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Propagation, cavity, and Doppler-broadening effects in the collective atomic recoil laser
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~Received 23 December 1996!

Using a completely semiclassical approach we extend a previous theory of the collective atomic recoil laser
to include propagation effects with and without a ring cavity, and to take into account the effects of Doppler
broadening. For cold atoms, we determine a mean-field condition under which propagation effects are negli-
gible, and find different dynamical regimes that we classify as ‘‘good’’ and ‘‘bad’’ cavity limits. We obtain the
results of a previous single-mode theory only in the good cavity limit. In the bad cavity limit or in free space
collective superradiant behavior dominates. For warm beams, where Doppler-broadening effects are important,
a noncollective Raman gain mechanism dominates in general, as recently observed experimentally. The effects
of particle trapping in the ponderomotive potential and radiation pressure have been described.
@S1050-2947~97!04407-7#

PACS number~s!: 42.55.2f, 42.50.2p, 32.80.Pj
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I. INTRODUCTION

The collective atomic recoil laser~CARL! consists of a
beam of two-level noninverted particles~e.g., atoms, ions, o
electrons, generically called atoms! coherently driven by a
quasiresonant counterpropagating field@1#. The CARL
mechanism is the collective regime of recoil induced g
phenomena which have been the subject of recent exp
mental investigations@2–5#. This system can give rise t
collective coherent Compton backscattering due to s
bunching of the atoms via an instability very similar to th
which occurs in the high-gain Compton free-electron la
~FEL!, with the dispersive part of the atomic polarizatio
playing a role analogous to the FEL wiggler magnetic fie
The spontaneous grating formed by the atomic bunching
been demonstrated experimentally by Bragg scattering@4#.
The source of the radiation is both the internal degrees
freedom of the atoms, similar to a conventional atomic la
but without population inversion, and the translational m
tion of the atoms similar to the FEL. To date, theoretic
treatments of CARL have considered only a single mode
have neglected propagation effects. The effect of a ca
was treated phenomenologically as a loss term. In this pa
we give a first principle treatment of propagation effects a
the cavity is described in an exact manner by impos
proper boundary conditions on the field. The one-mode
scription of previous papers is recovered here in the so-ca
mean-field limit specifying the limit of validity in which
propagation effects can be neglected.

In Sec. II of this paper we derive a system of equatio
which describe CARL from a completely semiclassical a
proach by generalizing the so-called Maxwell-Bloch equ
tions @6# and using a Hamiltonian of the system. In Sec.
we extend the CARL model of previous papers@1# to include

*Present address: Department of Physics and Applied Phy
University of Strathclyde, Glasgow, G4 0NG, Scotland.
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the effects of the relative propagation of the scattered e
tromagnetic field with respect to the atoms when the ato
sample is in free space. It was found that a superrad
solitonlike pulse of radiation was produced. In Sec. IV w
extend the analysis of propagation effects to cases where
atomic sample is enclosed in a ring cavity. A mean-fie
condition, which allows the neglect of propagation effects
derived and the dynamics of the CARL interaction are d
scribed by a damping parameterK8. WhenK8!1, the cavity
is said to be ‘‘good,’’ and the field evolution is identical t
that in a Compton FEL neglecting slippage. WhenK8>1,
the cavity is said to be ‘‘bad,’’ and a super-radiant pulse
radiation is produced. In Sec. V we investigate how a dis
bution of atomic momenta~Doppler broadening! affects the
evolution of the probe field. It is shown that the effect of
sufficiently large Doppler broadening is to reduce the atom
bunching and so the amplitude of the radiation emitted. T
warm beam regime is characterized by noncollective effe
giving rise to a Raman gain mechanism. For long-time sca
it is shown that the steady state of this regime may be
stable due to atomic trapping leading to a synchrotron in
bility similar to that of the FEL. Finally in Sec. VI we inves
tigate the effects of the radiation pressure exerted by
pump field upon the CARL evolution. It is shown that in th
cold beam limit the radiation pressure decreases the p
intensity of the emitted radiation and also introduces a f
quency chirp to it. In the warm beam limit the effects a
similarly to reduce the peak intensity of the emitted radiat
and also to introduce an instability of the steady-state g
the onset of which has been observed experimentally.

II. DERIVATION OF THE CARL EQUATIONS

In previous papers@1# the CARL equations have bee
derived starting from a quantum-mechanical Hamilton
which described the interaction of two counterpropagat
single-mode fields with a two-level atomic system. This fu
damental approach is unnecessary in the semiclassical
s,
912 © 1997 The American Physical Society
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56 913PROPAGATION, CAVITY, AND DOPPLER-BROADENING . . .
which was used and has the drawback of not describing
effects of propagation. We now derive the CARL equatio
using a semiclassical approach from the outset allow
propagation effects to be investigated.

Let us assume an electric field linearly polarized inx̂ with
an amplitude of the form

E~z,t !5@A1~z,t !e
ik~z2ct!1A2e

2 ik~z1ct!1c.c.# x̂, ~1!

E(z,t) represents two counterpropagating plane waves
6 ẑ. We define the strong pump fieldA2 as a real constan
and the weak counterpropagating probe fieldA1(z,t) as a
complex variable. For each atom this electric field will crea
a dipole momentd and the interaction of the dipole with th
electric field is described by the classical Hamiltonian

H5(
j51

N S pj
2

2M
2dj•E~zj ,t ! D ,

whereM is the atomic mass, the canonical position and m
mentum arezj andpj , respectively, andN is the total num-
ber of atoms. Thez component of the force on thej th atom
is then given by

ṗj52
]H

]zj
5dj•

]E~zj ,t !

]zj
. ~2!

We definedj to be of the form

dj5m~Sje
2 i ~kzj1vt !1c.c.!x̂, ~3!

wherem andSj are the atomic dipole matrix element and t
amplitude of the dipole moment of thej th atom, respec-
tively, the precise form of which will be discussed in term
of the Bloch equations@6# shortly. Substituting Eqs.~1! and
~3! into Eq. ~2! we obtain

ṗ j5 ikm~A1Sj* e
iu j2A2Sj*2c.c.!, ~4!

where u j52kzj and rapidly oscillating terms varying a
e6 i2vt have been neglected.

We now calculate the dipole moment amplitudeSj using
the Bloch equations in the steady-state adiabatic approx
tion as in@8#, i.e., for times longer thang21, whereg is the
natural linewidth of the transition. One obtains

Re~S!52S0 , ~5!

Im~S!52
g

D
Re~S!, ~6!

where

S05
VD

2~D21g21V2!
~7!

and

V5
2m

\
A2 ~8!
e
s
g

in

e

-

a-

is the Rabi frequency of the pump field. These equations
be derived easily, assuming that the atoms evolve only un
the action of the pump fieldA2, which dominates the probe
field A1, and neglecting the recoil frequency shiftkżj with
respect to the pump detuningD5v2v0, wherev0 is the
atomic transition frequency.

As is usual Im(S) describes absorbtion and, as w
be seen, results in a force due to radiation pressure, whe
Re(S) describes dispersion and will be seen to result in
ponderomotive force which gives rise to spatial bunching
the atoms. In order to minimize the radiation pressure
choose

D@g, ~9!

so that, from Eq.~6!, we have Im(S)!Re(S), i.e., the sys-
tem is essentially dispersive. In this case, one can neg
g2 in the denominator of Re(S), which can be maximized
by assumingD'V@g, so that

S0'
1
4 . ~10!

Under condition~9! we can neglect Im(S) in Eq. ~4! to
obtain

u̇ j5
2k

M
pj , ~11!

ṗ j52 ikmS0~A1e
iu j2c.c.!2

\kgV2

2~D21V2!
, ~12!

whereS0, given by Eq.~7!, contains the dependence of th
recoil on the pump field amplitude and pump detuning. T
first term of Eq.~12! is the ponderomotive force which pro
duces the spatial bunching of the atoms, and the second
is the force due to the radiation pressure of the pump. If
probe fieldA1 is a given constant and radiation pressure
neglected, these equations represent a system of decou
pendula.

The probe fieldA1 will evolve self-consistently under the
presence of the coherent polarization of the atoms so
amplification may occur. To describe this process we w
the Maxwell wave equation for an electric field in the pre
ence of a polarizationP:

]2E

]t2
2c2¹2E52

1

e0

]2P

]t2
. ~13!

Substituting forE(z,t) from Eq. ~1!, and performing the
slowly varying envelope approximation~SVEA! for A1 ~re-
membering thatA2 is a constant!, one obtains

S ]A1

]t
1c

]A1

]z D5 i
v

2e0
Pe2 i ~kz2vt !, ~14!

whereP5P• x̂ and in the spirit of SVEA, we have made th
approximation

]2P

]t2
'2v2P.

AssumingN atoms at positionsr j , then
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914 56R. BONIFACIO, G. R. M. ROBB, AND B. W. J. McNEIL
P5 x̂•(
j51

N

djd~r2r j !.

Substituting fordj using Eq.~3!, performing a spatial aver
age over volumeV, and neglecting rapidly oscillating term
one obtains

]A1

]t
1c

]A1

]z
5
ivmn

2e0
^Sje

2 iu&5
2 ivmnS0

2e0
^e2 iu&,

~15!

where n5N/V is the atomic density, ^•••&5(1/
N)( j51

N . . . . Under the conditions described above, wh
mimimize the radiation pressure force, and again assum
A2@uA1u, we find that uRe(S)u@uIm(S)u and we have re-
placedSj with the j -independent real part Re(S)52S0 in
the second equality. We define

b5^e2 iu& ~16!

as the bunching factor. Equations~11!, ~12!, and ~15! now
form a self-consistent system describing atomic phase,
mentum, and field evolution.

We now introduce the universal scaling for these eq
tions. Let us define the fundamental dimensionless CA
parameter as

r5S vm2nS0
2

2e0\v r
2 D 1/3, ~17!

wherev r52\k2/M is the one-photon recoil frequency shif
Defining the dimensionless quantities

t̄ 5v rrt, z̄5
v rr

c
z, A5 iA1S 2e0

\vnr D 1/2, ~18!

p̄5
~p2Mvph!

\kr
, ~19!

we obtain our working system of equations

]u j

] t̄
5 p̄ j , ~20!

] p̄ j

] t̄
52~Aeiu j1c.c.!2

V2g

2~D21V2!v rr
2 , ~21!

]A

] t̄
1

]A

] z̄
5^e2 iu&, ~22!

where j51, . . . ,N, and

vph5S v12v2

v11v2
D c ~23!

is the phase velocity of the ponderomotive potential form
by the probe field and the polarization induced by the pum
if one allows the probe and the pump to have slightly diff
ent frequenciesv1 andv2, respectively. In such a case th
atomic phase, with respect to the potential, becom
g

o-

-
L

d
,
-

s

u j5(k11k2)zj2(v12v2)t. As a consequence, accordin
to Eq. ~11!, the scaled momentump̄ j is given by Eq.~19!.

The radiation pressure term has been obtained from
~12! using Eqs.~6! and ~8!, assuming condition~9! is satis-
fied. The radiation pressure can be neglected
(V2g)/@2(D21V2)v rr

2#!1 and sufficiently short times
so that the momentum change due to this pressure is n
gible. In this limit, Eqs.~20!–~22! reduce to a set which hav
no free parameters and are formally identical to the o
dimensional model of the FEL@9#.

Note that as in FEL theory

ruAu25
2e0uA1u2

\vn
5

e0E
2

\vn
5

uau2

N
~24!

is the efficiency. In the last equalityuau2 is the classical
analogue of the photon number. The relation betweena and
A1 is uA1u5uauA\v/(2e0V) due to Eq. ~1!:
e0E

252e0uA1u25(\vuau2)/V. Hence,ruAu2 is interpreted
as the number of photons emitted per atom. In Sec. III
investigate the solutions to Eqs.~20!–~22!, both in free space
and in a ring cavity.

III. PROPAGATION EFFECTS IN FREE SPACE

In this section we investigate the effect of the propagat
of the probe field with respect to the atoms. We neglect
effect of radiation pressure, so that the equations to be so
are

]u j

] t̄
5 p̄ j , ~25!

] p̄ j

] t̄
52~Aeiu j1c.c.!, ~26!

]A

] t̄
1

]A

] z̄
5^e2 iu&, ~27!

where j51, . . . ,N. For now we assume that the atoms a
cold. This assumption corresponds to the initial conditio
p̄ j5d, a constant detuning for all atoms, where

d5
M ~v~ t̄ 50!2vph!

\kr
'

v22v1

v rr
. ~28!

v5 ż is the translational velocity of the atoms and it has be
assumed that the atoms are stationary at the beginning o
interaction, i.e.,v( t̄ 50)50. d is, therefore, the scaled fre
quency detuning between the pump and probe fields. Us
the following ansatz on the field and atomic variables@9#

u j5u1 j~y!, pj5A z̄ p1 j~y!, A5 z̄A1~y! ~29!

where y5( t̄ 2 z̄ )A z̄ , the system of partial differentia
equations~25!–~27! can be recast as a set ofordinary differ-
ential equations
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56 915PROPAGATION, CAVITY, AND DOPPLER-BROADENING . . .
du1 j
dy

5p1 j , ~30!

dp1 j
dy

52~A1e
iu1 j1c.c.!, ~31!

y

2

dA1
dy

1A15b. ~32!

Equations~30!–~32! have a self-similar solitonlike solution
which depends only ony @9# ~see Fig. 1!. Hence, from Eq.
~29! uAu2} z̄2}r2z2, so using the definition ofr, Eqs.~17!
and ~24!, we obtain the scalinge0uEu2}n2z2, characteristic
of a superradiant process. Hence, the pulse amplitude
creases linearly with the distancez̄ and the time duration, o

width, of the pulse varies as 1/A z̄ . This is a collective gain
mechanism which leads to the generation of a pulse wh
increases in amplitude and decreases in width as it pro
gates through the sample. For a sufficiently long samp
narrow high-intensity spike of radiation is formed analogo
to superradiance in the high-gain FEL@9#. The pulse shape
of Fig. 1 can be approximated by a hyperbolic secant fu
tion @10#, followed by nonlinear ‘‘ringing’’ which is very
similar to the radiation pulse shape which occurs in sup
radiance or superfluorescence from atomic two-level syst
@7#.

IV. PROPAGATION EFFECTS IN A RING CAVITY

In a ring cavity ~see Fig. 2!, the boundary condition for
the electric-field isE(0,t)5ATEI(t)1RE(L,t2t), where
EI is the value of the electric field input to the cavity,L is the
sample length,t5(L2L)/c , L is the cavity length, and
T512R is the transmission coefficient of the mirrors. R
writing the electric field in terms of a slowly varying enve
lope E(z,t)5 Ē(z,t)eik(z2ct) and with the same normaliza
tion as Eqs.~25!–~27!, then

A~0, t̄ !5ATAI1RA~ L̄ , t̄ 2 t̄ !, ~33!

FIG. 1. Intensity of self-similar superradiant pulseuA1u2 in adi-
mensional units as a function ofy5(t2z)Az, when d50 and
A1(y50)50.01.
in-

h
a-
a
s

-

r-
s

where L̄5L/ l c , L̄5L/ l c , t̄ 5L̄2 L̄ , l c5c/v rr is the co-
operation length of the system and we have assumed
kL52np, wheren is an integer, so that the wave numb
k coincides with that of a cavity mode.

If we introduce the variableĀ as

A~ z̄ , t̄ !5 Ā~ z̄ , t̄ !eK z̄1
AI

AT
~34!

and setK5 ln(1/R)/ L̄ , then the boundary condition~33! be-
comes

Ā~0, t̄ !5 Ā~ L̄ , t̄ 2 t̄ !. ~35!

Introducing the new independent variables

z85 z̄ and t85 t̄ 1
t̄ z̄

L̄
, ~36!

the retardation factort̄ 2 t̄ can be removed from the bound
ary condition, resulting in

Ā~0,t8!5 Ā~ L̄ ,t8!, ~37!

so thatĀ satisfies periodic boundary conditions. Using Eq
~34! and~36!, the field evolution equation~27! can be written
as

] Ā

]t8
1
L̄

L̄

] Ā

]z8
1
L̄

L̄
KĀ5b

L̄

L̄
e2Kz8. ~38!

The effect of the change of variables~36! is, therefore, to
move to a coordinate system where the velocity of the rad
tion field envelope is (L/L)c,c, therefore reducing the
relative slippage of the radiation with respect to the alm
stationary atoms. Note that Eq.~36! also implies that ifA
}eCt8, whereC is a real positive constant, then the fie
amplitude will grow exponentially in time and space.

The factorL̄ /L̄ in front of b in Eq. ~38! can be removed
by replacingr in the definitions oft̄ , z̄ , andpj by r8, where

r85rS L̄
L̄
D 1/3}S n LL D 1/3}~n8!1/3,

FIG. 2. Schematic diagram of a ring cavity. The counterpro
gating pump field is not shown.
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FIG. 3. Spatial evolution of the normalize

field amplitudeuA( z̄ )u/uA( z̄50u)/ as a function

of z̄ / L̄ for L̄50.05,T50.01,uAI u50.001, when

~a! spatial derivative may be neglected:L̄50.1

when t̄ 510, ~b! spatial derivative may not be

neglected:L̄55 and t̄ 530. These plots were
obtained from a numerical solution of Eqs.~25!
and ~27! with the boundary condition~33!.
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wheren85N/Vc is the number of atoms per unitcavityvol-
ume. We denote the rescaled variables ast̄ 8, z̄8, andpj8 ,

respectively. The rescaled field variableĀ8 is defined by
replacingr andn by r8 andn8, respectively, in the defini-
tion of A ~24!.

After this rescaling, Eq.~38! can be written as

] Ā8

] t̄ 8
1
L̄

L̄

] Ā8

] z̄8
1K8Ā85be2K8 z̄8L̄/ L̄ , ~39!

where the scaled damping parameter is

K85~L̄AL̄ !22/3ln~1/R!. ~40!

From now on, we impose the condition thatR'1, which
allows us to assume that the exponential term on the ri
hand side~RHS! of Eq. ~39! has a value'1.

The mean-field approximation

We now consider the mean-field approximation, whi
consists of assuming that the electromagnetic field is alm
uniform across the sample. From an inspection of Eq.~39!,
the spatial derivative term can be neglected wh
z̄8L̄/ L̄!1. Recalling thatz̄85 z̄ ( L̄ /L̄)1/3, and settingz̄ to
its maximum valuez̄5 L̄ implies that the condition for the
neglect of the spatial derivative is

L̄!
1

AL̄
. ~41!

It can be seen from Eq.~40! thatK8 diverges asL̄AL̄→0
for T constant. We therefore define the mean-field limit

the limit whereL̄AL̄→0 andT→0 in such a way thatK8 is
finite. Note that by introducing a modified cooperation leng
defined asl c85c/v rr8 it is possible to write the mean-fiel
condition ~41! as

L85
L

l c8
!1,

and the damping constantK8 as
t-

st

n

s

K85
T

L8
,

so thatK8 can be interpreted as a scaled cavity mode li
width.

In order to satisfy simultaneously Eq.~41! and the geo-

metric restriction L̄. L̄ , it is necessary thatL̄!1, i.e.,
L! l c which is the usual type of condition quoted for validi
of the mean-field approximation in that the sample must
optically thin with respect to some characteristic length (l c in
this case! . We have shown in Eq.~41!, however, that there is
also an upper limit to the cavity length for which the mea
field approximation is valid. This nonintuitive result is con
firmed by a numerical solution of Eqs.~25!–~27! with the
boundary condition~33! ~Fig. 3!. Figure 3~a! shows the spa-
tial evolution of the field amplitude in the sample at a fix
time for cases where Eq.~41! is well satisfied. It can be see
that the fractional variation in the field amplitude across
sample is extremely small, around 3%, so that the mean-fi
approximation is clearly valid in this case. In Fig. 3~b! we
show a case where Eq.~41! is no longer satisfied and it ca
be seen that the fractional variation in the field amplitude
no longer negligible, being around 250%, even though

still have L̄!1.
Recalling the fact that the width of the superradiant pu

in free space scales as 1/A z̄ allows us to propose a simpl
physical argument for the ring cavity mean-field limit~41!.
The scaled time duration of the pulse emitted from t

sample will beD t̄ ;1/AL̄ so its spectral width will be

Dv̄;AL̄ . As the frequency spacing between cavity mod
written in the same notation isDv̄cav;1/L̄, the mean-field
condition~41! is just the condition that the cavity mode spa
ing is much greater than the spectral width of the pul
Dv̄cav@Dv̄ ensuring that only a single cavity mode is e
cited.

Assuming the mean-field limit is satisfied we can rewr
the full set of coupled evolution equations for the atoms a
field neglecting the spatial derivative and usin
A8( t̄ 8)5 Ā8( t̄ 8)1AI8/AT, so that
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FIG. 4. Average scaled field intensity^uAu2&
as a function of t̄ for ~a! the bad cavity limit:

L̄50.0001,L̄50.01, T50.02, anduAI u50.001,
i.e., K859.3. ~b! the good cavity limit:

L̄50.01, L̄51, T50.001, anduAI u50.001, i.e.,
K850.0046.
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du j

d t̄ 8
5pj8, ~42!

dpj8

d t̄ 8
52~A8eiu j1c.c.!, ~43!

dA8

d t̄ 8
1K8S A82

AI8

ATD 5b. ~44!

The qualitative behavior of the system in the mean-field lim
is therefore dependent only on the scaled damping param
K8.

We now consider the limit of strong damping (K8>1)
and weak damping (K8!1), whereAI8/AT!1.

K8>1: In the strong damping or ‘‘bad cavity’’ limit, we
can adiabatically eliminate the field variable in Eq.~44! so
thatA8'b/K8. The scaled intensityuA8u2 initially grows as
uA8u2}e t̄ 8/AK8. The radiated power in the strong dampin
limit, therefore, scales as

e0uĒu25\vnrS LL D 4/3 1

K82
}n2L2 ~45!

and is independent of the cavity length. Note that this is o
true while the mean-field condition~41! is satisfied. The fact
that the radiated powerP}n2 indicates that superradiant be
havior occurs in the bad cavity limit~see Fig. 4! similar to
the case of a two-level system enclosed in a cavity@7#. The
superradiant emission from the sample is, therefore, not s
sitive to the presence of the cavity in this limit.

K8!1: In the weak damping or ‘‘good cavity’’ limit, we
can neglect the term containingK8 in Eq. ~44!. The set of
equations~42!–~44! now has no free parameters, and is ide
tical to the set of Compton FEL equations in the steady-st
limit @9#, so the scaled intensityuA8u2 grows asuA8u2}eA3 t̄

before saturating at a value of approximately 1.4~see Fig. 4!.
This implies that the radiated power in the weak dampi
limit scales as
it
eter

g

nly

-

en-

n-
ate

ng

e0uĒu25\vnrS LL D 4/3uA8u2}S n LL D 4/3. ~46!

The characteristic superradiant behavior (P}n2) is therefore
lost because of the narrow cavity linewidth.

Figure 4~a! shows the temporal evolution of the averag
field intensity in the atomic sample for a case whe
K8.1. The emission consists of a large amplitude pulse f
lowed by a series of smaller pulses, similar to that observ
in studies of superfluorescence in two-level systems@7#. Fig-
ure 4~b! shows the temporal evolution of the average fie
intensity in the atomic sample for cases whereK8!1. The
intensity at the first saturation peak is'1.4(L̄ /L̄)4/3

50.0028 as predicted by Eq.~46! and the evolution is iden-
tical in form to that of the Compton FEL where propagatio
effects are neglected@9#. We emphasize that the probe sat
ration intensity is independent of the initial probe intensi
which may result from noise. When the system starts fro
noise in the FEL it has been termed self-amplified sponta
ous emission@9#. The scaled power output from the cavity i
TuAu2}K8uA8u2. Figure 5 shows a plot ofK8uA8u2 against
K8 as calculated from the mean-field equations~42!–~44!.
The maximum value ofK8uA8u2 occurs whenK8'1. From
the definition ofK8 ~40!, this means that the value ofT
which optimizes the power output from the cavity i

T'(L̄AL̄ )2/3.

V. DOPPLER BROADENING

A. General effects of Doppler broadening

Let us consider atoms with a Gaussian distribution of m
menta. As the atoms all have different momenta they w
debunch with time, even if they undergo no interaction wi
the probe field. We definetdb as the characteristic time ove
which this Doppler debunching occurs and we evaluate
using the following argument.

The bunching factorb ~16! may be written with averages
in integral form



n
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FIG. 5. K8uA8u2}TuA8u2 ~the
scaled output power as a functio
of K8).
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b5^e2 iu j&u0 , p̄0

5
1

2pE0
2p

du0E
2`

`

d p̄0G~ p̄0 ,d!e2 iu~ z̄ , t̄ ;u0 , p̄0!, ~47!

where

G~ p̄0 ,d!5
1

A2ps̄
exp2S ~ p̄02d!2

2s̄2 D
is a Gaussian momentum distribution function of widths̄

centred atp̄05d5(v22v1)/(v rr). As in Eq.~28! we have
assumed that the mean initial atomic velocity is zero. T
Doppler linewidth scaled with respect to the ‘‘collective lin
width’’ v rr is

s̄5
kDv
v rr

,

whereDv is the velocity spread of the atomic beam. In t
limit of weak interaction, i.e.,uAu!1, the atomic phase
u j'u0 j1 p̄0 j t̄ , so that from Eq.~47!

ubu}expS 2
s̄2 t̄ 2

2
D . ~48!

The effect of Doppler broadening is, therefore, to cau
the bunching to decay with a characteristic decay time o

tdb5
1

s̄
. ~49!

Defining tg as the growth time ofb in the cold beam limit,
then if tdb!tg we expect the evolution of the bunching an
consequently, the field to be restricted severely by the ato
Doppler debunching due to the spread in atomic mome
Conversely, iftdb@tg , the growth of the bunching and fiel
is expected to be restricted only slightly by the Doppler d
bunching. In Sec. V B this simple argument is investiga
for the case of superradiant field evolution.
e

e

,
ic
a.

-
d

B. The effect of Doppler broadening on superradiance

We consider the case of CARL evolution in a ring cavit
which is described by Eqs.~42!–~44!. As shown in Sec. IV,
it is useful to normalize variables with respect tor8. We
must therefore define

s̄85
kDv
v rr8

5 s̄ S L

L D 1/3, ~50!

d85
v22v1

v rr8
5dS L

L D 1/3, ~51!

and tdb8 51/s̄8. We consider specifically the case of

‘‘bad’’ cavity, whereK8>1. When t̄ 8@1/K8, it is possible
to eliminate the field variableA8 adiabatically, so that

A8'
AI8

AT
1

b

K8
.

When b/K8@AI /AT then A8}b, which when combined
with Eq. ~48! suggests that the scaled probe intensityuA8u2

will have a Gaussian dependence ons̄8.
In Fig. 6 we plot the scaled intensityuA8u2 as a function of

t̄ 8 for three different values ofs̄8, as calculated form a
numerical solution of Eqs.~42!–~44!. The effect of the mo-
menta spread is clearly to reduce the peak intensity of
pulse (uAp8u

2).

A plot of the peak intensityuAp8u
2 againsts̄82 as calcu-

lated from a numerical solution of Eqs.~42!–~44! is shown
in Fig. 7 for the case whereK858. It shows that when
uA8u@uA0u the dependence ofuAp8u

2 on s̄8 is well described

by a Gaussian function, i.e.,uAp8u
2}exp(2s̄82/b2), whereb

is the width of the Gaussian. This is not true whenA8;A0
because in this caseA8 is no longer proportional tob.

By repeating these calculations for different values
K8 and calculating the gradient of the lnuAp8u

2 against s̄82

curve, we can show thatb varies asAK8 ~Fig. 8!. The de-
pendence ofuAp8u

2 on s̄8 can then be approximated by
Gaussian function of the form
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uApu2}exp~2as̄82K8!, ~52!

whenubu/K8@uAI u/AT, wherea is a numerical factor. From
the results of Sec. III, the characteristic growth time of t
field for a bad ring cavity is

tg85tsr8 5AK8, ~53!

so Eqs. ~52! and ~53! confirm that when tdb8 @tsr8

( s̄8!1/AK8) the spread in atomic momenta has little effe
on the peak intensity of the probe field. This is, therefore,
‘‘cold beam limit’’ for CARL in a bad ring cavity. In con-
trast, whentdb8 ,tsr8 the peak intensity of the probe field
greatly reduced by the spread in atomic momenta. The
ond limit will be considered in more detail in the followin
sections.

FIG. 6. Scaled radiation poweruA8u2 as a function oft̄ 8, when
d850 and K858 for the scaled atomic momenta spreads~a!

s̄ 850, ~b! s̄ 850.1, and~c! s̄ 850.2.

FIG. 7. Scaled peak radiaton poweruAp8u
2 as a function of the

square of the scaled atomic momenta spreads̄ 82 for a bad ring
cavity (K858), whend50 andA050.01.
e
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C. Noncollective gain

In this section we consider the case of a bad cavity wh
the debunching timetdb8 is less thantsr8 , so that the momen-
tum spread has a significant effect on the field evolution.
investigate CARL in a bad ring cavity, which is described
Eqs. ~42!–~44! with K8>1, so A8'A01b/K8, where
A05AI8/AT. If we assumeb/K8!A0, then we can replace
A8 by A0 in the atomic motion equation~43! so that

d p̄j8

d t̄ 8
52~A0e

iu j1c.c.!,

i.e., the atoms are assumed to evolve under the action o
input field only, and the atomic phases evolve as

u j'u0 j1 p̄0 j8 t̄ 8.

Under these assumptions, the gain of the probe field, defi
asG5(uA8u2/uA0u2)21, behaves as@11#

G~d8!}
]G

] p̄08
U
p̄
0850

, ~54!

when t̄ 8@tdb8 , whereG( p̄08 ,d8) is the momentum distribu-
tion function defined earlier. The behavior of the gain as
function of t̄ 8 is shown in Fig. 9 as calculated from Eq
~42!–~44! for different values ofd8. Notice that the gain is
significantly smaller than that for the cold beam evolution
approximately six orders of magnitude~see Fig. 4!. Figure
10 shows a graph ofG againstd8. These points are a good fi
to the curve which is the derivative of a Gaussian. Maximu
amplification of the probe occurs whend85 s̄8 and maxi-
mum absorption of the probe occurs whend852 s̄8.

The physical mechanism behind this type of gain has b
described quantum mechanically in terms of stimulated
man scattering so we will refer to it, henceforth, as Ram
gain @2#. We describe it here classically in terms of a proce
analogous to Landau damping of a wave by electrons or i
in a plasma@12#. The ponderomotive potential produced b
the combination of the pump and probe fields has a ph

FIG. 8. Gradient of lnuAp8u
2 vs s̄ 82 curve of Fig. 7 as a function

of K8.
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velocity vph given by Eq.~23!. This means that atoms wit
initial momentap̄08 slightly less than zero (v,vph) will be
accelerated and those withp̄08 slightly more than zero
(v.vph) will be decelerated due to the force exerted by t
potential. As the atomic momenta are nonuniformly distr
uted, the number of atoms accelerated and the number d
erated will not be equal in general, so there will be a
exchange of energy with the probe field. The amount of
ergy exchanged will be proportional to the difference in m
mentum group population aroundp̄0850, i.e., ]G/] p̄08 at

p̄850 ~Fig. 11!. Note that this gain mechanism is not co
lective as only the pump fieldA0, which is independent o
b, drives the atomic motion. The atoms, therefore, evo
independently of one another behaving as decoupled
dula. This noncollective gain mechanism explains qual
tively the experimental results of Courtoiset al. [2] involv-
ing a small sample of cesium atoms in free space, where
cavity is present. The explanation given above is also

FIG. 9. Radiation power gain as a function oft̄ 8 for a bad

cavity (K8510) and warm beam (s̄ 853) for the detuning param
eters: ~a! d856, ~b! d853, ~c! d850, ~d! d8523, and ~e!
d8526.

FIG. 10. Radiation power gain as a function of detuningd8 for
parametersK8510 ands853. A ~solid! Raman gain curve, which
is the derivative of the Gaussian atomic momenta distribution fu
tion, is fitted to the points from numerical simulations.
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evant for experiments involving no cavity. When the atom
sample is very short with respect to the cooperation leng

i.e., L̄!1, the field distribution across the sample is almo
uniform. Propagation effects can then be approximated
using a damping term to model the effect of radiation loss
the atomic sample due to propagation [11]. The equatio
describing CARL in free space (25)–(27) therefore, reduce
to a set similar to Eqs. (42)–(44)

du j

d t̄
5pj , ~55!

d p̄j

d t̄
52~Aeiu j1c.c.!, ~56!

dA

d t̄
1Kf~A2AI !5b, ~57!

where the free space damping constantKf51/L̄ , which is
assumed to be much larger than one, so thatA'AI . The
results described above for a ring cavity, therefore, also
ply to a short atomic sample in free space. This is confirm
by a comparison of Fig. 9, showing bad cavity, warm be
evolution, with Fig. 12, which shows a graph of the intens

-

FIG. 11. Schematic diagram showing how the Raman g
mechanism depends upon the atomic detuningd8.

FIG. 12. Radiation power gain as a function oft̄ for free space

evolution, whens̄53, L̄50.1 and~a! d56, ~b! d53, ~c! d50, ~d!
d523, and~e! d526.
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56 921PROPAGATION, CAVITY, AND DOPPLER-BROADENING . . .
(uAu2) evolution as a function oft̄ for a warm beam at the
sample end (z̄5 L̄ ), as calculated from a numerical solutio
of the free space evolution equations including propaga
~25!–~27! for different values ofd. In what follows, it is
understood that the results derived for a bad ring cavity
also be applied to a small atomic sample in free space
replacing t̄ 8 with t̄ , A8 with A, K8 with Kf , AI8/AT with

AI , d8 with d, ands̄8 with s̄ . Hence, one can use a simp
single-mode mean-field model as opposed to the more c
plex system describing propagation in full.

We are now in a position to compare the cold and wa
beam limits. The large difference in gain, by approximat
six orders of magnitude, can be seen from a compari
between the gains of the cold beam in Fig. 4 and the wa
beam in Fig. 9.

For completeness we compare the bunching factors
the same cold and warm beams in Figs. 13~a! and 13~b!,
respectively. The maximum of the cold beam bunching f
tor of'0.8 is significantly larger than that of the warm bea
value of 1023. Hence, we conclude that for warm beam
where Raman gain dominates, there is only a weak mod
tion of the atomic density. This is in dramatic contrast to t
strong bunching obtained for cold beam evolution.

D. Competition between collective and noncollective effects

As in Sec. VC, we assume that we have a bad ring ca
and that debunching effects are strong (tdb8 ,tsr8 ). We now
consider the case whered850, i.e., ]G/] p̄ 08u p̄085050. The

analysis of@11#, where the atoms evolve underA0 only, pre-
dicts a nonzero but very small gain, with a temporal beh
ior, as shown in Fig. 14~a!. A numerical solution of Eqs
~42!–~44! with the same parameters also gives a small g
but with a different sign and a quite different temporal b
havior, as shown in Fig. 14~b!. The reason for this lies in the
neglect of the reaction of the field emitted by the ato
(b/K8) in the analysis of@11#. The negative gain in Fig
14~b! can be deduced from the following argument: If t

FIG. 13. Bunching parameterubu as a function of t̄ 8 for cold
~solid line! and warm~dashed line! beams. These correspond
Figs. 4~a! and 9~b!, respectively.
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self-consistent field generated by the bunching (b/K8) is in-
cluded in the motion equation~43!, then the total probe field
A85uA8uei j5AI /AT1b/K8 is also a function of time.
Therefore, as the field phasej is time varying, there will be
a dynamic shift of the effective frequency of the probe fie
from

v1→v12
]j

]t

and the effective phase velocity of the ponderomotive pot
tial is shifted from

vph→vph2
1

2k

]j

]t
.

It can be shown that the sign ofdj/dt is positive@11#, so the
atomic sample acts as a dielectric medium with a refrac
index greater than 1, which reduces the phase velocity of
ponderomotive potential. If this is taken into account, t
resonant group of atoms are no longer those withp̄0850, but

those with p̄085dj/d t̄ 8.0. As ]G/] p̄08,0 at this point,
i.e., for the group of atoms with velocity
v'vph2(1/2k)]j/]t there are more atoms traveling slight
slower than the ponderomotive potential than travel
slightly faster, the Raman gain mechanism described in S
VC takes effect, causing the atoms to absorb the probe a
initially amplifying it. The dynamic frequency shift which
produces the transient amplification of the probe is char
teristic of collective behavior@9#, as opposed to the Rama
gain mechanism which is not collective in nature. As we a
considering cases where debunching effects are strong,
tdb8 ,tg8 , collective effects are very weak and are domina

by the Raman gain except when]G/] p̄08'0, i.e., when
d8'0 for a Gaussian momentum distribution. Some poss
experimental evidence of such transient amplification
been recently observed by Verkerk@3#.

FIG. 14. Radiation power gain as a function oft̄ 8 for param-

eterss̄ 852, K858, andd50, and for~a! A85A0 in Eq. ~43! —
i.e., no probe field evolution and~b! A85A01b/K8 in equation
~43! — i.e., including probe field evolution.
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E. Long time scale synchrotron oscillations

An additional effect, which is nonlinear in nature and c
occur after long interaction times, is that of the trapping
atoms by the ponderomotive potential. Let us again ass
that debunching effects are strong and the gain of the pr
field is small enough so thatA8'A05AI8/AT.

From Eqs.~42! and~43!, a phase trajectory for each ele
tron can be constructed~Fig. 15!. This is identical to the
phase trajectory for a simple pendulum. The particles wh
have values ofp̄08 that lie inside the separatrix are trapped
potential wells and will eventually execute oscillations abo
the bottom of the well. The period of these oscillations c
be estimated from an inspection of the atomic motion eq
tions ~42! and ~43! which when combined can be written a

d2u j

d t̄ 82
12uA0ucos~u j1j0!50,

whereA05uA0uei j0. The atoms close to the bottom of th
potential will therefore oscillate with angular frequen
vs'A2uA0u. The period of the oscillations is, therefore,

ts85
2p

vs
5pS 2

uA0u
D 1/2.

In the analysis of@11#, the perturbation of the atomic phas
due to the ponderomotive potential is assumed to be ne
gible in Eq.~43! and the probe gain attains a steady state
times t̄ 8@tdb8 . This assumption is only valid for time

t̄ 8!ts8 . For t̄ 8;ts8 , the trapping of some of the atoms
the potential causes the steady state to become unstabl
these atoms oscillate, analogous to the synchrotron osc
tions of electrons in the FEL, causing the field to depart fr
the steady state. Confirmation of this is shown in Fig.
which shows the evolution of the probe gain whent̄ 8!ts8

@graph~a!# and the equivalent case whent̄ 8;ts8 @graph~b!#
calculated from Eqs.~42!–~44!. Note that in order to observ
any region of steady-state gain, it is necessary t
ts8.tdb8 , i.e., uA0u,2p2s̄82. This particle trapping mecha
nism is one possible explanation for some experimental

FIG. 15. Phase-space trajectories for atoms interacting wi
constant fieldA85A051.
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sults observed by Verkerk@3#, which show the probe gain
growing initially to a steady state before decreasing. T
further revival and oscillation of the gain have yet to
observed.

VI. RADIATION PRESSURE EFFECTS

In the mean-field limit radiation pressure is modeled
adding the radiation pressure termG852V2g/@2(D2

1V2)v rr82] to Eq. ~43! analogous to Eq.~21!. ~As previ-
ously noted in Sec. VC both free space and mean-field li
evolution are similar forK>1 andK8>1, so that the fol-
lowing analysis also holds for free space, short pulse evo
tion.!

We first consider the cold beam limits̄850 with
K855 and the atoms initially detuned for maximum gain
the absence of radiation pressured850, for three different
values ofG8. The results of the numerical integration a
shown in Fig. 17. Figure 17~a! shows the case forG850 and

a FIG. 16. Radiation gain as a function oft̄ 8 for parameters

s̄ 852, d852, and~a! uA0u50.001 (tb85112)— no particle trap-
ping and~b! uA0u50.1 (tb8511.2) — particle trapping leading to
synchrotron instability.

FIG. 17. Effects of radiation pressure on a cold beam in

mean-field limit with: K855, s̄ 850, d850, and ~a! G50, ~b!
G50.4, and~c! G50.8.
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corresponds to the solution without radiation pressure sh
in Fig. 6~a!. On increasingG8 two effects are noticeable. Th
first is that the peak intensity of the radiation emitted is
duced. This effect may be accounted for by recognizing t
the atoms will be ‘‘swept’’ out of resonance by the radiati
pressure so that they will no longer be detuned for maxim
gain to occur. In fact, the further they are swept from re
nance the smaller will be the gain of the probe. The sec
effect is the modulation of the probe radiation’s wave en
lope. The modulation frequency increases approximately
early in t8 indicating a frequency chirp of the emitted radi
tion. The frequency of the radiation emitted by the atoms
a function oft8 approximately corresponds to their instan
neous resonant frequency. The instantaneous period o
probe field modulation may be simply calculated: The eff
tive detuning of the atoms at timet8 due to the radiation
pressure termG8 will be deff8 5G8t8. The instantaneous
modulation period Dt8 will then be given by
Dt852p/deff8 . This simple analysis gives good agreeme
with the graphs of numerical simulations of Figs. 17~a! and
17~b!.

In the warm beam limit an instability of the steady-sta
Raman gain can be induced by the effect of radiation p
sure. A typical result of a numerical solution to the equatio
is shown in Fig. 18 where we plot the gain for differe
values of the radiation pressure termG8. The steady-state
evolution becomes unstable as the radiation pressure
G8 is increased from zero. In particular, for smaller values
G8 one observes a monotonic decrease in gain similar to
experimental observations of Ref.@5#. As G8 is increased the
gain saturates, decreases to a negative minimum, and
approaches zero asymptotically. We stress that in this c
synchrotron oscillations do not occur, i.e., the gain does
become positive again, as in Fig. 16~b!, as radiation pressur
and particle trapping effects arise from completely differe
mechanisms. The transient behavior of Fig. 18 can be in
preted by reference to the Raman gain curve of Fig. 10.
radiation pressure has the effect of decreasing the ato
momenta and so their effective detuning with respect to
Raman gain curve. The atoms then traverse the gain c

FIG. 18. Effects of radiation pressure on a warm beam in

mean-field limit with:K855, s̄ 852, andd852 and~a! G50, ~b!
G50.1, ~c! G50.4, and~d! G51.
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and are swept from maximum gain, atd85 s̄8, through zero
and into the region of negative gain before tending to ze
To date only the region of monotonic decrease of the g
has been observed experimentally, the minimum and su
quent approach to zero gain have not.

VII. CONCLUSIONS

A semiclassical model of CARL has been derived a
was used to investigate propagation, cavity, and Dopp
broadening effects. The effects of propagation were inve
gated for cases where the atomic sample is in free space
enclosed in a ring cavity. In free space, it was found tha
superradiant solitonlike pulse of radiation was produced. I
ring cavity, the condition for the neglect of propagation e

fects was found to beL̄AL̄!1. When this mean-field con
dition is satisfied, the dynamics of CARL interaction in
ring cavity is described by a damping paramet

K85T/(L̄AL̄ )2/3. When K8!1, the cavity is said to be
‘‘good,’’ and the field evolution is identical to that in a
Compton FEL neglecting slippage. WhenK8>1, the cavity
is said to be ‘‘bad,’’ and a super-radiant pulse of radiation
produced. The effect of Doppler broadening on CARL ev
lution was shown to be a reduction in bunching due to
spread in atomic momenta. For the case of atomic sample
a bad cavity it was shown that the effect of Doppler broa
ening on the maximum probe field intensity can be dedu
from a comparison of the debunching timetdb8 with the
growth time of the bunching and fieldtsr8 neglecting Doppler
broadening. Whentdb8 @tsr8 , the evolution of the field is es
sentially unaffected by Doppler broadening, so this condit
is the ‘‘cold beam limit.’’ If tdb8 ,tsr8 , however, the field
evolution is greatly restricted by Doppler broadening. Und
these conditions, collective growth of the field is very we
and can be dominated by noncollective effects such as
man gain due to the shape of the momentum distributi
However, due to trapping of atoms in the ponderomot
potential, synchrotron type oscillations will eventually driv
the probe field for sufficiently long interaction times. Th
results described here should help to clarify the distinct
between true CARL behavior and the noncollective pheno
ena which occur due to recoil in systems of strongly driv
atoms such as Raman scattering. True CARL behavior
hibits strong bunching, or modulation, of the atoms, while
noncollective behavior only a weak bunching is obtained.
the cold beam limit the effects of radiation pressure were
reduce the peak intensity the emitted radiation and also
introduce a frequency chirp onto it. Both results were d
scribed in terms of the linearly decreasing effective detun
of the atoms. In the warm beam limit, the effect of radiati
pressure is to force a departure of the probe gain from
steady-state value. This effect has been explained in term
a sweeping of the atomic detuning through the Raman g
spectrum. The modulation of the field intensity envelope w
not observable as the spread in the atomic momenta m
that there is a spread of resonant frequencies, so that a si
sinusoidal type modulation will not occur.
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