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Langevin treatment of quantum fluctuations and optical patterns
in optical parametric oscillators below threshold
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A Langevin model is introduced to study quantum fluctuations below the threshold of pattern formation for
optical parametric oscillators~OPO’s!. In particular we compare analytical and numerical results for the OPO
with one and two transverse spatial dimensions and in the presence of either plane or spherical cavity mirrors.
The far-field structure and the correlation functions of the fluctuating signal field anticipate the onset of a
transverse spatial pattern which arises classically even in the presence of Gaussian input beams. Correlation
functions also reveal the squeezed nature of the OPO field. Numerical simulations of the Langevin model
describe the result of short time measurements and show that close to threshold the near-field signal is a noisy
spot pattern evolving on a time scale longer than the inverse decay rate of the resonator. This and other far-field
features should be experimentally accessible.@S1050-2947~97!02907-7#
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I. INTRODUCTION

Although the generation of the so-called nonclassical li
@1–3# and the formation of transverse spatial patterns@4–6#
are two widely analyzed phenomena in quantum and non
ear optics, they are usually studied separately. Theore
treatments of the quantum statistics of the output of non
ear optical systems are usually restricted to the framewor
the plane wave approximation, apart from few exceptio
@7–9#. In contrast, studies of nonlinear optical patterns ta
into account transverse variations of the optical fields but
usually confined to the semiclassical description. Unl
other disciplines~such as hydrodynamics and chemical re
tions! where a classical description of pattern formation
sufficient, optical systems may show noteworthy quant
aspects at room temperature@10#. Only recently have at-
tempts been made to combine these two aspects of nonl
optical systems into a general framework@11–16#.

A prominent model for the generation of squeezed light
well as for the formation of spatial patterns@17# is the optical
parametric oscillator~OPO! which is therefore a natura
choice to study the interrelation of quantum fluctuations a
optical patterns. At degeneracy, OPO’s generate light o
frequencyvs ~signal! from injected light of frequency 2vs
~pump!. We discuss here three different configurations of
OPO: with plane mirrors and a homogeneous input be
with plane mirrors and an input beam of finite diameter, a
with spherical mirrors and a homogeneous input beam.
all these realizations the semiclassical OPO models exhi
second-order phase transition from zero to finite signal fi
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for appropriate threshold parameters, similar to what one
in lasers@18,19#. Furthermore, when diffraction is taken int
account, both signal and pump exhibit a transverse spa
pattern at threshold under appropriate operating conditi
@17#. In recent publications it was shown that these semic
sical patterns are anticipated in the quantum correlation fu
tions in the near field below threshold@13,14,16#. In the long
time limit the near-field intensity and amplitude are bo
uniform in space on average and only the far field and
correlation function reveal the hidden spatial pattern, a p
nomenon that we label either ‘‘quantum image’’ or ‘‘qua
tum pattern.’’

It is interesting to ask what one would measure by sa
pling the output of the OPO with a detector which is fa
enough to resolve the quantum fluctuations responsible
the quantum pattern. To answer this question we transf
the quantum equations of motion into a set of coup
classical-looking Langevin equations. We then implem
numerical codes to integrate the resulting stochastic pa
differential equations where quantum fluctuations are sim
lated by random number generators. In this way we h
been able to explore regimes where analytical calculati
are not possible, such as for input beams of finite diame

This paper is organized as follows. In Sec. II we deri
the Langevin equations of motion from the quantum Ham
tonian. Special care is taken to treat the functional deri
tives which appear when extending known theories to
spatiotemporal domain. In Sec. III we describe the numer
method for the integration of the~Langevin! stochastic par-
tial differential equations. Section IV is devoted to study t
quantum pattern generated by an OPO below threshold
plane mirrors and a homogeneous input beam. We succ
fully compare correlation functions in the far and near fie
obtained by numerical and analytical methods. We show
the far-field intensity of the signal fluctuations has a circu
shape that anticipates the incoming pattern above thresh

y
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878 56A. GATTI et al.
Far-field images of the signal fluctuations are by far easie
realize experimentally than quantum correlations in the n
field. Moreover, numerical and analytical calculations sh
that opposite positions along the far-field circle are cor
lated, i.e., the instantaneous signal field is formed by t
off-axis emissions. This information is provided by spat
correlation functions, which, as usual, convey more inform
tion then the average distribution. We also show that clos
threshold the near-field quantum pattern is surprisingly sta
and has a long time scale compared to the inverse decay
of the resonator. This critical slowing down should make
easier to observe the pattern in an experiment. Sectio
presents the extension of the numerical simulations to
gimes where no analytical calculations are available. In p
ticular we show that quantum images~at least in the corre-
lations and far-field distributions! survive in the case of inpu
pumps with a more realistic, finite Gaussian shape. Fina
Sec. VI contains the generalization to the case of sphe
mirrors and homogeneous input beams and conclusions
presented in Sec. VII.

II. LANGEVIN EQUATIONS FOR AN OPO
WITH TRANSVERSE EFFECTS

We consider a planar cavity of lengthL/2 ~see Fig. 1!,
where the mirrorM1 is fully reflecting, whereasM2 has a
high, but finite reflectivity. This cavity is pumped with
coherent stationary field with a fixed distribution in the tran
verse plane, amplitudeEin(xW ) and frequency 2vs . Inside the
cavity, a x (2)-nonlinear crystal converts photons of fr
quency 2vs into photons at frequencyvs and vice versa.

This cavity supports a discrete set of longitudinal mod
and a continuous set of transverse modes. We conside
approximation in which only two longitudinal cavity mode
are relevant: the pump mode with frequencyv0, the closest
to the fundamental frequency 2vs and the signal mode with
frequencyv1, the closest to the subharmonic frequen
vs . We denote byA0(xW ,t) andA1(xW ,t) the intracavity field
envelope operators of the pump and signal modes, res
tively, wherexW5(x,y) spans the plane perpendicular to t
direction of light propagation. The inclusion of this degree
freedom allows for an arbitrary field configuration in th
transverse plane. The field creation and annihilation op
tors obey standard equal-time commutation relations

FIG. 1. Experimental setup: a cavity with ax (2) medium inside
is pumped with a plane-wave input of frequency 2vs . The nonlin-
ear optical medium generates an output field of frequencyvs .
to
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@Ai~xW ,t !,Aj
†~xW8,t !#5d i jd~xW2xW8!, i , j50,1. ~1!

Hence, ^Aj
†(xW ,t)Aj (xW ,t)& is the average intensity per un

area of the two fields inside the cavity.
The quantum dynamics for these two fields is describ

by an extension of the original model@20# to include diffrac-
tive effects and has already been presented in@14,16#. In
these papers a master equation was derived from the Ha
tonian of the OPO by expanding the fields over an infinite
of Fourier modes. Here, we rewrite the master equation w
out the expansion in transverse modes, derive a suit
Fokker-Planck equation for the Wigner probability distrib
tion and obtain appropriate Langevin equations for the
namics of the fluctuations about the average values of
fields. Particular care is needed when generalizing this s
dard procedure@21–23# to deal with operators having depen
dence on the transverse vectorxW . For this reason, we presen
the most important steps in the derivation of the Lange
equations.

We start from the Hamiltonian which describes the sig
and pump dynamics in the interaction picture@14#

H5H f1H int1Hext ~2!

where H f is the free evolution Hamiltonian given in th
paraxial approximation by

H f5\E d2xW A0
†~xW ,t !S v022vs2

c2

4vs
¹2DA0~xW ,t !

1\E d2xW A1
†~xW ,t !S v12vs2

c2

2vs
¹2DA1~xW ,t !, ~3!

where

¹25
]2

]x2
1

]2

]y2
~4!

is the two-dimensional transverse Laplacian which mod
the effect of diffraction,H int represents the nonlinear inte
action Hamiltonian

H int5
i\g

2 E d2xW @A0~xW ,t !„A1
†~xW ,t !…22A0

†~xW ,t !A1
2~xW ,t !#, ~5!

g being the nonlinear coupling coefficient, andHext the term
due to the external driving

Hext5 i\E d2xW @Ein~xW !A0
†~xW ,t !2Ein* ~xW !A0~xW ,t !#. ~6!

The HamiltonianH affects the coherent part of the mast
equation for the density matrixr given by

]

]t
r5

1

i\
@H,r#1Lr, ~7!

where the latter part of the equation represents the dam
due to the finite reflectivity of mirrorM1 and is given by the
Liouvillian terms
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56 879LANGEVIN TREATMENT OF QUANTUM FLUCTUATIONS . . .
Lr5E d2xW G0~xW !@2A0~xW ,t !rA0
†~xW ,t !2rA0

†~xW ,t !A0~xW ,t !

2A0
†~xW ,t !A0~xW ,t !r#1E d2xW G1~xW !@2A1~xW ,t !rA1

†~xW ,t !

2rA1
†~xW ,t !A1~xW ,t !2A1

†~xW ,t !A1~xW ,t !r#, ~8!

where G i(xW ) are the space-dependent losses for the
fields.

In order to obtain Langevin equations from the mas
equation~7!, we need to describe the evolution of the app
priate quantum probability distributions. To this end it
convenient to introduce the characteristic functional

x~$z i ,z i* %,s!:5TrH rexpF E d2xW (
i50,1

„z i~xW !Ai
†~xW !2z i* ~xW !

3Ai~xW !…G J expF s2E d2xW (
i50,1

uz i~xW !u2G . ~9!

Note that the dependence from the timet has been omitted in
order to lighten the notation. In the definition~9!, z i(xW ) are
the Fourier conjugates of thec-number fieldsa i(xW ) associ-
ated with the operatorsAi(xW ), while the variables is related
to either the Glauber-Sudarshan (P) distribution (s511),
or the Wigner (W) distribution (s50), or theQ distribution
(s521) @24#. In order to make the notation compact, w
express these three distributions in the form

W~$a i ,a i* %,s!5E Dz0Dz0*Dz1Dz1* x~$z i ,z i* %,s!

3expF E d2xW (
i50,1

„a i~xW !z i* ~xW !

2a i* ~xW !z i~xW !…G , ~10!

where*Dz0•••Dz1* indicatesfunctionalintegration with re-
spect to the functionsz0•••z1* @25#. The normalization of
functional integrals is a notoriously difficult problem@25#.
Thankfully, only the functional form ofW($a i ,a i* %,s) is
relevant here so that issues of normalization need not to
cern us. The equation of motion for the distribution functio
als ~10! is obtained from the master equation via the form
substitution of the terms involving the density matrixr with
suitable operations over the distribution functionals. It
easy to see, for example, that

rAi
†~xW !⇔Fa i* ~xW !1

12s

2

d

da i~xW !
GW~$a i ,a i* %,s!,

Ai
†~xW !r⇔Fa i* ~xW !2

11s

2

d

da i~xW !
GW~$a i ,a i* %,s!,

~11!
o

r
-

n-
-
l

rAi~xW !⇔Fa i~xW !2
11s

2

d

da i* ~xW !
GW~$a i ,a i* %,s!,

A~xW !r⇔Fa i~xW !1
12s

2

d

da i* ~xW !
GW~$a i ,a i* %,s!,

where we have introduced thefunctional derivatives
dW($a i ,a i* %,s)/da i(xW ) @26#. Functional differentiation has
been applied in quantum optics to generalized operator
dering theorems to continuum operators@27#.

Equations~11! are sufficient, for example, to determin
all the terms of the evolution equation for the distributio
~10! coming from the Liouvillian terms~8! of the master
equation. The only terms of Eq.~7! that require special at
tention, are the diffraction terms which appear in the fr
HamiltonianH f of Eq. ~3!. As one obtains after some alge
braic manipulations, such terms have the form

2i
ic2

4vs
E d2xW

1

2H F¹2a i* ~xW !,
d

da i* ~xW !
G

1

2F¹2a i~xW !,
d

da i~xW !
G

1

2sF¹2a i* ~xW !,
d

da i* ~xW !
G

1sF¹2a i~xW !,
d

da i~xW !
G JW~$a i ,a i* %,s!, i50,1,

~12!

where @•,•#1 is the anticommutator and, in deriving Eq
~12!, we made use of the integration by parts

E d2xW a i~xW !¹2
d

da i~xW !
5E d2xW „¹2a i~xW !…

d

da i~xW !
. ~13!

It follows from the definition of functional differentiation
@25# that

F d

da i~xW !
,a i~xW8!G5F d

da i* ~xW !
,a i* ~xW8!G5d~xW82xW !, ~14!

where functional derivatives are understood to act under
integral. The diffraction terms~12! can now be recasted as

2i
ic2

4vs
E d2xW H d

da i* ~xW !
@¹2a i* ~xW !#

d

da i~xW !
@¹2a i~xW !#J

3W~$a i ,a i* %,s!. ~15!

Finally, we are ready to obtain the equation of motion f
the probability distributionsW($a i ,a i* %,s). Since we are in-
terested here in the dynamics of quantum fluctuations@28#
around the semiclassical mean value, we consider
c-number fieldsDa i defined as

Da0~xW !5a0~xW !2A0~xW !, Da1~xW !5a1~xW !2A1~xW !,
~16!
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whereAi(xW ) are the semiclassical mean values of the pu
( i50) and signal (i51) fields, respectively. Using a stan
dard linearization procedure~see, e.g.,@22#!, the equation of
motion for the distribution functionalW($Da i ,Da i* %,s) is
expanded in a power series of the inverse of an approp
system size parameter, and one can obtain at once the
roscopic law of motion describing the evolution of the sem
classical fields@17#

]

]t
A0~xW !52S G0~xW !1 iv022ivs2 i

c2

4vs
¹2DA0~xW !

2
g

2
A1
2~xW !1Ein~xW !,

]

]t
A1~xW !52S G1~xW !1 iv12 ivs2 i

c2

2vs
¹2DA1~xW !

1gA0~xW !A1* ~xW !, ~17!

and the linearized Fokker-Planck equation, which descri
the dynamics of quantum fluctuations in the limit of lar
system size

]W~$Da i ,Da i* %,s!

]t

5H E d2xW (
j50,1

F S 2
d

dDa j~xW !
Qj„Da i~xW !…1c.cD

1
1

2E d2xW8
d2

dDa j
m~xW !dDa j

n~xW8!
Dj

m,n~xW ,xW8!G J
3W~$Da i ,Da i* %,s!, ~18!

whereQj„Da i(xW )… are the drift terms

Q0„Da i~xW !…52S G0~xW !1 iv022ivs2 i
c2

4vs
¹2DDa0~xW !

2gA1~xW !Da1~xW !,

Q1„Da i~xW !…52S G1~xW !1 iv12 ivs2 i
c2

2vs
¹2DDa1~xW !

1gA0~xW !Da1* ~xW !1gA1* ~xW !Da0~xW !, ~19!

andDj
m,n(xW ,xW8) are generalized diffusion matrices such th

m,n51 andm,n52 correspond toDa j (xW ) and toDa j* (xW ),
respectively. The nonzero elements of these diffusion ma
ces are

D1
1,1~xW ,xW8!52gsA0~xW !d~xW2xW8!,

D1
2,2~xW ,xW8!52gsA0* ~xW !d~xW2xW8!, ~20!

Dj
1,2~xW ,xW8!5Dj

2,1~xW ,xW8!5G j~xW !~11s!d~xW2xW8!, j50,1.
p

te
ac-
-

s

t

i-

At the present stage we neglect the effects of third-or
nonlinearities, an approximation which is valid in the limit o
small quantum noise, i.e., for a macroscopic system not
close to critical points.

In the Wigner representation~i.e., for s50) the diffusion
matrices~20! are positive definite; hence, the equation
motion ~18! for the Wigner functional can be interpreted
terms of a classical stochastic process which obeys Ito
chastic differential equations of the type@21#

dDa j~xW !5Qj„Da i~xW !…dt1dBj
1~xW !, ~21!

where dBj
m are Wiener increments, such th

^dBj
m(xW )dBi

n(x8W )&5d i , jD j
mn(xW ,x8W )dt.

We provide here the explicit expression of Eq.~21! in the
form of a classical-looking set of Langevin equations of m
tion for the fluctuationsDa0(xW ) and Da1(xW ) of the pump
and signal fields, respectively:

]

]t
Da0~xW !52S G0~xW !1 iv022ivs2 i

c2

4vs
¹2DDa0~xW !

2gA1~xW !Da1~xW !1A2G0~xW !j0~xW ,t !, ~22!

]

]t
Da1~xW !52S G1~xW !1 iv12 ivs2 i

c2

2vs
¹2DDa1~xW !

1gA0~xW !Da1* ~xW !1gA1* ~xW !Da0~xW !

1A2G1~xW !j1~xW ,t !, ~23!

where the Langevin force termsj i(xW ,t) are described by sta
tionary, Gaussian, stochastic processes with zero average
correlation functions given by

^j i* ~xW ,t !j j~xW8,t8!&5
1

2
d~xW2xW8!d~ t2t8!d i , j ,

^j i~xW ,t !j i~xW8,t8!&50. ~24!

The noise terms in Eqs.~22! and ~23! can be interpreted a
the vacuum quantum noise entering through the parti
transmitting mirrorM1.

QuantitiesAi(xW ) in Eqs. ~22! and ~23! are the stationary
semiclassical mean values of the OPO fields which are
tained by the integration of the semiclassical equations~17!.

Equations~22! and ~23! are stochastic partial differentia
equations with space-dependent coefficients; they repre
the main topic of our analysis. They can be used both ab
and below the signal threshold and treating them requ
sophisticated numerical methods. In the following we co
centrate our analysis on the behavior of quantum fluctuati
below the OPO threshold. In this case the expectation va
of the signal field is identically zero, so that the fluctuatio
of the signal field coincide with the signal field itself and E
~23! decouples from Eq.~22!. ~Note that below threshold the
linearization procedure outlined above corresponds to
glecting the pump depletion.!
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III. NUMERICAL INTEGRATION OF THE LANGEVIN
EQUATIONS

The numerical integration of the Langevin equations~22!
and ~23! requires the discretization of both space and tim
We solve the equations in a square of sideb in the transverse
plane, with periodic boundary conditions and we use a s
tial grid of N3N points withN ranging from 64 up to 256
A discrete version of the OPO fields and of the Lange
forces is introduced as

Da j̃
nm~ t !5

1

Fnm
E
Fnm

d2xWDa j~xW ,t !, j50,1, ~25!

j̃ j
nm~ t !5

1

Fnm
E
Fnm

d2xWA2G j~xW !j j~xW ,t !, j50,1, ~26!

where the indexesn,m identify the grid point and
Fnm5(Dx)2 are sufficiently small and disjunct areas cove
ing the transverse plane. The diffractive terms of the Lan
vin equations~22! and~23! can easily be handled by using
split-step technique with high spatial accuracy@29# or even a
simple-minded Euler discretization scheme in the case
plane mirrors, uniform losses, flat pumps, and OPO’s be
threshold.

In order to discuss the numerical method used for
temporal discretization of the OPO Langevin equations, i
useful to introduce a 43N3N vectorX, containing the dis-
cretized OPO fieldsDa0

nm(Da0
nm)* Da1

nm(Da1
nm)* ~order-

ing of the vector elements is not important here! and a
43N3N vector Q containing the discretized Langevi
forces. Equations~22! and ~23! can then be recasted in
compact matricial form:

d

dt
X~ t !5LdetX~ t !1Q~ t ! ~27!

whereLdet is a deterministic operator~containing the diffrac-
tion!. A formal solution of Eq.~27! during a time stepDt of
the numerical integration is given by

X~ t1Dt !5exp@LdetDt#X~ t !1E
t

t1Dt

dt8

3exp@Ldet~ t1Dt2t8!#Q~ t8!. ~28!

The simplest approximation to the stochastic integral
the right-hand side~RHS! consists in replacing the expone
tial operator inside the integral by an identity: it is easy
see that this approximation leads to an error in the calc
tion of the second-order field correlations which goes to z
as the time intervalDt. On the other side it can be shown th
the approximation

E
t

t1Dt

dt8exp@Ldet~ t1Dt2t8!#Q~ t8!

'expFLdet

Dt

2 G E
t

t1Dt

dt8Q~ t8! ~29!

affects the evaluation of the correlation function of fluctu
ing fields with an error which goes to zero asDt2. The inte-
.

a-

-
-

of
w

e
s

n

a-
o

-

gral in the RHS of Eq.~29! is by definition of Langevin
forces a vector of Gaussian stochastic variables with a v
ance}Dt. By combining Eqs.~28! and ~29! we can write

X~ t1Dt !'expFLdet

Dt

2 G S expFLdet

Dt

2 GX~ t !

1E
t

t1Dt

dt8Q~ t8! D . ~30!

This formula leads to a simple integration algorithm: at ea
time step let the fields evolve for half a step with the det
ministic operator alone, then add random Gaussian n
terms in each space point, then make another half ste
deterministic evolution.~As one can easily verify, the hal
steps are actually performed only at the begin and end of
time evolution!. The validity of this approximation is dem
onstrated in the Appendix. Even in the presence of a num
cal integrator of a second-order accuracy in time, particu
care needs to be taken when selecting the time stepDt. Con-
vergence of the numerical codes requires time steps sm
than for the integration of nonstochastic partial different
equations.

IV. OPO CAVITY WITH PLANE MIRRORS
AND A HOMOGENEOUS INPUT BEAM

A first test of the Langevin model~22! and ~23! is repre-
sented by the the case of plane mirrors, flat losses@i.e.,
G i(xW )5g i ], and a homogeneous input beam@i.e., Ein(xW )5E
assumed here to be real#. Analytic evaluations of the corre
lation functions@14#, far-field distributions, and squeezin
spectra are available@13# and make it possible to check th
accuracy of the numerical integration of the stochastic par
differential equations~22! and ~23!. Below threshold, these
Langevin equations decouple and we focus our attention
the dynamics of the signal fluctuations. It is then conveni
to introduce the following time and space normalizations

t5g1t, x̃W 5
xW

Aa
, ~31!

with

a5c/~2vsg1!, ~32!

which transform Eq.~23! into

]

]t
Dã1~ x̃

W ,t!52~11 id12 i¹2!Dã1~ x̃
W ,t!

1Ã0Dã1* ~ x̃W ,t!1A2 j̃ 1~ x̃
W ,t!, ~33!

where we have defined the signal detuning and normali
the average pump field and the fluctuations via

d1[
v12vs

g1
,

Ã05
g

g1
A0 ,

Dã15Da1Aa, j̃ 1~ x̃
W ,t!5A a

g1
j1~ x̃

W ,t!, ~34!
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882 56A. GATTI et al.
so that we have the correlation function

^ j̃ 1* ~ x̃W ,t! j̃ 1~ x̃
W 8,t8!&5

1

2
d~ x̃W 2 x̃W 8!d~t2t8!. ~35!

We begin by noting that below threshold the dynamics of
semiclassical equations~17! relaxes to the homogeneou
state given by

Ã05
gEin

g1@g01 i ~v022vs!#
, A150. ~36!

By increasing the input intensity, a second-order phase t
sition corresponding to the loss of stability of Eq.~36! and
the generation of a signal field occurs. In Ref.@17# it was
shown that diffraction lowers the threshold intensity and t
the character of the solution above threshold depends on
sign of the signal detuningd1. In particular it was demon-
strated that@17# ~i! if d1.0, the trivial solution~36! be-
comes unstable with respect to the onset of a uniform sig
wave propagating along the longitudinal axis when the pu
field intensityuÃ0u2 reaches the value (11d1

2)2. The output
signal is homogeneous in space because the most uns
mode corresponds to a wave vectorkW with k50; ~ii ! for
negative signal detuningsd1 the most unstable mode corre
sponds to a wave vector of magnitude equal to

kcrit5A2d1. ~37!

The threshold for this transition isuÃ0u51 and thus lower
than for positive detunings. Above threshold there is
spontaneous formation of a roll~or stripe! pattern with a
separation between rolls equal to 2p/kcrit .

As already hinted above, it is possible to find for the ca
analyzed in this section analytical expressions for the squ
ing spectra and near-field correlations of the signal fluct
tions @13,14#. Here we follow an alternative approach bas
on the Langevin equation~33! and the analytical evaluatio
of correlation functions in the Fourier domain~far field!.

A. Far-field correlation functions

As it is well known, the far field corresponds to the Fo
rier transform of the near field. In the ideal case of an infin
transverse plane and a plane wave input field, as we cons
here, the far field is located at an infinite distance from
cavity mirrors. However, it can be carried to a finite distan
by placing a lens at a distance from the cavity equal to
focal length. Of course, the presence of the lens breaks
translational symmetry and introduces an axis for the syst

Equation ~33! is a linear stochastic partial differentia
equation which allows analytical solutions for the correlati
functions in the Fourier domain. By dropping unessen
tildes and by introducing

b~kW ,t!5
1

2pE d2xW Da1~xW ,t!exp~ ikW•xW ! ~38!

with kW being the transverse wave vectorkW5(kx ,ky), Eq.~33!
and its complex conjugate are rewritten in a convenient m
trix form as
e
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-

]

]tS b~kW ,t!

b* ~2kW ,t!
D 5S 2~11 isk! A0

A0* 2~12 isk!
D

3S b~kW ,t!

b* ~2kW ,t!
D 1A2S h~kW ,t!

h* ~2kW ,t!
D ,
~39!

where the Fourier components of the Langevin forces sat

^h* ~kW ,t!h~k8W ,t8!&5
1

2
d~kW2k8W !d~t2t8!,

^h~kW ,t!h~k8W ,t8!&50 , ~40!

and where we have introduced the wave-vector-depen
detuning

sk5d11k2. ~41!

Equations~39! describe the stochastic dynamics of t
field fluctuations in the far field. The formal solution of E
~39! is given by

S b~kW ,t!

b* ~2kW ,t!
D 5eMtS b~kW ,0!

b* ~2kW ,0!
D

1A2eMtE
0

t

dt8e2Mt8S h~kW ,t8!

h* ~2kW ,t8!
D ,
~42!

whereM is the 232 matrix appearing in Eq.~39!. By using
Eq. ~42! it is straightforward to show that

^b~kW ,t!h* ~kW8,t!&5A2eMtE
0

t

dt8e2Mt8

3^h~kW ,t8!h* ~kW8,t!&

5
1

2A2
d~kW2kW8!,

^b~kW ,t!h~kW8,t!&50 , ~43!

where a factor 1/2 arises due to thed-function on time being
located at the upper limit of integration.

We are interested in the evolution of the correlation fun
tions ^b(kW ,t)b(kW8,t)& and ^b(kW ,t)b* (2kW8,t)&. Their
equations of motion are readily obtained from Eqs.~39! and
~43!:

]

]t
^b~kW ,t!b~kW8,t!&52@21 i ~sk1sk8!#^b~kW ,t!b~kW8,t!&

1A0~^b* ~2kW ,t!b~kW8,t!&

1^b~kW ,t!b* ~2kW8,t!&!, ~44!
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]

]t
^b~kW ,t!b* ~2kW8,t!&52@21 i ~sk2sk8!#

3^b~kW ,t!b* ~2kW8,t!&

1A0^b* ~2kW ,t!b* ~2kW8,t!&

1A0* ^b~kW ,t!b~kW8,t!&1d~kW1kW8!.

~45!
ns

tio
re

ld
The dynamics~44! and~45! of the correlation functions of
interest is nothing but a relaxation, after a suitable transi
to stationary values. Such stationary values are obtained
solving an algebraic system of equations of the form

BVW 5WW , ~46!

where the 434 matrixB is given by
B5S 2@21 i ~sk1sk8!# 0 A0 A0

0 2@22 i ~sk1sk8!# A0* A0*

A0* A0 2@21 i ~sk2sk8!# 0

A0* A0 0 2@22 i ~sk2sk8!#

D ~47!
.
nal
for

re
and where the vectorsVW andWW are

VW 5S ^b~kW !b~kW8!&

^b* ~2kW !b* ~2kW8!&

^b~kW !b* ~2kW8!&

^b* ~2kW !b~kW8!&

D , WW 5d~kW1kW8!S 0

0

21

21

D ,
~48!

respectively. Simple algebra then leads to the expressio

^b~kW !b~kW8!&5
4A0@22 i ~sk1sk8!#

@41~sk1sk8!
2#@41~sk2sk8!

2#216uA0u2

3d~kW1kW8!, ~49!

^b~kW !b* ~2kW8!&

5
@41~sk1sk8!

2#@22 i ~sk2sk8!#

@41~sk1sk8!
2#@41~sk2sk8!

2#216uA0u2

3d~kW1kW8!. ~50!

Let us remind the reader now that the Wigner representa
provides the expectation values of symmetrically orde
quantities. For example,

^a1* ~xW ,t!a1~xW8,t!&5
1

2
@^A1

†~xW ,t!A1~xW8,t!&

1^A1~xW ,t!A1
†~xW8,t!&#

5^A1
†~xW ,t!A1~xW8,t!&1

1

2
d~xW2xW8!.

~51!

For this reason the mean intensity of the signal far fie
which is obtained from the correlation function~50! for
kW852kW , is given by
n
d

,

^b~kW ,t!b* ~kW ,t!&2
1

2
d~0!5

1

2

uA0u2

11sk
22uA0u2

d~0!.

~52!

The presence of the factord(0) must not be seen with alarm
It arises from the fact that in the flat pump model the sig
field fluctuations in the transverse plane do not vanish
uxW u→` so that their Fourier transforms are singular.

By introducing periodic boundary conditions in a squa
of sideb, we can express, for example,Da1 in the form

Da1~xW ,t!5(
nW

1

b
exp~2 ikWnW•xW ! f kWnW ~t!, ~53!

kWnW5
2p

b
nW ,

nW 5~nx ,ny!, nx ,ny50,61,62, . . . . ~54!

The far field amplitude of the field fluctuations~38! is related
to the coefficientsf kWnW by

b~kW ,t!5
2p

b (
nW

f kWnW ~t!d~kW2kWnW !. ~55!

Hence,

b~kW ,t!b* ~kW ,t!5S 2p

b D 2(
nW

f kWnW ~t! f kWnW ~t!d~kW2kWnW !d~0!

~56!

and in the continuum limitb→`, in which (2p/b)2(nW

→*d2kW , one has

b~kW ,t!b* ~kW ,t!5 f kW~t! f kW~t!d~0!. ~57!
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As in the near field, the mean intensity in the far field~52! is
nonzero, but contrary to the near field, it is not uniform. T
intensity distribution presents a maximum forsk50, i.e., for

uku252d1 , ~58!

which, whend1,0, is just the magnitude of the wave vect
of the pattern above threshold@see Eq.~37!#. Since Eq.~50!
depends only onuku2 we expect the far-field intensity distri
bution for negative detuningsd1 to be an annulus centered
the critical circle of radius defined by Eq.~37!. This is con-
firmed by the numerical integration of Eq.~33! as displayed
in Fig. 2. In order to provide a better comparison betwe
numerical and analytical data, we present in Fig. 3 the
merical results for the far-field intensity averaged over ti
and over the azimuthal anglew which spans the critica
circle; they are displayed as a section of the intensity pro
along the axiskx for three values ofA0. The corresponding
analytical results, given by Eq.~52!, are shown in Fig. 3~a!.
In the numerical simulations, the Diracd function has a finite
value, due to the finiteness of the spatial grid; in the co
parison we have adjusted the arbitrary vertical scale in Fi
in such a way that the maxima of numerical and analyti
curves coincide and the agreement turns out to be excel
As threshold is approached, the peak of the far field inten
increases and the annulus becomes narrower and narr
around the critical radius; these features should be exp
mentally accessible~of course, the divergence of the peak
an artifact of the linearization around the stationary state!.

The homodyne detection of signal photons in the far fi
corresponds to the measure of two orthogonal quadra
components. By choosing the reference phase in such a
that A0 is real, the two significant quadratures areX(kW )
5b(kW )1b* (kW ) and Y(kW )52 i @b(kW )2b* (kW )#; by using
Eqs. ~49! and ~50! their correlation function can be calcu
lated as

FIG. 2. Time average of the far-field intensity of the sign
fluctuations forA050.97 andd1521. Higher intensities corre-
spond to darker areas.
n
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^X~kW !X~kW8!&5d~kW2kW8!1d~kW2kW8!
A0
2

11sk
22A0

2

1d~kW1kW8!
A0

11sk
22A0

2 , ~59!

^Y~kW !Y~kW8!&5d~kW2kW8!1d~kW2kW8!
A0
2

11sk
22A0

2

2d~kW1kW8!
A0

11sk
22A0

2 . ~60!

For a fixed value of the wave vectorkW , both correlation func-
tions ~59! and ~60! have two Dirac-d peaks. One of these i
for kW85kW ~self-correlation!, and arises from the phase

l

FIG. 3. Comparison between theory~a! and Langevin simula-
tions ~b! of the far-field intensity of the signal fluctuations averag
in time and along the polar angle spanning the circle of Fig. 2
d1521 and three values ofA0: 0.90 ~lowest dashed curve!, 0.95
~upper dashed curve!, and 0.97~solid line!.
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insensitive contribution~50!, while the other is located a

kW852kW and arises from the phase-sensitive contribut
~49!. In Fig. 4 we have plotted the results of the numeri
simulations for the correlation functions~59! and ~60! of X
andY: bothkW andkW8 lie on the critical circle,kW is fixed while
kW8 spans the critical circle, andw is the azimuthal angle
between the two wave vectors. The correlation functions
obtained by performing a time average plus an average
respect to the position ofkW over the circle. The function
displays a positive~negative! peak atkW852kW ~i.e., w5p)
for theX (Y) quadrature. In Fig. 5 we have plotted the ma
nitude of the two peaks using Eqs.~59! and ~60! and com-
pared it with the results of the direct numerical simulation
the Langevin equation for values ofA0 approaching thresh
old. The agreement establishes again the reliability of
numerical code for the simulation of the stochastic par
differential equations. The explanation of the Dirac-d peak at
w5p is quite straightforward. Two photons at the sign
frequency are produced by the OPO instantaneously via
off axis emission: close to threshold the probability is ma
mum for emission on a cone forming an angleu5kcrit /kz
with the cavity axis~which corresponds to the critical circl
in the far field!; although the direction of emission of th
couple on the cone fluctuates in time, the two photons h
to be emitted in two symmetrical directions in order to p
serve the transverse momentum resulting on average
circular emission in the far field with correlation peaks
opposite sides of the circle.

The mechanism behind the latter effect is traceable to
nature of thex (2) nonlinearity of the crystal, which gives ris
to the phase-sensitive contribution~50!. Note that the corre-
lation function is maximum~in modulus! whenkW lies on the
critical circle ~37! as happens for the mean intensity dist
bution ~52!. In comparison with the mean intensity distrib

FIG. 4. Far-field correlation functions in homodyne detecti
versus the polar angle that spans the circle of Fig. 2
k252d151 and A050.95. The solid line corresponds to th
quadrature componentX while the dashed one corresponds to t
componentY.
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tion, the correlation function conveys the additional eviden
of the two-photon character of the signal field emission
the OPO.

We observe finally that the quantities which have a m
direct physical meaning are normally and time ordered. A
matter of fact, the measurement are usually taken out of
cavity, and the intracavity results@for example, those given
by equations~49!, ~50!, ~59!, and~60!# remain unchanged fo
the output field~apart from a trivial multiplication of each
factorDa1 andb by A2g) only when they refer to normally
and time-ordered quantities. The normally ordered corre
tion function corresponding to Eqs.~59! and ~60! are ob-
tained by subtracting a factord(kW2kW8) from each of them.

B. Near-field correlation functions

The images and correlation functions of the far sign
field below threshold reveal some of the features of the
pattern appearing above threshold. We now turn our at
tion to the information contained in the near-field sign
First, it is easy to show that the mean intensity of the sig
below threshold is homogeneous in space. In fact, by tra
forming back in real space relation~38! and using Eq.~50!
one obtains

a^A1
†~xW !A1~xW8!&5^Da~xW !Da* ~xW8!&2

1

2
d~xW2xW8!

5
1

4p2E d2kW
uA0u2

2~11sk
22uA0u2!

eik
W
•~xW2xW8!

5
1

2p

uA0u2

A12uA0u2
Im$K0~2 iPuxW2xW8u!%,

~61!

r FIG. 5. Peaks of the far-field correlation functions in homody
detection for theX quadrature~upper part! andY quadrature~lower
part! components versus the input amplitude. The solid lines are
analytical results while the dots correspond to the Langevin num
cal simulations.
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886 56A. GATTI et al.
where

P5Akcrit2 1 i ~12uA0u2!1/2, ~62!

K0 is the modified Bessel function of zero order, anda is
defined by Eq.~32!. No information about spatial modula
tions can be obtained from the average near-field image s
the RHS of Eq.~61! is independent ofxW for xW5xW8. This does
not mean, however, that information about the emerging
tern and about the nonclassical nature of the emitted l
cannot be obtained in the near field. We define the near-fi
correlation functions corresponding to the homodyne de
tion of the signal fluctuations as

Gf~xW ,xW8!5a@^Ef~xW !Ef~xW8!&#,

Ef~xW !5Da1
!~xW !eif1Da1~xW !e2 if, ~63!

where the anglef identifies the quadrature component of t
field. For definiteness we now chooseA0 real, so that the
most significant quadratures aref50,p. By transforming
back in real space and using Eqs.~59! and ~60! one obtains

Gf50~xW ,xW8!5
1

4p2E d2kW H 11
A0~11A0!

11sk
22A0

2J eikW•~xW2xW8!

5d~xW2xW8!1
1

p

A0~11A0!

A12A0
2

3Im$K0~2 iPuxW2xW8u!%, ~64!

Gf5p/2~xW ,xW8!5
1

4p2E d2kW H 12
A0~12A0!

11sk
22A0

2J eikW•~xW2xW8!

5d~xW2xW8!2
1

p

A0~12A0!

A12A0
2

3Im$K0~2 iPuxW2xW8u!%. ~65!

As a consequence of the translational symmetry, the corr
tion function Gf depends only on the differenc
r5uxW2xW8u. For both values off50,p the correlation func-
tion has ad function contribution for equal space points. Th
origin of thisd function is the diverging vacuum fluctuation
associated with symmetrically ordered expectation valu
This term disappears when going from the Wigner repres
tation to the more usual Glauber-SudarshanP representation
~corresponding to normal ordering!. Hence it is convenient to
introduce

G̃f505
1

p

A0~11A0!

A12A0
2
Im$K0~2 iPuxW2xW8u!%, ~66!

G̃f5p/252
1

p

A0~12A0!

A12A0
2
Im$K0~2 iPuxW2xW8u!%, ~67!

which is the normally ordered part of the field correlati
functions. Note that these analytical expressions have
ready been given in@14#.
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If instead of two transverse dimension we consider o
one transverse dimension, replacingxW by x and ¹2 by
]2/]x2, instead of Eqs.~66! and ~67! we have

G̃f505
1

2

A0~11A0!

A12A0
2
ReH eiPux2x8u

P J , ~68!

G̃f5p/252
1

2

A0~12A0!

A12A0
2
ReH eiPux2x8u

P J . ~69!

We see that close to threshold the critical modes, for wh
the effective detuningd11k2 vanishes, become dominan
This shows that the spatial modulation of the semiclass
pattern above threshold also affects the quantum correla
functions in the near field. In Fig. 6 we have plotted a co
parison between the theory~solid curve! and Langevin simu-

lations ~dashed curve! of the normally ordered partG̃ of the
near-field correlation function forf50 @Fig. 6~a!# and
f5p @Fig. 6~b!# for the case of only one transverse dime
sion. The full two-dimensional case is presented in Figs. 7~a!
and 7~b!. The modulation, which indicates an alternation b
tween correlation and anticorrelation, has the same wa
length as the semiclassical pattern that appears above th

FIG. 6. Near-field spatial correlation functionGf(r ) for the an-
tisqueezed~a! and squeezed~b! quadrature components of the sig
nal fluctuations of an OPO below threshold. Case of o
dimensional transverse space. The solid line is the analytical re
the dashed line is obtained by the numerical simulations, and
dotted line was obtained by including finite grid effects into t
analytical results. The value of the pump field isA050.99 while the
detuning isd1521.
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old and can therefore be regarded as a quantum anticipa
of this pattern. The term ‘‘quantum image’’ was introduc
by Knight et al. @30# to describe the encoding of informatio
in the quantum correlation function instead of the light
tensity and it therefore seems appropriate to use it for
phenomenon described here. For vanishing distancer the
normally ordered correlation function of the quadrature co
ponent corresponding tof50 is positive, so this quadratur
component is antisqueezed. The normally ordered correla
function for the perpendicular quadrature component is ne
tive, indicating the squeezing of this quadrature compon
@14#.

The spatial modulation of the correlation function can
made clearer in the asymptotic expansion of Eqs.~64! and
~65! for large r5uxW2xW8u:

G0~r !'
A0~11A0!

A12A0
2
A 1

2pP2rkcrit
e2~e/2kcrit!r

3sin~kcritr1p/4!, ~70!

Gp/2~r !'
A0~12A0!

A12A0
2
A 1

2pP2rkcrit
e2~e/2kcrit!r

3sin~kcritr2p/4!, ~71!

wheree is a measure for the distance from threshold

e5A~A0
~ thr!!22A0

2 ~72!

FIG. 7. Same as Fig. 6 but for the case of two-dimensio
transverse space.
ion

e

-

on
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nt

andP is defined in Eq.~62!. This asymptotic expansion als
allows us to read out directly the correlation leng
j52kcrit /e which diverges as 1/e as threshold is approached
a behavior analogous to the critical behavior in mean fi
theories.

To improve the statistics in the numerical simulations, t
ensemble average in Eq.~63! has been replaced by a com
bined time, ensemble averages, and an average with res
to the first point positionxW in G(xW ,xW8). The deviations be-
tween numerical and theoretical data in Figs. 6 and 7 can
explained as a finite grid effect. The Langevin equations
numerically integrated on a grid of sizebd whered is the
dimension of the transverse space. The minimum spac
betweenk vectors is then 2p/b, whereas the maximumk
vector isp/Dx, Dx being the lattice spacing of the spati
grid. If we replace the integrals in Eqs.~64! and ~65! with
summations overk vectors, then we obtain curves almo
identical to the numerical results. For example, in Fig. 6
dotted line is the modified version of the theoretical da
after including finite grid effects leading to an excelle
agreement with the numerical data. In the two-dimensio
case of Fig. 7 finite grid effects do not play a significant ro
and we did not include the dotted line. Note also thed con-
tribution at the origin in the numerical result due to

d~x!5H 1/~Dx!d for x50,

0 elsewhere,
~73!

whered is the dimension of the transverse space.
It should be noted that the numerical results for the a

squeezed quadrature component in Figs. 6~a! and 7~a! show
less fluctuations than the squeezed quadrature compo
shown in Figs. 6~b! and 7~b!. The reason is that the correla
tions in the latter component are generally small with resp
to the large contribution for vanishing distances domina
by thed function in Eqs.~64! and ~65!. Results can be im-
proved by averaging over a longer timet or over a larger
number of realizations. Increasing the number of grid poi
also reduces the statistical errors~because of the average
over the position! as well as the finite grid effects but ca
make numerical simulations unfeasibly long.

We now turn our attention to the correlation between
tensity fluctuations at two different space points in the n
field, a quantity which can be measured without using a lo
oscillator. The calculation of the intensity correlation fun
tion is simplified by taking into account the Gaussian ch
acter of the fluctuations in this Langevin model, allowing
to express higher order field moments by means of seco
order moments of the fields.

For the normally ordered intensity correlation functio
one obtains

G̃ int~xW ,xW8!5a2@^A1
†~xW !A1

†~xW8!A1~xW8!A1~xW !&

2^A1
†~xW !A1~xW !&^A1

†~xW8!A1~xW8!&# ~74!

5a2@ u^A~xW !A~xW8!&u21u^A†~xW !A~xW8!&u2#. ~75!

l
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888 56A. GATTI et al.
After transforming Eqs.~49! and ~50! into real space, and
transforming from symmetrical to normal ordering, the RH
of Eq. ~75! is calculated as

G̃ int~xW ,xW8!5H 1

2p
A0Re@K0~2 iPuxW2xW8u!#J 2

1
11A0

2

4~11A0!
2H 1p 11A0

A12A0
2

3Im@K0~2 iPuxW2xW8u!#J 2

~76!

'
1

8
@G0~xW ,xW8!#2 for A0→1, ~77!

whereP is defined by Eq.~62!. The approximation~77! evi-
dences the simple physical result that the intensity corr
tion function close to threshold is proportional to the squ
of the antisqueezed quadrature correlation function. This
be directly seen from the following formula, which can b
easily verified by substitution:

G̃ int~xW ,xW8!5FGf50~xW ,xW8!2Gf5p/2~xW ,xW8!

4
G2

1FGf50~xW ,xW8!1Gf5p/2~xW ,xW8!

4
G2

2FGf5p/4~xW ,xW8!2Gf52p/4~xW ,xW8!

4
G2. ~78!

The RHS of Eq.~78! can be approximated by Eq.~77! if
Gf50 is much larger than the other phase quadrature co
lation functions. A further advantage of expressing the int
sity correlation function by means of the field correlati
functions is that Eq.~78! holds also for the other mode
discussed later, i.e., the OPO with spherical mirrors. Mo
over, the calculations taking into account the finite grid
fects in the numerical simulation do not need to be repea
for the intensity correlation functions, since the results
the quadrature correlation functions can be inserted in
~78! or Eq. ~77!.

Again, we can present a comparison of the theoret
results of the intensity correlation function with its numeric
evaluation from the Langevin equations. Since the statist
average of functions of thec-number fieldDa1(xW ) gives the
symmetrically ordered quantum expectation value, we h
first to express Eq.~74! in a symmetrically ordered way:

G int~xW ,xW8!5a2^@A1
†~xW !A1

†~xW8!A1~xW8!A1~xW !#sym&

2^~A1
†~xW !A1~xW !!sym&^~A1

†~xW8!A1~xW8!!sym&

5G̃ int~xW ,xW8!1d~xW2xW8!H a^A1
†~xW !A1~xW8!&

1
1

4
d~xW2xW8!J . ~79!
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The results are shown in Figs. 8 and 9 for the one- a
two-dimensional cases, respectively.

The intensity correlation function shows a modulation
half the wavelength of the field correlation functions in Fig
6 and 7 because the intensity is the modulus square of
field. The numerical result is shown by the dashed li
Again the numerical result shows a faster decay with incre
ing distancer5uxW2xW8u with respect to the analytical resu
~solid line!, and this deviation can be revealed as a finite g
effect by comparison with the analytical result, where t
infinite integral overkW is replaced by an appropriate su
~dotted line!. The remaining difference between the dash
and the dotted line at small distancer is due to thed function
contribution in Eq.~79!. We see that the intensity correlatio
function remains positive for all values of the distanc
uxW2xW8u, in contrast to the case of the phase quadrature
relation function, which takes on negative values at sm
distance forf5p/2. This result is expected, since it
known that in the OPO below threshold there is no intens
squeezing.

FIG. 8. Near-field intensity correlation function for the on
dimensional model for the OPO below threshold. The value ofA0

is 0.99 while the detuning isd1521. The solid line is the analyti-

cal result forG̃ int , the dashed line is the numerical result forG int ,
and the dotted line is a modification of the analytical result tak
account for the finite grid effects in the numerical computation.

FIG. 9. Same as Fig. 8 but for the case of two-dimensio
transverse space.
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56 889LANGEVIN TREATMENT OF QUANTUM FLUCTUATIONS . . .
Apart from the correct correlation functions, the nume
cal simulations provide us with images as they could be
tained by a measurement on a time scale short enoug
resolve the dynamics of quantum fluctuations. For this
just have to look at a single snapshot of a field quadra
component at a given timet.

In this connection, an important remark concerns
interpretation of the snapshots of ReDa1(xW ,t) and
ImDa1(xW ,t) as corresponding to real measurements in a
modyne detection scheme. As a matter of fact the Wig
function is not a probability distribution in phase space, b
its marginals are probability distributions. Hence it is corre
to interpret the snapshots of ReDa1 and ImDa1 separately as
corresponding to real measurements. It would be incorr
however, to consider the two snapshots simultaneousl
infer the instantaneous value of other quantities, such
e.g., the intensity distribution. By construction all the sna
shots refer to the intracavity field.

The one-dimensional model allows us to use a sec
dimension as a time axis and to code the values of the
part of Da1(x,t) in gray scales. Figure 10 shows a tim
evolution of the antisqueezed quadrature component
Da1(x,t) with initial conditions given byDa1(x,t50)
50. The brighter and darker shades correspond to pos
and negative values ofDa1(x,t), respectively. The emerg
ing pattern shown to the extreme right of Fig. 10 is built
by quantum fluctuations; it shows a clear modulation at
wavelength 2p/kcrit , with kcrit given by Eq.~37!.

Figure 11 shows a snapshot of the real part ofDa1(xW ,t)
for the two-dimensional case. The underlying pattern, wh
in low-frequency measurements can only be revealed
measuring the correlation function, is also present in sin
realizations of our numerical simulation which correspond
high-frequency measurements. Figure 11 clearly shows
formation of an irregular spot pattern, built up by quantu
fluctuations. The spots perform a slow random walk in
transverse plane, consistently with the fact that the quant
mechanical expectation value ofA1(xW ) vanishes in all posi-
tions xW . Note that this configuration must not be confus
with a standard speckle pattern, in which the statistical d

FIG. 10. Time evolution of the antisqueezed quadrature com
nentEf50 in the one-dimensional model for the OPO. The left p
shows the transient starting from the uniform initial sta
Da1(x,0)50, whereas the stripe to the right shows the evolv
pattern after a long time (t550). Again the pump value is
A050.99 while the detuning isd1521.
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tribution of distances between neighboring spots is peake
zero distance. In our case, the peak occurs in correspond
to the wavelengthlcrit52p/kcrit , and the spots manifest
sort of classical antibunching behavior in their spatial dis
bution. The pattern observed is similar and in fact ma
ematically related to the one built up by classical critic
fluctuations. Unlike the classical fluctuations, however,
quantum fluctuations allow for negative values of the cor
lation functions at zero distance, associated with the nonc
sical squeezing.

A natural question which arises is on what time scale
pattern is observable directly, for example, by means o
homodyne detection measurement with a CCD cam
placed in the transverse plane. This time scale can be d
mined by the calculation of a temporal correlation functi
of the form

Gf~Dt!5^Ef~x,t!Ef~x,t1Dt!&. ~80!

This correlation function was evaluated numerically~see Fig.
12! for the most amplified quadrature componentEf50 in the
one-dimensional case, and shows an exponential de
}exp(Dt/t8) with a long characteristic timet8'60 ~in
scaled time units, i.e., 60g1

21 in physical units!.
This decay time is in rough agreement with the express

of the decay time of the fluctuations of the critical mode
given by t85(12A0)

21, which gives, in the present cas
'50 in scaled time units„see Eq.~98! of @14#…. The diver-
gence of the decay time when approaching the threshol
closely related to the critical slowing down known from cla
sical phase transitions. Experimentally this slowing do
simplifies the direct detection of the spatial pattern, sinc
allows for the use of detectors with longer time scales.

We can try to extract the spatial correlation function o
of a single snapshot by replacing the required ensemble
erage in Eq.~63! by a spatial average over the pointxW keep-
ing the difference vectorxW2xW8 fixed. The result is shown in
Fig. 13 as a function ofxW2xW8 and shows the expected mod

o-
t

d FIG. 11. Single snapshot of the antisqueezed quadrature com
nent of the signal field in the two-dimensional OPO with pla
mirrors. Darker areas correspond to negative values ofDa1

whereas positive values are shown as lighter areas. The field fo
an irregular spot pattern which is built up by quantum fluctuatio
HereA0 5 0.999 while the detuning isd1521.
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890 56A. GATTI et al.
lation in r5uxW2xW8u. Due to the finite size of the transvers
plane in the numerical simulation, the correlation functi
depends not only onr but also slightly on the angle of th
difference vectorxW2xW8, an effect which decreases with in
creasing size of the simulation grid in the transverse pla

V. OPO CAVITY WITH PLANE MIRRORS
AND AN INPUT BEAM OF FINITE DIAMETER

In the previous section we have verified that our Lange
equations~22! and~23! correctly describe the quantum fluc
tuations of the signal field by making a comparison betwe
the data obtained by their numerical integration and ana
cal results available in the case of homogeneous in
beams, plane mirrors, and below threshold. This case
however, unrealistic for experimental realizations where
put beams of finite diameter, generally of Gaussian sha
are commonly utilized. It is the aim of this section to sho
that quantum images and modulated spatial correlations

FIG. 12. Temporal correlation function̂E0(x,t)E0(x,t1Dt)&
in logarithmic scale as a function of the time differenceDt. The
slow decay of this correlation indicates that the pattern is long liv
HereA050.98 while the detuning isd1521.

FIG. 13. The spatial correlation function of the antisqueez

quadrature component as a function of the vectorxW2xW8. Brighter
and darker parts indicate correlation and anticorrelation, res
tively. One clearly sees the ring-shaped structure around the o
corresponding to the alternation of correlation and anticorrelati
.

n

n
i-
ut
is,
-
e,

or

OPO’s below threshold can still be observed in the case
input beams of finite diameter.

In the present case Eq.~33!, valid below threshold, is
modified to

]

]t
Da1~xW ,t!52~11 id12 i¹2!Da1~xW ,t!

1A0~xW !Da1* ~xW ,t!1A2j1~xW ,t!, ~81!

whereA0(xW ) is the asymptotic solution of the semiclassic
equation

g1

g0

]

]t
A0~xW !52S 11 id02 i

g1

2g0
¹2DA0~xW !1E~xW !,

~82!

where

d05
v022vs

g0
, E~xW !5

g

g1g0
Ein~xW !. ~83!

Note that in this case the solution of Eq.~82! is not given by
Eq. ~36! since diffraction plays a role in the final configura
tion of the pump field. For example, Fig. 14 displays t
stationary distribution of the modulus and the imaginary p
of A0(xW ) for the two real input pump shapes studied here
top-hat profile

E~xW !5
E

2
$12tanh@n~r2m!#%, ~84!

and a Gaussian profile

E~xW !5EexpS 22r 2

m2 D , ~85!

wherer is the transverse radial coordinate andm andn are
shape parameters, governing the radius of the central
and the slope of the steep part for the top hat profile, resp
tively. The fact that the imaginary part ofA0(xW ) is not uni-
form is due to the diffractive term in Eq.~82! and can have
drastic effects on the Langevin simulations of the sig
field. Equation~81! differs from Eq.~33! in that it is a sto-
chastic partial differential equation with space-dependent
efficients. Simple transformations to the Fourier space to p
form analytical calculations similar to that presented in t
previous section are now unfeasible and one has to rely
the numerical simulations. From the numerical-integrat
point of view, the term multiplied by the space-depende
parameter has to be treated like a nonlinear term and requ
a high degree of accuracy. For example, numerical meth
based on the Euler discretization of the Laplacian opera
are bound to fail and to produce spurious results@31#. For
these reasons all the results of this section have been
tained by using a stochastic split-step numerical integra
routine with second-order accuracy in time. Integratio
have been performed on dedicated workstations and c
easily take several CPU hours for each run.

Figure 15 shows that the far-field quantum image survi
for both cases of top-hat (E50.97) and Gaussian (E51.0)
profiles and should be visible in experiments. Note that

.

d

c-
in
.
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56 891LANGEVIN TREATMENT OF QUANTUM FLUCTUATIONS . . .
FIG. 14. Intensity profiles of the stationar
pump fieldA0 for the case of top-hat~a! and
Gaussian~c! input beam shapes. Panels~b! and
~d! show the imaginary part ofA0 where white
~black! corresponds to positive~negative! values.
Parameters ared050, g1 /g051, E50.97,
n50.4547, andm518.85 for the top-hat profile
andd050, g1 /g051, E51.0, andm511.75 for
the Gaussian profile.
um
vi
o

th
k
ha
es
on
ge

ob

wi
t

he
g

me

ar-
ian
cor-
of
ter-

ms
ir-

vity
Gaussian profile tends to favor spatial areas where the p
field is far from threshold and consequently reduces the
ibility of the quantum image. Correlation at opposite sides
the far-field ring@see Eqs.~59! and ~60!# are still detectable
in the presence of input beams of finite diameter even if
reduced visibility of the Gaussian profile case can ma
these measurements difficult to be performed. We note t
in the case of input beams of finite diameter it is not nec
sary to use a lens to observe the far field. The far-field c
figuration arises at a distance from the cavity much lar
thanm2/l, wherem is the beam size andl the wavelength.

Figures 16 and 17 show the near-field correlations
tained from the numerical integration of Eq.~81! for the
top-hat and Gaussian profiles, respectively, compared
the case of homogeneous pump. In the top-hat case,
pointsxW andxW8 are both taken in the flat upper part, and t
correlation function is obtained by performing an avera
p
s-
f

e
e
t,
-
-
r

-

th
he

e

over time and an average with respect toxW over the flat upper
part. In the Gaussian case, the pointxW is fixed atxW50 and
the correlation function is obtained by an average over ti
only.

Oscillations in the antisqueezed component of the ne
field correlations are clearly detectable even for Gauss
input pumps. The squeezed component of the near-field
relations, however, drastically deteriorates for the case
Gaussian input fields and may be impossible to be charac
ized in real experiments.

VI. OPO CAVITY WITH SPHERICAL MIRRORS

The standard experimental realizations of OPO syste
utilize cavities with spherical mirrors instead of plane m
rors ~see Fig. 18!. This case was already treated in Ref.@16#.
We assume, that the pump field is not reflected by the ca
-

the
g.
FIG. 15. Time average of the far-field inten
sity of the signal fluctuations for top-hat~a! and
Gaussian~b! input profiles. Higher intensities
correspond to darker areas. The detuning of
signal isd1521. Other parameters are as in Fi
14.
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892 56A. GATTI et al.
mirrors and has a plane wave configuration, and that
Rayleigh length of the cavity is much larger than the cav
length. This implies that the frequency spacing between
jacent transverse modes is much smaller than that betw
adjacent longitudinal modes~free spectral range!. This
amounts to the requirement that the cavity mirrors are q
siplanar. The realization with spherical mirrors has the
vantage that there is a discrete basis of eigenfunctio
namely the Gauss-Laguerre modes. The complete se
eigenfunctions is given by

FIG. 16. Near-field spatial correlation functionGf(r ) for the
antisqueezed~a! and squeezed~b! quadrature components of th
signal field of an OPO below threshold. Comparison between
case of top-hat~solid line,E50.97) and homogeneous input beam
~dashed line,A050.97). The parameters for the top-hat case are
in Fig. 14 andd1521 in both cases.
e

d-
en

a-
-
s,
of

f pli~r ,w!5
2

@2d l ,0p#1/2
~2r 2! l /2F p!

~p1 l !! G
1/2

3Lp
l ~2r 2!e2r2H coslw for i51,

sinlw for i52,
~86!

where r denotes the distance from the axis of the syste
normalized to the beam width in the fundamental Gauss

e

s

FIG. 17. Near-field spatial correlation functionGf(r ) for the
antisqueezed~a! and squeezed~b! quadrature components of th
signal field of an OPO below threshold. Comparison between
case of Gaussian~solid line, E51.0) and homogeneous inpu
beams~dashed line,A050.97). The parameters for Gaussian ca
are as in Fig. 14 andd1521 in both cases.
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56 893LANGEVIN TREATMENT OF QUANTUM FLUCTUATIONS . . .
mode. It will turn out to be convenient to split these mo
functions into their angular parts;

f l i
~1!~w!5H coslw for i51,

sinlw for i52,
~87!

and into the restf pl
(2)(r ) which has only a radial dependenc

The eigenfrequencies of these modes depend only on
family indexq52p1 l :

vpl5v11h~2p1 l !, ~88!

whereh is determined by the distance between the spher
mirrors and their radius of curvature. In the limit of vanis
ing curvature of the mirrors, the spacingh tends to zero
resembling the continuous spectrum in the case of plane
rors. Of special interest is the case where (vs2v1)/h is a
positive integer, since there exists a family of modes wh
are exactly in resonance with the signal field. This family
characterized by

q5qcrit5
vs2v1

h
. ~89!

Any state can be expanded into the modes~86!

Da1~r ,w,t !5(
pli

bpli~ t ! f pli~r ,f!. ~90!

The classical behavior of an OPO with spherical mirro
is similar to one with plane mirrors in the sense that
increasing the pump intensity the system undergoe
second-order phase transition. Immediately above thresh
the spatial configuration of the signal field is determined
clusively by the modes with the smallest effective detuni

Dpl5
vpl2vs

g1
5D001~2p1 l !

h

g1
, ~91!

which are the most unstable ones; as we will see these m
dominate also the ‘‘quantum image’’ built up by quantu
fluctuations below threshold. For example, when condit
~89! is satisfied the pattern is determined by the fam
q5qcrit , and this is again closely similar to the plane wa
case, in which there is a critical wave vector determined

FIG. 18. Experimental setup for an OPO with spherical mirro
The nonlinear optical crystal is inside a cavity with spherical m
rors which is pumped with light of frequency 2vs . The crystal
down-converts this light to frequencyvs , which is then detected.
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the resonance conditionsk50 @see Eq.~37!# identical to that
which leads to the definition of the critical family inde
qcrit , i.e.,Dq50.

Below threshold the Langevin equations for the expans
coefficientsbpli read in scaled time units@compare with Eq.
~33!#

d

dt
bpli~t!52~11 iDpl!bpli~t!1A0bpli* ~t!1A2jpli~t!.

~92!

The noise termsjpli ared correlated in time and mode indi
ces:

^jpli* ~t!jp8 l 8 i 8~t8!&5
1

2
dp,p8d l ,l 8d i ,i 8d~t2t8!, ~93!

^jpli~t!jp8 l 8 i 8~t8!&50 . ~94!

By performing calculations closely similar to those of Se
IV A, one can obtain time evolution equations for th
second-order moments

C1~p,l ,i ;p8,l 8,i 8;t!5^bpli~t!bp8 l 8 i 8~t!&, ~95!

C2~p,l ,i ;p8,l 8,i 8;t!5^bpli* ~t!bp8 l 8 i 8~t!& ~96!

of the mode amplitudes. The asymptotic values fort→` are
given by

C1~p,l ,i ;p8,l 8,i 8!5
A0„12 i ~Dpl!…

2~12uA0u21Dpl
2 !

dpp8d l l 8d i i 8,

~97!

C2~p,l ,i ;p8,l 8,i 8!5
11Dpl

2

2~12uA0u21Dpl
2 !

dpp8d l l 8d i i 8.

~98!

From this we obtain the stationary spatial correlation fun
tion

Gf~r ,w,r 8,w8!5^Ef~r ,w!Ef~r 8,w8!& ~99!

for the quadrature components

Ef~r ,w!5(
pli

f pli~r ,w!~bplie
2 if1bpli* eif!. ~100!

In the special casesf50 andf5p/2 ~most antisqueezed
and most squeezed quadrature component, whenA0 is real!
we obtain

Gf50~r ,w,r 8,w8!5(
pl

S 11
A0~11A0!

12A0
21Dpl

2 D f pl~2!~r ! f pl
~2!

3~r 8!cos@ l ~w2w8!#, ~101!

Gf5p/2~r ,w,r 8,w8!5(
pl

S 12
A0~12A0!

12A0
21Dpl

2 D f pl~2!~r ! f pl
~2!

3~r 8!cos@ l ~w2w8!#. ~102!

.
-
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These correlation functions were calculated in@16# in theP
representation. As in the case of plane mirrors we getd
contribution from the 1 in the sum over all modes, reflecti
the fact that we deal with symmetrically ordered expectat
values~Wigner representation!. Again this term vanishes on
passing to the more usual normal ordering. As for the cas
plane mirrors for pump field intensities close to the thresh
(12A0

2!1) the critical modes with 2p1 l5qcrit become
dominant in the sums~101! and~102!. The results~101! and
~102! for r5r 85A2, D00521, h/g150.5, andA050.99
are shown as a function ofDf in Fig. 19 as solid lines; the
numerical results obtained solving Eq.~92! are shown as a
dashed curve. Both quadrature component correlations
hibit a noteworthy modulation, despite the fact that the me
intensity is uniform over the circle, for a fixedr . We already
subtracted thed contribution from both numerical and ana
lytical results; for a finite number of included families this
a large contribution even forDfÞ0. In the case of the
squeezed quadrature component the numerical data s
from the fact that they appear as the difference of two lar
almost identical numbers: the symmetrically ordered corre
tion function, which is the outcome of the numerical sim
lation, and thed contribution. With the restricted number o

FIG. 19. The two-point field correlation functionGf in the case
of the OPO with spherical mirrors is plotted as a function of t
angular separationDw between the two points. Both points hav
radial coordinater5r 85221/2. The most antisqueezed quadratu
component (f50) is shown in~a!, whereas~b! shows the most
squeezed component (f5p/2). The solid line in both plots show
the analytical result and the dotted line in~a! shows for comparison
the numerical result.
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realizations the fluctuations in these numbers do not al
for an accurate extraction of the underlying normally orde
part of the correlation function, therefore we did not inclu
the numerical result in Fig. 19~b!. Figure 20 shows a two-
dimensional plot of the correlation function of the an
squeezed quadrature component, for the same values o
parameters. For the calculation of the intensity correlat
function we can refer to the expression~75!, and make use of
Eqs.~95! and~96!; the normally ordered part of this functio
is given by

G̃ int~r ,f,r 8,f8!5
A0
2

4 (
pl

(
p8 l 8

~11 iDpl!~12 iDp8 l 8!1A0
2

~12A0
21Dpl

2 !~12A0
21Dp8 l 8

2
!

3 f pl
~2!~r ! f pl

~2!~r 8! f p8 l 8
~2!

~r ! f p8 l 8
~2!

~r 8!

3cos@ l ~f2f8!#cos@ l 8~f2f8!#. ~103!

This result together with the numerically obtained intens
correlation function is shown in Fig. 21. Because the inte
sity correlation function is essentially the square of the fi
correlation function the deviation of the analytical and n
merical results is even larger than in the case of the fi
correlation function~Fig. 19!.

Again we can also present single realizations to give
impression of what one can expect to get in high-freque
measurements. By choosingA050.999,D00521 and for a
separation of the modesh/g152D00/2, we obtain a picture
as presented in Fig. 22~a!—the underlying pattern is almos
invisible. The reason for this disappointing result is that t
pattern is restricted to a small area around the optical a
and includes only two significant ‘‘spots’’ with negativ
~brighter parts! and two with positive values~darker parts!,
respectively. The correlation function in Fig. 20 shows
that there is nothing more to expect. Therefore it is not p
sible to observe a large number of spots as it was in the c
of plane mirrors, where the number of spots is only restric

FIG. 20. The two-point field correlation function of the mo
antisqueezed quadrature component as a gray scale plot~bright
parts indicate correlation and dark parts anticorrelation!. One of the
two points is fixed, whereas the other one explores the whole tr
verse plane, and the correlation is plotted as a function of the C
tesian coordinates (x,y) of this second point.
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56 895LANGEVIN TREATMENT OF QUANTUM FLUCTUATIONS . . .
by the size of the simulation square in the transverse pla
In order to make the regularity of the pattern visible also
single snapshots one has to reduce the value of the interm
spacingh, which corresponds to an experiment with le
curved mirrors. In this case the number of spots increa
and, e.g., for a value ofh/g150.1uD00u one obtains even fo
a reduced pump intensity (A050.99) the picture shown in
Fig. 22~b!.

We note that all the results presented here refer to the
field; the far-field picture displays some noteworthy featu
analogous to what is discussed in Sec. IV A for the pla
mirror case and which will be reported in a separate pu
cation @32#.

VII. CONCLUSIONS

We have shown that semiclassical patterns arising in n
linear optical systems above certain thresholds are an
pated in the far-field mean intensity of the output field and
the near-field quantum correlation function already bel
threshold. To demonstrate this we examined in detail
case of a degenerate OPO with plane and spherical mir
In both cases the far-field intensity, the correlation of typi
quadrature components, and the intensity correlations s
the spatial modulation which characterizes the semiclass
pattern. Since main analytical results about near-field co
lations were already presented by some of us elsew
@14,16#, we have focused here on the numerical simulation
stochastic partial differential equations of the Langevin ty
for the quantum fluctuations and on the far-field distributio
and correlations. The agreement between numerical and
lytical results is excellent and allows for a safe use of
numerical Langevin equations to regimes where no dir
comparison with the theory is possible. For example,
have analyzed here the case of space-dependent pump
files and found that modulations in the correlation functio
may be difficult to detect in real experiments while the fe
tures of the far-field images are more robust. On the ot
hand, correlation functions carry a larger amount of inform

FIG. 21. The intensity correlation function for the OPO wi
spherical mirrors as a function of the angular separation betw
the two points, on a circle of radiusr5221/2 around the optical
axis. Again we show the analytical result~solid line! and the nu-
merical result ~dashed line!. The pump field amplitude is
A050.99 and the detuning and mode spacing areD00521 and
h/g150.5.
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tion than averages, which do not exhibit any structure w
respect to the angular variable in the transverse plane.

We have also shown that not only measurements of
correlation functions but also short time measurements of
near field reveal the incoming spatial modulation. For t
experimentally relevant case of an OPO with spherical m
rors we showed that the spatial pattern is visible in the la
kind of measurements only for nearly flat mirrors.

en

FIG. 22. Snapshot of the antisqueezed quadrature compone
the OPO with spherical mirrors. The pump field amplitude
A050.999 for~a! andA050.99 for ~b!. For the snapshot shown in
~a! h/g1520.5D0050.5, while in ~b! h/g1520.1D0050.1.
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APPENDIX

Let us consider for simplicity a one-dimensional versi
of the stochastic differential equation~27! ~the generalization
to the multidimensional case is straightforward!:

dX~ t !52aX~ t !1dB~ t !, ~A1!

wheredB(t) are Wiener increments. The formal integratio
of the equation~A1! from t50 up to a generic timet is
given by

X~ t !5exp~2at !X~0!1E
0

t

exp@2a~ t2t8!#dB~ t8!,

~A2!

whereX(0) is a given starting point of the stochastic proce
X. Our aim is to find a discrete algorithm to perform th
stochastic Ito integral@33#

A~ t !5E
0

t

f ~ t2t8!dB~ t8!, f ~ t !5exp~2at !, ~A3!

in such a way that the statistical average^X2(t)& is evaluated
with a given accuracy. The same accuracy affects also
evaluation of the correlation function, since the latter is
lated to the variance by the deterministic formula

^X~ t1t!X~ t !&5exp~2at!^X~ t !X~ t !&.

Let t050,t1 ,t2 , . . . ,tN115t be a partition of the interva
(0,t) with Dt5t j112t j . We set
c

s
.

-

-

h

s

he
-

E
0

t

f ~ t2t8!dB~ t8!'(
j50

N

Gj@B~ t j11!2B~ t j !#, ~A4!

where the generic coefficientsGj ’s are chosen in such wa
that the accuracy of the numerical evaluation of^A2(t)& is
maximized. One has the identity~see, e.g.,@33# p. 19!

^A2~ t !&5K F E
0

t

f ~ t2t8!dB~ t8!G2L 5E
0

t

f 2~ t2t8!dt8. ~A5!

By using the property of the Wiener incremen
^@B(t j 811)2B(t j 8)#@B(t j11)2B(t j )#&5d j , j 8Dt, it follows
that

^A2~ t !&5(
j50

N

Gj
2Dt. ~A6!

Hence, the maximum accuracy in the evaluation of^A2(t)&
is obtained by selecting

Gj
25G̃j

2 :5
1

DtEt j
t j11

dt8 f 2~ t8!. ~A7!

We can expandG̃j in power ofDt up the first order as

G̃j
25e22a~ t2t j !

e2aDt21

2aDt
5e22a[ t2~ t j1t j11!/2]1O~Dt2!,

~A8!

G̃j5e2a[ t2~ t j1t j11!/2]1O~Dt2!. ~A9!

By inserting the approximation~A9! in Eqs.~A4! and~A2! a
recursive algorithm to perform the stochastic time evolut
of X is obtained:

X~ tn!5e2aDtX~ tn21!1e2aDt/2@B~ tn!2B~ tn21!# ~A10!

with an error of the orderDt2 in the evaluation of̂ X(t)2&.
This is exactly the same formula as Eq.~30! of Sec. II, pro-
vided one makes the correspondence:tn21→t, tn→t1Dt
@B(tn)2B(tn21)#→* t

t1Dtdt8Q(t8), 2a→Ldet.
-
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