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Propagation, cavity, and Doppler-broadening effects in the collective atomic recoil laser
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Using a completely semiclassical approach we extend a previous theory of the collective atomic recoil laser
to include propagation effects with and without a ring cavity, and to take into account the effects of Doppler
broadening. For cold atoms, we determine a mean-field condition under which propagation effects are negli-
gible, and find different dynamical regimes that we classify as “good” and “bad” cavity limits. We obtain the
results of a previous single-mode theory only in the good cavity limit. In the bad cavity limit or in free space
collective superradiant behavior dominates. For warm beams, where Doppler-broadening effects are important,
a noncollective Raman gain mechanism dominates in general, as recently observed experimentally. The effects
of particle trapping in the ponderomotive potential and radiation pressure have been described.
[S1050-294®@7)04407-1

PACS numbe(s): 42.55~f, 42.50—p, 32.80.Pj

I. INTRODUCTION the effects of the relative propagation of the scattered elec-
tromagnetic field with respect to the atoms when the atomic
The collective atomic recoil lasdiCARL) consists of a sample is in free space. It was found that a superradiant
beam of two-level noninverted particlés.g., atoms, ions, or  Solitonlike pulse of radiation was produced. In Sec. IV we
electrons, generically called atomsoherently driven by a €xtend the analysis of propagation effects to cases where the
quasiresonant Counterpropagating f|d]dj] The CARL atomic Sample is enclosed in a ring CaVity. A mean-field
mechanism is the collective regime of recoil induced gaincondition, which allows the neglect of propagation effects, is
phenomena Wh|Ch have been the Subject of recent experqierived and the dynamiCS of the CARL interaction are de-
mental investigation§2—5]. This system can give rise to Scribed by a damping parametéf. WhenK’<1, the cavity
collective coherent Compton backscattering due to selfiS said to be “good,” and the field evolution is identical to
bunching of the atoms via an instability very similar to thatthat in a Compton FEL neglecting slippage. Whieh=1,
which occurs in the high-gain Compton free-electron lasethe cavity is said to be “bad,” and a super-radiant pulse of
(FEL), with the dispersive part of the atomic polarization radiation is produced. In Sec. V we investigate how a distri-
playing a role analogous to the FEL wiggler magnetic field.bution of atomic momentéDoppler broadeningaffects the
The spontaneous grating formed by the atomic bunching ha@,volution of the probe field. It is shown that the effect of a
been demonstrated experimentally by Bragg scatteidjg  sufficiently large Doppler broadening is to reduce the atomic
The source of the radiation is both the internal degrees opunching and so the amplitude of the radiation emitted. This
freedom of the atoms, similar to a conventional atomic lasevarm beam regime is characterized by noncollective effects
but without population inversion, and the translational mo-giving rise to a Raman gain mechanism. For long-time scales
tion of the atoms similar to the FEL. To date, theoreticalit i shown that the steady state of this regime may be un-
treatments of CARL have considered only a single mode angtable due to atomic trapping leading to a synchrotron insta-
have neg|ected propagation effects. The effect of a Cavit@i“ty similar to that of the FEL. Flnally in Sec. VI we inves-
was treated phenomenologically as a loss term. In this papefigate the effects of the radiation pressure exerted by the
we give a first principle treatment of propagation effects and?ump field upon the CARL evolution. It is shown that in the
the Cavity is described in an exact manner by imposinQ_‘?Old beam limit the radiation pressure decreases the peak
proper boundary conditions on the field. The one-mode delntensity of the emitted radiation and also introduces a fre-
scription of previous papers is recovered here in the so-calle@uency chirp to it. In the warm beam limit the effects are
mean-field limit specifying the limit of validity in which similarly to reduce the peak intensity of the emitted radiation
propagation effects can be neglected. and also to introduce an instability of the steady-state gain,
In Sec. Il of this paper we derive a system of equationghe onset of which has been observed experimentally.
which describe CARL from a completely semiclassical ap-
proach by generalizing the so-called Maxwell-Bloch equa-
tions[6] and using a Hamiltonian of the system. In Sec. I
we extend the CARL model of previous papEt$to include In previous paper$l] the CARL equations have been
derived starting from a quantum-mechanical Hamiltonian
which described the interaction of two counterpropagating
*Present address: Department of Physics and Applied Physicsingle-mode fields with a two-level atomic system. This fun-
University of Strathclyde, Glasgow, G4 ONG, Scotland. damental approach is unnecessary in the semiclassical limit

II. DERIVATION OF THE CARL EQUATIONS
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which was used and has the drawback of not describing this the Rabi frequency of the pump field. These equations can
effects of propagation. We now derive the CARL equationsbe derived easily, assuming that the atoms evolve only under
using a semiclassical approach from the outset allowinghe action of the pump fielé,, which dominates the probe

propagation effects to be investigated. i field A;, and neglecting the recoil frequency shiit; with
Let us assume an electric field linearly polarizedc iwith respect to the pump detuning= w — wy, Where w is the
an amplitude of the form atomic transition frequency.

As is usual ImE) describes absorbtion and, as will
E(z,t)=[A(z,t)ek(@ U+ pe kzteh o clx, (1)  be seen, results in a force due to radiation pressure, whereas
Re(S) describes dispersion and will be seen to result in a

E(z,t) represents two counterpropagating plane waves iponderomotive force which gives rise to spatial bunching of
+27. We define the strong pump fiell, as a real constant the atoms. In order to minimize the radiation pressure we
and the weak counterpropagating probe figlg{z,t) as a choose
complex variable. For each atom this electric field will create
a dipole moment and the interaction of the dipole with the
electric field is described by the classical Hamiltonian

A>vy, 9

so that, from Eq(6), we have ImE)<Re(S), i.e., the sys-
N 2 tem is essentially dispersive. In this case, one can neglect
_ L - _ ¥? in the denominator of Re&), which can be maximized
=1\ 2M by assumingA ~ > v, so that

whereM is the atomic mass, the canonical position and mo- So~3- (10
mentum arez; andp;, respectively, andN is the total num-

ber of atoms. The component of the force on thjgh atom Under condition(9) we can neglect In&) in Eq. (4) to

is then given by obtain
. 2k
dH JE(z;,1) 6=—np (12)
==, 7 i i
P; 7z, d; iz 2 M
. ) ) hkyQ?
We defined; to be of the form = 0] _ T
J p] Iklu‘SO(Ale ) C'C') 2(A2+Qz) ’ (12)
di=p(Se K4t tc.c)x, (3)

whereS,, given by Eq.(7), contains the dependence of the
whereu andS; are the atomic dipole matrix element and ther_eCOII on the pump f_|eld amplitude anc_l pump detu_nmg. The
first term of Eq.(12) is the ponderomotive force which pro-

amplitude of the dipole moment of thigh atom, respec- . .
tively, the precise form of which will be discussed in terms.duces the spatial bunching of the atoms, and the second term

of the Bloch equation§6] shortly. Substituting Eqs1) and is the force due to the radiation pressure of the pump. If the
(3) into Eq. (2) we obtain probe fieldA, is a given constant and radiation pressure is

neglected, these equations represent a system of decoupled
pendula.

The probe fieldA; will evolve self-consistently under the
presence of the coherent polarization of the atoms so that
amplification may occur. To describe this process we write
the Maxwell wave equation for an electric field in the pres-
gnce of a polarizatioi:

pi=iku(A;S e'i—ASf —c.c), (4)

where 6;=2kz and rapidly oscillating terms varying as
e*'2¢! have been neglected.
We now calculate the dipole moment amplitu@ieusing

the Bloch equations in the steady-state adiabatic approxim

tion as in[8], i.e., for times longer thay ™!, wherey is the PE 1 2P
natural linewidth of the transition. One obtains = 2V2E=— — el (13
€0
ReS)=—-S, 5

Substituting forE(z,t) from Eq. (1), and performing the
slowly varying envelope approximatigi$VEA) for A, (re-

Im(S)=— % ReS), (6) membering tha#, is a constant one obtains
&Al (9A1 w i
L N —i(kz— wt)
where ( at C 9z ) i Peq Pe , (14
50:% (77 whereP=P-x and in the spirit of SVEA, we have made the
2(A°+y*+ Q) approximation
and J2P ,
W ~—wP.
0=2A 8
TR 2 ® AssumingN atoms at positions; , then
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N 0;=(ky+kp)zj— (w1~ wp)t. As a consequence, according
P=x- 2 d;jo(r—rj). to Eq.(11), the scaled momenturp; is given by Eq.(19).
=t The radiation pressure term has been obtained from Eq.
Substituting ford; using Eq.(3), performing a spatial aver- (12) using Egs.(6) and(8), assuming conditiort9) is sais-

age over volume/, and neglecting rapidly oscillating terms, fied. The radiation pressure can be neglected for
one obtains (Q29)/[2(A%+ Q%) w,p?]<1 and sufficiently short times,

so that the momentum change due to this pressure is negli-
dA; Ay Toun L TlounS gible. In this limit, Eqs(20)—(22) reduce to a set which have
WJFCE_ 2¢, (Se >_2—60<e ) no free parameters and are formally identical to the one-
(15)  dimensional model of the FE[9].
Note that as in FEL theory

where n=N/V is the atomic density, (---)=(1/

N)Z]L; ... . Under the conditions described above, which , 2elAll®  €E? al?
mimimize the radiation pressure force, and again assuming Al " hon  hon N
A,>|A,|, we find that|Re(S)|>|Im(S)| and we have re-

placedS; with the j-independent real part RE(=—S,in s the efficiency. In the last equalitya|? is the classical

(24)

the second equality. We define analogue of the photon number. The relation betwaemd
b=(e"1%) (16) A, is |Aj=l|alVhw/(2egV) due to Eqg. (1):

€0E?=2¢€0|A1|?=(hw|a|?)/V. Hence,p|A|? is interpreted

as the bunching factor. Equationsl), (12), and (15) now @S thg number of p_hotons emitted per atom. In Sec. Ill we
form a self-consistent system describing atomic phase, mdbvestigate the solutions to Eq20)—(22), both in free space

mentum, and field evolution. and in a ring cavity.
We now introduce the universal scaling for these equa-
tions. Let us define the fundamental dimensionless CARL Ill. PROPAGATION EFFECTS IN FREE SPACE

parameter as . . . . :
In this section we investigate the effect of the propagation

wMZH% 13 of the probe field with respect to the atoms. We neglect the
P\ %702 (17) effect of radiation pressure, so that the equations to be solved
0™ are
wherew, =2%k?/M is the one-photon recoil frequency shift.
Defining the dimensionless quantities ‘9_‘9123 (25)
—==pj,
_ — wp . 260 1/2 dt
t=w.pt, z= z, A=iA; , (18
c honp &p—
(b Mow) a_t—]: —(A€fi+c.c), (26)
— (P—=Muwvpp
p= Tpp (19
] ) ) dA  IA is
we obtain our working system of equations (?—t—+ a_z_:<e ), (27)
90, — .
—=pj, (20 wherej=1, ... N. For now we assume that the atoms are
at cold. This assumption corresponds to the initial conditions
— ) p;=J, a constant detuning for all atoms, where
ﬁz—(Ae”’JJrcc)—L (21
at T 2(A%+ Q%) wp?! M(v(t_ZO)—vph) Wr— W,
5= ~ (28
fikp wip
dA  IA _
—_t == <ei|9>, (22) . i i .
it odz v =2zIis the translational velocity of the atoms and it has been

assumed that the atoms are stationary at the beginning of the

wherej=1,... N, and interaction, i.e.p(t =0)=0. & is, therefore, the scaled fre-
guency detuning between the pump and probe fields. Using

Von= P17 @2 (23  the following ansatz on the field and atomic variatiek
P (1)1+ (OF)
is the phase velocity of the ponderomotive potential formed 0;=01i(y), pj= \/;pli(y)’ A=zAqy) (29

by the probe field and the polarization induced by the pump, .

if one allows the probe and the pump to have slightly differ-where y=(t — z) \/; the system of partial differential
ent frequenciess; and w,, respectively. In such a case the equationg25)—(27) can be recast as a setafinary differ-
atomic phase, with respect to the potential, becomesntial equations
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whereL=L/l,, A=All;, 7=A—-L, |.=cl/w,p is the co-
operation length of the system and we have assumed that
kA=2n, wheren is an integer, so that the wave number

k coincides with that of a cavity mode.

FIG. 1. Intensity of self-similar superradiant puls |? in adi-
mensional units as a function of=(t—z)\z, when §=0 and

A,(y=0)=0.01. —
1y=0) If we introduce the variabl@ as
%:p- (30) — —— 7 A
dy " A(z,t)=A(z,t)eKZ+ﬁ (34)
dps: . _
d_;: —(AeMi+c.c), (31)  and sek =In(1/R)/L, then the boundary conditio{33) be-
comes
y dA T
= = 0,t)=A(L,t—17). 35
2 dy +A;=b. (32 (0,t)=A( 7) (35

) o o ) Introducing the new independent variables
Equations(30)—(32) have a self-similar solitonlike solution

which depends only oy [9] (see Fig. 1L Hence, from Eq. o -
(29) |A|?x 2% p?72, so using the definition o, Egs.(17) Z/=z andt'=t+—, (36)
and (24), we obtain the scalingy|E|2n?z2, characteristic L
of a superradiant process. Hence, the pulse amplitude in-

creases linearly with the distaneeand the time duration, or the retardation factot — r can be remaved from the bound-

) . - . . . ary condition, resulting in
width, of the pulse varies as \JE This is a collective gain
mechanism which leads to the generation of a pulse which A+ — A1+
increases in amplitude and decreases in width as it propa- AQ)=A(L.LY, S

gates through the sample. For a sufficiently long sample %o thatA satisfies periodic boundary conditions. Using Eqs
narrow high-intensity spike of radiation is formed analogous(34) and(36), the field evolution equatiof27) can be written

to superradiance in the high-gain FE®]. The pulse shape
of Fig. 1 can be approximated by a hyperbolic secant func®s
tion [10], followed by nonlinear “ringing” which is very —

similar to the radiation pulse shape which occurs in super- %+£ﬁ+ E_KA_:b;e—Kz' (38)
radiance or superfluorescence from atomic two-level systems at’ A9z A A '

[7].
The effect of the change of variabl€é36) is, therefore, to
IV. PROPAGATION EEFECTS IN A RING CAVITY move to a coordinate system where the velocity of the radia-
) ] ] N tion field envelope is I(/A)c<c, therefore reducing the
In a ring cavity (see Fig. 2 the boundary condition for rejative slippage of the radiation with respect to the almost
the electric-field isE(0t)=\TE(t)+RE(L,t—7), where stationary atoms. Note that E(@6) also implies that ifA
E, is the value of the electric field input to the cavityjsthe  , .ct' \\hareC is a real positive constant, then the field
sample lengthy=(A—L)/c , A is the cavity length, and  55jitude will grow exponentially in time and space.

T=1—-R is the transmission coefficient of the mirrors. Re- The factorL/A in front of b in Eq. (38) can be removed

writing the electric field in terms of a slowly varying enve- ) ) e ,
lope E(z,t)=E(z,t)e* ) and with the same normaliza- by replacingp in the definitions oft , z, andp; by p’, where

tion as Egs(25)—(27), then REL L
A0.1) = VTA+RAL t=7), 33 pp (% a(n_

1/3
Oc(n/)l/f:’,
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FIG. 3. Spatial evolution of the normalized
field amplitude|A(z)|/|A(z=0])/ as a function
of z/L for L_:0.0S,T:0.0l, A;|=0.001, when
(a) spatial derivative may be neglected:=0.1
when t =10, (b) spatial derivative may not be

neglected:A_:5 and t =30. These plots were
obtained from a numerical solution of EqR5)
and(27) with the boundary conditioii33).
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wheren’ =N/V, is the number of atoms per urgawvity vol-
ume. We denote the rescaled variablestas z', and pj’ ,
respectively. The rescaled field variabd is defined by
replacingp andn by p’ andn’, respectively, in the defini-
tion of A (24).

After this rescaling, Eq(38) can be written as

A" L oA e
:-’—::—FK,A,:beiK 4 A/L, (39)
at’ Aoz’
where the scaled damping parameter is
K'=(AV0) 2An(1R). (40)

From now on, we impose the condition that=1, which

0,9

K’ T
A

so thatK’ can be interpreted as a scaled cavity mode line-
width.

In order to satisfy simultaneously E41) and the geo-
metric restriction A>L, it is necessary that <1, i.e.,
L<I, which is the usual type of condition quoted for validity
of the mean-field approximation in that the sample must be
optically thin with respect to some characteristic lendthirf
this cas¢. We have shown in Eq41), however, that there is
also an upper limit to the cavity length for which the mean-
field approximation is valid. This nonintuitive result is con-

allows us to assume that the exponential term on the righfifmed by a numerical solution of Eq&25)—(27) with the

hand side(RHS) of Eq. (39) has a value~1.

The mean-field approximation

We now consider the mean-field approximation, which
consists of assuming that the electromagnetic field is almo

uniform across the sample. From an inspection of i§),
the spatial
2’ A/L<1. Recalling thatz’ = z(L/A)3, and settingz to
its maximum valuez_=L_impIies that the condition for the
neglect of the spatial derivative is

A<

1
\/?

It can be seen from Eq40) thatK’ diverges asA_\/E—HO

(41)

for T constant. We therefore define the mean-field limit a

the limit whereA_\/E_—>O andT—0 in such a way tha'’ is

finite. Note that by introducing a modified cooperation length

defined ad.=c/w,p’ it is possible to write the mean-field
condition(41) as

and the damping constaKlt' as

derivative term can be neglected wherb

boundary conditior{33) (Fig. 3). Figure 3a) shows the spa-
tial evolution of the field amplitude in the sample at a fixed
time for cases where E41) is well satisfied. It can be seen
that the fractional variation in the field amplitude across the
sample is extremely small, around 3%, so that the mean-field
So{pproximation is clearly valid in this case. In FighBwe
show a case where E(1) is no longer satisfied and it can

e seen that the fractional variation in the field amplitude is
no longer negligible, being around 250%, even though we

still have L <1.
Recalling the fact that the width of the superradiant pulse

in free space scales as\,ﬂ_allows us to propose a simple
physical argument for the ring cavity mean-field lingit).
The scaled time duration of the pulse emitted from the
sample will beAt~1/yL so its spectral width will be
Ao~ \/E As the frequency spacing between cavity modes
written in the same notation Bw¢,,~1/A, the mean-field
condition(41) is just the condition that the cavity mode spac-
ing_is muc_h greater than the spectral width of the pulse,
Aw.,,>Aw ensuring that only a single cavity mode is ex-
cited.

Assuming the mean-field limit is satisfied we can rewrite
the full set of coupled evolution equations for the atoms and
field neglecting the spatial derivative and using

A'(t")=A"(t")+A//T, so that
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0001 | VALl K’ =0.0046.
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t
43 413
de,; — L L
] 2_ _ 12 _
ﬁzpj', (42) €| E| hwnp(A) |A] oc(nA : (46)
dpj' (A%t 43 The characteristic superradiant behaviBe«n?) is therefore
dt’ (A'efitc.c), (43 lost because of the narrow cavity linewidth.
Figure 4a) shows the temporal evolution of the average
) field intensity in the atomic sample for a case where
dA’ Ao A K'>1. The emission consists of a large amplitude pulse fol-
— +K'| A= —=| =b. (44) : .
dt’ JT lowed by a series of smaller pulses, similar to that observed

in studies of superfluorescence in two-level systgmjsFig-
The qualitative behavior of the system in the mean-field limit""® 4b) shows the temporal evolution of the average field

is therefore dependent only on the scaled damping parametlﬂlensny in the atomic sample for cases where<1. The

K’ intensity at the first saturation peak is-1.4(L/A)*3
and weak dampingK’ <1), whereA//\T<1. tical in form to that of the Compton FEL where propagation

K’'=1: In the strong damping or “bad cavity” limit, we €ffects are neglecte®]. We emphasize that the probe satu-
can adiabatically eliminate the field variable in E44) so  ration intensity is independent of the initial probe intensity
thatA’~b/K'. The scaled intensityA’|? initially grows as ~ Which may result from noise. When the system starts from
|A,|zoceﬁ\f?_ The radiated power in the strong damping noise in the FEL it has been termed self-amplified spontane-
limit. therefore. scales as ous emission9]. The scaled power output from the cavity is

' ’ T|AJ]?«K’|A’|?. Figure 5 shows a plot oK’|A’|? against
a3 K’ as calculated from the mean-field equatiddg)—(44).

“0|E_|2:”“’”P(K) Wocnz|_2 (45 The maximum value oK'|A’|? occurs wherK'~1. From

the definition of K’ (40), this means that the value df

which optimizes the power output from the cavity is
and is independent of the cavity length. Note that this is 0”'W~(A_JL;)2’3.

true while the mean-field conditio@1) is satisfied. The fact
that the radiated powe?>n? indicates that superradiant be-
havior occurs in the bad cavity limisee Fig. 4 similar to
the case of a two-level system enclosed in a cavily The V. DOPPLER BROADENING
superradiant emission from the sample is, therefore, not sen-
sitive to the presence of the cavity in this limit.

K’<1: In the weak damping or “good cavity” limit, we Let us consider atoms with a Gaussian distribution of mo-
can neglect the term containig’ in Eq. (44). The set of menta. As the atoms all have different momenta they will
equationg42)—(44) now has no free parameters, and is iden-debunch with time, even if they undergo no interaction with
tical to the set of Compton FEL equations in the steady-statghe probe field. We definey, as the characteristic time over
limit [9], so the scaled intensiyA’|? grows ag|A’ |23t which this Doppler debunching occurs and we evaluate it
before saturating at a value of approximately (kde Fig. 4  using the following argument.

This implies that the radiated power in the weak damping The bunching factob (16) may be written with averages
limit scales as in integral form

A. General effects of Doppler broadening
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N
< FIG. 5. K'|A’[2T|A’|? (the
x scaled output power as a function
of K’).
K!
b:<e_i‘9j>0 o B. The effect of Doppler broadening on superradiance
0'Fo
) We consider the case of CARL evolution in a ring cavity,
:if ﬂde fm dp_G(p_ 5)e—ie<ﬁeo,pf)> (47) which is described by Eq$42)—(44). As shown in Sec. IV,
2w 0) . TOTNEO ’ it is useful to normalize variables with respect g6. We
must therefore define
where
—  kAv ‘<A)1’3 (50
_ o = =0 —|
6(po )= ((p0_5)2) w;p L
y = ——eX e——
Po N2mo - 207 _ A 13
Wy~ W1
_ &= =5(E) , (5)
is a Gaussian momentum distribution function of width wrp

centred atpo— 6= (wy— wq)/(w,p). As in Eq.(28) we have ) -
assumed that the mean initial atomic velocity is zero. Thénd 74p= 1/o’. We consider specifically the case of a
Doppler linewidth scaled with respect to the “collective line- “bad” cavity, whereK'=1. Whent t'>1/K’, it is possible

width” w,p is to eliminate the field variabld’ adiabatically, so that
— kAv Al b
. p ' A=~ F + W

whereAv is the velocity spread of the atomic beam. In the , , : .
limit of weak interaction, i.e.|A|<1, the atomic phases When b/K'>A, /T then A’eb, which when combined

—— with Eq. (48) suggests that the scaled probe intengity|?
0:~0y+ po t, that f Eq(4 . . —
= 00jF Poj t, SO that from Eq(47) will have a Gaussian dependence @h
prre. In Fig. 6 we plot the scaled intensipp’ |2 as a function of
|b|cex

(48  t' for three different values of’, as calculated form a
numerical solution of Eq942)—(44). The effect of the mo-

o menta spread is clearly to reduce the peak intensity of the
The effect of Doppler broadening is, therefore, to Caus%ulse (AL2)
ol

the bunching to decay with a characteristic decay time of

2

A plot of the peak intensityA’|? againsto’2 as calcu-
1 lated from a numerical solution of Eq&12)—(44) is shown
Th=—- (49 in Fig. 7 for the case wher&’=8. It shows that when

o |A’[>]Aq| the dependence ¢A,|* on o' is well described
by a Gaussian function, i.gA)|*>xexp(-o'%p?), where

Deﬂn.mg 7 as the growth time ob n the cold beam. limit, is the width of the Gaussian. This is not true wh&h~A,
then if 74,< 74 we expect the evolution of the bunching and, because in this cast’ is no longer proportional tb.

consequently, the field to be restricted severely by the atomic By repeating these calculations for different values of
Doppler debunching due to the spread in atomic momenta 9
Conversely, ifrg,> 74, the growth of the bunching and field " and calculating the gradient of the|Aj|* againsto '

is expected to be restricted only slightly by the Doppler de-Curve, we can show th‘"ﬂ varies asyK’ (Fig. 8. The de-
bunching. In Sec. V B this simple argument is investigatedoendence oﬂA |2 on ¢’ can then be approximated by a
for the case of superradiant field evolution. Gaussian funct|on of the form
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FIG. 6. Scaled radiation pow¢A’|? as a function oft ', when FIG. 8. Gradient of IfA}J> vs o'? curve of Fig. 7 as a function

6'=0 and K'=8 for the scaled atomic momenta sprea@ds of K'.
o’ =0, (b) ¢'=0.1, and(c) o’ =0.2. ] ]
C. Noncollective gain
In this section we consider the case of a bad cavity where
the debunching timey,, is less tharr,, so that the momen-
tum spread has a significant effect on the field evolution. We
when|b|/K's|A,|/\T, wherea is a numerical factor. From investigate CARL in a bad ring cavity, which is described by

the results of Sec. lll, the characteristic growth time of theEaS: (,42)_(44) with K'=>1, S0 A'~Aq+b/K’, where
field for a bad ring cavity is A0=A|/\/T. If we assumeb/K’<A,, then we can replace

A’ by A, in the atomic motion equatio3) so that

|A|2xexp(—ao'2K'), (52)

TN v dp/ A
7-g_Tsr_ \/K—v (53) &: _(AoeI0J+C.C.),
dt’
so Egs. (520 and (53) confirm that when 7,>7.  i.e., the atoms are assumed to evolve under the action of the

(o' <1/JK") the spread in atomic momenta has little effectinput field only, and the atomic phases evolve as
on the peak intensity of the probe field. This is, therefore, the -

“cold beam limit” for CARL in a bad ring cavity. In con- 0~ 6oj+ Poj t -

trast, whenr,< 7, the peak intensity of the probe field is

greatly reduced by the spread in atomic momenta. The se
ond limit will be considered in more detail in the following

sections.

Under these assumptions, the gain of the probe field, defined
%sG=(|A'|%/|Ag|2) -1, behaves afl1]

G
G(oe—| | (54)

pO p(’):O
-2
10

whent > 7)), , whereG(pg,8’) is the momentum distribu-
tion function defined earlier. The behavior of the gain as a

function of t’ is shown in Fig. 9 as calculated from Egs.

(42)—(44) for different values ofé’. Notice that the gain is

AL s significantly smaller than that for the cold beam evolution by
P10y ] approximately six orders of magnitudsee Fig. 4. Figure

10 shows a graph @ againsts’. These points are a good fit

to the curve which is the derivative of a Gaussian. Maximum

amplification of the probe occurs wheti = ¢’ and maxi-

mum absorption of the probe occurs whé&h=—o"’.

b Y TRy Ty ey Thg physical mechanism behinql this type of gain has been
’ ’ _, ’ ’ ‘ described quantum mechanically in terms of stimulated Ra-
' man scattering so we will refer to it, henceforth, as Raman
gain[2]. We describe it here classically in terms of a process
FIG. 7. Scaled peak radiaton powek,|* as a function of the analogous to Landau damping of a wave by electrons or ions

square of the scaled atomic momenta spredd for a bad ring  in a plasmg12]. The ponderomotive potential produced by
cavity (K'=8), whens=0 andA,=0.01. the combination of the pump and probe fields has a phase

10*
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0.02 r , , . G(y,3)
0.015} (b)
0.01}
0.005} (@
Gain 0
©
-0.005}
-0.011 (e)
S
-0.015} G)
0.02 1 2 3 4 5 FIG. 11. Schematic diagram showing how the Raman gain

= mechanism depends upon the atomic deturdihg

o _ R evant for experiments involving no cavity. When the atomic

FIG. 9. Radiation power gain as a function of for a bad  sample is very short with respect to the cooperation length,
cavity (K’ =10) and warm beam(’ =3) for the detuning param- e | <1, the field distribution across the sample is almost
eters: (@ 6'=6, (b) &'=3, (¢) &'=0, (d) &'=-3, and (6  ypiform. Propagation effects can then be approximated by

5'=—86.

using a damping term to model the effect of radiation loss in

the atomic sample due to propagation [11]. The equations

velocity vy, given by Eq.(23). This means that atoms with

initial momentap_(’) slightly less than zerou<vp) will be to a set similar to Egs. (42)44)

accelerated and those witp) slightly more than zero
(v>vpn) will be decelerated due to the force exerted by this
potential. As the atomic momenta are nonuniformly distrib-
uted, the number of atoms accelerated and the number decel-
erated will not be equal in general, so there will be a net
exchange of energy with the probe field. The amount of en-
ergy exchanged will be proportional to the difference in mo-

mentum group population aroundy=0, i.e., &G/&p_() at

on (Fig. 11). Note that this gain mechanism is not col-
lective as only the pump field,, which is independent of
b, drives the atomic motion. The atoms, therefore, evolve

do; _

dt_ p] ’
dp; .
hi__ (A% +c.c),
dt

d
—+K:(A—A|)=Db,
i1 £( 1)

describing CARL in free space (25p7) therefore, reduce

(55

(56)

(57)

independently of one another behaving as decoupled pefwhere the free space damping constirt=1/L, which is
dula. This noncollective gain mechanism explains qualitaassumed to be much larger than one, so hatA,. The
tively the experimental results of Courtaés al. [2] involv-  results described above for a ring cavity, therefore, also ap-
ing a small sample of cesium atoms in free space, where ngly to a short atomic sample in free space. This is confirmed
cavity is present. The explanation given above is also relby a comparison of Fig. 9, showing bad cavity, warm beam
evolution, with Fig. 12, which shows a graph of the intensity

0.02

0.02
0015} 0.015} (&)
001}
0.01}
(@)
0.005}
0.005f
Gain  of Gain 0 (©
-0.005 -0.005
-0.01r 001 (e)
00151 -0.015} (d)
T 4 2 o 2 4 ® 0,02 '
) : ) ) 8 8 0 1 2 3
t
FIG. 10. Radiation power gain as a function of detunéigfor o ) o
parameter&’ =10 ando’=3. A (solid) Raman gain curve, which FIG. 12. Radiation power gain as a function offor free space

is the derivative of the Gaussian atomic momenta distribution funcevolution, wheno=3, L =0.1 and(a) 6=6, (b) 5=3,(c) 5=0, (d)
tion, is fitted to the points from numerical simulations. o=-3, and(e) 6=—6.
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(@)

Ibl Gain

FIG. 14. Radiation power gain as a function of for param-
eterso’=2,K’'=8, and5=0, and for(a) A’=A,; in Eq. (43) —
i.e., no probe field evolution anth) A’=A,+b/K’ in equation
(43) — i.e., including probe field evolution.

FIG. 13. Bunching parametéb| as a function oft ' for cold
(solid line) and warm(dashed ling beams. These correspond to
Figs. 4a) and 9b), respectively.

(IAl?) evolution as a function of for a warm beam at the ~ saif.consistent field generated by the bunchibéK(') is in-
sample end ¢=L), as calculated from a numerical solution cluded in the motion equatio@3), then the total probe field
of the free space evolution equations including propagation’ =|A’|e'é=A,/T+b/K’ is also a function of time.
(25)—(27) for different values ofs. In what follows, it is  Therefore, as the field phages time varying, there will be
understood that the results derived for a bad ring Cavity cag dynamic shift of the effective frequency of the probe field
also be applied to a small atomic sample in free space byom
replacingt’ with t, A’ with A, K’ with K;, A//\T with
A, &' with 8, ando’ with . Hence, one can use a simple w1— w1 — a_g
single-mode mean-field model as opposed to the more com- at
plex system describing propagation in full.

We are now in a position to compare the cold and warmand the effective phase velocity of the ponderomotive poten-
beam limits. The large difference in gain, by approximatelytial is shifted from
six orders of magnitude, can be seen from a comparison
between the gains of the cold beam in Fig. 4 and the warm 1 9¢
beam in Fig. 9. Uph—UphT 3 7y

For completeness we compare the bunching factors for
the same cold and warm beams in Figs(al3aand 13b),

respectively. The maximum of the cold beam bunching fac ; 4 X ; ; .
tor of ~0.8 is significantly larger than that of the warm beam&tomic sample acts as a dielectric medium with a refractive

value of 10°3. Hence, we conclude that for warm beams, Ndex greater than 1, which reduces the phase velocity of the
where Raman gain dominates, there is only a weak modmaponderomotlve potential. If this is taken into_account, the
tion of the atomic density. This is in dramatic contrast to theresonant group of atoms are no longer those wigk0, but
strong bunching obtained for cold beam evolution. those with py=d¢&/dt’>0. As dG/9py<0 at this point,
i,e., for the group of atoms with velocity
v~vpn— (L/2K) 3¢/ dt there are more atoms traveling slightly
slower than the ponderomotive potential than traveling
As in Sec. VC, we assume that we have a bad ring cavitglightly faster, the Raman gain mechanism described in Sec.
and that debunching effects are strong & 75,). We now  VC takes effect, causing the atoms to absorb the probe after
consider the case whe® =0, i.e., aG/ap_{ﬂ;é:O:O. The initially amplifying it. The dynamic frequency shift which
analysis of 11], where the atoms evolve undg only, pre- prqdl_Jces the trqnsient am_plification of the probe is charac-
dicts a nonzero but very small gain, with a temporal behay{eristic of collective behaviof9], as opposed to the Raman
ior, as shown in Fig. 14). A numerical solution of Egs. 9N _me(_:hanlsm which is not collec_:tlve in nature. As we are
(42)—(44) with the same parameters also gives a small gain99n5|d,ezr|ng cases where debunching effects are strohg, ie.,
but with a different sign and a quite different temporal be-7db< Tg. collective effects are very weak and are dominated
havior, as shown in Fig. 18). The reason for this lies in the by the Raman gain except wheiG/dp,~0, i.e., when
neglect of the reaction of the field emitted by the atomss’~0 for a Gaussian momentum distribution. Some possible
(b/K") in the analysis off11]. The negative gain in Fig. experimental evidence of such transient amplification has
14(b) can be deduced from the following argument: If the been recently observed by Verkdi¥|.

It can be shown that the sign d§/dt is positive[11], so the

D. Competition between collective and noncollective effects
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FIG. 15. Phase-space trajectories for atoms interacting with a |G, 16. Radiation gain as a function af’ for parameters
constant fieldA’ =Ag=1. o'=2, =2, and(a) |A,|=0.001 (r,=112)— no particle trap-
ping and(b) |Ag|=0.1 (r,=11.2) — particle trapping leading to

E. Long tim I nchrotron illation ;
ong time scale synchrotron oscillations synchrotron instability.

An additional effect, which is nonlinear in nature and can
occur after long interaction times, is that of the trapping ofsults observed by Verker3], which show the probe gain
atoms by the ponderomotive potential. Let us again assumgrowing initially to a steady state before decreasing. The
that debunching effects are strong and the gain of the probfirther revival and oscillation of the gain have yet to be
field is small enough so that’ ~A,=A|/\T. observed.

From Eqs.(42) and(43), a phase trajectory for each elec-
tron can be constructefFig. 15. This is identical to the VI. RADIATION PRESSURE EFFECTS
phase trajectory for a simple pendulum. The particles which ) o o )
have values op, that lie inside the separatrix are trapped in . d(ljri]n;hetrzneearna-(fjlgt(ijoumI;rr:sdsl,iEgn tg:?ﬁsfgrf ('252 :}C[’gaezd by
potential wells and will eventually execute oscillations aboutH)z) 7] 1o Eq. (43 analogous to Eq(21). (As previ-

the bottom of the well. The period of these oscillations can | ted in Sec. VC both f q field limit
be estimated from an inspection of the atomic motion equa: ously noted in Sec. oth free sp’ace and mean-field imi
evolution are similar folkK=1 andK’=1, so that the fol-

tions (42) and(43) which when combined can be written as
lowing analysis also holds for free space, short pulse evolu-
2q tion.) -
d—,JZ +2|Ao|cod 0+ £,) =0, We first consider the cold beam limit'=0 with
t K’=5 and the atoms initially detuned for maximum gain in
where Ag=|A,|€'é. The atoms close to the bottom of the the absenc,e of radiation pressute=0, fpr th_ree dlff_erent
potential will therefore oscillate with angular frequency Values OfI'". The results of the numerical integration are

ws~2|Aq|. The period of the oscillations is, therefore, shown in Fig. 17. Figure 1@ shows the case fd?’=0 and

1/2

2

==
s
Wg

2

0.025
7l —
Al

In the analysis of11], the perturbation of the atomic phase 0.02r
due to the ponderomotive potential is assumed to be negli-
gible in Eq.(43) and the probe gain attains a steady state for 0.015}
times t’'>7},. This assumption is only valid for time A1
t'<7,. For t’~r7,, the trapping of some of the atoms in 0.01f
the potential causes the steady state to become unstable anc
these atoms oscillate, analogous to the synchrotron oscilla-
tions of electrons in the FEL, causing the field to depart from

the steady state. Confirmation of this is shown in Fig. 16,

which shows the evolution of the probe gain wheh< 7, 0

[graph(a)] and the equivalent case wher ~ 7 [graph(b)]
calculated from Eq942)—(44). Note that in order to observe
any region of steady-state gain, it is necessary that FiG. 17. Effects of radiation pressure on a cold beam in the

TL>Thy, 1€, |Ag| <272 o'2. This particle trapping mecha- mean-field limit with: K'=5, ¢’'=0, §'=0, and(a) ['=0, (b)
nism is one possible explanation for some experimental reF =0.4, and(c) ' =0.8.

0.005f

25
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0.1 : : : , : and are swept from maximum gain, &t= o', through zero

@ and into the region of negative gain before tending to zero.
To date only the region of monotonic decrease of the gain

b) 1 has been observed experimentally, the minimum and subse-

quent approach to zero gain have not.

0.08}

0.06f

0.041
0.02f VII. CONCLUSIONS
Gain

0 @ A semiclassical model of CARL has been derived and
-0.02f : was used to investigate propagation, cavity, and Doppler-
-0.04f broadening effects. The effects of propagation were investi-

gated for cases where the atomic sample is in free space and

-0.06f enclosed in a ring cavity. In free space, it was found that a
-0.08 . (© superradiant solitonlike pulse of radiation was produced. In a

12 ring cavity, the condition for the neglect of propagation ef-

K fects was found to ba \/E_<1. When this mean-field con-
dition is satisfied, the dynamics of CARL interaction in a
FIG. 18. Effects of radiation pressure on a warm beam in thefing cavity is described by a damping parameter,
mean-field limit with:K’ =5, o7 =2, andé'=2 and(@) T=0, ()  K'=T/(A\L)?2. When K'<1, the cavity is said to be
I'=0.1,(c) I'=0.4, and(d) I'=1. “good,” and the field evolution is identical to that in a
Compton FEL neglecting slippage. Wh&i=1, the cavity

is said to be “bad,” and a super-radiant pulse of radiation is

corresponds to the solution without radiation pressure ShOWBroduced. The effect of Doppler broadening on CARL evo-

first is that the peak intensity of the radiation emitted is re-spread in atomic momenta. For the case of atomic samples in
duced. This effect may be accounted for by recognizing tha& bad cavity it was shown that the effect of Doppler broad-
the atoms will be “swept” out of resonance by the radiation ening on the maximum probe field intensity can be deduced
pressure so that they will no longer be detuned for maximunfrom a comparison of the debunching timg, with the
gain to occur. In fact, the further they are swept from resogrowth time of the bunching and field, neglecting Doppler
nance the smaller will be the gain of the probe. The secon@éroadening. When,> 7.,, the evolution of the field is es-
effect is the modulation of the probe radiation’s wave enve-sentially unaffected by Doppler broadening, so this condition
lope. The modulation frequency increases approximately linis the “cold beam limit.” If 73,<7l,, however, the field
early int” indicating a frequency chirp of the emitted radia- evolution is greatly restricted by Doppler broadening. Under
tion. The frequency of the radiation emitted by the atoms ashese conditions, collective growth of the field is very weak
a function oft’ approximately corresponds to their instanta-and can be dominated by noncollective effects such as Ra-
neous resonant frequency. The instantaneous period of tltean gain due to the shape of the momentum distribution.
probe field modulation may be simply calculated: The effecHowever, due to trapping of atoms in the ponderomotive
tive detuning of the atoms at timg due to the radiation Ppotential, synchrotron type oscillations will eventually drive

pressure terml’’ will be 5.=T't’. The instantaneous the probe field for sufficiently long interaction times. The
modulation period At’ will then be given by results described here should help to clarify the distinction

At'=2m/8.;. This simple analysis gives good agreementbetween true CARL behavior and the noncollective phenom-
o -

with the graphs of numerical simulations of Figs(d7and €N which occur due to recoil in systems of strongly driven
17(b). atoms such as Raman scattering. True CARL behavior ex-

In the warm beam limit an instability of the steady-statehibits strong bunching, or modulation, of the atoms, while in

Raman gain can be induced by the effect of radiation presr_1onco||ective be_he_wior only a weak byn_ching is obtained. In
sure. A typical result of a numerical solution to the equationdn€ cold beam limit the effects of radiation pressure were to
is shown in Fig. 18 where we plot the gain for different reduce the peak intensity the emlltted radiation and also to
values of the radiation pressure tefii. The steady-state Nntroduce a frequency chirp onto it. Both results were de-
evolution becomes unstable as the radiation pressure terﬁf”bed in terms of the linearly decreasing effective detuning
I is increased from zero. In particular, for smaller values of°! the atoms. In the warm beam limit, the effect of radiation

I'' one observes a monotonic decrease in gain similar to thgtresguret ":‘ to florceTﬁ\. defp;artturze Og the prolbg 93'?‘ ftrom |tsf
experimental observations of Rgh]. AsI'’ is increased the steady-state value. This eflect nas been explained in terms o

gain saturates, decreases to a negative minimum, and théansweeping of the atomic detuning through the Raman gain

approaches zero asymptotically. We stress that in this cas??Cttr)um' Tgle modtlrj]latlon of(’;h_e f;ﬁld |r:ten_s|ty envelc:pe was
synchrotron oscillations do not occur, i.e., the gain does no ot observaple as the spread in the atomic momenta means

become positive again, as in Fig.(bf as radiation pressure that there is a spread of resonant frequencies, so that a simple

and particle trapping effects arise from completely differents'r‘uso'd""I type modulation will not occur.
mechanisms. The transient behavior of Fig. 18 can be inter-
preted by reference to the Raman gain curve of Fig. 10. The
radiation pressure has the effect of decreasing the atomic The authors would like to thank the Royal Society of
momenta and so their effective detuning with respect to théondon and the EPSRC for support of G.R.M.R. and
Raman gain curve. The atoms then traverse the gain curv@.McN., respectively.
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