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Langevin treatment of quantum fluctuations and optical patterns
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A Langevin model is introduced to study quantum fluctuations below the threshold of pattern formation for
optical parametric oscillator®©PQ’s. In particular we compare analytical and numerical results for the OPO
with one and two transverse spatial dimensions and in the presence of either plane or spherical cavity mirrors.
The far-field structure and the correlation functions of the fluctuating signal field anticipate the onset of a
transverse spatial pattern which arises classically even in the presence of Gaussian input beams. Correlation
functions also reveal the squeezed nature of the OPO field. Numerical simulations of the Langevin model
describe the result of short time measurements and show that close to threshold the near-field signal is a noisy
spot pattern evolving on a time scale longer than the inverse decay rate of the resonator. This and other far-field
features should be experimentally accessit#4.050-294{@7)02907-1

PACS numbd(ps): 42.50.Dv, 42.65-k

I. INTRODUCTION for appropriate threshold parameters, similar to what one has
in laserg18,19. Furthermore, when diffraction is taken into
Although the generation of the so-called nonclassical lightaccount, both signal and pump exhibit a transverse spatial
[1-3] and the formation of transverse spatial pattdehs6] pattern at threshold under appropriate operating conditions
are two widely analyzed phenomena in quantum and nonlink17]. In recent publications it was shown that these semiclas-
ear optics, they are usually studied separately. Theoretic&ical patterns are anticipated in the quantum correlation func-
treatments of the quantum statistics of the output of nonlintions in the near field below threshdl#i3,14,16. In the long
ear optical systems are usually restricted to the framework dfme limit the near-field intensity and amplitude are both
the plane wave approximation, apart from few exceptiondniform in space on average and only the far field and the
[7—9]. In contrast, studies of nonlinear optical patterns takecorrelation function reveal the hidden spatial pattern, a phe-

into account transverse variations of the optical fields but ar?uor;ngg?tgrtnh?t we label either “quantum image” or “quan-

usually confined to the semiclassical description. Unlike e .
y P It is interesting to ask what one would measure by sam-

qther d|SC|pI|nes(such as hydro_dypamms and chemlcal_rea_c—p”ng the output of the OPO with a detector which is fast
tions) where a classical description of pattern formation is

7 . enough to resolve the quantum fluctuations responsible for
sufficient, optical systems may show noteworthy quantumyo” o anwm pattern. To answer this question we transform
aspects at room temperafufg0]. Only recently have at- o guantum equations of motion into a set of coupled
tempts been made to combine these two aspects of nonlinegfssjcal-looking Langevin equations. We then implement
optical systems into a general framew@d—16. _ numerical codes to integrate the resulting stochastic partial
A prominent model for the generation of squeezed light agjifferential equations where quantum fluctuations are simu-
well as for the formation of spatial patterfis/] is the optical  |ated by random number generators. In this way we have
parametric oscillato(OPO which is therefore a natural peen able to explore regimes where analytical calculations
choice to study the interrelation of quantum fluctuations andire not possible, such as for input beams of finite diameter.
optical patterns. At degeneracy, OPO’s generate light of a This paper is organized as follows. In Sec. Il we derive
frequencyws (signa) from injected light of frequency @;  the Langevin equations of motion from the quantum Hamil-
(pump. We discuss here three different configurations of thetonian. Special care is taken to treat the functional deriva-
OPO: with plane mirrors and a homogeneous input beantives which appear when extending known theories to the
with plane mirrors and an input beam of finite diameter, andspatiotemporal domain. In Sec. Il we describe the numerical
with spherical mirrors and a homogeneous input beam. Fomethod for the integration of th@angevir stochastic par-
all these realizations the semiclassical OPO models exhibit @ial differential equations. Section IV is devoted to study the
second-order phase transition from zero to finite signal fieldyjuantum pattern generated by an OPO below threshold with
plane mirrors and a homogeneous input beam. We success-
fully compare correlation functions in the far and near fields
*Also at Department of Physics and Applied Physics, Universityobtained by numerical and analytical methods. We show that
of Strathclyde, Glasgow, Scotland, United Kingdom. the far-field intensity of the signal fluctuations has a circular
"Electronic address: gianluca@phys.strath.ac.uk shape that anticipates the incoming pattern above threshold.
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z [AX,D),Al(X" D)]=8;8x—x"), i,j=01. (1)
L/2 z - -
Y Hence,(Af(x,t)A,—(x,t)) is the average intensity per unit
area of the two fields inside the cavity.
The quantum dynamics for these two fields is described
@) Em by an extension of the original mode&0] to include diffrac-
tive effects and has already been presentefllhl€. In
these papers a master equation was derived from the Hamil-
tonian of the OPO by expanding the fields over an infinite set
of Fourier modes. Here, we rewrite the master equation with-
out the expansion in transverse modes, derive a suitable
) o o Fokker-Planck equation for the Wigner probability distribu-
~ FIG. 1. Experimental setup: a cavity withy4” medium inside  tjon and obtain appropriate Langevin equations for the dy-
is pumped with a plane-wave input of frequenays2 The nonlin- namics of the fluctuations about the average values of the
ear optical medium generates an output field of frequengy fields. Particular care is needed when generalizing this stan-
dard procedurg21-23 to deal with operators having depen-
Far-field images of the signal fluctuations are by far easier Qence on the transverse vectorEor this reason, we present

realize experimentally than quantum correlations in the Neafa most important steps in the derivation of the Langevin

field. Moreover, numerical and analytical calculations Showequations.

that opposite positions along the far-field circle are corre- We start from the Hamiltonian which describes the signal
lated, i.e., the instantaneous signal field is formed by twa, 4 pump dynamics in the interaction pictdifef]
off-axis emissions. This information is provided by spatial

correlation functions, which, as usual, convey more informa- H=H+H+Heog )
tion then the average distribution. We also show that close to

threshold the near-field quantum pattern is surprisingly stablghere H; is the free evolution Hamiltonian given in the
and has a long time scale compared to the inverse decay ra@raxial approximation by

of the resonator. This critical slowing down should make it

easier to observe the pattern in an experiment. Section V .

presents the extension of the numerical simulations to re- Hf:hf d?x Ag(X,t)(wo—Zws—
gimes where no analytical calculations are available. In par-

ticular we show that quantum imagéat least in the corre- . R 2 .

lations and far-field distributionsurvive in the case of input +hf d?x AJ{(XJ)( w1~ Ws— EVZ)Al(X’t)- (©)]
pumps with a more realistic, finite Gaussian shape. Finally, S

Sec. VI contains the generalization to the case of sphericg|nere

mirrors and homogeneous input beams and conclusions are

presented in Sec. VII. 92 g2

2~ 4
\% —(9)(27L ay2 (4)

M, M,

2

V2)Ao(i,t)

4dog

Il. LANGEVIN EQUATIONS FOR AN OPO _ . . . ,
WITH TRANSVERSE EFFECTS is the two-dimensional transverse Laplacian which models

the effect of diffraction,H;, represents the nonlinear inter-
We consider a planar cavity of lengi#y2 (see Fig. ], action Hamiltonian
where the mirrorM ; is fully reflecting, wheread, has a
high, but finite reflectivity. This cavity is pumped with a ing [ - . U .
coherent stationary field with a fixed distribution in the tl’anS—Hint:Tf dX [Ag(X, 1) (A1(X,1))* = Ag(X, 1) AT(X,1)], (5)
verse plane, amplitud&n(i) and frequency @.. Inside the
cavity, a x‘®-nonlinear crystal converts photons of fre- g being the nonlinear coupling coefficient, aHg,, the term
guency 2vg into photons at frequency and vice versa. due to the external driving
This cavity supports a discrete set of longitudinal modes

and a continuous set of transverse modes. We consider the . 2= T - -
approximation in which only two longitudinal cavity modes Hext:'ﬁf d*X [En(X)Ag(X,1) = ER(X)Ag(X,1)].  (6)
are relevant: the pump mode with frequensgy, the closest
to the fundamental frequency.2 and the signal mode with The HamiltonianH affects the coherent part of the master
frequency w,, the closest to the subharmonic frequencyequation for the density matrix given by
ws. We denote b)AO(i,t) andA,(x,t) the intracavity field
envelope operators of the pump and signal modes, respec- _
tively, wherex=(x,y) spans the plane perpendicular to the P~
direction of light propagation. The inclusion of this degree of
freedom allows for an arbitrary field configuration in the where the latter part of the equation represents the damping
transverse plane. The field creation and annihilation operadue to the finite reflectivity of mirroM, and is given by the
tors obey standard equal-time commutation relations Liouvillian terms

1
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Ap= J d?X To(X)[2Ag(X,1) pAY(X,t) = pAG(X, ) Ag(X, ) pA(X) & am—?é f(a) W({ai,af},s),
ai X
~ AJ(X,DA(X,t)p]+ f d?X T1(X)[2A1(X,1) pAJ(X,1) ) e
) A ) ) AX)pe| () + —= ——=|W({a,af'},s),
— pAL(XDAL(X,) — ALK, DAL (X, 1) p], ® oai (x)

R where we have introduced thdunctional derivatives
where I'i(x) are the space-dependent losses for the tWQsw/({q;,a},s)/5ai(x) [26]. Functional differentiation has

fields. _ _ _ been applied in quantum optics to generalized operator or-
In order to obtain Langevin equations from the masterdering theorems to continuum operatf2g].

equation(7), we need to describe the evolution of the appro-  Equations(11) are sufficient, for example, to determine
priate quantum probability distributions. To this end it is g|| the terms of the evolution equation for the distributions
convenient to introduce the characteristic functional (10) coming from the Liouvillian termg8) of the master
equation. The only terms of Eq7) that require special at-
. g o o e tention, are the diffraction terms which appear in the free
x({Zi ¢ }is):=Tr| pex J d XAzl (LA (X) = £ (%) HamiltonianH; of Eq. (3). As one obtains after some alge-
e braic manipulations, such terms have the form

X Ai(X)) }exp[%f dx 2 [5(x)[7|. (9 T :
1=0,1 2'—f d? ={ | V2aff (x), ——
dwg 2[ I Saif (X) N
Note that the dependence from the titrfgas been omitted in
order to lighten the notation. In the definiti¢f), £,(x) are —| v2a,(x), S _ —s[Vzai*(i), d _
the Fourier conjugates of thenumber fieldse;(X) associ- ai(X) ], Sai ()

ated with the operator/si(i), while the variables is related
to either the Glauber-SudarshaR)(distribution s=+1),
or the Wigner W) distribution (s=0), or theQ distribution
(s=—1) [24]. In order to make the notation compact, we

+S

N )
Vzai(X%—e)

a;i(X

]W({ai ,a’'t,s), 1=0,1,

express these three distributions in the form (12
where[-,-], is the anticommutator and, in deriving Eq.
W({a; ,ai*},s):f DLDLE DD X4, CFS) (12), we made use of the integration by parts
- R - N P )
xex;{f dzxigvl (ei(X) X (X) fd X ai(X)V S (%) —f d°x (V ai(x))éai(i)' (13
W i*(i)é()z)) ' (10 I[t2 L%)Itlﬁgs from the definition of functional differentiation
where[D¢,- - - D¢ indicatesfunctionalintegration with re- —ai(X')|= —af(X')[=8(x'—X), (14
spect to the functiongy- - - £§ [25]. The normalization of dai(X) daf (x)

functional integrals is a notoriously difficult problef25]. ) o
Thankfully, only the functional form ofW({a;,a’},s) is where functional derivatives are understood to act under an
) 1 ] 1 . . .

relevant here so that issues of normalization need not to cof?tégral. The diffraction termgl2) can now be recasted as
cern us. The equation of motion for the distribution function- .
als (10) is obtained from the master equation via the formal o IC 2> o [Vza-*()Z)] o [Vza-(i)]
substitution of the terms involving the density matpixvith dwg Sa* (X) : Sai(X) :

. . . . . . . 1 I
suitable operations over the distribution functionals. It is

easy to see, for example, that XW({a;,af},s). (15

r 7 Finally, we are ready to obtain the equation of motion for
pAl(X) | aX (X)+ 1-s Lﬁ W({a;,atl,s), the probability distribution®V({«; ,a;'},s). Since we are in-

2 da;i(X) | terested here in the dynamics of quantum fluctuati®&
around the semiclassical mean value, we consider the

- c-number fieldsA «; defined as
Al(x)pe a.*(i)——HS 0
R 2 say(0)]

W({aj,af},s),

Aag(X)=ag(X) = Ag(X), Aay(X)=ay(x)— A (X),
(11 (16)
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where 4;(x) are the semiclassical mean values of the pumpt the present stage we neglect the effects of third-order
(i=0) and signal (=1) fields, respectively. Using a stan- nonlinearities, an approximation which is valid in the limit of
dard linearization proceduisee, e.g.[22]), the equation of ~SMmall quantum noise, i.e., for a macroscopic system not too
motion for the distribution functionaW({A; ,Aa*},s) is  Close to critical points. o -
expanded in a power series of the inverse of an appropriate N the Wigner representatidite., fors=0) the diffusion
system size parameter, and one can obtain at once the mdgatrices(20) are positive definite; hence, the equation of

roscopic law of motion describing the evolution of the semi-motion (18) for the Wigner functional can be interpreted in
classical field§17] terms of a classical stochastic process which obeys Ito sto-

chastic differential equations of the typ21]
2

J . . . .
ﬁAo(X):—(To(x)+'wo—2'ws—'T%VZ)AO(X) dAa;(X)=Qj(Aq;(x))dt+dBHX), (21)

g N N ”‘ . .
_EAi(X)+5in(X)v wherea dBl N are W|enf:r_) increments, such that
(dBf'(x)dB{(x"))=6; ;D{"(x,x")dt.
We provide here the explicit expression of Eg1) in the

d ~ - c? - form of a classical-looking set of Langevin equations of mo-
- - _ + . s I 2 . N
) (Fl(x) 101710 IZwSV )Al(x) tion for the fluctuationsA ao(x) and Aa;(x) of the pump
- - and signal fields, respectively:
+gAo(X) AL (X), (17

d - - . c? -
and the linearized Fokker-Planck equation, which describes —Aag(X)=—| Lo(X)+iwo—2iws—i+——V? | Aag(X)
; ) . S ot dwg

the dynamics of quantum fluctuations in the limit of large
system size

—g A (X)Aay(X)+ V2T o(X) &(X,L),  (22)

IW({Aa;,Aa]},s) 5

P . . ¢ .
at ﬁAal(x)=—(Fl(x)+|w1—|ws—| Z_wSVz)Aal(X)
_ 27 4 " v * (v * (v v
= d-x E - —=Q;(Agi(x))+c.c +9Ag(X)A ey (X)+9A7 (X)A ag(X)
=01 5AC(J(X)
1 52 + Vzrl(x)gl(x!t)l (23)
+§f d2x’ . ——D{*"(X,X') ] )
dAaf(x)sAaj(X") where the Langevin force terngs(x,t) are described by sta-

tionary, Gaussian, stochastic processes with zero average and
* ’ ’
XW(Aa; Aar}s), 18 correlation functions given by

whereQ;(A«;(x)) are the drift terms ) ) L
2 <§i*(x't)§j(xl-t')>:§5(X—X')5(t—t’)5i,j,
- C R

Fo(x)+iwg—2iws—i —VZ)Aao(x)

4og

Qo(Aai(x))=—

R R (&i(xD&(x',1"))=0. (24)
—gA(X)Aay(x),
The noise terms in Eq$22) and (23) can be interpreted as
. . c2 R the vacuum quantum noise entering through the partially
Q:1(Aei(x))=— ( I'i(X)+tiw;—iws—i EVZ) Aay(x) transmitting mirrorM ;.
° QuantitiesAi(i) in Egs.(22) and(23) are the stationary
+0Ag(X)Aat (X)+gAF (X)Aap(x), (19  semiclassical mean values of the OPO fields which are ob-
tained by the integration of the semiclassical equatidTs
and Df’“"’()?,)?’) are generalized diffusion matrices such that quation§(22) and(23) are stochastic_: _partial differential
- .o equations with space-dependent coefficients; they represent
m,v=1 andu,v=2 correspond td a;(x) and 10Aaj (X),  the main topic of our analysis. They can be used both above
respectively. The nonzero elements of these diffusion matriz 4 pelow the signal threshold and treating them requires
ces are sophisticated numerical methods. In the following we con-
. .. centrate our analysis on the behavior of quantum fluctuations
DIH(X,X") = — gsdg(X) S(X—x'), below the OPO threshold. In this case the expectation value
of the signal field is identically zero, so that the fluctuations
_ * O\ S ot of the signal field coincide with the signal field itself and Eq.
gsg (x) o(x=x"), 20 (23) decouples from E¢22). (Note that below threshold the

DIAXX')

10 = = oy - = R .. ) linearization procedure outlined above corresponds to ne-
DX, x")=D(x,x ) =Tj(x)(1+s)8(x—x"), j=0,1. glecting the pump depletion.
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I1l. NUMERICAL INTEGRATION OF THE LANGEVIN gral in the RHS of Eq.(29) is by definition of Langevin
EQUATIONS forces a vector of Gaussian stochastic variables with a vari-

o . . . At. B ining Eqs(2 2 it
The numerical integration of the Langevin equati¢p2) ance y combining Eqs(28) and (29) we can write

and (23) requires the discretization of both space and time. t At

We solve the equations in a square of didie the transverse X(t+ At)wex;{ Laers (ex;{ Ldet?}x(t)
plane, with periodic boundary conditions and we use a spa-
tial grid of NX N points withN ranging from 64 up to 256. that o

A discrete version of the OPO fields and of the Langevin + ft dre(t’) |.
forces is introduced as

(30

This formula leads to a simple integration algorithm: at each
time step let the fields evolve for half a step with the deter-
ministic operator alone, then add random Gaussian noise
terms in each space point, then make another half step of
1 . — deterministic evolution(As one can easily verify, the half

f dzxx/ZFj(x)gl-(x,t), j=0,1, (26) steps are actually performed only at the begin and end of the
Fomd Fopy time evolution. The validity of this approximation is dem-

_ . . . . onstrated in the Appendix. Even in the presence of a numeri-
where thez indexesn,m identify the grid point and 5 integrator of a second-order accuracy in time, particular
Fam=(Ax)* are sufficiently small and disjunct areas cover-care needs to be taken when selecting the time &stefgon-

ing the transverse plane. The diffractive terms of the Langeyergence of the numerical codes requires time steps smaller

vin equationg22) and(23) can easily be handled by using a than for the integration of nonstochastic partial differential
split-step technique with high spatial accurg2§] or even a equations.

simple-minded Euler discretization scheme in the case of
plane mirrors, uniform losses, flat pumps, and OPO’s below IV. OPO CAVITY WITH PLANE MIRRORS
threshold. AND A HOMOGENEOUS INPUT BEAM

In order to discuss the numerical method used for the ) ) )
temporal discretization of the OPO Langevin equations, itis A first test of the Langevin modeP2) and(23) is repre-
useful to introduce a % Nx N vectorX, containing the dis- Sented by the the case of plane mirrors, flat logses,
cretized OPO field\ af™(Aaf™* Aai™(Aa!™* (order- TI'i(X)=7v], and a homogeneous input bedine., &,(x) = E
ing of the vector elements is not important heend a  assumed here to be réaRAnalytic evaluations of the corre-
AXNXN vector O Containing the discretized Langevin lation fUnCti0n5[14], far-field distributions, and SqueeZing

forces. Equationg22) and (23) can then be recasted in a SPectra are availablel3] and make it possible to check the
compact matricial form: accuracy of the numerical integration of the stochastic partial

differential equationg22) and (23). Below threshold, these
Langevin equations decouple and we focus our attention on

ax(t): LgeX (1) +O(1) 2D the dynamics of the signal fluctuations. It is then convenient
to introduce the following time and space normalizations:

1
}-nm

A"(t)= f d’>Aaj(x,t), j=01, (25
‘an

()=

whereL 4 is a deterministic operatgcontaining the diffrac-

tion). A formal solution of Eq(27) during a time ste@t of —t T= i (31)
the numerical integration is given by =7 Ja'
t+ At i
X(t+At)=erLdem]X(t)+f dt’ with
! a=c/(2wsy1), (32)
XexgLyeft+At—t")]O(t"). (28)  which transform Eq(23) into
The simplest approximation to the stochastic integral on 0 ~ = ) g~ 2
the right-hand sidéRHS) consists in replacing the exponen- FpAe(X, 7)== (1416, =1V Aay(X,7)
tial operator inside the integral by an identity: it is easy to
see that this approximation leads to an error in the calcula- +710A51*(§,T)+ \/Ezl(’;ﬂ'), (33)

tion of the second-order field correlations which goes to zero
as the time intervaht. On the other side it can be shown that where we have defined the signal detuning and normalized

the approximation the average pump field and the fluctuations via
t+At _ P17 Ys
f dt’'exd Lge{t+At—t")]O(t") 51=T,
t
At] rt+Aat ~_9
~exr{Ldet7 Jt dret’) (29 Ao=r Ao,
; ; . ~ ~ = a =
affec_ts the gvaluatlon of the correlation function of f_Iuctuat— Aaleal\/E, £, 7)= /—51(X,7), (34)
ing fields with an error which goes to zero A$>. The inte- 71
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so that we have the correlation function 9 ( ,3(|Z, 7) ) _( —(1+ioy) Ag

Y B o 1 = = at\ g*(—K.n| A} —(1-iay)

(E DG ))=58(x-X)a(r=7). (39 prihen N o

B(k,7) 3 n(K,7)
We begin by noting that below threshold the dynamics of the X B*(—K,7) T2 7 (—K,7) '
semiclassical equationél?) relaxes to the homogeneous ' '
state given by (39
_ 9& where the Fourier components of the Langevin forces satisfy

Ao A;=0. (36)

yilvoti(wo—2ws)]" L
By increasing the input intensity, a second-order phase tran- (7*(k,7) ”(k”TI»ZE‘S(k_ k") o(r—1"),
sition corresponding to the loss of stability of E§6) and
the generation of a signal field occurs. In REf7] it was . _
shown that diffraction lowers the threshold intensity and that (n(k,7)n(k",7"))=0, (40
the character of the solution above threshold depends on the )
sign of the signal detuning,. In particular it was demon- and vyhere we have introduced the wave-vector-dependent
strated thaf17] (i) if 8,0, the trivial solution(36) be- ~ detuning
comes unstable with respect to the onset of a uniform signal
wave propagating along the longitudinal axis when the pump o= 6,k (41
field intensity| 4o|? reaches the value (452)2. The output

signal is homogeneous in space because the most unstableEduations(39) describe the stochastic dynamics of the
- o field fluctuations in the far field. The formal solution of Eq.
mode corresponds to a wave vectowith k=0; (ii) for

negative signal detuning$; the most unstable mode corre- (39) is given by
sponds to a wave vector of magnitude equal to

B(K,7) ) ( B(K,0) )
Kerit= v — 61 3 | =eM7 .
crit 1 ( 7) (ﬂ*(—k,T) B*(_klo)
The threshold for this transition is4o|=1 and thus lower , (K,7")
than for positive detunings. Above threshold there is the +\/§e'\"’f dr’e'\’”'( g " )
spontaneous formation of a rofbr stripe pattern with a 0 7*(—k,7")
separation between rolls equal teriX,;; . (42)

As already hinted above, it is possible to find for the case
analyzed in this section analytical expressions for the squeegyhereM is the 2x 2 matrix appearing in Eq39). By using
ing spectra and near-field correlations of the signal fluctuagq, (42) it is straightforward to show that
tions[13,14). Here we follow an alternative approach based

on the Langevin equatio(83) and the analytical evaluation . oy VO L
of correlation functions in the Fourier domafar field). (B(k,7)7* (K", 7))=2e JO dr'e
A. Far-field correlation functions X {n(k,7")7*(kK',7))

As it is well known, the far field corresponds to the Fou- 1
rier transform of the near field. In the ideal case of an infinite =——5(k—K"),
transverse plane and a plane wave input field, as we consider 22
here, the far field is located at an infinite distance from the
cavity mirrors. However, it can be carried to a finite distance (B(k, ") p(k',7))=0, (43

by placing a lens at a distance from the cavity equal to its
focal length. Of course, the presence of the lens breaks thghere a factor 1/2 arises due to thdunction on time being
translational symmetry and introduces an axis for the systemocated at the upper limit of integration.

Equation (33) is a linear stochastic partial differential  We are interested in the evolution of the correlation func-
equation which allows analytical solutions for the correlationjng (B(K,)B(K', 7)) and (B(K,7)B*(—K',7)). Their

functions in the Fourier domain. By dropping unessentialequationS of motion are readily obtained from E¢@9) and

tildes and by introducing (43):
1
)= — 2y < iK.X d N . . "
B~ 5, | saiomik D @B —(BK 7 BR 7)) =~ [2+i(arc+ o) (BK, BIK' 7))
with K being the transverse wave vecior (k, ,k,), Eq.(33) + A({B* (=K, D) B(K", 7))

and its complex conjugate are rewritten in a convenient ma- R R
trix form as +(B(k,7)B* (=K', 7))), (44)
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J . . The dynamic444) and(45) of the correlation functions of
(BB (=K', 7)) =—[2+i(0— 0wr)] interest is nothing but a relaxation, after a suitable transient,
to stationary values. Such stationary values are obtained by
X(B(K,7)B* (=K', 7)) solving an algebraic system of equations of the form

+Ao(B (9_ k,T):B (—k ’i»ﬁ B\ 45
+AF(BK, ) B(K', D)+ dK+K").
(45  where the &4 matrix B is given by

_[2+i(0'k+0'kr)] 0 Ao Ao
= , 4
B .Ag AO _[2+|(0-k_0-k’)] 0 ( 7)
Ag Ao 0 —[2=i(ox—0oy)]
|
and where the vectoné andW are . 1 1 A
(B(k,7)B*(K,7))— 58(0)=5 7—7——736(0).
N - 2 2 1+ Ok |A0|
(B(k)B(K")) 0 (52)
*(—K)B*(~K’ 0
V= (B R VB R ) . W=8(Kk+K") , The presence of the facté{0) must not be seen with alarm.
(B(k)B*(—k")) -1 It arises from the fact that in the flat pump model the signal
(B*(—R)B(R")) -1 field fluctuations in the transverse plane do not vanish for

(48) || —0 so that their Fourier transforms are singular.
By introducing periodic boundary conditions in a square
respectively. Simple algebra then leads to the expressions of sideb, we can express, for exampl& g, in the form

4A0[2_i(0'k+ Ukr)]

" AL N 1 s s
<ﬁ(k):8(k )>_[4+(Uk+Uk’)z][4+(0-k_0-k’)2]_16|A0|2 AC&’]_(X,T):EH: Bexq_lkﬁ'X)fRﬁ(T), (53)
X 8(K+K'), (49) )
N N (=75,
(B(K)B*(—K")) b
[4+ (ot 010)*I[2~i (04— 01c)] n=(ne,ny), Ny,Ny=0,+1,%2,.... (54)

T[4+ (ot 0y) 2T 4+ (0= 010) - 16 Ag 2
The far field amplitude of the field fluctuatiofi38) is related

X S(K+K'). (500 1o the coefficients k. by

Let us remind the reader now that the Wigner representation

provides the expectation values of symmetrically ordered . 2 ..
quantities. For example, Bk, 7)= TZ fi. (1) 8(k—Kg). (55
n
* /0 o1 1 /o )
(a7 (X, 7) ag(x ,T)>=§[<A1(X,T)A1(X V7)) Hence,

+(AL(X, TAL(X',7))] N i 212 o

) B(k,T)B*(k,T):(F) 2 T (Dfi (1) 8(K—Kq) 8(0)

= (ALK, VALK 1)+ 5 8=X). " (56)
(51) and in the continuum limitb—o, in which (27/b)?3;

e
For this reason the mean intensity of the signal far ﬁeld,_>fd k, one has

which is obtained from the correlation functio®0) for
k'=—K, is given by B(K,7)B* (k,7) = f() f(7) 5(0). (57)
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Far Field Intensity (arb. units)

FIG. 2. Time average of the far-field intensity of the signal
fluctuations for.A,=0.97 andé,;=—1. Higher intensities corre-
spond to darker areas.

As in the near field, the mean intensity in the far fiéd@) is
nonzero, but contrary to the near field, it is not uniform. The
intensity distribution presents a maximum feg=0, i.e., for

K|?=—5, (58)

Far Field intensity (arb. units)

which, whend; <0, is just the magnitude of the wave vector
of the pattern above threshdlgee Eq(37)]. Since Eq.(50)
depends only ofk|? we expect the far-field intensity distri-
bution for negative detuning8; to be an annulus centered at
the critical circle of radius defined by E¢37). This is con-
firmed by the numerical integration of E(3) as displayed

in Fig. 2. In order to provide a better comparison between
numerical and analytical data, we present in Fig. 3 the nu-
merical results for the far-field intensity averaged over time FIG. 3. Comparison between theofg) and Langevin simula-
and over the azimuthal angle which spans the critical _tion_s(b) of the far-field intensity of the sig_nal fluctu_ations av_eraged
circle; they are displayed as a section of the intensity profildn time and along the polar angle spanning the circle of Fig. 2 for
along the axis, for three values ofd,. The corresponding @1~ ~1 and three values afly: 0.90 (lowest dashed curye0.95
analytical results, given by E@52), are shown in Fig. @).  (UPPer dashed curyeand 0.97(solid line).

In the numerical simulations, the Dir@function has a finite 2
value, due to the finiteness of the spatial grid; in the com- N - -, > = 0
parison we have adjusted the arbitrary vertical scale in Fig. 3 (X(K)X(K"))=S(k—K") + o(k—k )1+ U?k_AO?
in such a way that the maxima of numerical and analytical

curves coincide and the agreement turns out to be excellent. _— Ao
As threshold is approached, the peak of the far field intensity +a(k+k )1+ UE_A(%’ (59)
increases and the annulus becomes narrower and narrower
around the critical radius; these features should be experi- A2
mentally accessibléof course, the divergence of the peak is (Y(K)Y(K"))=8(k—K") + 8(K— E’)%
an artifact of the linearization around the stationary $tate 1+o— Ay
The homodyne detection of signal photons in the far field A
corresponds to the measure of two orthogonal quadrature Sk k! 0
components. By choosing the reference phase in such a way ok+k )l+ o —Ag’ (60

that A, is real, the two significant quadratures axéﬁ) R

=pB(k)+B*(k) and Y(K)=—i[B(K)—B*(K)]; by using Forafixed value of the wave vectir both correlation func-
Egs. (49) and (50) their correlation function can be calcu- tions (59) and(60) have two Diracé peaks. One of these is
lated as for k'=k (self-correlation, and arises from the phase-
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Far Field Correlation Functions (arb. units)

Far Field Correlation Function Peaks (arb. units)

| J
0 T 2n
¢

T S AN SR SR SR NN RO SR S T S S |

0.90 0.92 0.94 0.96 0.98
Ao

FIG. 4. Far-field correlation functions in homodyne detection

versus the polar angle that spans the circle of Fig. 2 for g 5 peaks of the far-field correlation functions in homodyne

k*=-6,=1 and A0=0.95.. The solid line corresponds to the yataction for thex quadraturdupper partandY quadraturelower

quadrature componen¢ while the dashed one corresponds to the harh components versus the input amplitude. The solid lines are the

componenty. analytical results while the dots correspond to the Langevin numeri-
cal simulations.

insensitive contribution50), while the other is located at _ _ . _
K'=—K and arises from the phase-sensitive contributior'o™ the correlation function conveys the additional evidence

(49). In Fig. 4 we have plotted the results of the numericaIOf the two-photon character of the signal field emission in

. . ) . the OPO.
simulations for the correlation functiorf89) and (60) of X We observe finally that the quantities which have a most

i\ndY: bothk andk’ lie on the critical circlek is fixed while  girect physical meaning are normally and time ordered. As a
K’ spans the critical circle, ang is the azimuthal angle matter of fact, the measurement are usually taken out of the
between the two wave vectors. The correlation functions areavity, and the intracavity resulifor example, those given
obtained by performing a time average plus an average withy equationg49), (50), (59), and(60)] remain unchanged for
respect to the position ok over the circle. The function the output field(apart from a trivial multiplication of each
displays a positivénegative peak atk’= —K (ie., g=) factorAa; andp by V2) only when they refer to normally
for the X (Y) quadrature. In Fig. 5 we have plotted the mag-e_md t|me-_ordered quantities. The normally ordered correla-
nitude of the two peaks using Eq&9) and (60) and com- tion function corresponding to* E9$59) and (60) are ob-
pared it with the results of the direct numerical simulation oftained by subtracting a factdi(k—k’) from each of them.

the Langevin equation for values gfy approaching thresh-

old. The agreement establishes again the reliability of our B. Near-field correlation functions

numerical code for the simulation of the stochastic partial

differential equations. The explanation of the Dirdpeak at The images and correlation functions of the far signal

T te straightf 4 T hot t the si Ifield below threshold reveal some of the features of the roll
f‘D_Tr IS quite s ra(\Jllg gr\t’)varth' (;Vgop. oton? a el signa pattern appearing above threshold. We now turn our atten-
requency are pr.o uced by the Instantaneously via gfy, 4 the information contained in the near-field signal.

off axis emission. close 1o thresholq the probability is maX"First, it is easy to show that the mean intensity of the signal
mum for emission on a cone forming an angle kery/k, below threshold is homogeneous in space. In fact, by trans-

with the cavity axis(which corresponds to the critical circle . : : .
in the far field; although the direction of emission of the z)or:émc?bgta?ﬁgk in real space relatiaB8) and using Eq(50

couple on the cone fluctuates in time, the two photons have

to be emitted in two symmetrical directions in order to pre- . . R R 1 . .
serve the transverse momentum resulting on average in @(AI(X)Al(X’))=(Aa(X)Aa*(X’)>—55(X—X')
circular emission in the far field with correlation peaks on

opposite sides of the circle. 1 - | Ag|? i)
The mechanism behind the latter effect is traceable to the = mj d°k me

nature of they!® nonlinearity of the crystal, which gives rise k1770

to the phase-sensitive contributi@s0). Note that the corre- 1 | A2 L

lation function is maximuniin modulug whenk lies on the =5 ToIAT IM{Ko(—iP[x—=x"])},

critical circle (37) as happens for the mean intensity distri-
bution (52). In comparison with the mean intensity distribu- (61
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where 12

P=Kk2, +i(1—|Ay?)" (62)

Ky is the modified Bessel function of zero order, amds
defined by Eq.32). No information about spatial modula- 1“()
tions can be obtained from the average near-field image since

the RHS of Eq(61) is independent of for x=x'. This does

not mean, however, that information about the emerging pat-
tern and about the nonclassical nature of the emitted light
cannot be obtained in the near field. We define the near-field
correlation functions corresponding to the homodyne detec-
tion of the signal fluctuations as T

T y(X,X")=al(£,0E,X' )], 0.06 ' ' | |

EyX)=Aaj(X)€'+Aay(x)e?, (63 oos
where the angle identifies the quadrature component of the rn/z
field. For definiteness we now choogk real, so that the
most significant quadratures agk=0,7. By transforming
back in real space and using E¢59) and(60) one obtains

> [1+ Ao(l‘i‘Ao)]eik"(i_;/)

0.00

-0.03 L4

N
F¢:O(X,X ):mf d<k

1+of— A 0 r 3 12 16
siiy s L Aot Ao) r
=0(X—X — ' . . .
( ) T ‘/1_A07 FIG. 6. Near-field spatial correlation functidn,(r) for the an-
tisqueezeda) and squeezeth) quadrature components of the sig-
X |m{K0(_ip|§_ )Z'|)}, (64) nal fluctuations of an OPO below threshold. Case of one-
dimensional transverse space. The solid line is the analytical result,
R 1 . Ao(1—AQ)) & = = the dashed line is obtained by the numerical simulations, and the
F¢:,T,2(x,x’)=4—2] d%k [ - ﬁ] k- (x=x7) dotted line was obtained by including finite grid effects into the
77 1+ o= A analytical results. The value of the pump field4g= 0.99 while the

- - 1 Ao(1—Ap) detuning isd;=—1.
=8(X—x'")— — ———

™ \/1—,40z If instead of two transverse dimension we consider only
N one transverse dimension, replacivfg by x and V2 by
XIm{Ko(—iP[x=x"])}. (65 42/9x2, instead of Eqs(66) and (67) we have
As a consequence of the translational symmetry, the correla- 1 A(14 A iPlx—x'|
tion function I'y, depends only on the difference ~</>=0:_ of O)R [e ] (68)
r=|x—x'|. For both values ofp=0,7 the correlation func- 2 J1-A] P
tion has as function contribution for equal space points. The
origin of this & function is the diverging vacuum fluctuations _ 1 Ao(1—Ap) elPIx=x|
associated with symmetrically ordered expectation values. r¢:”’2:_§ > Re = (69
This term disappears when going from the Wigner represen- V1-Ag

tation to the more usual Glauber-SudarsParepresentation N )
(corresponding to normal orderinddence it is convenientto We see that close to threshold the critical modes, for which
introduce the effective detuning’,+k? vanishes, become dominant.
This shows that the spatial modulation of the semiclassical
_ 1 Ag(1+ Ao . pattern above threshold also affects the quantum correlation
Iy—o=— ——==IM{Ko(—iP|x—x'])}, (66)  functions in the near field. In Fig. 6 we have plotted a com-
T N1-Ap parison between the theofgolid curve and Langevin simu-

lations (dashed curveof the normally ordered paft of the
= __ E AO(l_AO)lm{K (—iP|>Z—>Z’|)} 67) near-field correlation function forpy=0 [Fig. 6@] and
T 1- A2 0 ’ ¢= [Fig. 6(b)] for the case of only one transverse dimen-
sion. The full two-dimensional case is presented in Fi¢a). 7
which is the normally ordered part of the field correlationand 4b). The modulation, which indicates an alternation be-
functions. Note that these analytical expressions have alween correlation and anticorrelation, has the same wave-
ready been given ihl4]. length as the semiclassical pattern that appears above thresh-
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FIG. 7. Same as Fig. 6 but for the case of two-dimensional

transverse space.

andP is defined in Eq(62). This asymptotic expansion also
allows us to read out directly the correlation length
&= 2k.ii/ € which diverges as &/as threshold is approached,
a behavior analogous to the critical behavior in mean field
theories.

To improve the statistics in the numerical simulations, the
ensemble average in E¢63) has been replaced by a com-
bined time, ensemble averages, and an average with respect
to the first point positiorx in I'(x,x’). The deviations be-
tween numerical and theoretical data in Figs. 6 and 7 can be
explained as a finite grid effect. The Langevin equations are
numerically integrated on a grid of siz# whered is the
dimension of the transverse space. The minimum spacing
betweenk vectors is then /b, whereas the maximurk
vector is7/Ax, Ax being the lattice spacing of the spatial
grid. If we replace the integrals in Eq&64) and (65) with
summations ovek vectors, then we obtain curves almost
identical to the numerical results. For example, in Fig. 6 the
dotted line is the modified version of the theoretical data
after including finite grid effects leading to an excellent
agreement with the numerical data. In the two-dimensional
case of Fig. 7 finite grid effects do not play a significant role
and we did not include the dotted line. Note also ¢heon-
tribution at the origin in the numerical result due to

1/(Ax)? for x=0,
o(x) = (73
0 elsewhere,

old and can therefore be regarded as a quantum anticipatiamhered is the dimension of the transverse space.

of this pattern. The term “quantum image” was introduced

It should be noted that the numerical results for the anti-

by Knight et al.[30] to describe the encoding of information squeezed quadrature component in Figa) 6nd {a) show
in the quantum correlation function instead of the light in-less fluctuations than the squeezed quadrature component
tensity and it therefore seems appropriate to use it for thehown in Figs. &) and 1b). The reason is that the correla-

phenomenon described here. For vanishing distantke

tions in the latter component are generally small with respect

normally ordered correlation function of the quadrature com+o the large contribution for vanishing distances dominated
ponent corresponding t¢=0 is positive, so this quadrature by the § function in Egs.(64) and (65). Results can be im-
component is antisqueezed. The normally ordered correlatioproved by averaging over a longer tinheor over a larger
function for the perpendicular quadrature component is negaaumber of realizations. Increasing the number of grid points
tive, indicating the squeezing of this quadrature componenalso reduces the statistical errdizecause of the averages

[14].

over the position as well as the finite grid effects but can

The spatial modulation of the correlation function can bemake numerical simulations unfeasibly long.

made clearer in the asymptotic expansion of Eg) and
(65) for larger =|x—x'|:

Ao(1+A0) 1
Ta(r)~ 1/ e—(5/2kcm)r
olr) m 27TP2rka

X Sin(Kerief + 7/4), (70)
r lz(r)~ Ao(l_AO) ’ ]2- e_(5/2kcrit)r
" \/1—.,4% 2mP rkcrit
X sin(Keyif — /4), (77)

wheree is a measure for the distance from threshold

e= (A2~ A3 (72

We now turn our attention to the correlation between in-
tensity fluctuations at two different space points in the near
field, a quantity which can be measured without using a local
oscillator. The calculation of the intensity correlation func-
tion is simplified by taking into account the Gaussian char-
acter of the fluctuations in this Langevin model, allowing us
to express higher order field moments by means of second-
order moments of the fields.

For the normally ordered intensity correlation function,
one obtains

Tin(X,X") =a2[ (AT () AI(X )AL (X" )AL(X))
—(ATCO)ALX)WAT(X)AL(X))] (74)

=a?[[(A)AX )2+ [(AT)AX N (79
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After transforming Eqs(49) and (50) into real space, and 6
transforming from symmetrical to normal ordering, the RHS
of Eq. (75) is calculated as Fint )
i
- .. 1 L. )2 4 1
rint(X,X'):[Z_AORG[KO(_iHX_X’D]] :
u I
i\
) | i
LA zji 1+ A4, 2 WA
4(1+ Ap) [w NE=wr: i
N 0
XIM[Ko(=iP[x=x"])] (76) 0
To
%%[FO(;’;')]Z for Ay—1, (77) FIG. 8. Near-field intensity correlation function for the one-

dimensional model for the OPO below threshold. The valuglgf
_ _ . ' _ is 0.99 while the detuning i, = —1. The solid line is the analyti-
whereP is defined by Eq(62). The approximation77) evi- ¢4 result forT',,, the dashed line is the numerical result T,
dences the simple physical result that the intensity correlazng the dotted line is a modification of the analytical result taking

tion function close to threshold is proportional to the squareccount for the finite grid effects in the numerical computation.
of the antisqueezed quadrature correlation function. This can

be directly seen from the following formula, which can be

easily verified by substitution: The results are shown in Figs. 8 and 9 for the one- and
two-dimensional cases, respectively.

- Ty oK) =Ty o(KX") 2 The intensity correlation.function sh'ows a modulgtiop at

(X, X") = =017 7 $=m2 7 half the wavelength of the field correlation functions in Figs.

6 and 7 because the intensity is the modulus square of the
2 field. The numerical result is shown by the dashed line.
Again the numerical result shows a faster decay with increas-

ing distancer=|>2—>2’| with respect to the analytical result
2 (solid line), and this deviation can be revealed as a finite grid
. (78  effect by comparison with the analytical result, where the

infinite integral overk is replaced by an appropriate sum

The RHS of Eq.(78) can be approximated by Eq77) if (dotted ling. The remaining difference between the dashed

T',_o is much larger than the other phase quadrature Correa_md the dotted line at small distancés due to thed function

lation functions. A further advantage of expressing the inten—conmbUtlon in Bq(79). We see that the intensity correlation

sity correlation function by means of the field correlation flincgon. remains positive for all values of the distances
functions is that Eq(78) holds also for the other model |X—X'[,in contrast to the case of the phase quadrature cor-
discussed later, i.e., the OPO with spherical mirrors. Moref€lation function, which takes on negative values at small
over, the calculations taking into account the finite grid ef-distance for¢=m/2. This result is expected, since it is
fects in the numerical simulation do not need to be repeatelfnown that in the OPO below threshold there is no intensity
for the intensity correlation functions, since the results forSqueezing.

the quadrature correlation functions can be inserted in Eg.
(78) or Eq.(77).

Again, we can present a comparison of the theoretical
results of the intensity correlation function with its numerical
evaluation from the Langevin equations. Since the statistical
average of functions of the-number fieldA a;(x) gives the
symmetrically ordered quantum expectation value, we have 0.5 -
first to express Eq(74) in a symmetrically ordered way: \

r‘ﬁzo()_()’)—(),)—’—rtﬁzw/Z()z!;,)

* Z

F¢:w/4(>2,>_<)')— Iy (X, X")
4

1.0

]'_;nt

T, X)) =a[AIOAL(X )AL (X )AL(X) Tsym) A

—((AT()AL(X)) sym ((AL(X)AL(X")) sy 0.0

=Tin(%,X") + 5<>2—x*'>(a<AI<i)Al<>?>> r

1 . . . . .
+ _5(X_X/)]_ (79 FIG. 9. Same as Fig. 8 but for the case of two-dimensional
4 transverse space.
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FIG. 10. Time evolution of the antisqueezed quadrature compo-
nenté,—, in the one-dimensional model for the OPO. The left part z

shows the transient starting from the uniform initial state FIG. 11. Singl hot of th . d d
Aa4(x,0)=0, whereas the stripe to the right shows the evolved - 11 Single snapshot of the antisqueezed quadrature compo-

pattern after a long time #=50). Again the pump value is nent of the signal field in the two-dimensional OPO with plane
Ay=0.99 while the detuning i§1:.— mirrors. Darker areas correspond to negative valuesAef;

whereas positive values are shown as lighter areas. The field forms

. . . an irregular spot pattern which is built up by quantum fluctuations.
Apart from the correct correlation functions, the numeri- Here A, = 0.999 while the detuning i§;= — 1.

cal simulations provide us with images as they could be ob-

tained by a measurement on a time scale short enough {Q, tion of distances between neighboring spots is peaked at

resolve the dynamics of quantum fluctuations. For this We,qrq gistance. In our case, the peak occurs in correspondence
just have to look at a single snapshot of a field quadrature, o wavelength o= 27/ky, and the spots manifest a

compon_ent ata given tlme_ sort of classical antibunching behavior in their spatial distri-

In this connection, an important remark concerns the, ion. The pattern observed is similar and in fact math-
interpretation of the snapshots of Re;(x,t) and ematically related to the one built up by classical critical
ImAal(i,t) as corresponding to real measurements in a hofluctuations. Unlike the classical fluctuations, however, the
modyne detection scheme. As a matter of fact the Wigneguantum fluctuations allow for negative values of the corre-
function is not a probability distribution in phase space, butlation functions at zero distance, associated with the nonclas-
its marginals are probability distributions. Hence it is correctsical squeezing.
to interpret the snapshots of Re; and ImA a; separately as A natural question which arises is on what time scale the
corresponding to real measurements. It would be incorrecpattern is observable directly, for example, by means of a
however, to consider the two snapshots simultaneously tbomodyne detection measurement with a CCD camera
infer the instantaneous value of other quantities, such aglaced in the transverse plane. This time scale can be deter-
e.g., the intensity distribution. By construction all the snap-mined by the calculation of a temporal correlation function
shots refer to the intracavity field. of the form

The one-dimensional model allows us to use a second
dimension as a time axis and to code the values of the real L y(AT)=(Ep(X, T)EG(X, T+ AT)). (80)
part of Aaq(X,7) in gray scales. Figure 10 shows a time
evolution of the antisqueezed quadrature component ofhis correlation function was evaluated numericatige Fig.
Aa,(X,7) with initial conditions given byAa;(x,7=0) 12) for the most amplified quadrature componépt o in the
=0. The brighter and darker shades correspond to positivene-dimensional case, and shows an exponential decay
and negative values af o;(x,7), respectively. The emerg- *expA7/7’) with a long characteristic timer'~60 (in
ing pattern shown to the extreme right of Fig. 10 is built upscaled time units, i.e., 6@ * in physical unit.
by quantum fluctuations; it shows a clear modulation at the This decay time is in rough agreement with the expression
wavelength 2r/k;;, with ke given by Eq.(37). of the decay time of the fluctuations of the critical modes,

Figure 11 shows a snapshot of the real parhaf,(x,7)  9iven by 7'=(1—A,)~*, which gives, in the present case,
for the two-dimensional case. The underlying pattern, which=50 in scaled time unit¢see Eq.(98) of [14]). The diver-
in low-frequency measurements can only be revealed b@ence of the decay time when approaching the threshold is
measuring the correlation function, is also present in singlé€losely related to the critical slowing down known from clas-
realizations of our numerical simulation which correspond tosical phase transitions. Experimentally this slowing down
high-frequency measurements. Figure 11 clearly shows thaimplifies the direct detection of _the spatlallpattern, since it
formation of an irregular spot pattern, built up by quamum_allows for the use of detectors Wl_th longer t!me scalgs.
fluctuations. The spots perform a slow random walk in the We can try to extract the spatial correlation function out
transverse plane, consistently with the fact that the quantunff @ single snapshot by replacing the required ensemble av-

mechanical expectation value &f(x) vanishes in all posi- €rage in Eq(63) by a spatial average over the poinkeep-

tions x. Note that this configuration must not be confusedind the difference vectox—x" fixed. The result is shown in
with a standard speckle pattern, in which the statistical disFig. 13 as a function ot—x’ and shows the expected modu-
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9 OPO'’s below threshold can still be observed in the case of
input beams of finite diameter.

FO In the present case E@33), valid below threshold, is
modified to

J R "
E_Aal(X,T)Z —(14i6,— 1V Aay(X,7)

0.5 + Ag(X) A (X,7)+\2€,(X,7), (81)

. . wherer(i) is the asymptotic solution of the semiclassical
0 20 40 60 equation

d - - -
At Z—;ﬁ—TAo(x)z— 1+|50—|27—)2V2)A0(x)+E(x),
FIG. 12. Temporal correlation functiof€o(x, 7)Eg(X, 7+ A 7)) (82
in logarithmic scale as a function of the time differente. The
slow decay of this correlation indicates that the pattern is long Iived.Where
Here A,=0.98 while the detuning i$;=—1.

_ wo— 2ws

60=20 2 ER)= —EX). (89
lation inr=|x—x’|. Due to the finite size of the transverse Yo 1Yo

plane in the numerical Simulation, the correlation function Note that in this case the solution of HQZ) is not given by
depends not only on but also slightly on the angle of the Eq. (36) since diffraction plays a role in the final configura-
difference vectoix—x', an effect which decreases with in- tion of the pump field. For example, Fig. 14 displays the
creasing size of the simulation grid in the transverse plane stationary distribution of the modulus and the imaginary part

of AO(Q) for the two real input pump shapes studied here: a

V. OPO CAVITY WITH PLANE MIRRORS top-hat profile
AND AN INPUT BEAM OF FINITE DIAMETER

. E
In the previous section we have verified that our Langevin E(x) = {1-tanfv(r— w1}, (84)
equationg22) and(23) correctly describe the quantum fluc-
tuations of the signal field by making a comparison betweerand a Gaussian profile
the data obtained by their numerical integration and analyti- )
cal results available in the case of homogeneous input E(§)= Eexp{ -2 ) (85)
beams, plane mirrors, and below threshold. This case is, u?
however, unrealistic for experimental realizations where in-
put beams of finite diameter, generally of Gaussian shapavherer is the transverse radial coordinate gmcand v are
are commonly utilized. It is the aim of this section to showshape parameters, governing the radius of the central part
that quantum images and modulated spatial correlations fgind the slope of the steep part for the top hat profile, respec-
tively. The fact that the imaginary part ofy(x) is not uni-
form is due to the diffractive term in E¢82) and can have
drastic effects on the Langevin simulations of the signal
field. Equation(81) differs from Eq.(33) in that it is a sto-
chastic partial differential equation with space-dependent co-
efficients. Simple transformations to the Fourier space to per-
form analytical calculations similar to that presented in the
previous section are now unfeasible and one has to rely on
the numerical simulations. From the numerical-integration
point of view, the term multiplied by the space-dependent
parameter has to be treated like a nonlinear term and requires
a high degree of accuracy. For example, numerical methods
based on the Euler discretization of the Laplacian operator
are bound to fail and to produce spurious res{®s]. For
-10 -5 0 5 10 these reasons all the results of this section have been ob-
T tained by using a stochastic split-step numerical integration
routine with second-order accuracy in time. Integrations
FIG. 13. The spatial correlation function of the antisqueezedhave been performed on dedicated workstations and could
quadrature component as a function of the vestex’. Brighter ~ €asily take several CPU hours for each run.
and darker parts indicate correlation and anticorrelation, respec- Figure 15 shows that the far-field quantum image survives
tively. One clearly sees the ring-shaped structure around the origifor both cases of top-hate(=0.97) and GaussiarE(= 1.0)
corresponding to the alternation of correlation and anticorrelation.profiles and should be visible in experiments. Note that the
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FIG. 14. Intensity profiles of the stationary
pump field Ay for the case of top-hafa) and
Gaussian(c) input beam shapes. Panély and
(d) show the imaginary part ofl, where white
(black) corresponds to positivenegative values.
Parameters aredy=0, vy./yo=1, E=0.97,
v=0.4547, andw=18.85 for the top-hat profile
and 6,=0, y;/yo=1, E=1.0, andu=11.75 for
the Gaussian profile.

() (d)

Gaussian profile tends to favor spatial areas where the punyer time and an average with respecktover the flat upper
field is far from threshold and consequently reduces the Visfbart In the Gaussian case. the po?nis fixed atx=0 and
ibility of the quantum image. Correlation at opposite sides of;,. ; e -

. ) ; the correlation function is obtained by an average over time
the far-field ring[see Eqs(59) and(60)] are still detectable y 9

in th f input b f finite diamet it th&":
In the presence of input beams of finite diameter even e qqqati0ns in the antisqueezed component of the near-

reduced visibility of the Gaussian profile case can rnakerield correlations are clearly detectable even for Gaussian

in th f inout b f finite di ter it i i afﬂput pumps. The squeezed component of the near-field cor-
In the case of Input béams ot Tinite diameter [L1S NOt NECESzq 4iqng  however, drastically deteriorates for the case of
sary to use a lens to observe the far field. The far-field con

' . ; . . Gaussian input fields and may be impossible to be character-
figuration arises at a distance from the cavity much large

than w?/\, whereu is the beam size anil the wavelength. lzed in real experiments.

Figures 16 and 17 show the near-field correlations ob-
tained from the numerical integration of E¢81) for the VI. OPO CAVITY WITH SPHERICAL MIRRORS
top-hat and Gaussian profiles, respectively, compared with The standard experimental realizations of OPO systems
the case of homogeneous pump. In the top-hat case, thgilize cavities with spherical mirrors instead of plane mir-
pointsx andx’ are both taken in the flat upper part, and therors(see Fig. 18 This case was already treated in Ré6].
correlation function is obtained by performing an averagéWe assume, that the pump field is not reflected by the cavity

FIG. 15. Time average of the far-field inten-
sity of the signal fluctuations for top-h&h) and
Gaussian(b) input profiles. Higher intensities
correspond to darker areas. The detuning of the
signal isé;= — 1. Other parameters are as in Fig.
14,

(@)
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FIG. 16. Near-field spatial correlation functidn,(r) for the

antisqueezeda) and squeezedb) quadrature components of the FIG. 17. Near-field spatial correlation functidi,(r) for the

antisqueezeda) and squeezedb) quadrature components of the

o ) %ignal field of an OPO below threshold. Comparison between the
case of top-hatsolid line,E=0.97) and homogeneous input beams case of Gaussiarisolid line, E=1.0) and homogeneous input

i(:ﬁhei i'r;i’gg:_ofz)i'n-rg;ﬁ ir;zgters for the top-hat case are a%eams(dashed line,4,=0.97). The parameters for Gaussian case
9: 1 : are as in Fig. 14 and,=—1 in both cases.

mirrors and has a plane wave configuration, and that the
Rayleigh length of the cavity is much larger than the cavity

1/2

2 2,112
fpn(r,(P)Zw(Zf )

length. This implies that the frequency spacing between ad- (p+N!

jacent transverse modes is much smaller than that between codo fori=1
adjacent longitudinal modegfree spectral range This L (2r2)e"2 ' (86
amounts to the requirement that the cavity mirrors are qua- p

siplanar. The realization with spherical mirrors has the ad- sinfe. for i=2,

vantage that there is a discrete basis of eigenfunctions,
namely the Gauss-Laguerre modes. The complete set ofherer denotes the distance from the axis of the system,
eigenfunctions is given by normalized to the beam width in the fundamental Gaussian
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z the resonance conditian, =0 [see Eq(37)] identical to that
/2 which leads to the definition of the critical family index
y z Oorit 1-€.,A¢q=0.

Below threshold the Langevin equations for the expansion
coefficientsp,; read in scaled time uni{€ompare with Eg.
(33)]

gin
X(2) -

d _ .
G Boi(1) == (L+18p) Byi(7) + AoBpy(7) + V260 (7).
M; M, (92

The noise termg,,;; are  correlated in time and mode indi-
FIG. 18. Experimental setup for an OPO with spherical mirrors.ces:

The nonlinear optical crystal is inside a cavity with spherical mir-

rors which is pumped with light of frequencyw2. The crystal 1
down-converts this light to frequenay,, which is then detected. (f;”(f) gp,,,i,(r’)>=§5p,p,5|,|,5i,i,5(r— ), (93
mode. It will turn out to be convenient to split these mode by
functions into their angular parts; (&pii(7)€prrin(7'))=0. (94)
code fori=1, By performing calculations closely similar to those of Sec.
()= (87) IV A, one can obtain time evolution equations for the
' sing for i=2, second-order moments
and into the rest{)(r) which has only a radial dependence. Ca(p.Lisp" 11 1) =(Bpii(7) Bprivin (7)), (99)
The eigenfrequencies of these modes depend only on the N .
family indexq=2p+1: Cao(p,Li;p" 11 1) =(Bpi(T) Bprivinn)  (96)
oy =01+ n(2p+1), (89 of the mode amplitudes. The asymptotic valuesrferx are
iven by
where is determined by the distance between the spherica?
mirrors and their radius of curvature. In the limit of vanish- L Ao(1—i(Ap))
ing curvature of the mirrors, the spacing tends to zero Ca(p,Lisp’, 1" ):2(1—|A |2+A2)5pp'5u'5iiu
resembling the continuous spectrum in the case of plane mir- 0 Pl (97)
rors. Of special interest is the case whewg,{ wq)/7 is a
positive integer, since there exists a family of modes which 1+ A2
are exact!y in resonance with the signal field. This family is Co(p,l,i;p’,1",i")= 2(1-]A |2pJ|rA2 Spp' G111 Bij -
characterized by ( 0 o)
(98)
W™ W1 . . . . .
q=qcm=T. (89 From this we obtain the stationary spatial correlation func-
tion
Any state can be expanded into the mo&8 ., .,
d P T y(tor’ @) =(E,1.@)E (1 0") (99
Aal(r,so,t):Z Boii (O pi(r, é). (90)  for the quadrature components
pli
~ The classical behavior of an OPO with spherical mirrors 5¢(r,¢):2 fp“(r,@)(lgp”e—i¢+ B’,S|iei¢)- (100
is similar to one with plane mirrors in the sense that by pli

increasing the pump intensity the system undergoes a

second-order phase transition. Immediately above thresholdf) the special case¢=0 and ¢=m/2 (most antisqueezed
the spatial configuration of the signal field is determined exand most squeezed quadrature component, wheis rea)
clusively by the modes with the smallest effective detuningWe obtain

_ Wp|T W 7 T Ao(1+Ag) (2) (2)
Ap= —AOO+(2p+I)Z, (92) Cy—o(r,e,r' e )—% (1+—1_A3+A§| for (N
which are the most unstable ones; as we will see these modes X(r")cogl(e—¢')], (101)

dominate also the “quantum image” built up by quantum

fluctuations below threshold. For example, when condition . Ao(1-A0) ) o), (2
(89 is satisfied the pattern is determined by the family lyemp(r,or’, @ ):% 1‘% for (DT
g=0dci, and this is again closely similar to the plane wave P

case, in which there is a critical wave vector determined by X(r"ycogl(e—¢")]. (102
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I\0
(b) "”
0.1 1
r FIG. 20. The two-point field correlation function of the most
w/2 antisqueezed quadrature component as a gray scale(lpight
parts indicate correlation and dark parts anticorrelati@me of the
0.0 1 two points is fixed, whereas the other one explores the whole trans-
verse plane, and the correlation is plotted as a function of the Car-
tesian coordinatesx(y) of this second point.
-0.1
realizations the fluctuations in these numbers do not allow
0 Q0 2m for an accurate extraction of the underlying normally ordered

Ago part of the correlation function, therefore we did not include
the numerical result in Fig. 1B). Figure 20 shows a two-
dimensional plot of the correlation function of the anti-
squeezed quadrature component, for the same values of the
angular separatiod @ between the two points. Both points have parameters. For the calculation of.the intensity correlation
radial coordinater =r’=2"2 The most antisqueezed quadrature function we can refer to the expressiaf), and ma,ke use _Of
component $=0) is shown in(a), whereas(b) shows the most 'Eqs'.(95) and(96); the normally ordered part of this function
squeezed componeni& 7/2). The solid line in both plots show IS 9iven by
the analytical result and the dotted line(& shows for comparison

FIG. 19. The two-point field correlation functidn, in the case
of the OPO with spherical mirrors is plotted as a function of the

the numerical result. (1+iAp)(1—iA ,|,)+A2
Tin(r 1"’ )——2 > >
pl p n (1 A0+A |)(1 A0+A /I,)
These correlation functions were calculated 18] in the P ><f(2,)(r)f(2)(r )f<, ,(r)f ; ,(r )
representation. As in the case of plane mirrors we gét a P ' !
contribution from the 1 in the sum over all modes, reflecting X cogl(p—¢')]cog!l’ (p—¢')]. (103

the fact that we deal with symmetrically ordered expectation

values(Wigner representationAgain this term vanishes on This result together with the numerically obtained intensity
passing to the more usual normal ordering. As for the case iorrelation function is shown in Fig. 21. Because the inten-
plane mirrors for pump field intensities close to the thresholdsity correlation function is essentially the square of the field
(1-A3<1) the critical modes with @+1=q.; become correlation function the deviation of the analytical and nu-
dominant in the sum&l01) and(102). The resultg101) and  merical results is even larger than in the case of the field
(102 for r=r'=2, Agy=—1, 7/y,=0.5, andA,=0.99  correlation function(Fig. 19.

are shown as a function df ¢ in Fig. 19 as solid lines; the Again we can also present single realizations to give an
numerical results obtained solving E@2) are shown as a impression of what one can expect to get in high-frequency
dashed curve. Both quadrature component correlations exneasurements. By choosidg=0.999,A4,=—1 and for a
hibit a noteworthy modulation, despite the fact that the mearseparation of the modes/ v, = — Ay¢/2, we obtain a picture
intensity is uniform over the circle, for a fixed We already as presented in Fig. 22—the underlying pattern is almost
subtracted thed contribution from both numerical and ana- invisible. The reason for this disappointing result is that the
lytical results; for a finite number of included families this is pattern is restricted to a small area around the optical axis
a large contribution even foA¢#0. In the case of the and includes only two significant “spots” with negative
squeezed quadrature component the numerical data suffésrighter parts and two with positive valuegdarker parts
from the fact that they appear as the difference of two largetespectively. The correlation function in Fig. 20 shows us
almost identical numbers: the symmetrically ordered correlathat there is nothing more to expect. Therefore it is not pos-
tion function, which is the outcome of the numerical simu-sible to observe a large number of spots as it was in the case
lation, and thes contribution. With the restricted number of of plane mirrors, where the number of spots is only restricted
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FIG. 21. The intensity correlation function for the OPO with
spherical mirrors as a function of the angular separation between
the two points, on a circle of radius=2"? around the optical
axis. Again we show the analytical resiéolid line) and the nu-
merical result (dashed ling The pump field amplitude is
Ap=0.99 and the detuning and mode spacing Agg=—1 and
nly,=0.5.

by the size of the simulation square in the transverse plane. T
In order to make the regularity of the pattern visible also in

single snapshots one has to reduce the value of the intermode

spacing n, which corresponds to an experiment with less (b)

curved mirrors. In this case the number of spots increases
and, e.g., for a value of/y;=0.1 Ay one obtains even for

a reduced pump intensity4,=0.99) the picture shown in
Fig. 22Db).

We note that all the results presented here refer to the near
field; the far-field picture displays some noteworthy features
analogous to what is discussed in Sec. IV A for the plane
mirror case and which will be reported in a separate publi-
cation[32].

VIl. CONCLUSIONS

We have shown that semiclassical patterns arising in non-
linear optical systems above certain thresholds are antici-
pated in the far-field mean intensity of the output field and in
the near-field quantum correlation function already below
threshold. To demonstrate this we examined in detail the
case of a degenerate OPO with plane and spherical mirrors.
In both cases the far-field intensity, the correlation of typical
guadrature components, and the intensity correlations show -2 0 2
the spatial modulation which characterizes the semiclassical
pattern. Since main analytical results about near-field corre- T

lations were already presented by some of us elsewhere r5 25 gpapshot of the antisqueezed quadrature component in
[14,16, we have focused here on the numerical simulation ofne opo with spherical mirrors. The pump field amplitude is

stochastic partial differential equations of the Langevin typea —0.999 for(a) andA,=0.99 for (b). For the snapshot shown in
for the quantum fluctuations and on the far-field d_|str|but|on3(a) 7l y1=—0.5A o= 0.5, while in(b) 7/y,=—0.1A4=0.1.

and correlations. The agreement between numerical and ana-

lytical results is excellent and allows for a safe use of thetion than averages, which do not exhibit any structure with
numerical Langevin equations to regimes where no directespect to the angular variable in the transverse plane.
comparison with the theory is possible. For example, we We have also shown that not only measurements of the
have analyzed here the case of space-dependent pump pawmrrelation functions but also short time measurements of the
files and found that modulations in the correlation functionsnear field reveal the incoming spatial modulation. For the
may be difficult to detect in real experiments while the fea-experimentally relevant case of an OPO with spherical mir-
tures of the far-field images are more robust. On the otherors we showed that the spatial pattern is visible in the latter
hand, correlation functions carry a larger amount of informakind of measurements only for nearly flat mirrors.
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APPENDIX

N
t
fof(t—de(t’)%jEOGJ[B(t,»H)—B(tJ-)], (A4)

2 t
>=f f2(t—t’)dt’. (A5)
0

By wusing the property of the Wiener increments
Let us consider for simplicity a one-dimensional version([B(t;, ;1) —B(t;:) ][ B(tj.1) —B(t;)])= 4 j-At, it follows
of the stochastic differential equati¢?) (the generalization that
to the multidimensional case is straightforward

N
dX(t)=— aX(t)+dB(1), (A1) <A2(t)>=j§O GlAt. (A6)

wheredB(t) are Wiener increments. The formal integration
of the equation(Al) from t=0 up to a generic timé is
given by

Hence, the maximum accuracy in the evaluatior{ Af(t))
is obtained by selecting

— 11y
G?=G2:=—| dr ). (A7)

X(t)=exp(—at)X(0)+ftexp[—a(t—t’)]dB(t’), 1T T A Y
0

(A2)  we can expand; in power of At up the first order as

whereX(0) is a given starting point of the stochastic process ~, e2alt_q
X. Our aim is to find a discrete algorithm to perform the ~G; =672“(t7t1)m=972“[t7(”“i+1)/2}+O(Atz),
stochastic Ito integrdl33] (A8)
t —_~
A(t)=f f(t—t")dB(t'), f(t)=exp(—at), (A3) Gj=e =021 O(At?). (A9)
0

By inserting the approximatio@9) in Eqs.(A4) and(A2) a
in such a way that the statistical averg@€(t)) is evaluated recursive algorithm to perform the stochastic time evolution
with a given accuracy. The same accuracy affects also thgf X is obtained:
evaluation of the correlation function, since the latter is re-

lated to the variance by the deterministic formula X(t))=e *AX(ty_1) +e “*"B(t,) ~B(t,-1)] (A10)

(X(t+ T)X(1)) = exp — aT){(X(D)X(1)). with an error of the ordeAt? in the evaluation of X(t)?).

This is exactly the same formula as Eg0) of Sec. Il, pro-

Let tg=0t,,t5, ... ty:1=t be a partition of the interval vided one makes the correspondentg:;—t, t,—t+At
(0) with At=t;,,—t;. We set [B(th) —B(th_1) 1=/’ O(t"), —a—L ger.
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