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Adaptive single-shot phase measurements: A semiclassical approach
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The standard single-shot estimate for the phase of a single-mode pulse of light is the argument of the
complex amplitude of the field. This complex amplitude can be measured by heterodyne detection, in which
the local oscillator is detuned from the system so that all quadratures are sampled equally. Because different
quadratures do not commute, such a measurement introduces noise into the phase estimate, with a variance
scaling asN21, whereN is the maximum photon number. This represents the shot-noise limit or standard
quantum limit~SQL!. Recently, one of us@H.M. Wiseman, Phys. Rev. Lett.75, 4587~1995!# proposed a way
to improve upon this: a real-time feedback loop can control the local oscillator phase to be equal to the
estimated system phase plusp/2, so that the phase quadrature of the system is measured preferentially. The
phase estimate used in the feedback loop at timet is a functional of the photocurrent from time 0 up to time
t in the single-shot measurement. In this paper we consider a very simple feedback scheme involving only
linear electronic elements. Approaching the problem from semiclassical detection theory, we obtain analytical
results for asymptotically large photon numbers. Specifically, we are able to show that the noise introduced by
the measurement has a variance scaling asN23/2. This is much less than the SQL variance, but still much
greater than the minimum intrinsic phase variance which scales asN22. We briefly discuss the effect of
detector inefficiencies and delays in the feedback loop.@S1050-2947~97!06407-X#

PACS number~s!: 42.50.Dv, 42.50.Lc
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I. INTRODUCTION

The division of radio broadcasting into amplitude mod
lation and frequency modulation channels neatly illustra
the two simplest ways to encode information into an elec
magnetic field: in the intensity or in the phase. The ultim
limits to the channel capacity for any form of communicati
is set by quantum mechanics, and communication via
electromagnetic field is no exception to this. Of course ra
broadcasting operates nowhere near any quantum limit,
in the future it may be useful to push technology to the lim
where every bit of intensity, or phase information, in eve
available mode of the field is used.

Communication near this ultimate quantum limit~UQL!
would require not only the ability to engineer states wh
code information with minimum error~that is, states with
very well-defined intensity or phase!, but also the ability to
estimate the intensity or phase accurately from asinglemea-
surement. In communication the single-shot requirement
matter of optimization rather than absolute necessity, sin
certain amount of redundancy could be built into the co
munications system, by sending every pulse twice, for
ample. However, there are other possible applications
which it would be necessary, such as the precision meas
ments of weak signals. If such signals had an extraterres
origin then they would be essentially nonrepeatable, and
would be desirable to make a measurement which is as g
as possible on each pulse.

If the relevant information were encoded in the intens
of the pulse, then the desired measurement could be

*Electronic address: wiseman@physics.uq.edu.au
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formed simply using a photodetector. In principle this c
precisely determine the number of photons in the pulse.
chief practical limitation is from detector inefficiencie
which are now quite small. However, phase is a differe
matter. The ideal form of phase measurement is known a
canonical phase measurement@1#. Unfortunately, there is no
known way to realize such a measurement and neithe
there ever likely to be@2#. There are, nevertheless, imperfe
techniques for phase measurements which can be real
Heterodyne detection is one example@1#. These techniques
are imperfect because they introduce excess noise into
measurement result. The variance of this introduced no
scales inversely with the photon number. This is the char
teristic scaling of the shot-noise limit or standard quant
limit ~SQL! of phase noise. This excess variance is far ab
the intrinsic phase variance~the UQL! for a state which is
optimized to have a minimum phase variance. Thus a U
communication system based on phase would not be pos
with standard phase measurement schemes.

There is one case in which the SQL for phase meas
ments can be simply surpassed; that is if one assumes
before starting the measurement one already knows the p
of the system to bew within a small uncertaintydw!1. In
this case one can obtain an estimate of the system pha
which the excess variance is much smaller than that of
SQL by using homodyne detection. Homodyne detection
volves passing the mode to be measured through a 5
beam splitter, in order to combine it with an intense fie
~treated classically! called the local oscillator. By choosin
the local oscillator phaseF to be equal tow1p/2, the dif-
ference photocurrent from the two output ports of the be
splitter yields a measurement of the phase quadra
XF5ae2 iF1a†eiF, wherea is the annihilation operator o
944 © 1997 The American Physical Society
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56 945ADAPTIVE SINGLE-SHOT PHASE MEASUREMENTS: A . . .
the mode to be measured. Also assuming also that the
plitude r of the field is reasonably well defined~with
r@1,dr ) and is also known prior to the measurement, th
the phase of the field is very well approximated by

f'w1
ae2 iF1a†eiF

2r
5w1

ae2 iw2a†eiw

2ri
. ~1.1!

However, by making these assumptions, one is really rem
ing the problem from the realms of phase measurement
true phase measurement ideally should not rely on any p
knowledge of the amplitude of the field, and certainly sho
not rely upon any prior knowledge of that phase. The hete
dyne measurements mentioned above are true phase
surements in this sense, although they are not particul
accurate measurements.

While not being a true phase measurement, the ph
quadrature measurement by homodyne detection sugg
how it may be possible to construct a true phase meas
ment, which should be superior in accuracy to a heterod
measurement~and so surpass the SQL!. Rather than measur
ing a quadrature of predefined phase, the phase of the
oscillator could be adjusted during the course of the m
surement to measure theestimatedphase quadrature of th
system by homodyne detection. Here the estimated phas
the system would have to be inferred from the photocurr
recordso far from thesinglepulse. That is to say, the loca
oscillator phase would be continuously adjusted by a fe
back loop to be in a quadrature with the estimated sys
phase over the course of a single measurement~see Fig. 1!.

FIG. 1. Diagram for the experimental apparatus for making
adaptive phase measurement. Thin dashed lines indicate light
and the thin continuous line labeled BS represents a 50/50 b
splitter. Medium lines represent electro-optic devices: photode
tors ~PD! and an electro-optic phase modulator~EOM!. Thick lines
represent electrical components: a subtractor, a multiplier, an
grator, a signal generator~SG!, a signal processor, and a digital rea
out giving the measured value offP@0,2p). The necessity for
these particular electrical elements alone is a consequence o
feedback algorithm explained in Sec. II.
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This novel idea ofadaptivesingle-shot measurements wa
proposed recently by one of us@5#, but it turns out that it has
been proposed, in a different context, at least once before@6#.
It is a sort of quantum feedback which is quite different fro
that investigated previously~see Ref.@7# for a review! in that
it has no effect on the evolution of the system.

In Ref. @5# it was shown numerically that an adaptiv
phase measurement does surpass the SQL for states
large photon numbers. However, it is very difficult with n
merical results to determine just how much better an ad
tive measurement is, because the system size must be
tremely large to obtain valid scaling laws. An analytic
result was obtained in Ref.@5#, but it pertained to a system
which contained at most one photon. In this case, the ad
tive technique is as good as a canonical phase measurem
whereas the standard technique is definitely inferior. T
result for a single-photon field is obviously of little practic
use for communication.

In this work we are concerned with obtaining analytic
results for adaptive phase measurements of fields with la
intensities. The approach adopted is to consider meas
ments on coherent states with large coherent amplitu
This yields asymptotic results which can easily be gene
ized to states other than coherent states. As well as b
analytically tractable, the approach using coherent state
much simpler conceptually than that used in Ref.@5#. That is
because a coherent field can be treated semiclassically
field itself evolves deterministically and the noise in the me
surement is due to the shot noise of the photoelectric eff
a constant classical driving field causes the ejection of a p
toelectron at Poisson-distributed times. Thus the results
Sec. II of this paper may be understood using only semic
sical concepts. The results of Sec. III, which generalize th
of Sec. II for phase-optimized states, require a small kno
edge of quantum estimation theory which is summarized
Sec. III. Section IV concludes with a discussion of expe
mental practicality.

II. SEMICLASSICAL PHASE ESTIMATION

A. Semiclassical photodetection theory

We wish to consider phase measurements of a sin
mode pulse of the electromagnetic field. Let us consider
pulse to be close to a plane wave with a transverse areA
and let us fix our spatial position to be that of a presum
perfect photodetector covering the areaA. Then, since we
are using a semiclassical argument, this pulse will produc
the detector position a classical time-varying electric field
the form

E~ t !5S 2\vu~ t !

e0Ac D 1/2Re@ae2 ivt#, ~2.1!

wherea is a complex number andu(t) is a real and positive
mode function which is normalized so that

E
0

T

u~ t !dt51, ~2.2!

whereT is some total time which is necessarily much grea
than v21, so that the pulse can be essentially monoch
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946 56H. M. WISEMAN AND R. B. KILLIP
matic. This is essential in order for quantum effects to p
vide the limit to the phase uncertainty. If the characteris
spectral width of the pulseG;*0

Tuu8(t)udt*T21 is too large
then the phase uncertainty will be dominated by the unc
tainty G in the frequency which givesdf;G/v. In all that
follows we assume this uncertainty to be negligible.

In Eq. ~2.1! the complex amplitudea is dimensionless
and defined in such a way that if all of the energy of the fi
were converted to photoelectrons~as will occur at our perfec
detector!, the rate of photoelectron production would be, to
very good approximation,

l~ t !5
e0E

2~ t !Ac
\v

5uau2u~ t !, ~2.3!

where the bar overE2(t) indicates an average over man
optical cycles. This rate is derived from the power of t
beame0E

2(t)Ac, which is derived from its energy densit
e0E

2(t). Given the normalization~2.2!, and the indepen-
dence of the photoelectron-production events, the total n
ber of photoelectrons will be a Poisson-distributed num
n with meanuau2.

This method of detection obviously yields no informatio
about the phase ofa. To do this requires mixing the system
with a local oscillator of known phase at a beam splitter. F
simplicity, we assume that the local oscillator has the sa
mode functionu(t) as the system, and a much larger inte
sity. Specifically, we assume the local oscillator electric fi
to be given by@9#

ELO~ t !5S 2\vu~ t !

e0Ac D 1/2b Re@e2 ivt1 iF~ t !#, ~2.4!

whereb is a dimensionless real number and the local os
lator phaseF(t) is a function which is arbitrary but slowly
varying compared tovt. We now put the system pulse int
one port of a 50/50 beam splitter, and the local oscillator i
the other. If the two output ports are covered by perf
photodetectors then the rate of photodetection in those p
is

l65 1
2 u~ t !ua6beiF~ t !u2. ~2.5!

In the desired limitb@uau, the rate of photodetections at th
two output ports will be dominated by the local oscillato
Consider a time interval@ t,t1dt) where dt is very small
compared to the time over which the pulse shape chan
;u(t)/uu8(t)u, but very large compared to the mean tim
between detections;@b2u(t)#21. The first condition allows
us to treatu(t) as a constant over that interval, so that t
number of photodetections in each detector will be a Pois
process with meanl6dt. The second condition makes th
mean much greater than one so that the Poisson proces
be approximated by a Gaussian

dn6~ t !5l6~ t !dt1Al6~ t !dW6~ t !, ~2.6!

wheredW6(t) represent independent Gaussian random v
ables of mean zero and variancedt.

The signal of interest is the difference between the p
tocurrents at the two ports. This can be defined rigorousl
terms of the noncommuting limits
-
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I ~ t !5 lim
dt→0

lim
b→`

dn1~ t !2dn2~ t !

bdt

5u~ t !2 Re@ae2 iF~ t !#1Au~ t !j~ t !, ~2.7!

where j(t)5 limdt→0@dW1(t)2dW2(t)#/dt is a Gaussian
white-noise term@10# with the autocorrelation function

^j~ t !j~ t8!&5d~ t2t8!. ~2.8!

Thus the signal photocurrent is proportional to the quad
ture of the system with phaseF(t), plus the shot noise due
to the local oscillator.

B. Heterodyne

A true phase measurement must determine the phas
the system with equal accuracy, regardless of the value
that phase. The standard way to do this is to sample
quadratures equally. This can be achieved by heterodyne
tection, where the local oscillator phaseF(t) is given by
F(0)2tD. Here D is the detuning of the local oscillato
from the system, which is much less thanv, but much
greater than the characteristic pulse bandwidthG. This en-
sures that over the course of the pulse, the phase of
quadrature changes sufficiently rapidly for all quadratures
be measured with equal accuracy. This is to be contra
with homodyne detection where the local oscillator is re
nant with the system so thatF is a constant and only on
quadrature is measured. While this latter measurement is
tainly phase sensitive, it can only be used to estimate
phase if the system phase and amplitude are approxima
known beforehand, as explained in the Introduction.

SubstitutingF(t)5F(0)2tD into Eq. ~2.7!, we see that
the heterodyne photocurrent has a deterministic part wh
varies sinusoidally with frequencyD under the envelope
u(t). The amplitude of these oscillations is proportional
uau, while their phase is proportional to arg(a)2F(0). The
complex amplitudea can therefore be estimated by takin
the complex Fourier transform of the photocurrent at
appropriate frequencyD. That is, we need to take the integr
of the photocurrent over the time interval@0,T), multiplied
by the kernel exp(2itD)

A5E
0

T

dt I~ t !ei [F~0!2tD] . ~2.9!

1. General formulas

The integral of the photocurrent which we desire can
written in a more generally applicable way as

A5E
0

T

dt I~ t !eiF~ t !. ~2.10!

This can be evaluated as

A5a2a*B1 is, ~2.11!

where we have used Eq.~2.2! and defined another integral
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B52E
0

T

dt e2iF~ t !u~ t ! ~2.12!

and a random variable

s5E
0

T

eiF~ t !2 ip/2Au~ t !dW~ t !, ~2.13!

wheredW(t)5j(t)dt is an infinitesimal Wiener incremen
@10#. It is easy to verify that this random variable satisfie

^s&50 ; ^usu2&51 ; ^s2&5^B&. ~2.14!

2. Specific results

The immediately preceding formulas are true for all fun
tionsF(t). For the present case of heterodyne detection,
can go further and find

B52E
0

T

dt e2iF~0!22i tDu~ t !;G/D, ~2.15!

whereG is the spectral width of the pulse as before. In t
appropriate limitD@G, the integralB vanishes. The sam
argument cannot be used to show thats vanishes becaus
j(t) is d correlated and so has a characteristic time which
always much shorter thanD21. However, it is evident from
Eq. ~2.14! that ^s2& vanishes. This result, together with th
other results in Eq.~2.14!, completely characterizes, be-
cause it is a Gaussian random variable@being the sum of
independent Gaussian random variablesj(t)dt#. Thus for
heterodyne detection, the complete measurement is cha
terized by the complex number

A5a1 is, ~2.16!

wheres is a phase-independent complex Gaussian rand
variable satisfyinĝ usu2&51.

To estimate the phase of the field, we take the argum
of the resultA. We are interested in the high-intensity lim
uau@1, which would be the most useful for communicatio
In this limit, the noise terms is small compared toa. Thus
it is possible to treat it as a perturbation to the phase m
surement. In other words, the measured phase is given

fhet5argA5arg~a!1Im~ is/a!1O~1/uau2!. ~2.17!

Obviously the most likely phase result is arg(a), as desired.
Without loss of generality we can takea to be real. Then the
most likely phase isfhet50 and the uncertainty in the phas
estimate is determined by the variance

^fhet
2 &.~2a!22^~s1s* !2&5 1

2 a22, ~2.18!

where it is not difficult to show that the next higher-ord
term is of ordera24. Thus for largea, the prepared phase o
the coherent state can be estimated quite accurately, wit
uncertainty of ordera21.

C. Adaptive mark I

In this section we introduce an adaptive scheme to m
sure the phase. As explained in the Introduction, the guid
-
e
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ac-
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principle is that the local oscillator phase be adjusted o
the course of the measurement to be equal to the estim
system phase plusp/2 in order to get information about th
estimated phase quadrature of the system. That is to say
set

F~ t !5ŵ~ t !1p/2. ~2.19!

Here the hat onŵ(t) indicates that it is an estimator of th
system phase. It is not an operator. The estimate is mad
the basis of the measurement result obtained so far, ove
course of the detection from time 0 to timet. This implies
that it must be some functional of the photocurrent$I (s):s
P@0,t)%. Using the formal apparatus of quantum measu
ment theory, one of us has shown@8# that the full photocur-
rent $I (s):sP@0,t)% is not relevant, but rather only the tw
complex functionals

At5E
0

t

ds I~s!eiF~s!, ~2.20!

Bt52E
0

t

ds e2iF~s!u~s!, ~2.21!

which is a considerable simplification. Fort5T these inte-
grals AT ,BT are the resultsA and B already introduced.
Thus, they arise naturally in the semiclassical picture, an
is not necessary to understand the theory of Ref.@8# to fol-
low the argument presented here.

The crucial question is what to choose forŵ(t). In this
work we choose

ŵ~ t !5argAt . ~2.22!

This is motivated by the following considerations.
~1! It is suggested by the above analysis for heterod

detection.
~2! As shown by one of us@5#, it gives the best possible

result if the system has at most one photon.
~3! As will be shown, it gives the feedback algorithm

dF~ t !5
I ~ t !dt

AE
0

t

u~s!ds

, ~2.23!

which should be easy to implement experimentally beca
it is linear in the instantaneous photocurrentI (t).

~4! As will be shown, it can be approximately solve
analytically.

Before proceeding further, it is convenient to introduce
new time variable

v5E
0

t

u~s!ds, ~2.24!

which is a monotonic function of physical timet @because
u(t) is assumed non-negative# which maps @0,T# into
@0,1#. In terms of this variable, the photocurrent is equal

I ~v !dv52 Re@aeiF~v !#dv1dW~v !, ~2.25!
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948 56H. M. WISEMAN AND R. B. KILLIP
wheredW(v)5j(t)Au(t)dt is an infinitesimal Wiener in-
crement@10# obeying the Ito rule@dW(v)#25dv. Thus the
photocurrent itself also obeys@ I (v)dv#25dv.

Now the complex measurement resultAv ~2.20! which is
to be used for the phase estimate is defined by the in
conditionA050 and the Ito stochastic differential equatio

dAv5eiF~v !I ~v !dv. ~2.26!

Using the adaptive algorithm~2.22! implies that

dAv5 i
A

uAu
I ~v !dv. ~2.27!

This is a nonlinear complex stochastic differential equat
which is best treated by changing variables touAuv

2 and

ŵv5arg(Av). Using the Ito calculus@10# we first find

duAuv
25Av* ~dAv!1~dAv* !Av1~dAv* !~dAv!5dv,

~2.28!

so thatuAvu25v. Substituting this result into Eq.~2.27! gives

dŵv5Im@d lnAv#5ImFdAvAv
2

~dAv!
2

2Av
2 G5

I ~v !dv

Av
.

~2.29!

Thus the total solution is

Av5AvexpF i E
0

v I ~v !dv

Av G , ~2.30!

and at the end of the measurement

A5ei ŵ5expF i E
0

1I ~v !dv

Av G . ~2.31!

Since the local oscillator phase is given b
F(v)5ŵv1p/2, we havedF5dŵ. Thus

dF~v !5
I ~v !dv

Av
, ~2.32!

which is the simple algorithm quoted above Eq.~2.23!. This
feedback procedure is represented in Fig. 1. The insta
neous photocurrentI (t) is multiplied by a function propor-
tional to @*0

t u(s)ds#21/2 generated by a signal generato
The result is then integrated and the resulting current p
duces in an electro-optic modulator a proportional ph
shift F. Using the expression~2.25! for the photocurrent,
this algorithm gives the following nonlinear stochastic d
ferential equation for the phase estimateŵv :

dŵv5v21/2@22a sinŵvdv1dW~v !#, ~2.33!

where we have again seta to be real for convenience, an
have used the relationF(v)5ŵv1p/2.

In order to attempt a solution of Eq.~2.33! it is convenient
to change time variables once again tox52Av, which is a
monotonic mapping of@0,1# onto @0,2#. In terms of this
variable
al

n

a-

-
e

dŵx522a sinŵxdx1A2/x dW~x!. ~2.34!

This equation is formally equivalent to the highly damp
Brownian motion of a particle in a periodic potentialV(ŵ)
}22a cosŵ, in which the temperature varies as the recip
cal of the time@10#. Clearly, for short times, the phase es
mate will vary wildly, as the amount of noise in this equatio
diverges as 1/x asx→0, while the size of the deterministi
term is constant. Thus the initial condition for this equati
~the phase which one would guess on the basis of no in
mation whatsoever! is immaterial as it becomes randomize
immediately. This is whyŵ0 was not included in the forma
solutions forA @~2.30! and ~2.31!#. The physical reason fo
this divergence is that at short times one has very little
formation on which to base a phase estimate, so it is
surprising that the estimate is unstable. As time increases
noise term reduces, and for timesx@a21 ~wherea@1 is the
regime of interest!, the deterministic term becomes muc
larger than the noise term. Thus the phase will settle towa
one of the minima of the potential, namely,ŵ52np for n an
integer.

At the end of the pulse~whenx52), the obvious number
to pick as the result of the phase measurement is the p
estimate currently in use by the adaptive algorithm~2.22!,
that is

f I5ŵ[argA, ~2.35!

which is the same as that used for heterodyne detection
precisely evaluate the accuracy of this estimate, it would
necessary to find the solutionŵx of Eq. ~2.34! for x52.
Unfortunately, it is not possible to solve this equation exac
because of the nonlinearity of the deterministic term. Ho
ever, as argued above, for some timex1, being finitely
greater thana21 but finitely less than 2, the phaseŵx will
come to lie near 2np for n an integer. We choosen50
without loss of generality and linearize Eq.~2.34! around
ŵx50. The result, which will be valid forx1<x<2, is

dŵx522aŵxdx1A2/x dW~x!, ~2.36!

which has the solution

ŵ5ŵx1
e2a~x122!1E

x1

2

e2a~x22!A2/x dW~x!. ~2.37!

The variance for the mark I phase estimatef I5ŵ is there-
fore

^f I
2&5^ŵx1

2 &e24a~22x1!1E
0

22x1
dy e24ay

1

12y/2
.

~2.38!

Now the integrand in this integral is easily bounded using
following relations~which are valid in the range of integra
tion!:

exp~ 1
2 y!<

1

12y/2
<expS ln22 lnx1

22x1
yD . ~2.39!
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56 949ADAPTIVE SINGLE-SHOT PHASE MEASUREMENTS: A . . .
Hence, from the finiteness of^ŵx1
2 &, x1 and 22x1 we finally

obtain in the limit of largea

^f I
2&5

1

4a
1O~a22!1O@e24a~22x1!#. ~2.40!

To leading order this is independent ofx1 and ŵx1
, which

justifies our approach. Note that although it is small for lar
a, this variance is larger than that from heterodyne detec
by a factor ofa. That is to say, the excess noise of the ma
I adaptive phase measurement scheme is far above the

D. Adaptive mark II

If the above result~2.38! were the end of the story, then
would be a sad ending indeed for adaptive phase meas
ments. Fortunately, it is not the end of the story becaus
minor modification of the above measurement scheme yi
a result which is far better, instead of being far worse, tha
standard phase measurement. This modification is simpl
change the final phase estimatef, while keeping the adap
tive algorithm precisely the same. To derive this improv
phase estimate, it is instructive first to examine why the m
I phase estimatef I5argA is so bad. Recall that for hetero
dyne detection we hadA5a1 is, wheres was a noise term
so thatf5argA made good sense then. But for the mo
general case

A5a2a*B1 is, ~2.41!

as already stated@Eq. ~2.11!#, and BÞ0 for the adaptive
measurement. This indicates that the second integraB
should be taken into account in determining the final ph
estimatef. Note thats is not a measurement result which
available to the experimenter; it is the shot noise which c
not be separated from the signal unlessa is known. But it is
the phase ofa which we are trying to estimate soa cannot
be assumed known. The only available results are the
integralsB and A, the first involving only local oscillator
phase~which is an experimentally controlled parameter!, and
the second involving the measured photocurrent as well.

What we desire is some function ofA and B which is
proportional toa plus a noise term, so that its argume
would be a suitable estimate of the phase. The simplest s
function is

A1BA*5a~12uBu2!1 i ~s2Bs* !. ~2.42!

In terms of the time variablev, the resultB is given by

B52E
0

1

dv e2iF~v !, ~2.43!

from which it is obvious that its absolute value is less th
unity. Thus, the argument ofA1BA* is, ignoring the noise
term, arga. We therefore choose as our mark II phase e
mate the function

f II5arg~A1BA* !. ~2.44!

This choice can also be justified from a more sophistica
argument using quantum measurement theory@8#.
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To evaluate the accuracy of this mark II measurement,
once again assumea to be real and positive without loss o
generality. Since

A5exp~ i ŵ !, ~2.45!

we have from Eq.~2.41!

B511a21@ is2exp~ i ŵ !#. ~2.46!

Recall that this variable determines the phase-dependent
ments ofs

^s2&5^B&512a21^exp~ i ŵ !&. ~2.47!

Now it was shown in the preceding section th

^ŵ2&;a21!1. Thus^exp(iŵ)&511O(a21), and we have

^s2&512a211O~a22!. ~2.48!

This, coupled with the fact that^usu2&51, indicates that the
imaginary part ofs is at mostO(a21/2), unlike in hetero-
dyne detection where the real and imaginary parts ofs are
both of order unity. Also unlike in heterodyne detection,s is
not necessarily a Gaussian random variable. Although i
given by the sum of Gaussian random variables

s5 i E
0

1

eiF~v !dW~v !, ~2.49!

these are not independent becauseF(v) depends on
dW(v8) for v8,v.

From Eqs.~2.44! – ~2.46!, the mark II phase estimate ca
be written as

f II5arg@2 cosŵ2a211a21exp~2 i ŵ !is# ~2.50!

5Im lnF12
1

2a cosŵ
1

is

2a
2

s tanŵ

2a G . ~2.51!

Now since^ŵ2&;a21, ŵ can be treated as a small variab
of order a21/2. Keeping real terms up to ordera21 and
imaginary terms up to ordera22 in Eq. ~2.50!, we find

f II5Im lnS 12
1

2a
1

is

2a D . ~2.52!

Here we have discarded the termŵs/(2a) because the rea
part of ŵs can be shown to beO(a21), while its imaginary
part is at mostO(a23/2). Expanding the logarithm finally
yields

f II5
s1s*

4a S 11
1

2a D1o~a22!. ~2.53!

From Eq.~2.48! we have

^~s1s* !2&5212@12a211o~a21!#, ~2.54!

so that the mark II phase variance is
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^f II
2&5

1

4a2 1
1

8a3 1o~a23!. ~2.55!

To leading order, this is one half the size of the variance o
heterodyne phase measurement of a coherent state o
same amplitude. A little extra calculation shows that the
ror term is, in fact,O(a24).

E. Intrinsic and extrinsic phase noise

Given that the uncertainty in a mark II adaptive measu
ment of the phase of a coherent state is only a factor 1A2
smaller than the corresponding uncertainty from a stand
phase measurement, it might be thought that it is an ex
geration to claim, as we have done, that the adaptive ma
scheme is far better than the standard scheme. In fact it is
an exaggeration, but to understand why it is necessar
consider intrinsic and extrinsic phase uncertainty. In the d
cussion so far we considered our system to be in a cohe
state, and calculated the variance in the phase measure
three different detection schemes, without enquiring into
origin of that phase uncertainty. Because the phase vari
is different in the three schemes, it is apparent that at le
two of them~those with the greater variances! must put noise
into the measurement result which is not inherent to the s
tem. We call such introduced noise extrinsic phase no
while that which is inherent to the system we call intrins
phase noise.

In the semiclassical picture which we have been using
appears that there is no intrinsic uncertainty in the ph
arga of the state; all of the noise results from the shot no
in the measurement. One could imagine that a different m
surement scheme, not involving photodetection, could de
minea precisely in a single measurement. This is of cou
not correct, because of quantum mechanics. In the quan
mechanical picture, at least some of the phase noise in
measurement result is due to the intrinsic phase noise
coherent state, and that noise will turn up in any measu
ment of the phase, no matter how it is done. Thus the int
sic phase noise can be defined to be the spread in the p
ability distributionP(u) for obtaining the resultu from the
best possible phase measurement. We will follow Ref.@1# in
calling such a measurement the canonical phase mea
ment, so thatu is really shorthand forfcan, and we will
explain briefly in Sec. III how it is derived.

To estimate the intrinsic uncertainty in the phase,
make use of the following uncertainty relation between nu
ber and phase, proved by Holevo@11#

V~n!VH~u!>
1

4
. ~2.56!

This is a relation between the uncertainty in the numbern of
photons in a system, and the intrinsic uncertainty in its ph
u. Here V(n) is simply the variance for the operato
n5a†a, while VH(u) is defined by

VH~u!5u^eiu&u2221, ~2.57!

whereu is the result of a canonical phase measurement w
distributionP(u). In ignorance of any common term for th
VH(u), we will call it the Holevo phase variance@12#.
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It is not possible to prove an uncertainty relation of t
form ~2.56! using the standard definition of varianc
V(u)5^u2&2^u&2. This is easy to see, sincêu2& is evi-
dently bounded ifu is confined to the interval@0,2p), yet
V(n)50 if the state is a number state. Moreover, the st
dard phase variance is actually not well defined at all,
causeu could be taken to be an element of@u0 ,u012p) for
any realu0. Different choices foru0 will yield ~sometimes
wildly ! different results for the standard variance. For the
reasons, the Holevo phase variance is a far superior mea
of the spread in a distributionP(u). For states having a
distribution P(u) which is narrow and symmetric abou
some ū , it is easy to verify that

VH~u!.^~u2 ū !2&, ~2.58!

so that the standard phase variance is a good approxima
to the Holevo phase variance in this case. This justifies
use of the standard variance so far in this paper. In futu
whenever we writeV(f) for any cyclic variablef, we will
meanVH(f).

Now a coherent state is a minimum uncertainty state
any pair of canonically conjugate quadrature operators. I
therefore not surprising that it is also, to a very good a
proximation, a minimum uncertainty state for number a
phase, at least if it has a large coherent amplitude@15#. The
number distribution for a coherent state is Poissonian,
V(n)5 n̄5uau2. Substituting this into the Holevo relatio
~2.56! yields

^u2&.V~u!.
1

4a2 , ~2.59!

where we have takena to be real. This is the intrinsic phas
variance of a coherent state. Subtracting it from the varian
for the results of the various measurement schemes exam
above thus gives the extrinsic noise introduced by those m
surements. We find to leading order ina21,

Vcoh~fhet!2Vcoh~u!5
1

4a2 1O~a24!, ~2.60!

Vcoh~f I!2Vcoh~u!5
1

4a
1O~a22!, ~2.61!

Vcoh~f II !2Vcoh~u!5
1

8a3 1O~a24!. ~2.62!

From these results we see that the varianceV(f II) is due
almost entirely to the intrinsic phase variance of the coher
state. The extrinsic noise in the mark II adaptive phase m
surement is a factor (2a)21 smaller than the extrinsic mea
surement of a heterodyne measurement~which is equal to the
intrinsic phase variance of the coherent state!. This is why it
is correct to say that the adaptive mark II phase measurem
is much better than a standard phase measurement such
heterodyne detection. It also implies that by using noncla
cal states, with a smaller phase uncertainty than cohe
states of the same mean photon number, it would be poss
for V(f II) to be much smaller thanV(fhet). Such nonclassi-
cal states cannot be described within the semiclassical th
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56 951ADAPTIVE SINGLE-SHOT PHASE MEASUREMENTS: A . . .
we have used so far. For this reason, we turn in Sec. III to
quantum theory of phase estimation.

III. QUANTUM PHASE ESTIMATION

A. Quantum estimation theory

Before talking specifically of the quantum theory of pha
estimation, we will summarize the general theory of quant
estimation as explained in Refs.@16,17#. Let the quantum
system immediately before the measurement begins hav
density operatorr. Let the set of all possible measureme
resultsl be denotedV. Being a quantum-mechanical me
surement, the result will in general be a random variable
we can only talk aboutP(E)5Pr(lPE), the probability that
the measurement result will be obtained in some sub
E#V. Then the most general possible formula forP(E) is

P~E!5Tr@rF~E!#, ~3.1!

whereF is a mapping fromV onto the set of positive op
erators. That is, for any particularl, F(l) is an operator
with a positive semidefinite spectrum, and

F~E!5E
lPE

F~l!dl. ~3.2!

Note thatF(l) is not necessarily a projector, or even pr
portional to a projector. To ensure that the normalizat
conditionP(V)51 is satisfied for all statesr, F must satisfy
the completeness condition

F~V!51. ~3.3!

SinceP(l) is a measure on the setV, F(l) is known as a
positive-operator-valued measure~POVM! on the setV.

Now consider the case where the measured quantity
be a phasef, so thatF is a POVM onV5@0,2p). The fact
thatf is a cyclic variable implies thatF should be invariant
under a translation of the phasef→f1u. Now a phase
translation is effected by the unitary operat
R(u)5exp(ia†au), wherea†a is the number operator. Thu
the invariance ofF can be written as

R~u!F~f!R~2u!5F~f1u!;u,fPV. ~3.4!

It can be shown that this condition guarantees thatF(f) can
be written as

F~f!5
1

2p (
n,m50

`

um&^nueif~m2n!Hmn , ~3.5!

whereH is a positive Hermitian matrix andum& is a number
state. The completeness condition~3.3! implies that

;m>0Hmm51. ~3.6!

The rotational invariance condition~3.4! does not capture al
that we understand intuitively by saying thatf is a measure-
ment of phase. For example, ifF(f) satisfies Eq.~3.4!, then
so will F(f1c) for any cPV. To remove this and othe
degeneracies we simply impose the extra condition thatH be
a real matrix with all positive elements. This choice guara
e

the
t

o

et

n

to

-

tees that in the semiclassical limit, the ‘‘mean’’ phasef̄ is
what one would expect from classical intuition. Consid
first an arbitrary quantum stateuc&. Then

^eif&5E dfeif^cuF~f!uc&

5
1

2pE df eif (
n,m50

`

^cum&^nuc& eif~m2n!Hmn

~3.7!

5 (
m50

`

^cum&^m11uc&Hm,m11 . ~3.8!

Now for the semiclassical limit we wantuc&5ua&, a coher-
ent state of amplitudea having the number state represen
tion

^nua&5e2uau2/2 an

An!
. ~3.9!

This gives

^eif&5(
m

Pm

a

Am11
Hm,m11 , ~3.10!

wherePm5u^mua&u2. Since all elements ofH are assumed
positive, we have the ‘‘mean’’ phasef̄5arĝ eif&5arga, as
desired.

According to the above arguments, a phase measurem
is defined in terms of the POVM~3.5! with H a positive
matrix with all elements real and positive and diagonal e
ments equal to unity. The positivity condition on the matr
obviously requires that the off-diagonal elements be less t
or equal to unity. A unique phase measurement is defined
specifying that all of the off diagonal elements be equal
unity. This is what has recently been called a canonical ph
measurement@1#, although its uniqueness was recogniz
very early in the history of quantum theory@18#. In realistic
phase measurements the off-diagonal elementsHm,n will be
less than unity, but forum2nu51 andm@1 they should be
close to unity if the measurement is to be a good ph
measurement, as will be seen below. In fact, in all of t
measurements we examine, we have

h~m![12Hm,m11<O~m21/2!. ~3.11!

For a canonical measurementh(m) is identically zero.

B. Determining h„m…

Let us consider a coherent stateua& with a@1 real, and
an arbitrary phase measurement with the POVMF(f). We
have just shown that the mean phase arg^eif& will be
arga50, but we wish now to consider the spread inf. As
discussed in Sec. II E, this can also be measured f
^eif&. From Eq.~3.10! we have, fora real,

^eif&5 (
m50

`

Pm

a

Am11
@12h~m!#, ~3.12!
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wherePm is the photon number distribution for a cohere
state andh(m) is as defined above Eq.~3.11!. Now Pm is
sharply peaked aroundm5a2 with a variance ofa2. Thus
we can expand the sum aboutm5a2 to get

^eif&. (
m50

`

PmF12
dm11

2a2 1
3~dm11!2

8a4 G
3@12h~a2!2h8~a2!dm2 1

2 h9~a2!~dm!2#,

~3.13!

where dm5m2a2. Now if h(m);m2p for large m and
some positive power p ~as will be shown!, then
h8(a2)5O„h(a2)/a2

… and h9(a2)5O„h(a2)/a4
…. Thus

from the moments ofPm we find

^eif&512~8a2!212h~a2!1O~a24!1O„h~a2!a22
….

~3.14!

The ~Holevo! phase variance of a distribution is define
above Eq.~2.57! as u^eif&u2221. In this case we thus hav

V~f!5@~4a2!2112h~a2!#@11O~a22!1O„h~a2!…#.
~3.15!

Now for a canonical measurementh(m)50, so only the first
leading term is retained. This represents the intrinsic ph
variance of a coherent state, as established above usin
uncertainty relation~2.59!. If h(m)Þ0, we see that 2h(a2)
can be interpreted as the extrinsic phase variance introd
by the measurement. Referring to Eqs.~2.60!–~2.62!, we see
that we can make the following identifications:

hhet~m!.~8m!211O~m22!, ~3.16!

hI~m!.~8m1/2!211O~m21!, ~3.17!

hII~m!.~16m3/2!211O~m22!. ~3.18!

That is to say, from the semiclassical results for the m
sured phase variance of a large-amplitude coherent stat
have been able to identify the important POVM matrix e
mentsHm,m11512h(m) for all three measurement schem
in the largem limit. These are the only elements we requ
for the analysis of the following section.

C. Optimized-state phase estimation

In Sec. II of this paper we derived from semiclassic
photodetection theory the variance in the phase of a cohe
state measured using three different schemes. As expla
at the end of that section, because a coherent state h
relatively large intrinsic phase uncertainty, a better figure
merit is the variance in the phase of a state which has b
optimized to have a low phase variance. The different de
tion schemes will in general have different optimized stat
Of course, the optimization has to be constrained by so
thing, because even the variance of the measured phase
coherent stateua& will go to zero asa→`. There are two
obvious ways to constrain the states which are to be o
mized: by putting an upper bound on the photon num
states it is allowed to populate; and by fixing its mean pho
t
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number. In this paper we will consider the former of the
because it yields answers more simply.

Let the maximum photon number allowed be denotedN.
Then the general problem to be solved is to find theN11
coefficientscn defining the state

uc&5 (
n50

N

cnun&, ~3.19!

subject to the normalization constraint(ucnu251, which
minimizes the Holevo variance

V~f!5u^eif&u2221, ~3.20!

where from Eq.~3.8!,

^eif&5^cuF (
m50

N21

um&^m11uHm,m11G uc&. ~3.21!

Minimizing the phase variance is equivalent to maximizi
the modulus of̂ eif&. Since the phase of this expectatio
value is arbitrary, we can choose it to be real. Then we
restate our aim to be to maximize the expectation value
the operator

cosf5 (
m50

N

@12h~m!#
um&^m11u1um11&^mu

2
,

~3.22!

whereHm,m11512h(m)5Hm11,m as before. Finally, since
we are working in a finite subspace of the total Hilbert spa
it is trivial that the state which maximizes the expectati
value of cosf is the eigenstate of this operator with the lar
est eigenvalue. Thus the problem reduces to one of find
the eigenvalueslk of the operator~3.22!.

1. Canonical measurement

For canonical measurements we haveh(m)50 and the
problem becomes exactly soluble. The operator

2 cosu5 (
m50

N21

@ um&^m11u1um11&^mu# ~3.23!

has eigenvalues

lk52 cosS pk

N12D k51, . . . ,N11 ~3.24!

corresponding to the eigenstates

uc&k} (
m50

N

sinS ~m11!pk

N12 D um&. ~3.25!

Hence, the minimum Holevo variance achievable from a
nonical measurement is

FcosS p

N12D G
22

215
p2

~N12!2
1O~N24!. ~3.26!
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To leading order this agrees with the result obtained
Summy and Pegg@19#, although they used the standard va
ance rather than the more natural Holevo variance.

2. Physically achievable measurements

There are three physically achievable phase meas
ments which we have analyzed, namely, heterodyne, a
tive mark I, and adaptive mark II. In all of theseh(m) is
nonzero, and an analytical solution to the problem is
possible. Instead, we look for an approximate asympt
solution forN@1. In all three cases we can write to leadin
order @see Eqs.~3.16!–~3.18!#

h~m!5cm2p ~3.27!

for some positive powerp>1/2 and positive coefficientc of
order unity. ForN@1 we can treat the photon numberm as
a continuous variable andc(m)5cm as a twice-
differentiable function. Then, noting that

221 (
m50

N21

@ um&^m11u1um11&^mu# ~3.28!

is a finite-difference approximation to the second derivat
operator with Dirichlet boundary conditions, we can use
approximation

2 cosf'21
]2

]m2 22h~m!. ~3.29!

This assumes that the phase variance is very small, as i
case in practice. From this we find that the eigenvalue eq
tion we have to solve is

S 2
]2

]m2 12cm2pDc~m!5~22l!c~m!, ~3.30!

which is equivalent to a time-independent Schro¨dinger equa-
tion with the boundary conditionsc(0)5c(N)50. Note
that the ‘‘potential-energy’’ term is lowest atm5N, which
suggests that the solution of lowest ‘‘energy’’ will be loca
ized in that region.

We are interested in the solution to Eq.~3.30! with the
largest eigenvaluel. For largeN this eigenvalue will be very
close to 2, as it is equal to 2^cosf&. Also, since the solution
will be localized atm'N, the potential-energy term can b
linearized about that point. Changing variables
y512N21m we thus transform Eq.~3.30! to

S 2
]2

]y2
1byDc~y!5akc~y!, ~3.31!

subject to the boundary conditionsc(1)5c(0)50, where

ak5N2~22lk22cN2p!, ~3.32!

b52cpN22p. ~3.33!

This has the form of the time-independent Schro¨dinger equa-
tion for a bead on a frictionless vertical string attached at
floor and ceiling. Since we are interested in the solution
lowest energy~maximuml), we can ignore the ceiling. Tha
y
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is to say, we can ignore the boundary condition aty51 and
let the string become semi-infinite. Then the normaliza
solutions are the well-known Airy functions

ck~y!}Ai ~zk1b1/3y!, ~3.34!

for y.0, wherezk is thekth real zero of the Airy function
satisfying0.z1.z2.••• . The corresponding eigenvalue
are

ak52b2/3zk . ~3.35!

The smallest eigenvalue isa1. In this case the solution~3.34!
has a single zero, aty50. The corresponding value forl is

22l152cN2p1~2z1!~2cp!2/3N22~11p!/3. ~3.36!

Since l52u^eif&u'2, the minimum Holevo variance is
given by

V~f!5u^eif&u2221.22l11O„~22l1!
2
…. ~3.37!

Thus we have arrived at the expression we desire, the m
mum phase variance for the states optimized for the vari
detection schemes, with a constrained maximum pho
numberN. Usingz1'22.338 and substituting in the coeffi
cientsc and powersp for h(m) from Eqs.~3.16!–~3.18!, we
obtain

V~fhet!. 1
4 N

2110.9278N24/3, ~3.38!

V~f I!. 1
4 N

21/21O~N21!, ~3.39!

V~f II !. 1
8 N

23/210.7659N25/3. ~3.40!

We do not give an expression for the next-to-leading term
V(f I) because it is uncertain due to the uncertainty
h(m) expressed in Eq.~3.17!.

To leading order, we see the expected results due to
noise introduced by the measurements, and we see the
superiority of the adaptive mark II scheme over the stand
~heterodyne! scheme. Our results for heterodyne detect
disagree with the power law ‘‘derived’’ numerically b
D’Ariano and Paris@20# for reasons to be explored in a fu
ture paper. The second term in each is due to the intrin
phase uncertainty of the states, and becomes negligible c
pared to the leading term asN→`. The width of the wave
functionc(y) is of orderb21/3;N(p22)/3, which also goes to
zero asN→` sincep<3/2. This confirms that the solution
cm is concentrated atm'N. This argument also helps us t
estimate the regime in which we expect the asymptotic
sults to be accurate. More than 0.995 of the area under
largest peak of the Airy function is confined to the interv
@2z1 ,2z115#. Thus the width ofc(y) can be estimated a
5b21/3. The assumption thatc(y) was concentrated at th
lower end of the interval@0,1# would then seem reasonable
5b21/3&1/2. From Eq.~3.33!, we can thus estimate that ou
asymptotic results will be valid if

N*S 1032cpD
1/~22p!

. ~3.41!
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954 56H. M. WISEMAN AND R. B. KILLIP
Thus for an adaptive mark I measurement we requ
N*400; for heterodyneN*4000; and for adaptive mark I
N*33107. If these requirements are met then the estima
~3.38!–~3.40! should be good. However the converse is n
necessarily true: the estimates~3.38!–~3.40! may be reason-
able even for considerably smaller photon numbersN. This
will be explored in a future paper.

IV. DISCUSSION

A. Summary

We have analyzed four different single-shot phase m
surements schemes: canonical, heterodyne, adaptive ma
and adaptive mark II. The first of these is the best poss
phase measurement, but is not realizable physically. The
ond is one of the standard techniques~which are all equiva-
lent! which is available to experimentalists at the pres
time. The last two are also experimentally realizable, and
based on the proposal in Ref.@5#. The essential feature of th
adaptive measurements is that they use a feedback loo
change the detection system over the course of a mea
ment of a single pulse, using the results of the measurem
up to that time. Both adaptive schemes use the same f
back algorithm. The difference between them is that
mark II adaptive scheme uses an improved formula for
final phase estimate of the system, using all of the recor
measurement data.

In this paper we have adopted an analysis based on s
classical detection theory. It turns out that this is sufficien
derive asymptotic results for large photon number. A cano
cal phase measurement is the best measurement of p
allowed by quantum mechanics, so the minimum canon
phase variance for a state of maximum photon numberN is a
measure of the minimum intrinsic phase variance of suc
state. This variance represents the ultimate quantum l
~UQL! to phase measurements. The minimum phase v
ances of the other three schemes is therefore a measure
intrinsic phase variance plus the variance of the extrin
phase noise introduced by the measurement. In the lim
asymptotically largeN the extrinsic noise will always domi
nate.

We find that the four measurement schemes have m
mum phase variances which scale in the following sim
ways with maximum photon numberN:

Vmin~fcan!.p2N22, ~4.1!

Vmin~f II !. 1
8N

23/2, ~4.2!

Vmin~fhet!. 1
4N

21, ~4.3!

Vmin~f I!. 1
4N

21/2. ~4.4!

The heterodyne measurement result represents the shot-
limit or standard quantum limit~SQL!, because aN21 scal-
ing is the minimum achievable from semiclassical sta
~that is, states which are mixtures of coherent states!. The
mark I adaptive scheme is thus much worse than the SQL
large photon numbers. The only attraction of this schem
that it is the unique scheme which is as good as a canon
measurement for states with at most one photon, as show
e
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Ref. @5#. By contrast, the mark II adaptive scheme does mu
better than the SQL, with a variance lying intermediate to
SQL and the UQL.

B. Experimental practicalities

The asymptotic results presented above are very enc
aging, in that they show that it is possible to make a ph
measurement which is much closer to the ultimate quan
limit than previously thought possible. However, to achie
such a limit it would be necessary to create pulses of li
with very large photon number and which are highly no
classical. At least at first, an experimental attempt to rea
the adaptive phase measurements proposed here would
ably use a coherent light pulse, as this is much more rea
available. This is exactly the scenario considered in Sec
and gave the following results:

Vcoh~f II !.
1

4uau2
1

1

8uau3
, ~4.5!

Vcoh~fhet!.
1

2uau2
1O~ uau24!, ~4.6!

Vcoh~f I!.
1

4uau1
1O~ uau22!. ~4.7!

Thus there would be an easily measurable difference
tween the three measurement schemes, although it would
show the dramatic difference in scaling betweenVmin(f II)
and Vmin(fhet) presented earlier. However, these scalin
must be taken with a grain of salt, because there are m
other practical considerations which we have ignored wh
will tend to spoil these ideal results. Below we discuss t
of these ‘‘spoilers.’’

1. Detector inefficiency

Detector inefficiency is well known as a destroyer of su
SQL measurements. It might be thought that the adap
measurements proposed here would be even more vulne
to having a detector efficiencyh less than one, because the
rely on feeding back the measurement results. If the detec
are inefficient then the information being fed back is unre
able, and the performance of the device might be expecte
suffer particularly badly. Fortunately this is not the case,
can be proven quite simply. The effect of a detector of e
ciencyh is completely equivalent to that of passing the pu
through a beam splitter of transmittanceh. For a coherent
stateua& this has the simple effect of transforming it into th
coherent stateuAha&. Thus the results~4.5!–~4.7! remain
true, with a replaced byAha, and the difference betwee
the measurement schemes will still be clear. However,
h<1/2, the phase variance from the adaptive mark II sche
will be greater than that from a standard~heterodyne! mea-
surement withh51. In this sense, we can say that it
necessary to haveh.1/2 in order to do better than the SQL

Recall that for the adaptive mark II measurement w
h51 the phase variance of a coherent state is almost ent
due to the intrinsic phase variance14uau22. With h,1 this is
no longer true, because the intrinsic phase noise should
be reckoned from the original stateua&, not from uAha&.
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Thus the noise introduced by the measurement is m
larger. This follows through to the minimum phase varian
of a state with constrained maximum numberN. We find
now

Vmin~f II !.
12h

4hN
1

1

8~hN!3/2
, ~4.8!

Vmin~fhet!.
22h

4hN
, ~4.9!

Vmin~f I!.
1

4~hN!1/2
. ~4.10!

Note that forh finitely less than one, the adaptive mark
result scales in the same way as the heterodyne result.
is, they both scale asN21, although the coefficient for the
adaptive mark II case still puts it below the SQL provid
h.1/2.

2. Delay in the feedback loop

In contrast to inefficient detectors, a delay in the feedb
loop is much harder to treat theoretically. Virtually all of th
results of Secs. II C and II D rely on the assumption that
feedback is instantaneous. However, we can obtain a ro
idea of the effect of such a delay by considering a toy ma
ematical problem which gives similar results if there is
delay, but which is simple enough to solve approximat
when there is a delay. The details are lengthy and so
given in the Appendix, but the results are simple to sta
Assuming a time delayt and a pulse bandwidthG, we treat
the productGt as a small parameter. From this we find for
coherent state

Vcoh~f II !.
1

4uau2 @11O~Gt!#1
1

8uau3
, ~4.11!

Vcoh~f I!.
1

4uau
1O~Gt!1O~ uau22!. ~4.12!

This implies that for a phase-optimized state of maxim
photon numberN we would find

Vmin~f II !.
1

8N3/2@11O~N1/2Gt!#, ~4.13!

Vmin~f I!.
1

4N1/2@11O~N1/2Gt!#. ~4.14!

These results show that unlessGt!N21/2 ~which would
be very hard to achieve for large photon numbers!, the mea-
sured phase variance will be dominated by the effect of
delay. For the adaptive mark I measurement, this is a m
worse effect than that arising from inefficient detectors. F
the mark II scheme, the effect is much like that of an ine
cient detector, with an inefficiency 12h5O(Gt)!1. Thus
as long as the time delay is significantly less than the ch
acteristic pulse length, the mark II scheme should still
superior to the SQL. Of course a real feedback loop will n
suffer simply from a time delay; all of the electronic an
h
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electro-optic elements of the loop will have some charac
istic response function. In that case, the total feedback l
will be characterized by a real positive response funct
f (t), satisfying*0

` f (t)dt51, equal to the convolution of the
response functions of the individual elements. The charac
istic delay timet could then be defined ast5*0

` f (t)t dt,
provided this was suitably small.

C. Conclusion

By incorporating a real-time feedback loop into an optic
detection scheme it is possible to create a single-shot m
surement of phase which is far superior to standard sin
shot measurements of phase. The device is based on
anced detection using a local oscillator, and it is the lo
oscillator phase which is controlled by the feedback. For
adaptive algorithm presented in this paper, the only eleme
required in the feedback loop are a signal generator, a v
able amplifier, an integrator, and an electro-optic ph
modulator. Thus the scheme should be experimentally p
tical. Under real experimental conditions, detector inefficie
cies and the non-instantaneous response of the feedback
will spoil the ideal results to some extent. However, as lo
as the detector inefficiency is not too large, and the feedb
delay not too long compared to the pulse duration, the su
riority of the adaptive scheme should still be evident. To
precise, if one had a sequence of pulses with randomly
pared phases, then the adaptive technique would giv
mean-squared difference between measured phase and
pared phase which is smaller than that from any other te
nique known.
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APPENDIX: THE EFFECT OF A TIME DELAY

Rather than attempting to treat the effect of a time de
in the feedback loop exactly~which is probably impossible
to do analytically!, we introduce a simplified model which
seems to capture the essential features of the full sys
First we present the toy model with no time delay.

1. Toy model with no delay

To obtain our toy model we simply take Eq.~2.36! for the
phase estimateŵ and replace the time-dependent diffusio
coefficient with a constant diffusion coefficient equal to
value at the final time. Usingg in place of 2a ~as a reminder
that this is only a toy model! and t instead ofx we have

dŵ t52gŵ tdt1dW~ t !. ~A1!

The solution to this is

ŵ t5e2gtF ŵ01E
0

t

egsdW~s!G . ~A2!
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Letting the maximum time bet51 and equating the mark
phase estimate withŵ at this time, we find to leading orde

^f I
2&5

1

2g
. ~A3!

Identifyingg52a, this replicates the result of the full mode
~2.38!.

Now consider the mark II phase estimate. From E
~2.44!, this is given by

f II5ŵ11arg@11exp~22i ŵ1!B#, ~A4!

where, assuming a flat pulseu(t)51,

B5E
0

1

dt exp~2i ŵ t!. ~A5!

Now assuming thatuŵ0u!1 ~as seems reasonable given t
argument in Sec. II C!, we can expand the above expone
tials to first order to obtain

f II'ŵ11argF222i ŵ112i E
0

1

dt ŵ tG , ~A6!

'E
0

1

dt ŵ t . ~A7!

While this is of course only a toy calculation, it gives som
further insight into the formula~2.44! for f II as some form
of time average of the crude phase estimateŵ t . In this case
we find to leading order

^f II
2&5

1

g2 1
^ŵ0

2&
g2 . ~A8!

Ignoring the second term~as is justified since we assume
that uŵ0u!1), we again find agreement to leading order w
the result of the full calculation~2.55!.

2. Toy model with a delayt

A time delayt in the feedback loop would mean that th
local oscillator phase at timet would be determined by the
estimate for the system phase at timet2t. That is to say, Eq.
~A1! is replaced by

dŵ t52gŵ t2tdt1dW~ t !. ~A9!

The essence of our approach is to treat the delayt perturba-
tively. Thus we write the solution to the perturbed equat
~A9! as

ŵ t5ŵ t
~0!1gtŵ t

~1!1O~g2t2!. ~A10!
.

-

n

The zeroth-order termŵ t
(0) obeys Eq.~A1! so the first-order

correction obeys

gtdŵ t
~1!5g~ŵ t

~0!2ŵ t2t
~0! !dt2gtgŵ t2t

~1! dt. ~A11!

Thus to first order int we have

dŵ t
~1!52gŵ t

~1!dt1dŵ t
~0!

52gŵ t
~1!dt2gŵ t

~0!dt1dW~ t !

52g dt ŵ t
~1!2g dt e2gtF ŵ01E

0

t

egsdW~s!G
1dW~ t !. ~A12!

This has the solution

ŵ t
~1!5e2gtE

0

t

dsH egsj~s!2gF ŵ01E
0

s

egrdW~r !G J .
~A13!

The mark I phase estimate is, in this approximation, given
f I5ŵ1

(0)1gtŵ1
(1) . To leading order int andg21 this has a

variance of

^f I
2&5

1

2g
12gt^ŵ1

~0!ŵ1
~1!&, ~A14!

5
1

2g
1

t

2
. ~A15!

In this scaled time the error due to a finite time delay in t
feedback loop is thus of ordert. In real time, the error would
be of orderGt, whereG is the characteristic bandwidth o
the pulse.

Following the argument from the first section of this a
pendix, we take the mark II phase estimate to be

f II5E
0

1

@ŵ t
~0!1gtŵ t

~1!#dt. ~A16!

After considerable calculation we find that to leading ord
in t andg21 the variance of this estimate is

^f II
2&5

1

g2 1
^ŵ0

2&
g2 12gtK E

0

1

dtE
0

1

dt8ŵ t
~0!ŵ t8

~1!L ,
~A17!

5
1

g2 1
^ŵ0

2&
g2 1

2t

g2 . ~A18!

Thus in terms of real time the delayt causes an error o
orderGt/a2.
@1#
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