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First-quantization quantum-mechanical insight into the Hong-Ou-Mandel two-photon
interferometer with polarizers and its role as a quantum eraser

Fedor Herbut and Milan Vujidc'
Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Beograd, Yugoslavia
(Received 28 January 1997

A straightforward derivation of a first-quantization two-photon state vector is presented for the Hong-Ou-
Mandel interferometer with a possible half-wave plate and possible linear analyzers in the ports. It is shown
that one is dealing with a quantum eraser in a somewhat broader physical sense: It is not strictly the interfer-
ence from version | of the experiment, the interference that has been suppressed by entanglement in version I,
that is revived in version llI; but it is an analogous interference. Besides, the coincidence probability for
arbitrary-angle analyzers in the general case of arbitrary polarization in the lower arm of the interferometer is
derived. The interference phenomenon of a complete decoupling of the partial loss of interference and the
coincidence events in the ports is demonstrated. It is pointed out that the phenomenon of distant polarization
(a special case of distant preparaji@arries all the nonlocality between the two photons in the two ports.
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I INTRODUCTION ) B~ (LY +i{U)) @ ([U)a+i[L)) + (JU)1+ilL),)

The first aim of this paper is to present a simple physical @([L)2+i|U)2)=2i(|L)a|L)2+[U)s[U)2). (D)
understanding of the somewhat specific nature of the quanfhus only double photons in the lower or in the upper port
tum erasure phenomenon that occurs in the two-photogan be detected in version | of the experiment.
Hong-Ou-Mandel interferometéf] with polarizers.

_ We are _dis_cussing an experime_ntal situation tha_\t was veri- IIl. IS A QUANTUM ERASER IN THE STRICT

fied quantitatively in a real experimefi2]. To put it con- SENSE POSSIBLE?

cisely, it was aimed at measurirgpincidencein the two

ports of a ba|anced Hong_Ou_Mande| two_photon interfer- TO introdupe a polarization diStinCtion of the tWO phOtonS
ometer with a half-wave plate as a polarizer and an analyzefefining version II, one puts a half-wave plate in the lower
in each port.

If nothing is added akX, Y, andZ (see Fig. 1 version))
then in the balance.e., equal path&BD=ACD) interfer-
ometer a specifiénterferencephenomenon sets in, consist-
ing of a totallack of coincidenceThe interference is due to
a spatial overlap of the two photons, both in the upper port
(U) and in the lower portl().

To show this, we denote Hy) the spatial state vector of
a photon that has been transmitted through the beam splitte:
and that is in the upper port, and bl) the symmetrical
case(The wave functioqr|U), wherer is the radius vector,
is the localization amplitude of the photon without polariza-
tion.) FIG. 1. A photon incoming from the left becomes down-

The reflectedcorrespondingly moving photons are then, convertedsplit) into two equal-energyand equal horizontal polar-
as is well known, in the state'$U> and i|L), respectively, ization) photons in a nonlinear crystal parametric down-converter at
wherei is the imaginary unit. Théunnormalized symme- ~ POint A. The mirrors atB and C and the equal pathaBD and
trized two-identical boson statemitting the irrelevant equal ACP (upper and lower armsnake the two identical photons over-

. . . ) . lap at the beam splitter & and in the upperW) and the lower
El(gigziu?f??n in-which the important cancellations  take (L) portsDE andDF, respectively. AE andF two detectors work

in coincidence. In version |, when no half-wave plateXatand no
analyzers a¥, andZ are used, one has interference consisting of a
lack of coincidence. In version I, with a half-wave plateXagiv-
ing rise to vertical polarization in the lower arm, coincidence is
*Also at the Serbian Academy of Sciences and Arts, Knez Mi-restored. Finally, in version IIl, when besides the half-wave plate at

hajlova 35, Beograd, Yugoslavia. X analyzers at equal angles are also puf @ndZ, the disappear-
"Present address: Faculty of Education, University of Malta,ance of coincidences is restored. In this way, in version lll, the
Msida, Malta. device acts as a kind of quantum eraser.
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arm (at point X in Fig. 1) with its optic axis at 45°. This degrees of freedom and the spatial ones each separately to-
makes the corresponding photon vertically polarized with regether. (A similar rearrangement of tensor factors is per-
spect to the plane of motion of the two photons. The photorformed in atomic and nuclear physics in transition frpm
in the upper arm is already polarized in the pldherizon-  to L-S coupling)
tally polarized due to the very downconversion. In order to achieve expansion in terms(ehtanglegl state
Now one has complete distinctidganalogously, as if one vectors we also have to normalize the tensor factors. We
had different energigs As easily seen, half of all photon write the state vectors thus obtained in square brackets. The
pairs end up in coincidence, and the interference is lost. ~state vectorgH) and |V) are unit vectors in the plang,
Scully, Englert, and Walther have pointed ¢81 that in  perpendicular to the direction of motion of the photon, and
phenomena like this, interference has not been irretrievablgne has(H|V)=0. Hence, after the rearrangement and the
destroyed,; it is only suppressed due to entanglement. In thisormalizations, one can rewrite the two-photon state vector
case the two-photon spatial stdief. Eq. (1)], on the one |x),,in the more suitable form
hand, and the two-photon polarization state on the other be-
come entangled. IX)12= 27 YA[27VA[H) 1| V), + [V)1[H),
In principle, the same interference can be revived in a _
so-caI‘I)edqugntum erasur@xperiment(with some probabil- ®[27 (U1 U)2+ [L)alL)a]

ity), if a certain two-photon polarization state is brought +27 Y27V HY | V) — V)1 | HY )]
about in a suitable measurement. p
To write down the composite-system state vedtgy;, ®[27YA[L)1U)o— [U)a|L)o]. 3

=|x)D) of version I of the experiment in first quantiza-
(=1012) P g Thus, the two-photon state veciar, in its final form (3) is

tion, we apply(first principle symmetrization to the coher- - ;
ent sum of all four two-photon possibilities, when both pho-_Seen to be a Schmitorthogonalexpansior(cf. [4], where

tons have already passed the beam splitter and have enterbd/@s called the Schmidt canonical fornThis means that

the ports. We write the linear-polarization state of the photor©th In the spatial and in the polarization two-photon spaces
as |H) in the case of horizontal, anfl/) in the case of the state vectors dlsp!ayed in EE) (as first and second
vertical polarization, respectively tensor factors, respectivelgre orthonormal, and the expan-

Enumerating the photons arbitrarily, taking into ac:counts'on.CO(?ﬁ'C'ents are positive. . .
the equal reflection and transmission probabilities on the VieWing Eq.(3) as an expansion d% )12 in the two state
beam splitter for each of the two photons, and the phas¥€¢tors
factori due to reflectioricf. Eq.(1)], the entire symmetrized

—1/2
two-photon state vectdwith polarizatior) is obviously [2774([H)1 V)2 +[V)a[H)2)],

—1
1) 12= (L8 VZ{(i[H)1|U) 1+ [H)3]L)1) (274 H)alV)2 = [V)alH)2)] @
@ (i[V)o|L)2+ VYo U)o) + (i V)1 |L)1+]V)1|U),) in the mentioned two-photon polarization space, we have
] precisely what is required faquantum erasurén the strict
®(i|H)olU)o+[H)olL)o)} (2 sensd3].

o If one could perform in the statgy);, a purely two-
The normalization of the state vectr)y, to 1 corresponds  photon polarization-subsystem measurement defined by sub-
to preparation in which parametric down-conversitat pasis(4), in particular, if the former state in Eq¢4) came
pOintA in Flg l) iS, by definition, taken as a certain event. In about,ipso factoone would revive thétwo_photon Spat|a|

the mentioned laboratory experimg@f (to our understand- interference state that corresponds to it in Eg), i.e., the
ing) the calculations were performed accordingly. state

The entanglementthe departure from a simple tensor
produc} that is exhibited in Eq(2) is due to symmetrization [27 YUY 1|U)o+|L)Y4|LY)]
on account of the fact that the two photons, being of equal
color, cannot be experimentally distinguished, i.e., they arécf. Eq. (1)] [and this would occur with the probability 1/2,
identical bosons(Note that the polarization state is included cf. Eq. (3)].
in the total state of the photon, hence it cannot be used to Naturally, in an actual laboratory experiment one would
treat the photons as distinguishabple. correlate the results of the mentioned polarization measure-
As a rule, one considers entanglement in two-particlement(in order to select out the required resultsth suitable
state vectors. But, one can also take the more general viewgpatial measuremenighat test the presence of the above
and consider entanglement in any two-subsystem state vespatial state Theoretically, even delayed-choice variants
tor, subsystems being characterized by separate tensor-factoight be taken into accouf8].
state spaces. For our purpose of gaining insight, it will prove Since a polarization-subsystem measurement of the men-
useful to consider polarization and the spatial degree of freeioned kind would require a lack of influence on the spatial
dom of the two-photon system as subsystems, and to investates, it is hard to see how it could be performed since the
tigate the entanglement between them. analyzers(with detector are always somewhere located,
Utilizing the tensor factorization of each single-photonand hence they simultaneously also measure locafidris
state vector into a polarization state vector and a spatial stateight be a challenge to the ingenious experimeter.
vector, one can perform a suitalbiearrangement of the or- Anyway, the Hong-Ou-Mandel two-photon intereferom-
der of the tensor factors in Eq2), grouping the polarization eter with polarizers as it stands, i.e., with the two ports meant
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to measgre_cpincidence,r’r@t a quantum eraser ir_1 this strict p&’zLE 1@ (JU)q|L)2(U] (L] +|LY1|U)o(L]1(U]5)
sense Still, it is a quantum erasein a physically important
sense that will be explained below. (* 1" being the identity operator in the two-photon polariza-
tion state to make sure that we take into account only the
. QUANTUM ERASER IN A BROADER SENSE coincidence photongmit the doublesfinally gives

~ Keeping the half-wave plate at poit, we now add a  [x){5’~S;5{(|6+90°1]6),—[6)1]6+90°),) ®|U),|L )}
linear-polarization analyzer in each of the ports: in the upper (7)

one it is at pointY and it is oriented at an arbitrary, fixed ] . ]

angled, and in the lower port it is at poir oriented atthe It is clear from Eq.(7) that not a single pair of photons
sameangle(see Fig. 1 will pass the(parallel orienteglanalyzers in coincidencéEi-

We want to write down the symmetrized composite two-ther the upper photon gets extinguished and the lower one
photon state vector immediately after they passget extin- ~ PaSSes or vice versa. _ _ .
guished in the analyzers. This situation isanalogousto that in version I: nothing

We have seen that after passing the beam splitter the ph&eaches the detectors in coincidence. Two-photon-term can-
ton “remembers” if it was reflected(transmitted only  Ccellations take place owing to the prehistories of the single
through the presencéabsence of a phase factoi in its  Photons. This is a particulanterferencephenomenon simi-
spatial state. Analogously, a previously polarized photon, aflar 1o that in version I. o _ _
ter passing(or being extinguished jnthe ¢ analyzer, “re- ‘The experiment in version I, just like that in version I,
members” his previous polarization state through a factofP"ings about a nonlocal @iobal phenomenon. Namely, the
(the square of which gives the probability of passing or beingindle photons are at a macroscopic distance from each other,

extinguishel These factors come from the decompositions@nd it is, nevertheless, the whdfe two-photon state vec-
tor) that counts. Intuitively, this cannot be understood in the

|H) = cost| 6) — sing| 6+ 90°), framework of classically trained local thinking. One wonders
how do the two photons “agree” to eliminate the both-
|V)=sing| 6) + coss| 6+ 90°), (5)  passing possibility without any interaction.

Namely, it might seem that what happens to the photon in
where|6) is the state after passing, afeh90° corresponds the upper port and what happens to the one in the lower port
to being extinguished(This state would actually appear if should be two statistically independent events regardless of
beam-splitting analyzers were used instead of ordinary pnesthe two-photon state. But this is not so. And this is the won-
Relation(5) is easily read from &, diagram of unit vectors. der of nonseparability in quantum-mechanical distant corre-

Thus, to write down the unnormalized composite-systemations.
state vectot x){2) of version Ill, we apply the symmetrizer ~ Finally, if we want a precise answer to the question in
S;,=2"Y(1+E,,) (whereE,, is the exchange operator ex- What sense is our devicecquantum erasem version Ill, it
changing simultaneously both the polarization and the spatideads:
single-photon state vectgrio the tensor product of the two ~ The point is in the ternphysically analogousnot the
one-photon state vectors. same In version lll, it is not the rearrangement of the pho-

Let us denote as photon 1 the one that comes from thtons into doublegthat may go into the upper or into the
upper arm with horizontal polarization, and as photon 2 thdower pory, see version |, that takes place. It is another re-
one coming from the lower arm with vertical polarization. arrangement. If one had beam-splitting analyzers instead of
Each photon has four possibilities: to be reflected from oithe one-way ordinary ones, one would “see” in the experi-
transmitted through the beam spliti@qual probability am- ment what Eq.(7) tells us: that out of the foum priori
plitudes, and within each of these possibilities, the singlepossibilities only two take place. The pairs of photons get
photon can pass or be extinguished in thanalyzer in the rearranged so that only the opposite-decision cases displayed
corresponding porfthe probability amplitude, i.e{x|6°), in Eq. (7) occur.

x=H,V, is clear from Eq(5)]. Thus, we start with the un- ~ To put it shortly, though in version Ill we areot dealing
normalized vector with a quantum eraser in the strict senbecause it does not
revive strictly thesameinterference phenomenoit, is a
SiA(i cosd|6),|U),—i sing|6+90°),|U), guantum erasem a somewhabroader sensdecause it re-

vives aphysically analogous interference phenomenon
+co| 0)1] L)1 — Sind| 6+ 90°)|L )1) physically g P

®©(sing| 6)2|U) o+ cosh| 6+ 90%)2|U), IV. COINCIDENCE PROBABILITY IN CASE
o _ OF INDEPENDENT ARBITRARY ANALYZER
+i sind|6),|L),+i cosh|6+90°),|L),)}.  (6) ANGLES 6, AND 6,
Application of S, in Eq. (6) makes equal thosgairg of The only generalization we introduce now is allowing the

the 16 terms in which the two photons are in the same twoanalyzer angle®, and 6, in the two ports to be arbitrary

photon statéirrespectively whether photon 1 is in one of the (independently of each otherSince nothing is changed in

states and 2 in the other or the other way rgund the interferometer, the state vector)q, that describes the
Straightforward evaluation of the action 8f, in Eq. (6) two-photon system entering the two ports is still given by

with subsequent rearrangement of the tensor factors and sub4. (3).

sequent application of The probability of coincidence.(6y,6,) is the square
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norm of the projection ofx),, with the (symmetrized pro-
jector

X ) 12= (LB VA{(i|H) 1| U) 1+ [H)1[L) 1)
®(i| )2l L)2t[d)at[h)2lU)2)
+(i[)a|L)1+[#)1|U)1) ®(i[H)2|U),
+[H)2|L)2)}-

12000, 00)=[0u)1]0)2( 0] 1{L[2®|U)1|L)(U[1(L]>

+160)1]00)2( | 1{0u]2® L) 1| U)2(L|1(U]>
8) o . . .
(The normalization factor is not obvious because the eight
two-photon terms are not all orthonormal. But, utilizing
(H|p)=cosp, one easily evaluates that, nevertheless,
(X, ®|1dx,#)12=1.) Again, the entanglement comes from
symmetrization.
Rearrangement of the tensor factors as in Sec. Il leads to

the occurrencdresult 1 in measuremenof which means
passage through both analyzers.
Straightforward evaluation with the help of E() and
(8) gives
PI2(0u.00)|x) 12
=8 Y4 ((6L14|H)1(0ul2IV)2
—(OL1IV)1(6ul2lH)2)[61) 1] 6u)2lL)1U),)
= ((Bul1/H)1(6L]2| V),

—(0ulIV)1(OLl2H)2) | 8u) 1] BL)2|U)1|L) 2}

| X #)12= (L YA{(|H)1|b) o+ b)1IH)2)
®([U)1|U) o+ L) 1|L)2) + (IH)1 o= h)1H)2)
@ (|L)1|U)2) —[U)4|L)2)}.

It is useful to normalize the two-photon polarization and
spatial tensor factorgwriting the state vectors in square

. . . ... bracket$
It is now suitable to decompose the linear-polarization

state vectorgH) and|V) along a linear-polarization state
|6x) and its perpendiculaffy+90°), where X=U,L [cf.
Eqg. (5)], and make substitution in the last relation

X, $)12=1((1+c0S'¢)/2)"F (2(1+cos'¢))~ V2
X ([H)1|#)2+ [ #)1|H)2)]
®[27A(|U) U)o+ [L)a[L)2)]
+2 " Yesing[ 2~ Y%sin ¢
X(|H)1ld)a=[d)1lH) )]
®[27MA(|L)1|U)o— |U)[L) )]

1500y, 00)| x)12=8 ¥ (coss sindy,
—sind coshy)| 0, )1|0u)2lL)1|U),
—(cos9ysind —sinfco, )
X160u)1] 00)2|U) 1] L)}
=8"Y2sin( 0y — 0L)[| 6L)1] 6u)2|L)1|U),
+[6u)1160)2|U)4|L)1}

(10

The secondi.e., the spatial two-photortensor factors in
Eq. (10) are orthogonal, hence the probabilityafincidence
(in contrast to detection of two photons in the same detgctor
without polarizers in the ports, i.e., gfure (complete or
Hence, partial) loss of interferencés obviously

Pe( By, 6,) =Sir’(6y— 6,)/4. (9) dy; =sirt¢/2. (12)
The minimal value op.(6y,6,) is zero. This is the case We call thisdegree of loss of interference
discussed in the preceding section. The maximal value is In the extreme case ap=90° (when ¢ is replaced by
(1/4). The probability to obtain coincidence photais con- V), this probability is one-half. This is the case afmplete
trast to doublesis 1/2 [cf. Eq. (3)]. And, in the maximal- loss of interferencébecause we have the same probability
value case, 1/2 is also the probability of coincidence aftewhen the interferometer is unbalanced, i.e., when, e.g., the
passing the analyzers with the angldg and 6,=6, reflected spatial stateU) coming from the upper arm and
+90°. We discuss the nonlocality inherent in this claim atthe transmitted statéU) coming from the lower arm are
the end of Sec. V. nonoverlappingthe time difference of arrival is larger than
the coherence timei.e., when these state vectors are or-
thogonal(hence distingt Then, as an obvious consequence
of the equal probability of reflection and transmission on the
beam splitter, half of the photons gives coincidence and half

If one puts a half-wave plate in the lower arm of the of them goes into double®oth photons in the same pprt

V. COMPLETE DECOUPLING
IN THE GENERAL CASE

interferometer with its optical axis a#/2, 0<4<90°, i.e., if
the lower-arm photon is polarized at the anglgwith the
horizontal plang then we have the general case.

The other extreme, whe#=0° (when ¢ is replaced by
H), makes the second term in E@.0) disappear. The prob-
ability is zero and we haventerference If 0<$<<90°, we

Now we write the two-photon state vector in the portshave partial loss of interferencei.e., the degree of loss of

(before reaching the possible analyzees |y, ¢),. We
must start with generalizing E@2)

interferencedy; is larger than zero but smaller than one-half.
So much for the case @iure interferenceandloss of it As it
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was stated, we have this case as long as we do not put in thi@2)] with P$3(6y,6,) [cf. Eq.(8)]. Evidently, only the sec-
6y and 6, polarizers in the upper and the lower detectorond term in Eq.(12) is relevant, and it differs fromy),,

ports, respectively. given by Eq.(3) only by the factor sigh. Hence, obviously,
Decomposing|¢) along [H) and |V), i.e., substituting .
| #) = cosp|H)+sing|V) in the first tensor factor state vector Pe( b, 0y , L) =SiP ¢pc( 6y, 6L),
in the second term in Eq10), and utilizing Eq.(11), one i S .
obtains, perhaps surprisingly. and, finally, utilzing Eq(9), one obtains
|X!¢>12: i ((1+COSZ¢)/2)1/2[(2(1+C032¢))_1/2 pc(¢, 0y ,GL):(1/4)SII"IZ¢ S|n2( 0y— HL) (14)
X ([H) 1] ) o+ | )| H)2)] Naturally, the described decoupling of the coincidence
events in the ports from the loss of interference is seen also
@[27 YUY, U)o+ L) |L))] in Eq. (14). The probability p.(¢#,6y,6.) generalizes

. _ p.(6y,6.), which is valid for $=90°. Relation(14) equals
+(di)sing[ 27 VA(|V)a| H)2 = [H)1| V)2)] Eqg. (A5) in [2] except for the factof1/4) [9].
®[27Y2(|L)4|U)p—U)4|L))]. (12) Conceptually, Eqg.(14) should be read as follows:
(sirf¢/2) is the probability of coincidence photofis con-

The composite two-photon state vector in the secondrast to doubles as seen from Eq(11), and (sir?(6,
term, which corresponds to the coincidence photons that we-§,)/2) is the probability that both photons pass the respec-
are interested in, is theameas in Eq.(3), when we had tive analyzers on the condition that the photons are already
¢=90°. They only differ in the expansion coefficient. in one port each.Note that in Eq(9) (1/2) is the probability

Thus, we havecomplete decouplingf the coincidence of this condition and the conditional probability is the same
events in the ports from the loss of interference. This decouas in Eq.(14).]
pling is anothertwo-particle interference phenomenane- There is a strikingnonlocalityinherent in the conditional
cause it is the result of superposition of tensor products. probability (sir’(6,— 6,)/2). To see it, we imagine that the

One may wonder if the horizontal plane plays aphoton in the lower port reaches its analyZafter some
privileged role in the two-photon polarization state detouy somewhat later than the photon in the upper port.
[27Y4|V)1|H),—|H)1|V),)] in Eq. (12) or it only appears The latter one has a probability of 1/2 of passing the
so. The latter is the case, because, substituting heréSkq. analyzer[as obvious from Eq(13), which can replace the
this same(tensor factor state vector becomes two-photon polarization tensor factor state vector in the sec-

1 . s ond term in Eq(12)]. Taking 6, = 6, +90°, the conditional
[277%(]6+90°)4] 6),— | 6)1] 6+ 90°),)] (13 probability is(1/2). Hence, the photon in the lower port has

with an arbitrary angle. a probability 1 to pass its analyzer. Namely, this photon ig,
Two-term entanglement in a two-photon polarization stateby th? very act of the upper port photon’s passage through its
vector of the concrete form polarizer,distantly polarizedn the state 0U+.9O°>. .
Distant polarization is a special case of distant preparation
[27 Y| V)1lH)2—[H)1|V)2)] (as one calls nowadays Schinger's “steering” [10].) In

our version above of the general case with the lower-port

has been investigated experimentally before, in thehoton having a detour, after passage of the upper-port pho-
positronium-annihilation experiments of Kasday, Ullmanton through itsd, analyzer, the former photon is distantly
and Wu[5,6]. (It is a variation of the Wu-Shaknov experi- polarized in the statgg, +90°) [cf. Eq.(13) replaced in Eq.
ment[7] from 1950. See also the review arti¢i@)].) (12)]. The probability of passage through thg analyzer is

It is a technical advantage of the Kwiat, Steinberg, andprecisely (sir(6,—6,)/2) as easily seen. Thus, in general,
Chiao experimen{2] (for polarization analysis and detec- the entire nonlocal phenomenon consists in the distant polar-
tion) that the photons are not of such a high energy as in th&zation. It comes about without interactigbetween the two
Kasday, Ullman, and Wu experiments. photons or between the upper-port analyzer and the lower-

The coincidence probabilitp.(¢, 6,,6,), in the general port photon in an apparently magic quantum-mechanical
case, is the square of the projection f¢)1, [given by Eq.  way.
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