be characterized by a real positive response function

now f(t), satisfying/,f(t)dt=1, equal to the convolution of the
1 1 response functions of the individual elements. The character-
7 istic delay timer could then be defined as=[;f(t)tdt
Vini =t 4.8 ) . : 0 '
min 1) 47N~ 8(7N)° “8 provided this was suitably small.
2—n .
Vmin( @hed = m (4.9 C. Conclusion

By incorporating a real-time feedback loop into an optical
1 detection scheme it is possible to create a single-shot mea-
Viin( 1) = —17. (4.10  surement of phase which is far superior to standard single-
4(7N) shot measurements of phase. The device is based on bal-
anced detection using a local oscillator, and it is the local
oscillator phase which is controlled by the feedback. For the
) aptive algorithm presented in this paper, the only elements
required in the feedback loop are a signal generator, a vari-
able amplifier, an integrator, and an electro-optic phase
modulator. Thus the scheme should be experimentally prac-
tical. Under real experimental conditions, detector inefficien-
cies and the non-instantaneous response of the feedback loop
In contrast to inefficient detectors, a delay in the feedbackyill spoil the ideal results to some extent. However, as long
loop is much harder to treat theoretically. Virtually all of the as the detector inefficiency is not too large, and the feedback
results of Secs. Il C and 11 D rely on the assumption that thejelay not too long compared to the pulse duration, the supe-
feedback is instantaneous. However, we can obtain a rougdfiority of the adaptive scheme should still be evident. To be
idea of the effect of such a delay by considering a toy mathprecise, if one had a sequence of pulses with randomly pre-
ematical problem which gives similar results if there is nopared phases, then the adaptive technique would give a
delay, but which is simple enough to solve approximatelymean-squared difference between measured phase and pre-

when there is a delay. The details are lengthy and so argared phase which is smaller than that from any other tech-
given in the Appendix, but the results are simple to statenique known.

Assuming a time delay and a pulse bandwidth, we treat
the product” ~ as a small parameter. From this we find for a ACKNOWLEDGMENTS
coherent state

Note that for finitely less than one, the adaptive mark Il
result scales in the same way as the heterodyne result. Th
is, they both scale abl ™%, although the coefficient for the
adaptive mark Il case still puts it below the SQL provided
n>1/2.

2. Delay in the feedback loop
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1
Vcoh(d’l):ﬁ+O(PT)+O(|a|_2)- (4.12

al APPENDIX: THE EFFECT OF A TIME DELAY

e imnli o ; Rather than attempting to treat the effect of a time delay
This implies that for a phase-optimized state of maximum
photon l;umbeN we woSId find P in the feedback loop exactlgwhich is probably impossible
to do analytically, we introduce a simplified model which

1 seems to capture the essential features of the full system.
Vinin( @)= W[H—O(NUZF 7)], (4.13  First we present the toy model with no time delay.
1 2y 1. Toy model with no delay
i =—_——p|ll+ . . . .
Viminl $1)= zmal 1+ O(NT7)] 419 To obtain our toy model we simply take E@.36 for the

1 , phase estimate and replace the time-dependent diffusion
These results show that unleBs<N""* (which would  ¢qefficient with a constant diffusion coefficient equal to its
be very hard to achieve for large photon numbetise mea-  51e at the final time. Using in place of 2 (as a reminder

sured phase variance will be dominated by the effect of they, 4t this is only a toy modglandt instead ofx we have
delay. For the adaptive mark | measurement, this is a much

worse effect than that arising from |neff|.C|ent detector;. Fpr do= — yedt+dW(t). (A1)
the mark Il scheme, the effect is much like that of an ineffi-

cient detector, V\_nth an |nef_f|C|<a_ncyjln=O(Fr)<1. Thus The solution to this is

as long as the time delay is significantly less than the char-
acteristic pulse length, the mark Il scheme should still be
superior to the SQL. Of course a real feedback loop will not

. :efyt
suffer simply from a time delay; all of the electronic and (’Dt

o+ f;eVSdW(s) . (A2)
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Letting the maximum time be=1 and equating the mark I The zeroth-order ternp(®) obeys Eq(A1) so the first-order
phase estimate witlp at this time, we find to leading order correction obeys

1 “(D 0 20 Vg (D)
<¢|2>:2_y_ (A3) yrdo ' =y(er — ¢ )dt—yryeZ dt. (All)

Identifying y= 2a, this replicates the result of the full model Thus to first order inr we have

(2.38.

Now consider the mark 1l phase estimate. From Eg. () () ~ (0)

(2.44), this is given by de=—ye dt+de

. . =—yodt—ye{”dt+dW(t)

d=ep1+ard 1+exp —2ie;)B], (A4) .
=—ydto!—ydte " (po+f e”dW(s)
where, assuming a flat pulsgt) =1, 0
+dW(t). (A12)
1 ~
B= jo dt exp(2igy). (AS) " This has the solution
Now assuming thalp,| <1 (as seems reasonable given the ~ . R s
argument in Sec. Il § we can expand the above exponen- ¢t =€ 7 fods e”&(s)—v| pot fo e’ dW(r) | .
tials to first order to obtain (A13)
- DIl 42 fldt - " The mark | phase estimate is, in this approximation, given by
Pu~ertar tparel | dten, (A6) &=+ yroM) . To leading order inr andy~* this has a
variance of
Joei
~ | dte;. (A7) 1 o

0 (¢7)= 25" 2ym{e” o), (A14)
While this is of course only a toy calculation, it gives some
further insight into the formuld2.44) for ¢, as some form
of time average of the crude phase estimate In this case = i+ Z_ (A15)
we find to leading order 2y 2

~ In this scaled time the error due to a finite time delay in the
(2)= i+ (o) (A8) feedback loop is thus of order In real time, the error would
Wy2 t g2 be of orderl" 7, whereT is the characteristic bandwidth of

. o ) the pulse.
Ignoring the second terras is justified since we assumed  Following the argument from the first section of this ap-
that|po|<1), we again find agreement to leading order withpendix, we take the mark Il phase estimate to be
the result of the full calculatiof2.55).

1 . ~
b= [0 ey e
0

2. Toy model with a delay 7 ) ) ) )
] ) After considerable calculation we find that to leading order
A time delayr in the feedback loop would mean that the , - 5nq y~1 the variance of this estimate is

local oscillator phase at timewould be determined by the
estimate for the system phase at titrer. That is to say, Eq.

Al) is replaced b 1 (¢? S T
(A s rep Y <¢ﬁ>=7+<‘§—2>+2w<f dtf dt’goE°)<p§,l)>,
0 0

R - Al7
d6i=—7ordt+dW(D). (A9) (ALY

The essence of our approach is to treat the delpgrturba- 1 N (@8 N 27 AL8
tively. Thus we write the solution to the perturbed equation YDV AR (A18)

(A9) as
~ ~0) ~ (1) - Thus in terms of real time the delay causes an error of
er=¢p T yTer +O(y 7). (A10) orderI" 7/ a?.

M1
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