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First-quantization quantum-mechanical insight into the Hong-Ou-Mandel two-photon
interferometer with polarizers and its role as a quantum eraser

Fedor Herbut* and Milan Vujičić†

Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Beograd, Yugoslavia
~Received 28 January 1997!

A straightforward derivation of a first-quantization two-photon state vector is presented for the Hong-Ou-
Mandel interferometer with a possible half-wave plate and possible linear analyzers in the ports. It is shown
that one is dealing with a quantum eraser in a somewhat broader physical sense: It is not strictly the interfer-
ence from version I of the experiment, the interference that has been suppressed by entanglement in version II,
that is revived in version III; but it is an analogous interference. Besides, the coincidence probability for
arbitrary-angle analyzers in the general case of arbitrary polarization in the lower arm of the interferometer is
derived. The interference phenomenon of a complete decoupling of the partial loss of interference and the
coincidence events in the ports is demonstrated. It is pointed out that the phenomenon of distant polarization
~a special case of distant preparation! carries all the nonlocality between the two photons in the two ports.
@S1050-2947~97!05707-7#
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I. INTRODUCTION

The first aimof this paper is to present a simple physic
understanding of the somewhat specific nature of the qu
tum erasure phenomenon that occurs in the two-pho
Hong-Ou-Mandel interferometer@1# with polarizers.

We are discussing an experimental situation that was v
fied quantitatively in a real experiment@2#. To put it con-
cisely, it was aimed at measuringcoincidencein the two
ports of a balanced Hong-Ou-Mandel two-photon interf
ometer with a half-wave plate as a polarizer and an analy
in each port.

If nothing is added atX, Y, andZ ~see Fig. 1 version I!,
then in the balanced~i.e., equal pathsABD5ACD! interfer-
ometer a specificinterferencephenomenon sets in, consis
ing of a totallack of coincidence. The interference is due to
a spatial overlap of the two photons, both in the upper p
(U) and in the lower port (L).

To show this, we denote byuU& the spatial state vector o
a photon that has been transmitted through the beam sp
and that is in the upper port, and byuL& the symmetrical
case.~The wave function̂ r uU&, wherer is the radius vector,
is the localization amplitude of the photon without polariz
tion.!

The reflectedcorrespondingly moving photons are the
as is well known, in the statesi uU& and i uL&, respectively,
where i is the imaginary unit. The~unnormalized! symme-
trized two-identical boson state~omitting the irrelevant equa
polarizations!, in which the important cancellations tak
place, is then
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ux&12
~ I!;~ uL&11 i uU&1)^ ~ uU&21 i uL&2)1~ uU&11 i uL&1)

^ ~ uL&21 i uU&2)52i ~ uL&1uL&21uU&1uU&2). ~1!

Thus only double photons in the lower or in the upper p
can be detected in version I of the experiment.

II. IS A QUANTUM ERASER IN THE STRICT
SENSE POSSIBLE?

To introduce a polarization distinction of the two photo
defining version II, one puts a half-wave plate in the low

-

,

FIG. 1. A photon incoming from the left becomes dow
converted~split! into two equal-energy~and equal horizontal polar
ization! photons in a nonlinear crystal parametric down-converte
point A. The mirrors atB andC and the equal pathsABD and
ACD ~upper and lower arms! make the two identical photons ove
lap at the beam splitter atD and in the upper (U) and the lower
(L) portsDE andDF, respectively. AtE andF two detectors work
in coincidence. In version I, when no half-wave plate atX, and no
analyzers atY, andZ are used, one has interference consisting o
lack of coincidence. In version II, with a half-wave plate atX giv-
ing rise to vertical polarization in the lower arm, coincidence
restored. Finally, in version III, when besides the half-wave plate
X analyzers at equal angles are also put atY andZ, the disappear-
ance of coincidences is restored. In this way, in version III,
device acts as a kind of quantum eraser.
931 © 1997 The American Physical Society
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932 56FEDOR HERBUT AND MILAN VUJIČIĆ
arm ~at point X in Fig. 1! with its optic axis at 45°. This
makes the corresponding photon vertically polarized with
spect to the plane of motion of the two photons. The pho
in the upper arm is already polarized in the plane~horizon-
tally polarized! due to the very downconversion.

Now one has complete distinction~analogously, as if one
had different energies!. As easily seen, half of all photo
pairs end up in coincidence, and the interference is lost.

Scully, Englert, and Walther have pointed out@3# that in
phenomena like this, interference has not been irretrieva
destroyed; it is only suppressed due to entanglement. In
case the two-photon spatial state@cf. Eq. ~1!#, on the one
hand, and the two-photon polarization state on the other
come entangled.

In principle, the same interference can be revived in
so-calledquantum erasureexperiment~with some probabil-
ity!, if a certain two-photon polarization state is broug
about in a suitable measurement.

To write down the composite-system state vectorux&12
([ux&12

(II) ) of version II of the experiment in first quantiza
tion, we apply~first principle! symmetrization to the coher
ent sum of all four two-photon possibilities, when both ph
tons have already passed the beam splitter and have en
the ports. We write the linear-polarization state of the pho
as uH& in the case of horizontal, anduV& in the case of
vertical polarization, respectively.

Enumerating the photons arbitrarily, taking into accou
the equal reflection and transmission probabilities on
beam splitter for each of the two photons, and the ph
factor i due to reflection@cf. Eq. ~1!#, the entire symmetrized
two-photon state vector~with polarization! is obviously

ux&12[~1/8!1/2$~ i uH&1uU&11uH&1uL&1)

^ ~ i uV&2uL&21uV&2uU&2)1~ i uV&1uL&11uV&1uU&1)

^ ~ i uH&2uU&21uH&2uL&2)%. ~2!

The normalization of the state vectorux&12 to 1 corresponds
to preparation in which parametric down-conversion~at
pointA in Fig. 1! is, by definition, taken as a certain event.
the mentioned laboratory experiment@2# ~to our understand-
ing! the calculations were performed accordingly.

The entanglement~the departure from a simple tens
product! that is exhibited in Eq.~2! is due to symmetrization
on account of the fact that the two photons, being of eq
color, cannot be experimentally distinguished, i.e., they
identical bosons.~Note that the polarization state is include
in the total state of the photon, hence it cannot be use
treat the photons as distinguishable.!

As a rule, one considers entanglement in two-parti
state vectors. But, one can also take the more general v
and consider entanglement in any two-subsystem state
tor, subsystems being characterized by separate tensor-f
state spaces. For our purpose of gaining insight, it will pro
useful to consider polarization and the spatial degree of f
dom of the two-photon system as subsystems, and to in
tigate the entanglement between them.

Utilizing the tensor factorization of each single-phot
state vector into a polarization state vector and a spatial s
vector, one can perform a suitablerearrangement of the or-
der of the tensor factors in Eq.~2!, grouping the polarization
-
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degrees of freedom and the spatial ones each separate
gether. ~A similar rearrangement of tensor factors is pe
formed in atomic and nuclear physics in transition fromj - j
to L-S coupling.!

In order to achieve expansion in terms of~entangled! state
vectors, we also have to normalize the tensor factors. W
write the state vectors thus obtained in square brackets.
state vectorsuH& and uV& are unit vectors in the planeR2
perpendicular to the direction of motion of the photon, a
one haŝ HuV&50. Hence, after the rearrangement and
normalizations, one can rewrite the two-photon state vec
ux&12 in the more suitable form

ux&125221/2i @221/2~ uH&1uV&21uV&1uH&2]

^ @221/2~ uU&1uU&21uL&1uL&2]

1221/2@221/2~ uH&1uV&22uV&1uH&2)]

^ @221/2~ uL&1uU&22uU&1uL&2]. ~3!

Thus, the two-photon state vectorux&12 in its final form~3! is
seen to be a Schmidtbiorthogonalexpansion~cf. @4#, where
it was called the Schmidt canonical form!. This means that
both in the spatial and in the polarization two-photon spa
the state vectors displayed in Eq.~3! ~as first and second
tensor factors, respectively! are orthonormal, and the expan
sion coefficients are positive.

Viewing Eq. ~3! as an expansion ofux&12 in the two state
vectors

@221/2~ uH&1uV&21uV&1uH&2)],

@221/2~ uH&1uV&22uV&1uH&2)] ~4!

in the mentioned two-photon polarization space, we ha
precisely what is required forquantum erasurein the strict
sense@3#.

If one could perform in the stateux&12 a purely two-
photon polarization-subsystem measurement defined by
basis~4!, in particular, if the former state in Eq.~4! came
about,ipso factoone would revive the~two-photon spatial!
interference state that corresponds to it in Eq.~3!, i.e., the
state

@221/2~ uU&1uU&21uL&1uL&2)]

@cf. Eq. ~1!# @and this would occur with the probability 1/2
cf. Eq. ~3!#.

Naturally, in an actual laboratory experiment one wou
correlate the results of the mentioned polarization meas
ment~in order to select out the required results! with suitable
spatial measurements~that test the presence of the abo
spatial state!. Theoretically, even delayed-choice varian
might be taken into account@3#.

Since a polarization-subsystem measurement of the m
tioned kind would require a lack of influence on the spat
states, it is hard to see how it could be performed since
analyzers~with detectors! are always somewhere locate
and hence they simultaneously also measure location.~This
might be a challenge to the ingenious experimenter.!

Anyway, the Hong-Ou-Mandel two-photon intereferom
eter with polarizers as it stands, i.e., with the two ports me
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56 933FIRST-QUANTIZATION QUANTUM-MECHANICAL . . .
to measure coincidence, isnot a quantum eraser in this stric
sense. Still, it is a quantum eraserin a physically important
sense that will be explained below.

III. QUANTUM ERASER IN A BROADER SENSE

Keeping the half-wave plate at pointX, we now add a
linear-polarization analyzer in each of the ports: in the up
one it is at pointY and it is oriented at an arbitrary, fixe
angleu, and in the lower port it is at pointZ oriented at the
sameangle~see Fig. 1!.

We want to write down the symmetrized composite tw
photon state vector immediately after they pass~or get extin-
guished in! the analyzers.

We have seen that after passing the beam splitter the
ton ‘‘remembers’’ if it was reflected~transmitted! only
through the presence~absence! of a phase factori in its
spatial state. Analogously, a previously polarized photon,
ter passing~or being extinguished in! the u analyzer, ‘‘re-
members’’ his previous polarization state through a fac
~the square of which gives the probability of passing or be
extinguished!. These factors come from the decompositio

uH&5cosuuu&2sinuuu190°&,

uV&5sinuuu&1cosuuu190°&, ~5!

whereuu& is the state after passing, anduu190°& corresponds
to being extinguished.~This state would actually appear
beam-splitting analyzers were used instead of ordinary on!
Relation~5! is easily read from aR2 diagram of unit vectors.

Thus, to write down the unnormalized composite-syst
state vectorux&12

(III) of version III, we apply the symmetrize
S12[221(11E12) ~whereE12 is the exchange operator ex
changing simultaneously both the polarization and the spa
single-photon state vectors! to the tensor product of the tw
one-photon state vectors.

Let us denote as photon 1 the one that comes from
upper arm with horizontal polarization, and as photon 2
one coming from the lower arm with vertical polarizatio
Each photon has four possibilities: to be reflected from
transmitted through the beam splitter~equal probability am-
plitudes!, and within each of these possibilities, the sing
photon can pass or be extinguished in theu analyzer in the
corresponding port@the probability amplitude, i.e.,̂xuu°&,
x5H,V, is clear from Eq.~5!#. Thus, we start with the un
normalized vector

S12$~ i cosuuu&1uU&12 i sinuuu190°&1uU&1

1cosuuu&1uL&12sinuuu190°&1uL&1)

^ ~sinuuu&2uU&21cosuuu190°&2uU&2

1 i sinuuu&2uL&21 i cosuuu190°&2uL&2)%. ~6!

Application ofS12 in Eq. ~6! makes equal those~pairs! of
the 16 terms in which the two photons are in the same t
photon state~irrespectively whether photon 1 is in one of th
states and 2 in the other or the other way round!.

Straightforward evaluation of the action ofS12 in Eq. ~6!
with subsequent rearrangement of the tensor factors and
sequent application of
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P12
UL[I ^ ~ uU&1uL&2^Uu1^Lu21uL&1uU&2^Lu1^Uu2!

~‘‘ I ’’ being the identity operator in the two-photon polariz
tion state! to make sure that we take into account only t
coincidence photons~omit the doubles! finally gives

ux&12
~ III !;S12$~ uu190°&1uu&22uu&1uu190°&2)^ uU&1uL&2%.

~7!

It is clear from Eq.~7! that not a single pair of photon
will pass the~parallel oriented! analyzers in coincidence.~Ei-
ther the upper photon gets extinguished and the lower
passes or vice versa.!

This situation isanalogousto that in version I: nothing
reaches the detectors in coincidence. Two-photon-term c
cellations take place owing to the prehistories of the sin
photons. This is a particularinterferencephenomenon simi-
lar to that in version I.

The experiment in version III, just like that in version
brings about a nonlocal orglobal phenomenon. Namely, th
single photons are at a macroscopic distance from each o
and it is, nevertheless, the whole~the two-photon state vec
tor! that counts. Intuitively, this cannot be understood in t
framework of classically trained local thinking. One wonde
how do the two photons ‘‘agree’’ to eliminate the bot
passing possibility without any interaction.

Namely, it might seem that what happens to the photon
the upper port and what happens to the one in the lower
should be two statistically independent events regardles
the two-photon state. But this is not so. And this is the wo
der of nonseparability in quantum-mechanical distant co
lations.

Finally, if we want a precise answer to the question
what sense is our device aquantum eraserin version III, it
reads:

The point is in the termphysically analogous, not the
same. In version III, it is not the rearrangement of the ph
tons into doubles~that may go into the upper or into th
lower port!, see version I, that takes place. It is another
arrangement. If one had beam-splitting analyzers instea
the one-way ordinary ones, one would ‘‘see’’ in the expe
ment what Eq.~7! tells us: that out of the foura priori
possibilities only two take place. The pairs of photons g
rearranged so that only the opposite-decision cases displ
in Eq. ~7! occur.

To put it shortly, though in version III we arenot dealing
with a quantum eraser in the strict sensebecause it does no
revive strictly thesame interference phenomenon,it is a
quantum eraserin a somewhatbroader sensebecause it re-
vives aphysically analogous interference phenomenon.

IV. COINCIDENCE PROBABILITY IN CASE
OF INDEPENDENT ARBITRARY ANALYZER

ANGLES uU AND uL

The only generalization we introduce now is allowing t
analyzer anglesuU and uL in the two ports to be arbitrary
~independently of each other!. Since nothing is changed in
the interferometer, the state vectorux&12 that describes the
two-photon system entering the two ports is still given
Eq. ~3!.

The probability of coincidencepc(uU ,uL) is the square
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934 56FEDOR HERBUT AND MILAN VUJIČIĆ
norm of the projection ofux&12 with the ~symmetrized! pro-
jector

P12
co~uU ,uL![uuU&1uuL&2^uUu1^uLu2^ uU&1uL&2^Uu1^Lu2

1uuL&1uuU&2^uLu1^uUu2^ uL&1uU&2^Lu1^Uu2
~8!

the occurrence~result 1 in measurement! of which means
passage through both analyzers.

Straightforward evaluation with the help of Eq.~3! and
~8! gives

P12
co~uU ,uL!ux&12

5821/2$~^uLu1uH&1^uUu2uV&2

2^uLu1uV&1^uUu2uH&2!uuL&1uuU&2uL&1uU&2)

2~^uUu1uH&1^uLu2uV&2

2^uUu1uV&1^uLu2uH&2!uuU&1uuL&2uU&1uL&2%.

It is now suitable to decompose the linear-polarizat
state vectorsuH& and uV& along a linear-polarization stat
uuX& and its perpendicularuuX190°&, whereX[U,L @cf.
Eq. ~5!#, and make substitution in the last relation

P12
co~uU ,uL!ux&125821/2$~cosuLsinuU

2sinuLcosuU!uuL&1uuU&2uL&1uU&2

2~cosuUsinuL2sinuUcosuL!

3uuU&1uuL&2uU&1uL&2%

5821/2$sin~uU2uL!@ uuL&1uuU&2uL&1uU&2

1uuU&1uuL&2uU&1uL&2] %.

Hence,

pc~uU ,uL!5sin2~uU2uL!/4. ~9!

The minimal value ofpc(uU ,uL) is zero. This is the case
discussed in the preceding section. The maximal valu
~1/4!. The probability to obtain coincidence photons~in con-
trast to doubles! is 1/2 @cf. Eq. ~3!#. And, in the maximal-
value case, 1/2 is also the probability of coincidence a
passing the analyzers with the anglesuU and uL[uU
190°. We discuss the nonlocality inherent in this claim
the end of Sec. V.

V. COMPLETE DECOUPLING
IN THE GENERAL CASE

If one puts a half-wave plate in the lower arm of th
interferometer with its optical axis atf/2, 0,f<90°, i.e., if
the lower-arm photon is polarized at the anglef ~with the
horizontal plane!, then we have the general case.

Now we write the two-photon state vector in the po
~before reaching the possible analyzers! as ux,f&12. We
must start with generalizing Eq.~2!
is

r

t

ux,f&12[~1/8!1/2$~ i uH&1uU&11uH&1uL&1)

^ ~ i uf&2uL&21uf&21uf&2uU&2)

1~ i uf&1uL&11uf&1uU&1)^ ~ i uH&2uU&2

1uH&2uL&2)%.

~The normalization factor is not obvious because the ei
two-photon terms are not all orthonormal. But, utilizin
^Huf&5cosf, one easily evaluates that, neverthele
^x,fu12ux,f&1251.! Again, the entanglement comes fro
symmetrization.

Rearrangement of the tensor factors as in Sec. II lead

ux,f&125~1/8!1/2i $~ uH&1uf&21uf&1uH&2)

^ ~ uU&1uU&21uL&1uL&2)1~ uH&1uf22uf&1uH&2)

^ ~ uL&1uU&2)2uU&1uL&2)%.

It is useful to normalize the two-photon polarization a
spatial tensor factors~writing the state vectors in squar
brackets!

ux,f&125 i „~11cos2f!/2…1/2@„2~11cos2f!…21/2

3„uH&1uf&21uf&1uH&2…]

^ @221/2
„uU&1uU&21uL&1uL&2…]

1221/2sinf@221/2sin21f

3„uH&1uf&22uf&1uH&2…]

^ @221/2
„uL&1uU&22uU&1uL&2…]. ~10!

The second~i.e., the spatial two-photon! tensor factors in
Eq. ~10! are orthogonal, hence the probability ofcoincidence
~in contrast to detection of two photons in the same detec!
without polarizers in the ports, i.e., ofpure (complete or
partial) loss of interferenceis obviously

dli5sin2f/2. ~11!

We call thisdegree of loss of interference.
In the extreme case off[90° ~when f is replaced by

V!, this probability is one-half. This is the case ofcomplete
loss of interferencebecause we have the same probabil
when the interferometer is unbalanced, i.e., when, e.g.,
reflected spatial statei uU& coming from the upper arm an
the transmitted stateuU& coming from the lower arm are
nonoverlapping~the time difference of arrival is larger tha
the coherence time!, i.e., when these state vectors are o
thogonal~hence distinct!. Then, as an obvious consequen
of the equal probability of reflection and transmission on
beam splitter, half of the photons gives coincidence and h
of them goes into doubles~both photons in the same port!.

The other extreme, whenf[0° ~whenf is replaced by
H!, makes the second term in Eq.~10! disappear. The prob
ability is zero and we haveinterference. If 0,f,90°, we
havepartial loss of interference, i.e., the degree of loss o
interferenced1i is larger than zero but smaller than one-ha
So much for the case ofpure interferenceandloss of it. As it
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was stated, we have this case as long as we do not put in
uU and uL polarizers in the upper and the lower detec
ports, respectively.

Decomposinguf& along uH& and uV&, i.e., substituting
uf&5cosfuH&1sinfuV& in the first tensor factor state vecto
in the second term in Eq.~10!, and utilizing Eq.~11!, one
obtains, perhaps surprisingly.

ux,f&125 i „~11cos2f!/2…1/2@„2~11cos2f!…21/2

3„uH&1uf&21uf&1uH&2…]

^ @221/2
„uU&1uU&21uL&1uL&2…]

1„dli…
1/2sinf@221/2

„uV&1uH&22uH&1uV&2…]

^ @221/2
„uL&1uU&22uU&1uL&2…]. ~12!

The composite two-photon state vector in the seco
term, which corresponds to the coincidence photons that
are interested in, is thesameas in Eq.~3!, when we had
f[90°. They only differ in the expansion coefficient.

Thus, we havecomplete decouplingof the coincidence
events in the ports from the loss of interference. This dec
pling is anothertwo-particle interference phenomenon, be-
cause it is the result of superposition of tensor products.

One may wonder if the horizontal plane plays
privileged role in the two-photon polarization sta
@221/2(uV&1uH&22uH&1uV&2)] in Eq. ~12! or it only appears
so. The latter is the case, because, substituting here Eq~5!,
this same~tensor factor! state vector becomes

@221/2~ uu190°&1uu&22uu&1uu190°&2)] ~13!

with an arbitrary angleu.
Two-term entanglement in a two-photon polarization st

vector of the concrete form

@221/2~ uV&1uH&22uH&1uV&2)]

has been investigated experimentally before, in
positronium-annihilation experiments of Kasday, Ullm
and Wu@5,6#. ~It is a variation of the Wu-Shaknov exper
ment @7# from 1950. See also the review article@8#.!

It is a technical advantage of the Kwiat, Steinberg, a
Chiao experiment@2# ~for polarization analysis and detec
tion! that the photons are not of such a high energy as in
Kasday, Ullman, and Wu experiments.

The coincidence probabilitypc(f,uu ,uL), in the general
case, is the square of the projection ofux,f&12 @given by Eq.
A

s.
the
r

d
e

u-

e

e

d

e

~12!# with P12
co(uU ,uL) @cf. Eq. ~8!#. Evidently, only the sec-

ond term in Eq.~12! is relevant, and it differs fromux&12
given by Eq.~3! only by the factor sinf. Hence, obviously,

pc~f,uU ,uL!5sin2fpc~uU ,uL!,

and, finally, utilzing Eq.~9!, one obtains

pc~f,uU ,uL!5~1/4!sin2f sin2~uU2uL!. ~14!

Naturally, the described decoupling of the coinciden
events in the ports from the loss of interference is seen
in Eq. ~14!. The probability pc(f,uU ,uL) generalizes
pc(uU ,uL), which is valid forf590°. Relation~14! equals
Eq. ~A5! in @2# except for the factor~1/4! @9#.

Conceptually, Eq. ~14! should be read as follows
(sin2f/2) is the probability of coincidence photons~in con-
trast to doubles!, as seen from Eq.~11!, and „sin2(uU
2uL)/2… is the probability that both photons pass the resp
tive analyzers on the condition that the photons are alre
in one port each.@Note that in Eq.~9! ~1/2! is the probability
of this condition and the conditional probability is the sam
as in Eq.~14!.#

There is a strikingnonlocality inherent in the conditiona
probability „sin2(uU2uL)/2…. To see it, we imagine that th
photon in the lower port reaches its analyzer~after some
detour! somewhat later than the photon in the upper po
The latter one has a probability of 1/2 of passing theuU
analyzer@as obvious from Eq.~13!, which can replace the
two-photon polarization tensor factor state vector in the s
ond term in Eq.~12!#. TakinguL[uU190°, the conditional
probability is ~1/2!. Hence, the photon in the lower port ha
a probability 1 to pass its analyzer. Namely, this photon
by the very act of the upper port photon’s passage through
polarizer,distantly polarizedin the stateuuU190°&.

Distant polarization is a special case of distant prepara
~as one calls nowadays Schro¨dinger’s ‘‘steering’’ @10#.! In
our version above of the general case with the lower-p
photon having a detour, after passage of the upper-port p
ton through itsuU analyzer, the former photon is distant
polarized in the stateuuU190°& @cf. Eq. ~13! replaced in Eq.
~12!#. The probability of passage through theuL analyzer is
precisely „sin2(uU2uL)/2… as easily seen. Thus, in genera
the entire nonlocal phenomenon consists in the distant po
ization. It comes about without interaction~between the two
photons or between the upper-port analyzer and the low
port photon! in an apparently magic quantum-mechanic
way.
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