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Macroscopic quantization in quantum optics and cavity quantum electrodynamics:
Interatomic interactions
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We extend previous work on macroscopic canonical quantization leading to a multipolar Hamiltonian
appropriate for application to quantum optics and cavity QED situations involving classical optical devices. In
particular, we show that the electric displacement is the negative of the conjugate momentum field and that the
Coulomb and polarization energies are equal to the sum of intra-atomic Coulomb and polarization energies and
interatomic contact energies. The quantum Hamiltonian is now in a form in which the theory is manifestly
gauge invariantfS1050-294®7)04307-3

PACS numbeps): 42.50—p, 12.20.Ds, 32.80:t

I. INTRODUCTION [5—-7] is based on using a generalized radiation gauge condi-
tion in which the vector potentiah(R) satisfiesV - eA=0.
Experiments both in quantum optics generally and in cavin this gauge the scalar potentidl only depends on the
ity quantum electrodynamics QED in particular study thepositions of the charged particles in the radiative atoms.
interaction of the quantum electromagne(ieM) field with In the case of free-space quantization there are actually
radiative atoms in the presence of classical optical deviceseveral routes that one could use to derive the multipolar
such as resonator cavities, beam splitters, filters, and so okhlamiltonian[8]. One is to apply a unitary transformation to
In many situations the quantum nature of the dielectric atomthe minimal coupling Hamiltoniaf®]. A second is to add a
making up these classical optical devices is not important, asotal time derivative to the original Lagrangidi,10. A
for example, when nonlinearity, absorption, and dispersiorthird approach is via the use of gauge transformat[@&hs$o
can be ignored for EM field intensities and frequencies ofthe potential#\,¢ in the original Lagrangian. All these meth-
interest. ods give the same outcome; the method used here is the
To obtain the basic quantum Hamiltonian needed forsecond one. The theory is of course gauge invariant, though
theory, a canonical quantization for the full system of EMthis is not necessarily obvious if the quantum Hamiltonian
field, radiative atoms, and dielectric atoms can be performethvolves the potentialé\,¢ rather than electric and magnetic
[1] and then a formal elimination of the spatially inhomoge-fields.
neous dielectric atoms constituting the optical system carried In all of the previous work on macroscopic canonical
out later. However, it is often more convenient to base thequantization5—7] for quantum optics and cavity QED situ-
canonical quantization on a classical Lagrangian in whichations, the basic picture of the quantum EM field that
the dielectric atoms of the optical device are treated macroemerges is still the same photon model that applies in free
scopically from the beginning. These atoms are replaced bgpace or microscopic canonical quantization. However, in
the spatially dependent electric permittiviggR) [and mag- the quantum optics of cavity situation or where any classical
netic permeabilityw(R), if there is also magnetic materjal linear optics device is involved, the quantum EM field is
that describes all the classical optical effe@part from dis- equivalent to a set of independent quantum harmonic oscil-
persion and absorptigrior the device in question. This sec- lators, one for each classical mode of the EM field, as modi-
ond approach will be referred to as macroscopic canonicdied by the classical linear optical device. The noncoupling
guantization, to distinguish it from the first approach of mi- of the quantum harmonic oscillators is associated with the
croscopic canonical quantization, in which the dynamics ofuse of the true mode@iniverse modesfor the optical sys-
the dielectric atoms is initially included, albeit in terms of tem, which are obtained as solutions of a generalized Helm-
simple models. Such models for the dielectric material usedholtz equation. The vector potential is expanded in terms of
in the microscopic approach include harmonic polarizationrsuch true mode functions and is required to satisfy the gen-
fields[2,3] and polariton field$4], which are then quantized eralized radiation gauge condition.
along with the EM field and radiative atoms. In other work[11] idealizations of the modes for the op-
Previous work on macroscopic canonical quantizatiortical device (or quasimodégscan be introduced. These are
[5,6] used a Lagrangian that yielded the guantum Hamilsolutions of a generalized Helmholtz equation involving an
tonian in the minimal coupling form. For quantum optical artificially chosen permittivity functione(R) [and perme-
studies where often the electric dipole approximation is usedability function (R)] to produce the required quasimode
it is preferable to obtain the quantum Hamiltonian in thefunctions. Naturally the vector potential still satisfies the
multipolar form, and this has recently been achieved by Dalgeneralized radiation gauge condition for the tefR). In
ton et al. [7]. The electric dipole approximation result was this case macroscopic canonical quantization in terms of the
obtained also. This macroscopic canonical quantization workjuasimodes still yields a quantum multipolar Hamiltonian in

1050-2947/97/5@)/9057)/$10.00 56 905 © 1997 The American Physical Society



906 B. J. DALTON AND M. BABIKER 56

which the photon model of quantum harmonic oscillatorslll A the reduced polarization density is expressed in terms
(one for each quasimoystill applies, but now the quantum of the generalized transverse componentdpfR)/e(R), in
harmonic oscillators are coupled so that energy exchangeSec. Il B the relationship betweew, P, and P{ is ob-
between different quasimodes can now occur, as in the pheained, in Sec. Il C the result fdD is derived, in Sec. Ill D
nomenological model used in input-output thepty?]. the equal-time commutator fd, II is obtained, in Sec. Il E
For quantum optics and cavity QED situations involving athe Coulomb and polarization energy terms are combined,
classical optical system the interaction between the radiativand in Sec. Ill F they are shown to be equal to the sum of
atoms and the quantum EM field described via the multipolaintra-atomic Coulomb, polarization energies, and contact en-
Hamiltonian[7,8] consists of an electric interaction term and ergy. In Sec. Il G the quantum multipolar Hamiltonian is
a magnetic interaction term, both involving the quantum EMobtained, along with its electric dipolar approximation in

field linearly via the conjugate momentum fidl{R) and the ~ Sec. Il I. The results are summarized in Sec. IV.
magnetic fieldV X A(R), respectively, together with reduced
polarization densitiesP| (R) and magnetization densities Il. GENERALIZED HELMHOLTZ THEOREM

M/ (R), and also a diamagnetic interaction term, which in- h | Helmholtz th ) il
volves the magnetic field quadratically. The electric and The usual Helmholtz theorem writes a vector figiR)

magnetic interaction energies are associated with one-photdts the sum of a transverse fiekd (with zero divergence

processes, the diamagnetic energy with two-photon pro@nd a longitudinal field, (with zero cur). For cavity QED

cesses, and the dominant interaction is the electric dipold'acroscopic quantization via a spatially dependent electric
approximation to the electric interaction energy. permittivity function e(R) requires the use of a generalized

The atom EM field interaction terms involve the mode "adiation gauge conditio¥ - eA=0 for the vector potential

functions at the atomic positions. For the true mode quanti®(R)- Thus the vector potential is no longer transverse.
It is therefore useful to consider a generalization of Helm-

zation scheme each atom can interact with all true mfdes _ ) S Y
whereas for the quasimode quantization scheme the mod¥!tz theorem in which the vector field is written as

functions can be chosen so that only cavitylike quasimodes _ (e (€)
have sufficient amplitude for the atom to interact wjifti]. FR)=F"(R)+F"(R), 2D

Thus in the quasimode approach only atom field coupling tQ, hare now with a specific functioa(R)
a limited number of modes need be considered. '

In the recent paper by Daltcet al. [7] the quantum mul- V.eF9=0, 2.2)
tipolar Hamiltonian also contained a Coulomb energy term
and a polarization energy term. In the free-space canonical VxFﬁE>=0. (2.3

guantization approacfi] these terms can be further devel-

oped to show that together they are equal to intra-atomierhys asF{® is no longer transverse it will contain a longi-
_Coulomb_energy and polarization energy terms along with, ginal component an(ﬂiﬁf), although longitudinal, is no
interatomic contact energy terms. In this paper we show th%nger the longitudinal component &t

this result also applies in canonical macroscopic quantization The transverse and longitudinal components of a vector

gor quant_llfkr]r? odptlcsl and ca\gty Q%D W't?. ((:jl_assu;al opl)thal field satisfy the usual orthogonality condition with weight
evices. This development depends on finding the relationg ,ion ynity. On the other hand, the generalized transverse
ship between the scalar potentialand the polarization and componean) and longitudinal Component?ﬁ(f) satisfy the

r_educ;(_ad_polarizat_ion densitiéd (R), PL(R) and this rela- generalized orthogonality condition applying for macro-
tionship is found in the present paper, via the use of a geng

Scopi ntization in cavi ED, witk(R) the weigh
eralization of the Helmholtz theorem. fcop_c qua tizatio cavity QED, witk(R) the weight
. . . . unction:

Also, in previous work[7] the relationship between the
electric displacemenD(R) and the conjugate momentum
field TI(R) was left in a form that did not exploit the rela- J d°R e(R)FY(R)-F{?(R)=0. 2.4
tionship betweenp, P, and P| referred to above. In the
free-space canonical quantization approd&l7], the rela-  The proof of this is simple enough—wrieF(? asVxWw,
tionship D= —1I applies for neutral radiative atoms. In the (<) a5V (whereW,y are suitable vector and scalar poten-
present paper we show that this relationship also applies ifia|s) and then us& - (¢V X W)=V -V x W, followed up
the case of macroscopic canonical quantization for cavityyith Gauss’ theorem, after integrating each side over all
QED situations. The electric dipole approximation to the i”'space.
teraction now involves the usuat u-D/e form, familiar Expressions for the generalized transverse component

frorlg fre]le-s%aci qua?tizart]ion. » ‘i F(9 can be obtained in terms of normalized eigenfields
inally, the form for the equal-time commutator of the oot any suitable self-adjoint operatbr

vector potential and the conjugate momentum field is ex-
pressed in terms of a generalized transverse Dirac delta func- LF,(R)=\F\(R), (2.5
tion.

The plan of this paper is as follows. In Sec. Il the gener-where for arbitrary field4J, V:
alized form of the Helmholtz theorem is developed, leading
to the introduction of generalized transverse and longitudinal 3 * _ 3 *
Dirac delta functions. In Sec. lll the results are applied in J d*R (R)U™-(LV)= | d°R e(R)(LU)*-V
macroscopic canonical quantization for cavity QED. In Sec. (2.6
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and that also satisfy The uniqueness df( (and hence of{?) is guaranteed by

the unique result Eq2.13 for the coefficient<C, .
V.eF\(R)=0. (2.7

The eigenfield$-, (R) can be shown to be orthogonal in the Il APPLICATION IN MACROSCOPIC CANONICAL

general sense as in E(R.4) (see Ref[7]) for different ei- QUANTIZATION FOR CAVITY QED

genvalues\ and can be finally chosen to be normalized also. | this application e(R) is the permittivity function,

The generalized orthogonality and normalization condition is,, (R) the permeability function, the eigenfields are the vec-
tor mode function®\, and Eq.(2.5) is the generalized Helm-

J d®R e(R)F¥(R)- F.R)=3),. (2.9 holtz equation with\, equal tOwﬁ, the square of the angular

frequency. The vector potenti&dl(R) is expanded in terms

The eigenvaluea are also real. As a specific example, any©f the A as

operator of the form

A(R)=; G AR), 3.1

1 1
L=; V><—(V><---)>, (2.9
K where theq, act as the generalized coordinates. The operator

ing the required conditions. The generalized transverse Dirac delta function will be
ExpandingF{¢ in terms of theF, the expansion coeffi-
cients can easily be found using the generalized orthogonal- 5(f)(R,R')ij :Ek Ai(R) ’Ifj(R’)e(R’). (3.2

ity and normalization expressions to give

A similar function to this is used by Vogel and Weldd8].
F9(R=2 C\R(R), (2.10

A. Reduced polarization density

with The reduced polarization densi®/ (R) is defined agsee
Eq. (53) of Ref. [7]]

cxzf d°R’ €(R)FS(R)-FOR). (211
PLR)=2 e(R)Ak(R)f d*R" AF(R')-PL(R"),
But analogous to the proof of ER.4), k 3.3
f d°R’ (R)F}(R')-FI9(R')=0. (212  whereP,(R) is the polarization density associated with the

radiative atomgsee Eqs(3) and(7) of Ref. [7]].

In view of this C, can be expressed in terms of the original A If we consider the field® (R)/e(R) then it is easy to see

field F(R) as that
., PL(R)|
C)\=j d®R’ e(R")FI(R’)-F(R"). (2.13 P (R)=¢€(R) «R) (3.9
1

If We.intro'duce a generalization of the transverse Dirac deltao that the reduced polarization density is related to the gen-
function via eralized transverse component of the fiB|d e.

5&5)(R,R’)ij :E FM(R)F;‘]-(R’)E(R’). (2.19 B. The scalar potential ¢

A

Consider the field given bﬁ’L/e—IADUe. We can show

then we can write the generalized transverse component that this field has zero curl so that it is a generalized longi-
tudinal field. For

Fif)(R)i=f d°*R’ 89(R,R);F;(R). (2.19 P, B\
VX|—|= ? (3.5
The generalized longitudinal Dirac delta function is defined +
by since @, /€)(? has a zero curl. But from Eq3.4) above
5ﬁe>(R,R')ij=5ija(R—Rf)_éY>(R,R')ij (2.16 |5[ |5L ()
. I : VX|—|=VX|— (3.6
so that the generalized longitudinal component is

1

so taking the difference between each sidé¢305) and(3.6)

Fﬁf>(R)i=fd3R' SYRR)GFIRD). (21D 60 that
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|.’:\) P N - ’ . ’ ’

v><<f— f) 0. 3.7 [AR) TI(R)]1=iA 3 Aq(RIA(R )e(R")
~ ~ —i (€) AW

Since the fieldP /e—P//e is longitudinal it can be ex- 1787 (RR")jj - (3.19

pressed as the gradient of a scalar potential. Suppose

. . Yhis now more clearly expr h mm r as th n-
choose the scalar potentiglto satisfy >no ore clearly expresses the commutator as the ge

eralization of the transverse Dirac delta function.

V=P —P| (3.9 o
E. Coulomb energy and polarization energy

or V=P, le—P|/e, then sinceP| is transversgand using _ From Egs.(23) and(62) of Ref.[7] the Coulomb energy

Egs.(6) and(27) of Ref.[7]] we have Veou @nd the polarization energy,, are given by
. v = . s _— . s / i ~ ~ 6% * Ee
V- (eV$)=V-P—V-P[=—p, (3.9 V00u|:f R 4;6 <f>, (3.16

showing that¢ satisfies the generalized Poisson equation
[Eq. (2) of Ref.[7]]. Hence it is the scalar potentialfor the R P
EM field. The uniqueness of the result feW ¢ is demon- Vpo|=f d°R PR (3.17
strated in Appendix | of Ref.7]. €

Then with the vector potentigd Eq. (3.1) satisfying the Substituting fore@¢ from Eq. (3.9) we find that
generalized inhomogeneous wave equafieg. (21) of Ref.

!

[7]] it is easy to show that the electric fieltland magnetic oA 55
field B given b YRy ap FL P P._PL) o
e glven y VCouI+Vp0I: d R T_ ?_ ? 'PL d R
- SN (3.18
E=—-V¢—A (310 A A A
R . But P_/e—P|/e is purely longitudinal, whereaB| is trans-
B=V XA (3.1)  verse. Hence the integral of their scalar products is zero and
will satisfy Maxwell's equationd§Eq. (13) of Ref. [7]] for - ~ 3 I5L(R)-I5L(R)
electrically neutral, nonconducting dielectric, and magnetic VCOul+VpoI:f d 2¢(R) 319
media.

X which now only involves thénonreducefipolarization den-
C. The electric displacement D sity P, (R) for the radiative atoms. A similar result can be

In general[see Eq/(79) of Ref.[7]] the electric displace- derived for free-space quantization.

mentD is related to the conjugate momentum figldfor the

case of electrically neutral dielectric and radiative atoms via F. Contact energy and intra-atomic Coulomb

and polarization energies

D=D,=-l-(eV¢) +(P).—(P), (312 As in the case of free-space quantization the polarization
densityP, can be expressed as the sum of contributions from
the separate radiative aton® whose charge density is

PLg:

where in terms of the vector mode functions

[(R) =2 Bre(RIAR) (3.13 A A
PL(R)=E§ PL«(R). (3.20
with p, being the generalized momentum coordinates.
In view of Eq. (3.8), however, the last three terms in Substituting into Eq(3.19 we see that the sum of the Cou-

(3.12 cancel out, giving the relationship between the electridomb and polarization energies can be written as
displacement and the conjugate momentum field

. . PLg PL
B(R)=~TI(R), @14 Veart Vo= X f R Lk =P +§Z d°R —5 .
n
S . . o (3.2])
which is the usual result obtained in free-space quantization
(see, for example, Refl]). The last term is the contact enery,; given by
D. Equal-time commutation rule P
| Veon= 2 f PR ——1 “f (3.22
The equal-time commutator between the components of

the vector potentiah and the conjugate momentum fidlli
can be written in terms of the transverse generalized Diraand is normally ignored unless the two different radiative
delta function. From Eq(74) of Ref.[7] atoms are overlapping, which is not usually the case.
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The first term can be written using the arguments of Secthe field through an electric interactidrAmEg, a magnetic in-
lIIF in reverse, as the sum of the intra-atomic C°U|0mbteraction|:|,v|§, and a diamagnetic interacticiAng. Thus

IA .

~in O N
Vou @Nd polarization energieg;:

~a (V) (eV ),
\/Coul_z§ fdaR —26 y (3.23)
P/ ,-P|
Veo= 2 f d°R —5 (3.24

where

PL(R)=2 e(R)Ak(R)f d*R" AE(R')-P(R),

(3.29
(eV ), =PL,—Pl;, (3.26
and thus
V-(eV$)e=—pis. (3.27
Hence we have the result
Veourt \A/polz\A/lc/gm+ V:ﬁ)l+</cont- (3.28

G. Quantum Hamiltonian
From Eg.(80) of Ref. [7] and using Eq(3.28 the full

guantum multipolar Hamiltonian can be written in the form

H,:ﬁA'f‘HF'f'lqAFJFHAA. (329)

|:|AF:2§ (|:|E§‘H:|M§+ |:|D§), (3.33
with
A P11
HE§=f d°R — (3.39
l:ng=f d°R M|, VXA, (3.39
- q; 1 -
HD‘;&:; ZMC; fou dU{B[Rg"‘U(rfa_Rg)]
X(Fge= R} (3.3

The reduced magnetization densﬁy_ [see Eq(37) of Ref.
[71] is written as the sum of contributions from the separate
radiative atoms

ML(R)z% M/{(R).

(3.37

The atom-atom interactioﬁiAA is given by the contact

The terms are as follows: in the expressions for the quanturanergy term and is the sum over pairs of different atoms of

Hamiltonian thex charged particle in thé atom has position

F ¢, MOMentunp,, , massM., , and charge, . The atomic
HamiltonianH 5 can be written as the sum of terrhis,, for
each separate atom:

ﬁA:Eg ﬁAg, (33@
with
a2 - -
~ Pea 3 (eVP)e (eVh),
HAf—Ea‘, 2M§a+jd R—————
BB
+f 43R £ £, (3.31)
2€

contact terms:

|:|AA: 2

13aK]

BL..P

2€

In view of Egs.(3.11) and(3.14) the electric and magnetic
interaction terms may also be written as

- P{¢D
HEgz—f R ——, (3.39
Aue=— [ @R N8 (3.40

giving the atomic Hamiltonian for thé atom as the sum of These are the forms of the electric and magnetic interaction
the kinetic energy, the intra-atomic Coulomb energy and th&nergies that are familiar from free-space quantization, ex-
intra-atomic polarization energy for this atom. The field cept of course that the reduced polarization density and the

Hamiltonian can be written as the sum of quantum harmoni@lectric displacement and magnetic field intensities would
oscillator terms, one for each mode of the field: have expansions involving the vector mode functions

A(R). In this form the theory is manifestly gauge invariant.
H == ;

In summary, the atomic Hamiltonial 5 describes the
free evolution of noninteracting radiative atoms, each with

. its own HamiltonianH 5, taking intra-atomic Coulomb and
The atom field interactiof ,r can be written as the sum of polarization energies into account; the field Hamiltonian
terms for each separate atom, and each atameracts with Hg describes the free evolution of noninteracting true modes

e 1
akak+ 5

(3.32

ﬁwk.
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of the EM field, each with its own quantum harmonic oscil- with [as in Ref[7], Eq. (85)]
lator Hamiltonian &/a,+ Ifiwy, as in the photon model;

the atom-field HamiltoniarH ,r describes the coupling of . ho Y21 fhe s

each atom separately with the quantum EM field, with a VElzkz (T) 7 [akme ARy —ame A (R ],

linear coupling for each atom with the electric field via ¢ (3.44

He, and with the magnetic field vibl  ~—these are associ-

ated with one-photon processes, and with a quadratic dia- ﬁg-l:[(Rg)

magnetic coupling with the quantum EM field via =2 TRy (3.49

Hpe—this is associated with two-photon processes; the ¢ ¢

atom-atom interactioil 5 , describes the direct coupling be- i ~I5(R )

tween pairs of atoms via the contact terms. =—> s St (3.46
The interaction between different atoms in this cavity § €(Ry)

QED situation is predominantly via the quantum EM field
and here mainly via one-photon processes associated with view of Eq.(3.14) the electric dipole interaction can now
the leading terndipole interactioh of the electric interac- also be expressed in terms of the electric displacement

tion He, . Generally speaking, with well-separated atoms theD(R;) at the radiative atom, as in the free-space quantization

contact terms can be ignored and in the usual situations theituation[1].

magnetic and diamagnetic interactionsy;,Hp, have

smaller effects thamg,. This situation is the same as for

free-field quantization in terms of the multipolar Hamiltonian V. SUMMARY

1].

- The key results may be summarized as follows. Previous
work on macroscopic canonical quantization for quantum

H. Electric dipole approximation optics and cavity QED situations involving classical optical

To obtain the electric dipole approximation result we nowdevices has been extended to show (BaThe Coulomb and
P PP polarization energies are equal to the sum of intra-atomic

ignore the magnetic interaction energy, the diamagnetic ir?C:oulomb energies, intra-atomic polarization energies, and

teraction energy, and the contact energy. The Intra-atomife, o atomic contact energied) The electric displacement is
polarization energy can be retained. In addition as in Ref

s ) o o . the negative of the conjugate momentum fiékl. The quan-
[7], the polarization density, (R) is given in its dipolar  ;y Hamiltonian is now in a form in which the theory is
approximation, manifestly gauge invariantd) The equal-time commutator
of the vector potential and the conjugate momentum field are
PL(R):2§ ;&gb‘(R— Ro) (3.4 %:i]g/r(]a.n in terms of a generalized transverse Dirac delta func
This development depends on a generalization of Helm-
holtz theorem in which generalized transverse and longitudi-
nal Dirac delta functions are introduced. This enables the
relationship between the scalar potentiahnd the polariza-
5 BY=S' & A% tion and reduced polarization densitis,P| to be obtained.
PLR) kzg #e Aic (R €(R)ACR). (342 The work described here and in RET] is restricted to the
case where the permittivity functiof(R) is frequency inde-
pendeniand real. Extension of the theory to deal with mac-
roscopic canonical quantization in the multipolar form for
quantum optics and cavity QED cases where dispersiod

and as in Ref[7] the reduced polarization density becomes

The quantum Hamiltoniaﬁi’El in the electric dipole ap-
proximation is then

~ absorption are incorporated via gcompleX frequency-

Hg =Ha+He+ Ve (3.43  dependent permittivity function would be very worthwhile.
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