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Macroscopic quantization in quantum optics and cavity quantum electrodynamics:
Interatomic interactions
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We extend previous work on macroscopic canonical quantization leading to a multipolar Hamiltonian
appropriate for application to quantum optics and cavity QED situations involving classical optical devices. In
particular, we show that the electric displacement is the negative of the conjugate momentum field and that the
Coulomb and polarization energies are equal to the sum of intra-atomic Coulomb and polarization energies and
interatomic contact energies. The quantum Hamiltonian is now in a form in which the theory is manifestly
gauge invariant.@S1050-2947~97!04307-2#

PACS number~s!: 42.50.2p, 12.20.Ds, 32.80.2t
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I. INTRODUCTION

Experiments both in quantum optics generally and in c
ity quantum electrodynamics QED in particular study t
interaction of the quantum electromagnetic~EM! field with
radiative atoms in the presence of classical optical dev
such as resonator cavities, beam splitters, filters, and so
In many situations the quantum nature of the dielectric ato
making up these classical optical devices is not important
for example, when nonlinearity, absorption, and dispers
can be ignored for EM field intensities and frequencies
interest.

To obtain the basic quantum Hamiltonian needed
theory, a canonical quantization for the full system of E
field, radiative atoms, and dielectric atoms can be perform
@1# and then a formal elimination of the spatially inhomog
neous dielectric atoms constituting the optical system car
out later. However, it is often more convenient to base
canonical quantization on a classical Lagrangian in wh
the dielectric atoms of the optical device are treated ma
scopically from the beginning. These atoms are replaced
the spatially dependent electric permittivitye~R! @and mag-
netic permeabilitym~R!, if there is also magnetic materia#
that describes all the classical optical effects~apart from dis-
persion and absorption! for the device in question. This sec
ond approach will be referred to as macroscopic canon
quantization, to distinguish it from the first approach of m
croscopic canonical quantization, in which the dynamics
the dielectric atoms is initially included, albeit in terms
simple models. Such models for the dielectric material u
in the microscopic approach include harmonic polarizat
fields @2,3# and polariton fields@4#, which are then quantized
along with the EM field and radiative atoms.

Previous work on macroscopic canonical quantizat
@5,6# used a Lagrangian that yielded the quantum Ham
tonian in the minimal coupling form. For quantum optic
studies where often the electric dipole approximation is us
it is preferable to obtain the quantum Hamiltonian in t
multipolar form, and this has recently been achieved by D
ton et al. @7#. The electric dipole approximation result wa
obtained also. This macroscopic canonical quantization w
561050-2947/97/56~1!/905~7!/$10.00
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@5–7# is based on using a generalized radiation gauge co
tion in which the vector potentialA~R! satisfies“•eA50.
In this gauge the scalar potentialf only depends on the
positions of the charged particles in the radiative atoms.

In the case of free-space quantization there are actu
several routes that one could use to derive the multipo
Hamiltonian@8#. One is to apply a unitary transformation t
the minimal coupling Hamiltonian@9#. A second is to add a
total time derivative to the original Lagrangian@1,10#. A
third approach is via the use of gauge transformations@8# to
the potentialsA,f in the original Lagrangian. All these meth
ods give the same outcome; the method used here is
second one. The theory is of course gauge invariant, tho
this is not necessarily obvious if the quantum Hamiltoni
involves the potentialsA,f rather than electric and magnet
fields.

In all of the previous work on macroscopic canonic
quantization@5–7# for quantum optics and cavity QED situ
ations, the basic picture of the quantum EM field th
emerges is still the same photon model that applies in
space or microscopic canonical quantization. However,
the quantum optics of cavity situation or where any class
linear optics device is involved, the quantum EM field
equivalent to a set of independent quantum harmonic os
lators, one for each classical mode of the EM field, as mo
fied by the classical linear optical device. The noncoupl
of the quantum harmonic oscillators is associated with
use of the true modes~universe modes! for the optical sys-
tem, which are obtained as solutions of a generalized He
holtz equation. The vector potential is expanded in terms
such true mode functions and is required to satisfy the g
eralized radiation gauge condition.

In other work@11# idealizations of the modes for the op
tical device ~or quasimodes! can be introduced. These ar
solutions of a generalized Helmholtz equation involving
artificially chosen permittivity functionẽ(R) @and perme-
ability function m̃(R)# to produce the required quasimod
functions. Naturally the vector potential still satisfies t
generalized radiation gauge condition for the truee~R!. In
this case macroscopic canonical quantization in terms of
quasimodes still yields a quantum multipolar Hamiltonian
905 © 1997 The American Physical Society
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906 56B. J. DALTON AND M. BABIKER
which the photon model of quantum harmonic oscillato
~one for each quasimode! still applies, but now the quantum
harmonic oscillators are coupled so that energy exchan
between different quasimodes can now occur, as in the p
nomenological model used in input-output theory@12#.

For quantum optics and cavity QED situations involving
classical optical system the interaction between the radia
atoms and the quantum EM field described via the multipo
Hamiltonian@7,8# consists of an electric interaction term an
a magnetic interaction term, both involving the quantum E
field linearly via the conjugate momentum fieldP~R! and the
magnetic field“3A(R), respectively, together with reduce
polarization densitiesPL8(R) and magnetization densitie
ML8(R), and also a diamagnetic interaction term, which
volves the magnetic field quadratically. The electric a
magnetic interaction energies are associated with one-ph
processes, the diamagnetic energy with two-photon p
cesses, and the dominant interaction is the electric dip
approximation to the electric interaction energy.

The atom EM field interaction terms involve the mo
functions at the atomic positions. For the true mode qua
zation scheme each atom can interact with all true modes@7#,
whereas for the quasimode quantization scheme the m
functions can be chosen so that only cavitylike quasimo
have sufficient amplitude for the atom to interact with@11#.
Thus in the quasimode approach only atom field coupling
a limited number of modes need be considered.

In the recent paper by Daltonet al. @7# the quantum mul-
tipolar Hamiltonian also contained a Coulomb energy te
and a polarization energy term. In the free-space canon
quantization approach@1# these terms can be further deve
oped to show that together they are equal to intra-ato
Coulomb energy and polarization energy terms along w
interatomic contact energy terms. In this paper we show
this result also applies in canonical macroscopic quantiza
for quantum optics and cavity QED with classical optic
devices. This development depends on finding the relat
ship between the scalar potentialf and the polarization and
reduced polarization densitiesPL(R), PL8(R) and this rela-
tionship is found in the present paper, via the use of a g
eralization of the Helmholtz theorem.

Also, in previous work@7# the relationship between th
electric displacementD~R! and the conjugate momentum
field P~R! was left in a form that did not exploit the rela
tionship betweenf, PL , andPL8 referred to above. In the
free-space canonical quantization approach@1,7#, the rela-
tionshipD52P applies for neutral radiative atoms. In th
present paper we show that this relationship also applie
the case of macroscopic canonical quantization for ca
QED situations. The electric dipole approximation to the
teraction now involves the usual2m•D/e form, familiar
from free-space quantization.

Finally, the form for the equal-time commutator of th
vector potential and the conjugate momentum field is
pressed in terms of a generalized transverse Dirac delta f
tion.

The plan of this paper is as follows. In Sec. II the gen
alized form of the Helmholtz theorem is developed, lead
to the introduction of generalized transverse and longitud
Dirac delta functions. In Sec. III the results are applied
macroscopic canonical quantization for cavity QED. In S
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III A the reduced polarization density is expressed in ter
of the generalized transverse component forPL(R)/e(R), in
Sec. III B the relationship betweenf, PL , and PL8 is ob-
tained, in Sec. III C the result forD is derived, in Sec. III D
the equal-time commutator forA, P is obtained, in Sec. III E
the Coulomb and polarization energy terms are combin
and in Sec. III F they are shown to be equal to the sum
intra-atomic Coulomb, polarization energies, and contact
ergy. In Sec. III G the quantum multipolar Hamiltonian
obtained, along with its electric dipolar approximation
Sec. III I. The results are summarized in Sec. IV.

II. GENERALIZED HELMHOLTZ THEOREM

The usual Helmholtz theorem writes a vector fieldF~R!
as the sum of a transverse fieldF' ~with zero divergence!
and a longitudinal fieldFi ~with zero curl!. For cavity QED
macroscopic quantization via a spatially dependent elec
permittivity function e~R! requires the use of a generalize
radiation gauge condition“•eA50 for the vector potential
A~R!. Thus the vector potential is no longer transverse.

It is therefore useful to consider a generalization of Hel
holtz theorem in which the vector field is written as

F~R!5F'
~e!~R!1Fi

~e!~R!, ~2.1!

where now with a specific functione~R!,

“•eF'
~e!50, ~2.2!

“3Fi
~e!50. ~2.3!

Thus asF'
(e) is no longer transverse it will contain a long

tudinal component andFi
(e) , although longitudinal, is no

longer the longitudinal component ofF.
The transverse and longitudinal components of a vec

field satisfy the usual orthogonality condition with weig
function unity. On the other hand, the generalized transve
componentF'

(e) and longitudinal componentsFi
(e) satisfy the

generalized orthogonality condition applying for macr
scopic quantization in cavity QED, withe~R! the weight
function:

E d3R e~R!F'
~e!~R!•Fi

~e!~R!50. ~2.4!

The proof of this is simple enough—writeeF'
(e) as“3W,

Fi
(e) as“c ~whereW,c are suitable vector and scalar pote

tials!, and then use“•(c“3W)5“c•“3W, followed up
with Gauss’ theorem, after integrating each side over
space.

Expressions for the generalized transverse compon
F'
(e) can be obtained in terms of normalized eigenfie

Fl(R) of any suitable self-adjoint operatorL:

LFl~R!5lFl~R!, ~2.5!

where for arbitrary fieldsU, V:

E d3R e~R!U* •~LV!5E d3R e~R!~LU !* •V

~2.6!
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56 907MACROSCOPIC QUANTIZATION IN QUANTUM OPTICS . . .
and that also satisfy

“•eFl~R!50. ~2.7!

The eigenfieldsFl(R) can be shown to be orthogonal in th
general sense as in Eq.~2.4! ~see Ref.@7#! for different ei-
genvaluesl and can be finally chosen to be normalized al
The generalized orthogonality and normalization condition

E d3R e~R!Fl* ~R!•Fm~R!5dlm . ~2.8!

The eigenvaluesl are also real. As a specific example, a
operator of the form

L5
1

e S“3
1

m
~“3••• ! D , ~2.9!

with m an arbitrary function, will lead to eigenfields satisf
ing the required conditions.

ExpandingF'
(e) in terms of theFl the expansion coeffi-

cients can easily be found using the generalized orthogo
ity and normalization expressions to give

F'
~e!~R!5(

l
ClFl~R!, ~2.10!

with

Cl5E d3R8 e~R8!Fl* ~R8!•F'
~e!~R8!. ~2.11!

But analogous to the proof of Eq.~2.4!,

E d3R8 e~R8!Fl* ~R8!•Fi
~e!~R8!50. ~2.12!

In view of thisCl can be expressed in terms of the origin
field F(R) as

Cl5E d3R8 e~R8!Fl* ~R8!•F~R8!. ~2.13!

If we introduce a generalization of the transverse Dirac d
function via

d'
~e!~R,R8! i j5(

l
Fl i~R!Fl j* ~R8!e~R8!. ~2.14!

then we can write the generalized transverse componen

F'
~e!~R! i5E d3R8 d'

~e!~R,R8! i j F j~R8!. ~2.15!

The generalized longitudinal Dirac delta function is defin
by

d i
~e!~R,R8! i j5d i jd~R2R8!2d'

~e!~R,R8! i j ~2.16!

so that the generalized longitudinal component is

Fi
~e!~R! i5E d3R8 d i

~e!~R,R8! i j F j~R8!. ~2.17!
.
s

al-

l

ta

The uniqueness ofF'
(e) ~and hence ofFi

(e)! is guaranteed by
the unique result Eq.~2.13! for the coefficientsCl .

III. APPLICATION IN MACROSCOPIC CANONICAL
QUANTIZATION FOR CAVITY QED

In this application e(R) is the permittivity function,
m(R) the permeability function, the eigenfields are the ve
tor mode functionsAk and Eq.~2.5! is the generalized Helm
holtz equation withlk equal tovk

2, the square of the angula
frequency. The vector potentialÂ(R) is expanded in terms
of theAk as

Â~R!5(
k
q̂kAk~R!, ~3.1!

where theq̂k act as the generalized coordinates. The opera
nature of the various quantities will be shown explicitly.

The generalized transverse Dirac delta function will be

d'
~e!~R,R8! i j5(

k
Aki~R!Akj* ~R8!e~R8!. ~3.2!

A similar function to this is used by Vogel and Welsch@13#.

A. Reduced polarization density

The reduced polarization densityPL8(R) is defined as@see
Eq. ~53! of Ref. @7##

PL8~R!5(
k

e~R!Ak~R!E d3R8 Ak* ~R8!•P̂L~R8!,

~3.3!

whereP̂L(R) is the polarization density associated with t
radiative atoms@see Eqs.~3! and ~7! of Ref. @7##.

If we consider the fieldP̂L(R)/e(R) then it is easy to see
that

P̂L8~R!5e~R!S P̂L~R!

e~R!
D

'

~e!

~3.4!

so that the reduced polarization density is related to the g
eralized transverse component of the fieldP̂L /e.

B. The scalar potentialf

Consider the field given byP̂L /e2P̂L8 /e. We can show
that this field has zero curl so that it is a generalized lon
tudinal field. For

“3S P̂Le D 5“3S P̂L
e
D

'

~e!

~3.5!

since (P̂L /e) i
(e) has a zero curl. But from Eq.~3.4! above

“3S P̂L8
e
D 5“3S P̂L

e
D

'

~e!

~3.6!

so taking the difference between each side of~3.5! and~3.6!
we find that
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908 56B. J. DALTON AND M. BABIKER
“3S P̂L
e

2
P̂L8

e
D 50. ~3.7!

Since the fieldP̂L /e2P̂L8 /e is longitudinal it can be ex-
pressed as the gradient of a scalar potential. Suppose
choose the scalar potentialf to satisfy

e“̂f5P̂L2P̂L8 ~3.8!

or “̂f5P̂L /e2P̂L8 /e, then sinceP̂L8 is transverse@and using
Eqs.~6! and ~27! of Ref. @7## we have

“•~e“̂f!5“•P̂L2“•P̂L852 r̂L , ~3.9!

showing thatf satisfies the generalized Poisson equat
@Eq. ~2! of Ref. @7##. Hence it is the scalar potentialf for the
EM field. The uniqueness of the result fore“̂f is demon-
strated in Appendix I of Ref.@7#.

Then with the vector potentialA Eq. ~3.1! satisfying the
generalized inhomogeneous wave equation@Eq. ~21! of Ref.
@7## it is easy to show that the electric fieldE and magnetic
field B given by

Ê52“f̂2Â
˙ ~3.10!

B̂5“3Â ~3.11!

will satisfy Maxwell’s equations@Eq. ~13! of Ref. @7## for
electrically neutral, nonconducting dielectric, and magne
media.

C. The electric displacement Dˆ

In general@see Eq.~79! of Ref. @7## the electric displace-
mentD̂ is related to the conjugate momentum fieldP̂ for the
case of electrically neutral dielectric and radiative atoms

D̂5D̂'52P̂2~e“̂f!'1~P̂L!'2~P̂L8 !, ~3.12!

where in terms of the vector mode functions

P̂~R!5(
k

p̂ke~R!Ak~R! ~3.13!

with p̂k being the generalized momentum coordinates.
In view of Eq. ~3.8!, however, the last three terms

~3.12! cancel out, giving the relationship between the elec
displacement and the conjugate momentum field

D̂~R!52P̂~R!, ~3.14!

which is the usual result obtained in free-space quantiza
~see, for example, Ref.@1#!.

D. Equal-time commutation rule

The equal-time commutator between the components
the vector potentialÂ and the conjugate momentum fieldP̂
can be written in terms of the transverse generalized D
delta function. From Eq.~74! of Ref. @7#
we

n

c

a

c

n

of

c

@Âi~R!,P̂j~R8!#5 i\(
k
Aki~R!Akj* ~R8!e~R8!

5 i\d'
~e!~R,R8! i j . ~3.15!

This now more clearly expresses the commutator as the
eralization of the transverse Dirac delta function.

E. Coulomb energy and polarization energy

From Eqs.~23! and ~62! of Ref. @7# the Coulomb energy
V̂Coul and the polarization energyV̂pol are given by

V̂Coul5E d3R
e“̂f•e“̂f

2e
, ~3.16!

V̂pol5E d3R
P̂L8•P̂L8

2e
. ~3.17!

Substituting fore“̂f from Eq. ~3.8! we find that

V̂Coul1V̂pol5E d3R
P̂L•P̂L
2e

2E S P̂L
e

2
P̂L8

e
D •P̂L8 d3R.

~3.18!

But P̂L /e2P̂L8 /e is purely longitudinal, whereasP̂L8 is trans-
verse. Hence the integral of their scalar products is zero

V̂Coul1V̂pol5E d3R
P̂L~R!•P̂L~R!

2e~R!
, ~3.19!

which now only involves the~nonreduced! polarization den-
sity P̂L(R) for the radiative atoms. A similar result can b
derived for free-space quantization.

F. Contact energy and intra-atomic Coulomb
and polarization energies

As in the case of free-space quantization the polariza
densityP̂L can be expressed as the sum of contributions fr
the separate radiative atomsj, whose charge density i
rLj :

P̂L~R!5(
j
P̂Lj~R!. ~3.20!

Substituting into Eq.~3.19! we see that the sum of the Cou
lomb and polarization energies can be written as

V̂Coul1V̂pol5(
j
E d3R

P̂Lj•P̂Lj

2e
1 (

jÞh
E d3R

P̂Lj•P̂Lh

2e
.

~3.21!

The last term is the contact energyV̂cont given by

V̂cont5 (
jÞh

E d3R
P̂Lj•P̂Lh

2e
~3.22!

and is normally ignored unless the two different radiati
atoms are overlapping, which is not usually the case.
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56 909MACROSCOPIC QUANTIZATION IN QUANTUM OPTICS . . .
The first term can be written using the arguments of S
III F in reverse, as the sum of the intra-atomic Coulom
V̂Coul
IA and polarization energiesV̂pol

IA :

V̂Coul
IA 5(

j
E d3R

~e“̂f!j•~e“̂f!j

2e
, ~3.23!

V̂pol
IA 5(

j
E d3R

P̂Lj8 •P̂Lj8

2e
, ~3.24!

where

P̂Lj8 ~R!5(
k

e~R!Ak~R!E d3R8 Ak* ~R8!•P̂Lj~R8!,

~3.25!

~e“̂f!j5P̂Lj2P̂Lj8 , ~3.26!

and thus

“•~e“̂f!j52rLj . ~3.27!

Hence we have the result

V̂Coul1V̂pol5V̂coul
IA 1V̂pol

IA 1V̂cont. ~3.28!

G. Quantum Hamiltonian

From Eq. ~80! of Ref. @7# and using Eq.~3.28! the full
quantum multipolar Hamiltonian can be written in the for

Ĥ85ĤA1ĤF1ĤAF1ĤAA . ~3.29!

The terms are as follows: in the expressions for the quan
Hamiltonian thea charged particle in thej atom has position
r̂ ja momentump̂ja , massM ja , and chargeqja . The atomic
HamiltonianĤA can be written as the sum of termsĤAj for
each separate atom:

ĤA5(
j
ĤAj , ~3.30!

with

ĤAj5(
a

p̂ja
2

2M ja
1E d3R

~e“̂f!j•~e“̂f!j

2e

1E d3R
P̂Lj8 •P̂Lj8

2e
, ~3.31!

giving the atomic Hamiltonian for thej atom as the sum o
the kinetic energy, the intra-atomic Coulomb energy and
intra-atomic polarization energy for this atom. The fie
Hamiltonian can be written as the sum of quantum harmo
oscillator terms, one for each mode of the field:

ĤF5(
k

S âk†âk1 1

2D\vk . ~3.32!

The atom field interactionĤAF can be written as the sum o
terms for each separate atom, and each atomj interacts with
c.

m

e

ic

the field through an electric interactionĤEj , a magnetic in-
teractionĤMj , and a diamagnetic interactionĤDj . Thus

ĤAF5(
j

~ĤEj1ĤMj1ĤDj!, ~3.33!

with

ĤEj5E d3R
P̂Lj8 •P̂

e
, ~3.34!

ĤMj5E d3R M̂Lj8 •“3Â, ~3.35!

ĤDj5(
a

qja
2

2M ja
E
0

1

u du$B̂@Rj1u~r ja2Rj!#

3~r ja2Rj!%
2. ~3.36!

The reduced magnetization densityM̂L8 @see Eq.~37! of Ref.
@7## is written as the sum of contributions from the separ
radiative atoms

M̂L8~R!5(
j
M̂Lj8 ~R!. ~3.37!

The atom-atom interactionĤAA is given by the contact
energy term and is the sum over pairs of different atoms
contact terms:

ĤAA5 (
jÞh

E d3R
P̂Lj•P̂Lh

2e
. ~3.38!

In view of Eqs.~3.11! and ~3.14! the electric and magnetic
interaction terms may also be written as

ĤEj52E d3R
P̂Lj8 •D̂

e
, ~3.39!

ĤMj52E d3R M̂Lj8 •B̂. ~3.40!

These are the forms of the electric and magnetic interac
energies that are familiar from free-space quantization,
cept of course that the reduced polarization density and
electric displacement and magnetic field intensities wo
have expansions involving the vector mode functio
Ak(R). In this form the theory is manifestly gauge invarian

In summary, the atomic HamiltonianĤA describes the
free evolution of noninteracting radiative atoms, each w
its own HamiltonianĤAj taking intra-atomic Coulomb and
polarization energies into account; the field Hamiltoni
ĤF describes the free evolution of noninteracting true mo
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910 56B. J. DALTON AND M. BABIKER
of the EM field, each with its own quantum harmonic osc
lator Hamiltonian (âk

†âk1
1
2)\vk , as in the photon model

the atom-field HamiltonianĤAF describes the coupling o
each atom separately with the quantum EM field, with
linear coupling for each atom with the electric field v
ĤEj and with the magnetic field viaĤMj—these are associ
ated with one-photon processes, and with a quadratic
magnetic coupling with the quantum EM field v
ĤDj—this is associated with two-photon processes;
atom-atom interactionĤAA describes the direct coupling be
tween pairs of atoms via the contact terms.

The interaction between different atoms in this cav
QED situation is predominantly via the quantum EM fie
and here mainly via one-photon processes associated
the leading term~dipole interaction! of the electric interac-
tion ĤEj . Generally speaking, with well-separated atoms
contact terms can be ignored and in the usual situations
magnetic and diamagnetic interactionsĤMj ,ĤDj have
smaller effects thanĤEj . This situation is the same as fo
free-field quantization in terms of the multipolar Hamiltonia
@1#.

H. Electric dipole approximation

To obtain the electric dipole approximation result we no
ignore the magnetic interaction energy, the diamagnetic
teraction energy, and the contact energy. The intra-ato
polarization energy can be retained. In addition as in R
@7#, the polarization densityP̂L(R) is given in its dipolar
approximation,

P̂L~R!5(
j

m̂jd~R2Rj! ~3.41!

and as in Ref.@7# the reduced polarization density becom

P̂L8~R!5(
kj

m̂j•Ak* ~Rj!e~R!Ak~R!. ~3.42!

The quantum HamiltonianĤE18 in the electric dipole ap-
proximation is then

ĤE18 5ĤA1ĤF1V̂E1 ~3.43!
a

a-

e

ith

e
he

-
ic
f.

with @as in Ref.@7#, Eq. ~85!#

V̂E15(
kj

S \vk

2 D 1/2 1i @ âkm̂j•Ak~Rj!2âk
†m̂j•Ak* ~Rj!#,

~3.44!

5(
j

m̂j•P̂~Rj!

e~Rj!
~3.45!

52(
j

m̂j•D̂~Rj!

e~Rj!
. ~3.46!

In view of Eq. ~3.14! the electric dipole interaction can now
also be expressed in terms of the electric displacem
D̂(Rj) at the radiative atom, as in the free-space quantiza
situation@1#.

IV. SUMMARY

The key results may be summarized as follows. Previ
work on macroscopic canonical quantization for quant
optics and cavity QED situations involving classical optic
devices has been extended to show that~a! The Coulomb and
polarization energies are equal to the sum of intra-ato
Coulomb energies, intra-atomic polarization energies,
interatomic contact energies.~b! The electric displacement i
the negative of the conjugate momentum field.~c! The quan-
tum Hamiltonian is now in a form in which the theory
manifestly gauge invariant.~d! The equal-time commutato
of the vector potential and the conjugate momentum field
given in terms of a generalized transverse Dirac delta fu
tion.

This development depends on a generalization of He
holtz theorem in which generalized transverse and longitu
nal Dirac delta functions are introduced. This enables
relationship between the scalar potentialf and the polariza-
tion and reduced polarization densitiesPL ,PL8 to be obtained.

The work described here and in Ref.@7# is restricted to the
case where the permittivity functione~R! is frequency inde-
pendent~and real!. Extension of the theory to deal with mac
roscopic canonical quantization in the multipolar form f
quantum optics and cavity QED cases where dispersion~and
absorption! are incorporated via a~complex! frequency-
dependent permittivity function would be very worthwhile
A
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