PHYSICAL REVIEW A VOLUME 56, NUMBER 1 JULY 1997

Alternative approach to electromagnetic field quantization in nonlinear
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A simple approach is proposed for the quantization of the electromagnetic field in nonlinear and inhomo-
geneous media. Given the dielectric function and nonlinear susceptibilities, the Hamiltonian of the electromag-
netic field is determined completely by this quantization method. From Heisenberg’'s equations we derive
Maxwell's equations for the field operators. When the nonlinearity goes to zero, this quantization method
returns to the generalized canonical quantization procedure for linear inhomogeneougRhgdidRev. A43,

467 (1991)]. The explicit Hamiltonians for the second-order and third-order nonlinear quasi-steady-state pro-
cesses are obtained based on this quantization procé®1:@50-29407)05107-X]

PACS numbgs): 42.50.Ct, 03.70+k, 42.65—k, 11.10.Lm

I. INTRODUCTION guantization of the second-order and third-order nonlinear
quasi-steady-state processes and we obtain the explicit
Early guantization of the electromagnetic field is per-Hamiltonians. Though these Hamiltonians are already in
formed in empty cavities or in infinite free spal. How-  wide use in quantum optics, their derivations are mainly
ever, with the growth of interest in quantum optical phenom-based on the early quantization procedure by SHe22,23
ena taking place inside material media, several approaché&$d known by now to be inconsistent with the nonlinear field
have been proposed for quantization of the electromagnetigduations[9]. So here we give a justification for these
field in nonlinear, inhomogeneous, or dispersive medidiamiltonians. , _
[2—21]. Early attempts towards quantization of the nonlinear 1 h€ arrangement of the paper is as follows. The quanti-
media, while incorporating the known linear theory, did notZation procedure is proposed in Sec. Il. Given dielectric ten-
fully reproduce the nonlinear field equatio. An innova- SO and nonlinear s_usceptlbllltles,_ thls_quantlzatlon procedure
tive treatment was first proposed by Hillery and Mlodinow, COmpletely determines the Hamiltonian of the electromag-
who successfully quantized a nonlinear medium by introducnetic field, which is expressed by annihilation and creation
ing the dual potentia[6]. Later, Drummond extended the operators. Then we denvg Maxwell’s equations from Heisen-
Hillery-Mlodinow procedure to include dispersive mefed. ~ Perg’s equations for the field operators. In Sec. Ill, we show
There are also other approaches in this direction. Glaubdpat this quantization procedure returns to the generalized
and Lewenstein generalized the canonical quantizatiof@nonical quantization method, as described in Ret],
method by modifying the gauge condition to deal with thewhen the medium is I|_near. The expl_|C|t Ham|lto_n|ans of the
inhomogeneous linear medfd1]. Abram and Cohen, fol- second-order and _th|rd—.order nonlinear quas_,l-st.eady—sta_te
lowing the canonical quantization procedure, presented RrOcesses are obtained in Sec. IV by the application of this
quantum formulation for light propagation in nonlinear ef- duantization procedure.
fective medigd 12]. And recently, Santos and Loudon gave an

alternative approach to the quantization of the electromag- Il. QUANTIZATION IN THE PRESENCE

netic field in linear one—dlmensm.nal (j|sper§|ve me(dig]. OF NONLINEAR MEDIA

Developments toward the absorbing dielectrics also appeared _ o _ _
[20,21]. We consider the electromagnetic field in nonlinear media,

In this paper, we propose a relatively simple approach tgvhich may be inhomogeneous. The source-free Maxwell
the electromagnetic field quantization in nonlinear and inho€quations in matter take the forrf4]
mogeneous media. The procedure follows R&t] in using
the material independence of the commutation relations for V.D=0, (1)
the fieldsD andB, pointed out by Born and Infelf2], as a
starting point in the quantization. We extend this to include

nonlinear media, in whictD and B can be expressed as v-B=0, @
isochronous functionals of the fiel#&andH. D andB are )
expanded into the mode functions. Furthermore, we explic- 10D Y xH 3
itly derive Maxwell's equations for the field operators from c ot vxH )
Heisenberg’'s equations. This procedure is applied to the
L 58 VXE 4
——=—-VXE.
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In nonlinear mediaD (t) andB(t) are complicated nonlinear In addition, the functiong,,(r) satisfy transversality, ortho-

functionals ofE(t) andH(t). From the Maxwell equations, Nnormality, and completeness conditions
the energy density of the electromagnetic field in nonlin- .
ear media is determined by V- fi.=0, (12

U(r,H=E(r,t)-dB(r,t) + H(r t)-dB(r,t).  (5) f QT (P (1) = B 8, B3 13
The Hamiltonian(or the energyis
_ o 2 e (Ofi (M =85r=r), (14
H=f d3ru(r,t). (6) ku
where the transverse delta functiéq is defined as
For the electromagnetic field in linear media, the canonical
guantization method is generally used. The vector potential 1 f 5 kikj\ . ; 15
A is chosen as the general coordinate and the Coulumb (r) (2m)3 1% |2 e (15
gaugeV - A=0 is often usedA and its conjugate momentum _ N
can be expanded into a set of transverse complete spati&he transversality conditioil2) makes the completeness

functions and the expansion coefficients are expressed kyguation offkﬂ(r) take the form of Eq(14). In free space,
annihilation and creation operators. Then, substituting thehe plane wave is chosen as the expansion function

expansions ofA and its conjugate momentum into the

Hamiltonian, one achieves quantization of the electromag- fo ()= 1 é: ekt (16)
netic field in linear media. However, for the nonlinear media, Ku (277)3;2 ku '

the canonical quantization becomes much more involded.

and E were chosen as the canonical variables in the earijVhere the unit vectorsg,,
treatments, which did not incorporate Ed). In fact, no o
rigorous approach had been proposed for nonlinear media k‘eku_o- (17

until Hillery and Mlodinow introduced the dual potential and The expansion&?) and(8) have the same forms as those
then followed the canonical quantization procedure. Here, .. pan X
in linear media. We further suppose that the expansion coef-

inspired by the result in Ref11] that the fieldsD andB  ficient operators satisfy the same commutation relations. So,
have medium-independent commutation relations in inhomo-

geneous linear media, we choose the figkdand B, rather [Qku(D),Pr (D ]=1h 65, - (18

thanE or A, as the starting point of the electromagnetic field

quantization. This choice is also consistent with the results i he f|9|dSE(r t) and H(r,t) can be expressed by(r,t)

Refs.[6,9,17, where the field was found to be the canoni- and B(r,t) from the nonlinear functional relations between

cal momentum. Starting from the mode expansions of théhem. From Eqs(5) and(6), the Hamiltonian of the electro-

fieldsD andB, we can present a concise formulation of themagnetic field becomes a nonlinear functionalDdf ,t) and

quantization and a clear derivation of Maxwell's equationsB(r ,t). After substituting the expansiortg) and (8) into it,

for the field operators. we get the Hamiltonian, which is expressed by annihilation
From Egs.(1) and (2), the fieldsD and B can be ex- and creation operators. Given the functional relations be-

panded into a set of transverse complete spatial functionsveenE(r,t), H(r,t) andD(r,t), B(r,t), the Hamiltonian

(u=1,2) satisfy

{FK#(F)} and{ﬁxfgﬂ(F)}, respectively, form is completely determined by this quantization proce-
dure.
Now we show how reasonable the quantization method is.
D(r,t)= E Pk#(t)f (r), (7)  Comparing Eqs(7), (8), and (18) with the corresponding

equations in Ref[11], we know that when the nonlinearity
goes to zero the above procedure returns to the generalized
B(r,tH)=c>, Qgﬂ(t)€XF§ﬂ(F). (8)  canonical quantization method. Furthermore, this quantiza-
K tion gives the correct Maxwell equations. In the following,
we derive Maxwell's equations for the field operators from
The expansion functions and coefficients satisfy HermitiarHeisenberg’s equations.

conditions From the transversality of the expansion functidgg,
. R the first two Maxwell equation$l) and (2) are obviously
fEﬂ=f,,;M, (9) satisfied. Equation&7), (8) and (14), (18) give the commu-

tator of the field operator§ andB:

Qp,=Q i (10 S L
[Di(r,t),Bj(r ,0)]=ihc(VX)j(r—r). (19

ku ke - (11 In the derivation, the following relations are used:
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) ) 1 ) K\ - tion. The derivation holds for linear or nonlinear media.
(VX 8N);(N=2> 8imn5mﬁf d3k( Snj— Ez')e'k'r However, for dispersive media, nonlocal relations in time
mn (2m) K between the Hamiltoniahi and the fieldD,B arise and the
1 R . isochronous commutatof22),(23) cannot be applied in this
:2 gimnamﬁf d?’k&nje'k'r case. Here we meet the long-standing difficulty in quantum
mn (2m) optics in quantizing nonlinear and dispersive dielectrics.

= (VX 8);j(r) (20
IIl. QUANTIZATION OF THE ELECTROMAGNETIC
and FIELD IN LINEAR INHOMOGENEOUS MEDIA

In this section we use the above method to quantize the
electromagnetic field in linear inhomogeneous media. The
medium is characterized by

(V' X8)(r=r")=—=(Vx&);(r—r)

>

= _E “/‘jmné’mani(F_r )
mn

. Di(r,)=2 &;(NE;(r,b), (26)
= =2 &jmidmd(1 1) :

I - B(r,t)=H(r,t). (27
=§m‘, Eimidmd(T—1 )=(VX ), (r—r).
21) The Hamiltonian(or the energyis

The commutato19) has been given in Ref12] in one- ~ 3>
. ) . H=-| d°r
dimensional form. Here we extend it to the general case. 2

From the commutatof19), the commutator betweeD or

B and an arbitrary functiondf(D,B) of D andB, which | free space, the expansion functity), is expressed by
may be nonlinear, can be expressed by functional denvauoEq (16). Substituting the expansior@) and (8) into Eq.
as follows: (28) and noting

B2+, sileiDj). (28
i

[D(F.0).Fl=iticS epdm——F, (22 no\
ilr,b),F|= < €imn mﬁBn(F,t) ) QQM(t):( ’) (a,;#+aigﬂ), (29
ZwKM
B‘ _)1 ;F :_ﬁ imn m—eF. 23 . h " 12
[BUT.D.F1=—ife 2y eimdn o = F. (23 Pmt):l( 2| (@t -alg,), (30)

From these two equations and from EgS) and (6), the . -
Heisenberg equations of the field operarandB take the ~Wherewg, =[K|c, we get the Hamiltonian expressed by an-

forms nihilation and creation operators:
1D, 1 . ~ : h
= Dy(f )] H=2 hogaagt 72 2 Vogor,
c ot ihc Ka K 4
b au(r,t) X[V* (kKhal al  —V* (k,—K)al ap, +H.c]
:2 8imnr7m—_>H=2 Eimndm—=_ mp ku“k' w pp ku Ok p el
mn SBy(r,t)  mn dBn(r,t) (3D
> B _ . o
Ta < 8imnamHia_Bn_(V><"|)i : (24 whereV,,,’ is defined by
Similarly, I 1 . I o -
Y V. (KK ):WJ dreg, (1—e 1) g, ekl
LB wxE 25 (32
o ( )i - (295

If the second-order tensar ! is a scalar,él;ﬂ~é,;'M' in Eq.
So we have clearly derived Maxwell's equations for the field(32) can be put out of the integration. This case had been
operators from Heisenberg's equations. The isochronoudiscussed in detail in Ref11] by the generalized canonical
commutators(22),(23) play an essential role in the deriva- quantization method. Here we get the same results.
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IV. QUANTIZATION OF THE QUASI-STEADY-STATE where y(?) is the second-order nonlinear susceptibility and
OPTICAL FIELD IN NONLINEAR MEDIA n?(w3) is introduced phenomenologically to show that the

In this section we consider quantization of the quasi-component of the optical fielg®)(t) has been viewed as a
steady-state optical field in nonlinear media. The second®onochromatic field with frequency  ws.
order or third-order nonlinear process is most importanD®(t) and DX)(t) have similar expressions. From these
[25,23. First we apply the quantization method to the para-equationsE™(t) (i =1,2,3) may be expressed Bf)(t) as
metric process. The optical field is composed of three quasi-
monochromatic fields with central frequencies ,w,,ws,

respectively, andoz=w;+ w5, i.e., . D)t R -
s EG)(t)= — ( )—y(z)(w3=w1+w2):D(1)(t)D(2)(t), etc.,
3 n“(w3)
E(t)=2, ED(t)e '@+ H.c., (33 (35
i=1
| where

where E((t) is a slowly varying amplitude. Under the
quasi-steady-state approximation, the teEf(t)e~ it in Y (w3=w;+ wy)=
Eq. (33) can be viewed as a monochromatic field with fre-

uency w;, i.e., the dispersion of the optical field in the _
(rqnediu?/n is negligible. SlFJ)ppose the refragtive index is inde- Xx P @3= w3t ;). 36)
pendent of the orientation of space. Then the fil@(t)
can be expressed B/(t). For example,

1
nz(wl)ﬂz(wz)nz(ws)

In the derivation of Eq(35), the approximation that the non-
linear terms are much smaller than the linear terms is used.
5(3)(t)=n2(w3)ﬁ(3)(t) Substituting Eq.(35) into Egs.(5) and (6) and making the
rotating wave approximation, we get the Hamiltonian of the
+xP(wg= w1+ wy):EP(EP (1), (34  electromagnetic field, which is expressedbyand B:

S (i) —iwjt 2
'H-':Ef d3;[2 [(D (t)sz(wi;'H-C-) +(é(i)(t)e_iwit+H.C.)2:|

—2[YP(w3= w1+ w,) : DT D@ (1) DD(t) + H.c.]] . (37)

In the derivation, the holo-exchange symmetry of the tensoBubstituting Eqs(38) and (39) into Eg. (37), we get the
x® has been used. In the expansi¢fsand(8) of the fields  Hamiltonian expressed by annihilation and creation opera-
D, B, only the terms with the subscripi|=k;, where tors:

ki=[n(w;)w;]/c, (i=1,2,3), make contributions to the inter-

action. So the expansions can be simplified to

Ikil =k; 3
~_ -r =
ﬁwinz(wi) H= z =1 hwiaRiMiakiMi

DO (t)e feit=j > ﬂz#a~ (1), Ky kp,Kg M1:t2.43 |1
N

(O 1 K g g By Kk Bgpsp Oy pay THAC |

o . h S

BO(t)e ioit=c\/s—7— VX f,ag.(t). (4D
( ) Zwinz(wi) ||Z|=ki % ku k,u.( )

where the constang (called the phase-matching factds

The functionf;, can be decomposed dg,=fi(r)-€;,, defined as

wheref(r) satisfies the eigenequation

- > -, S ’f = = 37
V2£4(1) =~ [KI2Fe(). (40 Prikoks Nf AR 42
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andV is the volume of the nonlinear media. The constant The optical field in the third-order nonlinear medium can

ais be quantized in a similar way. For example, the Hamiltonian
of the nondegenerate four-wave-mixing proc¢28] with
o \/ 101003 w3t W= w1+ wy IS
Hambanans™ N VN2 w)n(wp)n%(ws)

) B Lo e s
XX P (w3= w1+ wy) P s

4
> hoal ag
= %k K

Iki| =k
A-s s

(43 Ky Ko .Ka, Ky 41:K2.13 Mg

+

nditi rmin h larization-matchin ndition A ReR.ar
and it is dete ed by the polarization-matching conditio +(akll‘1kzl‘2k3l‘3k4%’“4ﬁk1k2k3k4ak3#3

of the optical field. Wherﬁl,lzz,lzg are collinear, the Hamil-

tonian (41) can be simplified. Suppose the polarizations of N
the optical fields are givefindicated byu;,u,, 3, respec- Xag , Bkou Ak, HHC) (47)
tively) andk; =k;e, (i=1,2,3), whereg, is the unit vector of
the z axis. The expansion function is approximately a planevhere
wave, i.e.,
) o ikiz Bi i, =V J e e fe, T, 0 (48)
fi (1) =S (Xy)—=, (44)
L and
wherelL is the interaction length. Let; represent the opera- . . .
tor a ,’ and Xk puykopoKangkymg
_ | \/ ﬁ4w1w2w3w4
V(. 16V2n?(w1)N*(wo)N*(w3)N*(w,)
a= @ uikouikguy N T | SkgSke Sk dXdY. (45)
X ¥ wy=— w3t Wyt wq) i ey ef ég é,; .
Then, the Hamiltoniari41) is simplified to Karta gt 2k2 0k (49
3 (AKL The Hamiltoniang41) and (47) provide the foundation for
FI=E hoala+! a- € _1aTa a.+H.c (46) analyzing quantum properties of the parametric or four-
3T AKL “872%R Tl wave-mixing process.
where the phase mismatd&tk=Kk; + k,— k3. Equation(46) is ACKNOWLEDGMENT

often used to analyze quantum properties of the parametric
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