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Alternative approach to electromagnetic field quantization in nonlinear
and inhomogeneous media

Lu-Ming Duan and Guang-Can Guo*

Physics Department and Nonlinear Science Center, University of Science and Technology of China,
Hefei, Anhui 230026, People’s Republic of China
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A simple approach is proposed for the quantization of the electromagnetic field in nonlinear and inhomo-
geneous media. Given the dielectric function and nonlinear susceptibilities, the Hamiltonian of the electromag-
netic field is determined completely by this quantization method. From Heisenberg’s equations we derive
Maxwell’s equations for the field operators. When the nonlinearity goes to zero, this quantization method
returns to the generalized canonical quantization procedure for linear inhomogeneous media@Phys. Rev. A43,
467 ~1991!#. The explicit Hamiltonians for the second-order and third-order nonlinear quasi-steady-state pro-
cesses are obtained based on this quantization procedure.@S1050-2947~97!05107-X#

PACS number~s!: 42.50.Ct, 03.70.1k, 42.65.2k, 11.10.Lm
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I. INTRODUCTION

Early quantization of the electromagnetic field is pe
formed in empty cavities or in infinite free space@1#. How-
ever, with the growth of interest in quantum optical pheno
ena taking place inside material media, several approa
have been proposed for quantization of the electromagn
field in nonlinear, inhomogeneous, or dispersive me
@2–21#. Early attempts towards quantization of the nonline
media, while incorporating the known linear theory, did n
fully reproduce the nonlinear field equations@4#. An innova-
tive treatment was first proposed by Hillery and Mlodino
who successfully quantized a nonlinear medium by introd
ing the dual potential@6#. Later, Drummond extended th
Hillery-Mlodinow procedure to include dispersive media@9#.
There are also other approaches in this direction. Glau
and Lewenstein generalized the canonical quantiza
method by modifying the gauge condition to deal with t
inhomogeneous linear media@11#. Abram and Cohen, fol-
lowing the canonical quantization procedure, presente
quantum formulation for light propagation in nonlinear e
fective media@12#. And recently, Santos and Loudon gave
alternative approach to the quantization of the electrom
netic field in linear one-dimensional dispersive media@19#.
Developments toward the absorbing dielectrics also appe
@20,21#.

In this paper, we propose a relatively simple approach
the electromagnetic field quantization in nonlinear and in
mogeneous media. The procedure follows Ref.@11# in using
the material independence of the commutation relations
the fieldsDW andBW , pointed out by Born and Infeld@2#, as a
starting point in the quantization. We extend this to inclu
nonlinear media, in whichDW and BW can be expressed a
isochronous functionals of the fieldsEW andHW . DW andBW are
expanded into the mode functions. Furthermore, we exp
itly derive Maxwell’s equations for the field operators fro
Heisenberg’s equations. This procedure is applied to
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quantization of the second-order and third-order nonlin
quasi-steady-state processes and we obtain the exp
Hamiltonians. Though these Hamiltonians are already
wide use in quantum optics, their derivations are mai
based on the early quantization procedure by Shen@4,22,23#
and known by now to be inconsistent with the nonlinear fie
equations@9#. So here we give a justification for thes
Hamiltonians.

The arrangement of the paper is as follows. The qua
zation procedure is proposed in Sec. II. Given dielectric t
sor and nonlinear susceptibilities, this quantization proced
completely determines the Hamiltonian of the electrom
netic field, which is expressed by annihilation and creat
operators. Then we derive Maxwell’s equations from Heis
berg’s equations for the field operators. In Sec. III, we sh
that this quantization procedure returns to the generali
canonical quantization method, as described in Ref.@11#,
when the medium is linear. The explicit Hamiltonians of t
second-order and third-order nonlinear quasi-steady-s
processes are obtained in Sec. IV by the application of
quantization procedure.

II. QUANTIZATION IN THE PRESENCE
OF NONLINEAR MEDIA

We consider the electromagnetic field in nonlinear med
which may be inhomogeneous. The source-free Maxw
equations in matter take the forms@24#

¹W •DW 50, ~1!

¹W •BW 50, ~2!

1

c

]DW

]t
5¹W 3HW , ~3!

1

c

]BW

]t
52¹W 3EW . ~4!
925 © 1997 The American Physical Society
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926 56LU-MING DUAN AND GUANG-CAN GUO
In nonlinear media,DW (t) andBW (t) are complicated nonlinea
functionals ofEW (t) andHW (t). From the Maxwell equations
the energy densityU of the electromagnetic field in nonlin
ear media is determined by

dU~rW,t !5EW ~rW,t !•dDW ~rW,t !1HW ~rW,t !•dBW ~rW,t !. ~5!

The Hamiltonian~or the energy! is

H̃5E d3rWU~rW,t !. ~6!

For the electromagnetic field in linear media, the canon
quantization method is generally used. The vector poten
AW is chosen as the general coordinate and the Coulu
gauge¹W •AW 50 is often used.AW and its conjugate momentum
can be expanded into a set of transverse complete sp
functions and the expansion coefficients are expressed
annihilation and creation operators. Then, substituting
expansions ofAW and its conjugate momentum into th
Hamiltonian, one achieves quantization of the electrom
netic field in linear media. However, for the nonlinear med
the canonical quantization becomes much more involvedAW

and EW were chosen as the canonical variables in the e
treatments, which did not incorporate Eq.~1!. In fact, no
rigorous approach had been proposed for nonlinear m
until Hillery and Mlodinow introduced the dual potential an
then followed the canonical quantization procedure. He
inspired by the result in Ref.@11# that the fieldsDW andBW
have medium-independent commutation relations in inhom
geneous linear media, we choose the fieldsDW andBW , rather
thanEW or AW , as the starting point of the electromagnetic fie
quantization. This choice is also consistent with the result
Refs.@6,9,12#, where the fieldDW was found to be the canon
cal momentum. Starting from the mode expansions of
fieldsDW andBW , we can present a concise formulation of t
quantization and a clear derivation of Maxwell’s equatio
for the field operators.

From Eqs.~1! and ~2!, the fieldsDW and BW can be ex-
panded into a set of transverse complete spatial funct

$ fWkWm(rW)% and$¹W 3 fWkWm(rW)%, respectively,

DW ~rW,t !52(
kWm

PkWm~ t ! fWkWm
* ~rW !, ~7!

BW ~rW,t !5c(
kWm

QkWm~ t !¹W 3 fWkWm~rW !. ~8!

The expansion functions and coefficients satisfy Hermit
conditions

fWkWm
* 5 fW2kWm , ~9!

QkWm
†

5Q2kWm , ~10!

PkWm
†

5P2kWm . ~11!
l
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In addition, the functionsfWkWm(rW) satisfy transversality, ortho
normality, and completeness conditions

¹W • fWkWm50, ~12!

E d3rW fWkWm i
* ~rW ! fWkW8m8 j~rW !5dkWkW8dmm8d i j , ~13!

(
kWm

fWkWm i
* ~rW ! fWkWm j~rW8!5d i j

T ~rW2rW8!, ~14!

where the transverse delta functiondT is defined as

d i j
T ~rW !5

1

~2p!3
E d3kW S d i j2

kikj

ukW u2
D eikW•rW. ~15!

The transversality condition~12! makes the completenes
equation offWkWm(rW) take the form of Eq.~14!. In free space,
the plane wave is chosen as the expansion function

fWkWm~rW !5
1

~2p!3/2
eW kWme

ikW•rW, ~16!

where the unit vectorseW kWm (m51,2) satisfy

kW•eW kWm50. ~17!

The expansions~7! and~8! have the same forms as thos
in linear media. We further suppose that the expansion c
ficient operators satisfy the same commutation relations.

@QkWm~ t !,PkW8m8~ t !#5 i\dkWkW8dmm8 . ~18!

The fieldsEW (rW,t) andHW (rW,t) can be expressed byDW (rW,t)
andBW (rW,t) from the nonlinear functional relations betwee
them. From Eqs.~5! and~6!, the Hamiltonian of the electro
magnetic field becomes a nonlinear functional ofDW (rW,t) and
BW (rW,t). After substituting the expansions~7! and ~8! into it,
we get the Hamiltonian, which is expressed by annihilat
and creation operators. Given the functional relations
tweenEW (rW,t), HW (rW,t) andDW (rW,t), BW (rW,t), the Hamiltonian
form is completely determined by this quantization proc
dure.

Now we show how reasonable the quantization method
Comparing Eqs.~7!, ~8!, and ~18! with the corresponding
equations in Ref.@11#, we know that when the nonlinearit
goes to zero the above procedure returns to the genera
canonical quantization method. Furthermore, this quant
tion gives the correct Maxwell equations. In the followin
we derive Maxwell’s equations for the field operators fro
Heisenberg’s equations.

From the transversality of the expansion functionsfWkWm ,
the first two Maxwell equations~1! and ~2! are obviously
satisfied. Equations~7!, ~8! and ~14!, ~18! give the commu-
tator of the field operatorsDW andBW :

@Di~rW,t !,Bj~rW8,t !#5 i\c~¹W 3d! i j ~rW2rW8!. ~19!

In the derivation, the following relations are used:
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56 927ALTERNATIVE APPROACH TO ELECTROMAGNETIC . . .
~¹W 3dT! i j ~rW !5(
mn

« imn]m
1

~2p!3
E d3kW S dn j2

knkj

ukW u2
D eikW•rW

5(
mn

« imn]m
1

~2p!3
E d3kWdn je

ikW•rW

5~¹W 3d! i j ~rW ! ~20!

and

~¹W 83d! j i ~rW2rW8!52~¹W 3d! j i ~rW2rW8!

52(
mn

« jmn]mdni~rW2rW8!

52(
m

« jmi]md~rW2rW8!

5(
m

« im j]md~rW2rW8!5~¹W 3d! i j ~rW2rW8!.

~21!

The commutator~19! has been given in Ref.@12# in one-
dimensional form. Here we extend it to the general ca
From the commutator~19!, the commutator betweenDW or
BW and an arbitrary functionalF(DW ,BW ) of DW andBW , which
may be nonlinear, can be expressed by functional deriva
as follows:

@Di~rW,t !,F#5 i\c(
mn

« imn]m
d

dBn~rW,t !
F, ~22!

@Bi~rW,t !,F#52 i\c(
mn

« imn]m
d

dDn~rW,t !
F. ~23!

From these two equations and from Eqs.~5! and ~6!, the
Heisenberg equations of the field operatorsDW andBW take the
forms

1

c

]Di

]t
5

1

i\c
@Di~rW,t !,H̃#

5(
mn

« imn]m
d

dBn~rW,t !
H̃5(

mn
« imn]m

]U~rW,t !

]Bn~rW,t !

5(
mn

(
j

« imn]mH j

]Bj

]Bn
5~¹W 3HW ! i . ~24!

Similarly,

1

c

]Bi

]t
52~¹W 3EW ! i . ~25!

So we have clearly derived Maxwell’s equations for the fie
operators from Heisenberg’s equations. The isochron
commutators~22!,~23! play an essential role in the deriva
e.

n

us

tion. The derivation holds for linear or nonlinear med
However, for dispersive media, nonlocal relations in tim
between the HamiltonianH̃ and the fieldsDW ,BW arise and the
isochronous commutators~22!,~23! cannot be applied in this
case. Here we meet the long-standing difficulty in quant
optics in quantizing nonlinear and dispersive dielectrics.

III. QUANTIZATION OF THE ELECTROMAGNETIC
FIELD IN LINEAR INHOMOGENEOUS MEDIA

In this section we use the above method to quantize
electromagnetic field in linear inhomogeneous media. T
medium is characterized by

Di~rW,t !5(
j

« i j ~rW !Ej~rW,t !, ~26!

BW ~rW,t !5HW ~rW,t !. ~27!

The Hamiltonian~or the energy! is

H̃5
1

2E d3rWSBW 21(
i j

« i j
21DiD j D . ~28!

In free space, the expansion functionfWkWm is expressed by
Eq. ~16!. Substituting the expansions~7! and ~8! into Eq.
~28! and noting

QkWm~ t !5S \

2vkWm
D 1/2~akWm1a

2kWm
†

!, ~29!

PkWm~ t !5 i S \vkWm

2 D 1/2~akWm
†

2a2kWm!, ~30!

wherevkWm5ukW uc, we get the Hamiltonian expressed by a
nihilation and creation operators:

H̃5(
kWm

\vkWmakWm
†
akWm1

\

4(kWm
(
kW8m8

AvkWmvkW8m8

3@V
mm8
* ~kW ,kW 8!akWm

†
a
kW8m8
†

2V
mm8
* ~kW ,2kW 8!akWm

†
akW8m81H.c.#,

~31!

whereVmm8 is defined by

Vmm8~kW ,kW 8!5
1

~2p!3
E d3rWeW kWm•~12e21!•eW kW8m8ei ~k

W1kW8!•rW.

~32!

If the second-order tensor«21 is a scalar,eW kWm•eW kW8m8 in Eq.
~32! can be put out of the integration. This case had be
discussed in detail in Ref.@11# by the generalized canonica
quantization method. Here we get the same results.
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IV. QUANTIZATION OF THE QUASI-STEADY-STATE
OPTICAL FIELD IN NONLINEAR MEDIA

In this section we consider quantization of the qua
steady-state optical field in nonlinear media. The seco
order or third-order nonlinear process is most import
@25,23#. First we apply the quantization method to the pa
metric process. The optical field is composed of three qu
monochromatic fields with central frequenciesv1 ,v2 ,v3,
respectively, andv35v11v2, i.e.,

EW ~ t !5(
i51

3

EW ~ i !~ t !e2 iv i t1H.c., ~33!

where EW ( i )(t) is a slowly varying amplitude. Under th
quasi-steady-state approximation, the termEW ( i )(t)e2 iv i t in
Eq. ~33! can be viewed as a monochromatic field with fr
quencyv i , i.e., the dispersion of the optical field in th
medium is negligible. Suppose the refractive index is in
pendent of the orientation of space. Then the fieldDW ( i )(t)
can be expressed byEW ( i )(t). For example,

DW ~3!~ t !5n2~v3!EW
~3!~ t !

1x~2!~v35v11v2!:EW
~1!~ t !EW ~2!~ t !, ~34!
so

r-
-
d-
t
-
i-

-

wherex (2) is the second-order nonlinear susceptibility a
n2(v3) is introduced phenomenologically to show that t
component of the optical fieldEW (3)(t) has been viewed as
monochromatic field with frequency v3.
DW (2)(t) and DW (1)(t) have similar expressions. From the
equations,EW ( i )(t) ( i51,2,3) may be expressed byDW ( i )(t) as

EW ~3!~ t !5
DW ~3!~ t !

n2~v3!
2g~2!~v35v11v2!:DW

~1!~ t !DW ~2!~ t !, etc.,

~35!

where

g~2!~v35v11v2!5
1

n2~v1!n
2~v2!n

2~v3!

3x~2!~v35v11v2!.
~36!

In the derivation of Eq.~35!, the approximation that the non
linear terms are much smaller than the linear terms is us
Substituting Eq.~35! into Eqs.~5! and ~6! and making the
rotating wave approximation, we get the Hamiltonian of t
electromagnetic field, which is expressed byDW andBW :
H̃5
1

2E d3rWH (
i51

3 F ~DW ~ i !~ t !e2 iv i t1H.c.!2

n2~v i !
1~BW ~ i !~ t !e2 iv i t1H.c.!2G

22@g~2!~v35v11v2!ADW ~3!†~ t !DW ~2!~ t !DW ~1!~ t !1H.c.#J . ~37!
ra-

In the derivation, the holo-exchange symmetry of the ten
x (2) has been used. In the expansions~7! and~8! of the fields
DW , BW , only the terms with the subscriptsukW u5ki , where
ki5@n(v i)v i #/c, (i51,2,3), make contributions to the inte
action. So the expansions can be simplified to

DW ~ i !~ t !e2 iv i t5 iA\v in
2~v i !

2 (
ukW u5ki

(
m

fWkWmakWm~ t !,

~38!

BW ~ i !~ t !e2 iv i t5cA \

2v in
2~v i !

(
ukW u5ki

(
m

¹W 3 fWkWmakWm~ t !.

~39!

The function fWkWm can be decomposed asfWkWm5 f kW(rW)•eW kWm ,
where f kW(rW) satisfies the eigenequation

¹2f kW~rW !52ukW u2f kW~rW !. ~40!
rSubstituting Eqs.~38! and ~39! into Eq. ~37!, we get the
Hamiltonian expressed by annihilation and creation ope
tors:

H̃5 (
kW1 ,k

W
2 ,k

W
3

ukW i u5ki

(
m1 ,m2 ,m3

F(
i51

3

\v iakW im i

†
akW im i

1~akW1m1k
W
2m2k

W
3m3

bkW1k
W
2k

W
3
akW3m3

†
akW2m2

akW1m1
1H.c.!G ,

~41!

where the constantb ~called the phase-matching factor! is
defined as

bkW1k
W
2k

W
3
5AVE f kW3

* f kW2f kW1d
3rW ~42!
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andV is the volume of the nonlinear media. The consta
a is

akW1m1k
W
2m2k

W
3m3

52 iA \3v1v2v3

8Vn2~v1!n
2~v2!n

2~v3!

3x~2!~v35v11v2!AeW kW3m3
* eW kW2m2

eW kW1m1

~43!

and it is determined by the polarization-matching condit
of the optical field. WhenkW1 ,kW2 ,kW3 are collinear, the Hamil-
tonian ~41! can be simplified. Suppose the polarizations
the optical fields are given~indicated bym1

8 ,m2
8 ,m3

8 , respec-

tively! andkW i5kieW z ( i51,2,3), whereeW z is the unit vector of
the z axis. The expansion function is approximately a pla
wave, i.e.,

f ki~r
W !5Ski~x,y!

e2 iki z

AL
, ~44!

whereL is the interaction length. Letai represent the opera
tor akim i

8 and

a5ak1m
1
8k2m

2
8k3m

3
8AV

LE Sk3
* Sk2Sk1dxdy. ~45!

Then, the Hamiltonian~41! is simplified to

H̃5(
i51

3

\v iai
†ai1S a•

eiDkL21

iDkL
a3
†a2a11H.c.D , ~46!

where the phase mismatchDk5k11k22k3. Equation~46! is
often used to analyze quantum properties of the param
process@26–28#. Here we give its exact derivation and d
termine the expression of the parametera.
n

rd
t

f

e

ric

The optical field in the third-order nonlinear medium c
be quantized in a similar way. For example, the Hamilton
of the nondegenerate four-wave-mixing process@23# with
v31v45v11v2 is

H̃5 (
kW1 ,k

W
2 ,k

W
3 ,k

W
4

ukW i u5ki

(
m1 ,m2 ,m3 ,m4

F(
i51

4

\v iakW im i

†
akW im i

1~akW1m1k
W
2m2k

W
3m3k

W
4m4

bkW1k
W
2k

W
3k

W
4
akW3m3

†

3akW4m4

†
akW2m2

akW1m1
1H.c.!G , ~47!

where

bkW1k
W
2k

W
3k

W
4
5VE f kW4

* f kW3
* f kW2f kW1d

3rW ~48!

and

akW1m1k
W
2m2k

W
3m3k

W
4m4

52 iA \4v1v2v3v4

16V2n2~v1!n
2~v2!n

2~v3!n
2~v4!

3x~3!~v452v31v21v1!A. eW kW4m4
* eW kW3m3

* eW kW2m2
eW kW1m1

.

~49!

The Hamiltonians~41! and ~47! provide the foundation for
analyzing quantum properties of the parametric or fo
wave-mixing process.
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