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Motion of a two-level atom in an optical cavity
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A semiclassical model of the force and momentum diffusion on a point particle is used to describe the
motion of a two-level atom strongly coupled to a single Gaussian cavity mode. The effects of the momentum
diffusion on the motion of an atom in a cavity are investigated in a regime similar to that of the experiment
performed by Mabuchet al. [Opt. Lett. 21, 1393 (1996]. It is found that a slow atom quickly develops
significant velocities along the cavity axis. The limited bandwidth in the experiment of Mabtiehi means
that the full intensity signal due to atomic motion in the standing wave is filtered leading to the apparently
smaller velocities observed. It is shown that a negative detuning of the laser and cavity from the atomic
resonance would lead to nonzero dipole forces and significantly reduced velocities along the standing wave. An
analysis of the intensity signal with a larger bandwidth is proposed, which would track the velocity of the atom
along the cavity axis. These results are compared with a Monte Carlo wave-function simulation similar to that
used to treat Doppler coolingS1050-294@7)00407-]

PACS numbdps): 42.50.Ct, 42.50.Lc, 42.50.Vk

I. INTRODUCTION for similar cavity QED systems, although typically for far
off-resonant excitation or for weak resonant excitation, such
Experimental research in the field of cavity quantum electhat atomic spontaneous emission does not figure signifi-
trodynamicgcavity QED is now able to operate routinely in cantly. In particular Quadet al. [8] showed that in such a
the so-called “strong-coupling regime” for which the maxi- regime it should be possible to continuously monitor the
mal atom-field dipole coupling strengthy exceeds the cav- atomic position. In contrast to these earlier works, the
ity field decay ratex and the atomic spontaneous emissionpresent analysis, and indeed the experiment of Mabuchi
rate,I" (see, for exampld,1]). In this regime excitations can et al, focuses on dresonantregime in which repeated ab-
be exchanged coherently between the atom and the field seserption and spontaneous and stimulated emission all play a
eral times before decay processes are likely to occur, thmajor role and strongly influence the atomic motion within
properties of the field can be significantly altered by the presthe cavity mode. This must in turn have a strong influence on
ence of even a single atom and, similarly, the prescence of the intensity signal from which one might attempt to extract
single photon in the field will saturate the response of thénformation about the atomic position or momentum. It is
atom. Recently, Mabuchet al. [2] have achieved some- therefore essential to have effective models for the atomic
thing of a breakthrough in cavity QED research by replacingmotion in the cavity field.
the commonly useffasf) atomic beam source with very cold This paper presents two approaches to modeling the mo-
atoms =100 uK) dropped into the cavitya few at atim¢ tion of an atom in a single mode cavity within the rotating-
from a magneto-optical traMOT). This allows for very wave and two-level-atom approximations. The first employs
long interaction times and observation of the effects of singlea semiclassical theory in which the atom is treated as a point
atoms on the cavity field in real time. In particular, the pres-particle subject to a position-dependent force and momentum
ence of an atom in the cavity, which is tuned to the atomiddiffusion rate. This is a standard method used to model laser
transition and resonantly driven through one of its mirrorscooling and other mechanical effects of light in classical
with a laser field, can lead to a dramatic drop in the transfields[9-13]. The second approach is to quantize the exter-
mitted cavity intensityf 3]. This intensity is measured in the nal atomic coordinates as well as the internal atomic coordi-
experiment by a balanced heterodyne detector. nates and the cavity mode. This is very challenging since the
The intensity drop that is observed in the experiment igesulting Hilbert space is so large. A quantum Monte Carlo
strongly dependent on the position of the atom in the cavitywave-function simulation of the system is presented that dis-
as a result of the spatial variation of the electromagneticretizes the atomic momentum in units of the photon mo-
mode functiony(r), which describes the Gaussian standingmentum. This is an extension of the treatment oflier
wave structure of the mode. Given the dependence of thet al.[14], who do not quantize the cavity field. In Sec. Il we
intensity on the atomic position, it should in principle be discuss the master equation to be used in the rest of the
possible to follow individual atomic trajectories. So, for ex- paper; the semiclassical approximations to this master equa-
ample, oscillations in the transmitted intensity, which weretion are treated in Sec. lll. Section IV develops an approxi-
observed by Mabuctet al,, may reflect atomic motion along mation that treats the cavity field as a classical standing wave
the cavity standing wave, with each value of the intensityfor the purposes of calculating the effect of the field on the
corresponding to a particular position of the atémodulo  atomic motion, but varies the intensity of the standing wave
one wavelength The possibility of such atomic position depending on the atomic position. This allows single atomic
measurements via measurements of the transmitted field h&sjectories to be simulated with greater efficiency; the re-
been theoretically investigated by a number of authérs?]  sults of these simulations are given in Sec. V, while the
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effect of achievable detection bandwidths is considered irthe atoms will be optically pumped into a two-level system
Sec. VI. Section VII considers the effect of cavity field de- before the atom enters the cavity.
tunings on the atomic motion within the semiclassical ap- The intensity of the light transmitted through the cavity
proximation and the possibility of obtaining reduced atomicwhen the laser is on resonance with the atomic transition and
velocities. Section VIII proposes a simple scheme to recovethe cavity mode is much reduced if the factgy(r) is
velocity information from the intensity signal given a suffi- large, that is, when the atom is close to an antinode of the
ciently broad detection bandwidth. Finally, Sec. IX presentdield. Thus it is possible to some extent to track the motion of
the results of fully quantum-mechanical Monte Carlo wave-the atom in the cavity mode using information about the
function simulations of the system and compares these raransmitted intensity. The intensity of light in the cavity for a
sults with those obtained in the semiclassical approximationparticular value of the coupling constant was calculated by
finding steady-state solutions to the master equation where
IIl. THE MASTER EQUATION the atom was assumed to be statiorfdig]. In this paper the
cooling of the atoms prior to entering the cavity effects a
The Hamiltonian for a two-level atom interacting with a separation of time scales of the dynamics of the external
single mode of the electromagnetic field in an optical cavitydegrees of freedom of the atom and the other degrees of
using the electric dipole and rotating-wave approximationgreedom in the problem. The frequency with which the atom
(in the interaction picture with respect to the laser frequéncypasses through wavelengths of the standing wave in the cav-

is ity is much less than the other frequencies involved,
_ p2 t . 1 dr
H—ﬁ+ﬁ(wo—w|_)0'+0',+ﬁ(wc—w|_)a at+ihgoy(r) —Vg(r)=—<g,x, 7. 2.3
g dt
x(@'o_—o,a)+hE(a'+a). (20)

A truncated basis of Fock states can be used to model this

The atomic transition frequency is,, the cavity has a reso- SYSt€M, since the cavity is typically driven such that only a
nance at the frequenay., and the system is driven by a few photons on average are present in _the cavity. For the
coherent(lase) driving field of intensityE and frequency experimental parameters the transmltted intensity is reduc_ed
o . In this paper we will always consider the case where thd® around a tenth of its empty cavity value when the atom is

cavity is resonantly drivend,= w, ) with a possible detun- at an antinode of the standing wa.ve.along the cavity axis. On
ing of the light field f(;om the atomic resonance the other hand, when the atom is introduced at a node the

(A=w_—w,). The cavity mode function is i(r) transmitted intensity is unchanged from its empty cavity

t _ o . value. Thus the oscillations in transmitted intensity observed
_COS.((LX)EXFI (y2+22)/w3], degcrlb!ng the . Gaussian by Mabuchiet al. [2] are taken to correspond to motion of
standing-wave structure of the field in the FabrydReav-

ity; for the experimental cavity the mode waist ug=45 the atom along the cavity axis.

um and the optical wavelength s, =852.359 nm for the

cesium transition emp|0yed(l(: ZW/)\L) I1l. SEMICLASSICAL EQUAT|ONS OF MOTION
Dissipation in the system is due to cavity losses and spon-

i ‘ssion. By treating th d ¢ | to th This system differs from that usually considered in the
aneous emission. by treating the modes extemnal 1o tn€ Cayge 4,16 'on the semiclassical equations of motion for a two-

ity as heat reservoirs at zero ter_nperature it is possible tPevel atom. The atom is normally assumed to be in an elec-
derive the standard master equation for the density oDerat?lromagnetic field, usually either a standing or a traveling

of the systen{15] p, wave of laser light, which is unaffected by the presence of
p i t_he atom. In the system under consideration the inte_nsity (_)f

P _ —(Hp—pH)+«(2apa’—a'ap—pa'a) light in the mode is strongly dependent on the atomic posi-

a  h tion and the electromagnetic field is a driven mode in a high

ar finesse cavity excited typically with only a few photons; in
+ _j dZRE (ug- £)%exp( — ik k-rYo_po, principle, a fully quantum-mechanical treatment of the cavity
8m & mode field is necessary. Moreover, the atomic velocity inside
r the cavity will initially be very small; the mirrors of the

xexpik k-r)— = (o o_p—po.o_). (2.2)  cavity are about 3 mm in diameter and the cavity is only

2 about 100um long, thus atoms reaching the center of the

) o cavity mode must have very small velocities along the cavity

The decay of the upper atomic level to the lower is given byayis “around 1 cm/s or less. However, the momentum kick
I'/2m=5 MHz, while the cavity field decay constant is associated with the absorption or emission of a single photon

kl2m=3.5 MHz. These are both less than the couplingresults in a change of velocity for a cesium atom of around
strength go/2m=11 MHz, corresponding to the strong- 0.3 cm/s. Since the atom is on resonance with the atomic
coupling regime. The third term describes the effect of spontransition, the effects of repeated spontaneous and stimulated

taneous emission on the atomic mOtluH,l? a unit vector In emission and of absorption should qu|ck|y lead to much in-

the direction of the atomic dipole momeiitjs a unit vector  creased velocities of the atom. This will allow the use of the
in the direction of an emitted photon. In this paper the po-semiclassical approximations, which assume velocities sig-

larization of the light in the cavity fieldgs, will be taken to be nificantly greater than the recoil velocity, at least once the

circular, the atomic transition will be taken to Add=1, and  atom has been in the cavity mode for some time.
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The system is in the range in which the semiclassical Hee=—hAo,o_+hE(a'+a)+ifg coguv,t)
approximation is good. The dimensionless quantity .
#2Kk212m#iT, which must be small in the semiclassical ap- X(alo_—o.a). (3.4

proximation[17,13 is of the order of 102 for this cesium

transition. Thus, the recoil energy for the atom is much les§here are several ways to calculéte andD for this Hamil-
than the natural width and so after the emission of a singléonian. Fourier components of the steady-state density matrix
photon the atom will still be on resonance with the transition.of the resulting master equation can be calculated by a ma-
This ensures that a constant atomic velocity approximationrix continued fraction technique since the Liouvillian has
can be made when calculating the force and momentum difenly sinusoidal time dependendsee, for example[18]).
fusion coefficient and that it is possible to define the atomid=rom the steady-state density matrix it is straightforward to
position within a wavelength while defining the velocity suf- find the force and transmitted intensity as a function of time
ficiently well that the Doppler shift of the transition fre- and therefore position. A further matrix continued fraction
guency is well defined on the scale of the atomic linewidth.allows the momentum diffusion coefficient to be calculated
It is also expected for our system that the atom will very[13]. However, this calculation is prohibitively long when it
quickly acquire momentum several times greater thianso  is necessary to calculate these quantities for a range of ve-
that individual momentum kicks as a result of emission orlocities over the entire Gaussian profile of the mode, and
absorption have little effect on the total momentunv.lier  uses very large amounts of computer memory if more than a
et al. found very good agreement between the results of théew Fourier terms are needed. The matrix continued fraction
semiclassical treatment and a fully quantum calculation irtechnique does have the advantage of giving the cycle aver-

the range of/7k, that is relevant to this experimefit4]. ages of these quantities as the first Fourier component, these
Heisenberg’s equation of motion gives the force operatocan be difficult to find since values of both the force and
for the Hamiltonian(2.1), diffusion vary widely over a wavelength and accurate aver-
ages can be difficult to obtain. A practical alternative is to
dp 1 _ ; integrate the master equation numerically for the truncated
f=gt = in[PHI=—ihgeVi(r)(a'o-—o.a), (3.)  basis from some initial density matrix that is close to the

steady state until the steady state is reached and evaluate the

i . . . force and transmitted intensity as a function of time. To cal-
omitting fluctuations in the force due to spontaneous emmis-

. . : s ; ulate the momentum diffusion coefficient it is necessary to
sion. In the semiclassical approximation the atom is treate . :
: . : . use the quantum regression theorem and integrate the master
as a point particle located ét) with momentum(p) moving

equation a second time usirfg as an initial condition in

: ST . arder to find the force correlation function. The integral of
spontaneous emission and atomic dipole fluctuations ar

modeled by calculating a momentum diffusion coefficient forﬁ]e force correlation gives the momentum diffusion coeffi-

a Fokker-glanck e ugtion describing the distribution of at-Ciem according fo Eq3.9). For a stationary atom the force

oms in phase s acqe where 9 is not time dependent and the calculation of the momentum
P pace, diffusion coefficient is relatively simple. The momentum dif-

1 3 fusion coefficient for zero velocity and with other parameters

D= =lim—T(p2(t))— (p(t))2]. 32 close to those reallzed in the exper'|ment is plotteq in Fig. 1;

ZHmﬁtRp () ={p®)’] 32 note that the dipole force is zero since the atom is on reso-

nance. Figure 2 plots the force and momentum diffusion co-

This can be expressed in terms of the time integral of th@ff'cf'_erlg for thells?]r?e dparamgt?rs wr;]ere the.cawty and driv-
force covariancé11], ing fields are slightly detuned from the atomic resonance.

. * IV. CLASSICAL STANDING-WAVE-FIELD
D=tIErlRe . (f(t),f(t—7))dr. (3.3 APPROXIMATION
In order to develop a realistic computer simulation for the
These quantities are calculated by assuming that theystem it is necessary to find an approximation to the full
atomic velocityv is constant; that is, the mass is treated ascalculation given above that is capable of quickly calculating
infinite. The resulting force and diffusion are used to de-the force and momentum diffusion coefficient for a wide
scribe the motion of any particular collection of atoms. In therange of velocities and values gf The cavity is not very
regime of validity of the semiclassical theory the atomic ve-different from a Gaussian standing wave in free space cre-
locity will change slowly enough, due to the resulting forces,ated by two counterpropagating lasers, however, the atomic
that this will provide a good approximation for the atomic position has a very strong effect on the intracavity intensity,
motion. The largest contribution ¢ will be from the rap-  while the laser beams can be assumed to be undepleted. The
idly varying cosine factor due to the standing wave along theapproach taken here is to treat the standing wave as a laser
cavity axis, so the greatest forces and momentum diffusiotbut to modify the intensity of that standing wave according
coefficient will be along this axis. It will be sufficient to to the intracavity intensity appropriate to the atomic position.
assume that the atom is roughly stationary in the other twdn this way the cavity mode is treated asawumber con-
dimensions. The coupling can be redefined to accommodatgant; for any given position of the atom in the cavéyis
different positions of the atom in the Gaussian profile of thereplaced by(a), reducing the size of the Hilbert space
mode, thusy=geexd — (y>+Z)W3] and roughly tenfold in this case. Standard treatments of the force
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FIG. 1. The semiclassical momentum diffu-
sion coefficient, along the cavity axis, of an atom
- strongly coupled to a few photon optical cavity
mode. The atom is on resonance with the optical
field with parameters d,,«,I")=(11,3,5)/27
MHz and the cavity is driven such that the mean
photon number in the empty cavity is 2.
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and momentum diffusion coefficient assume that the field icomparing the force and momentum diffusion coefficient
in a particular coherent stafd 1], or is a classical driving calculated in this way with those calculated from the original
field [9]; that is, they also effectively treat the operatoas  semiclassical approximation in Sec. lll. This comparison is
a c-number constant and so these works are immediatelynade in Fig. 3 for the force and momentum diffusion coef-
relevant to the present situation. ficient of a detuned cavity. The agreement of the diffusion in
As a first approximation it is possible to find, for zero the resonant case is similarly good, which justifies their use
atomic velocity, the intracavity intensity appropriate to ain simulations for the parameters of the experiment of Mabu-
given atomic position, which is easy to calculate since thechi et al.
resulting master equation has no time dependence, and then If significant velocities are to be modeled this new prob-
find the force and momentum diffusion coefficient of a two-lem requires a continued fraction technique for the Fourier
level atom in a classical standing wave of this intensity; thiscomponents of the forcg9]. The time correlations of the
is valid as a result of the separation of time scales mentionefbrce obey similar equations to atomic operatfit§], and
above, the motion of the atom is not sufficiently fast tothis allows Fourier components of the diffusion to be found
strongly perturb the cavity field. The forcdsetting by using matrix continued fractions as bef¢t]. The force
Q=g(a) where(a) is the field expectation value calculated and momentum diffusion coefficient of an atom in a laser

from the full master equation field have been solved analytically and written in a closed
form by Gordon and Ashkin11l], to first order in the
(By=—iaVQ(r)){o_—0oy) (4.1  keo/T" . This means that the force and momentum diffusion

coefficient can be computed very fast for a wide range of
can be found by solving the optical Bloch equations for avalues ofg and of the detuning\ = w_— w, over the range
particle of velocityv; thus cavity decay must presumably be of velocities of interest in the experiment. For zero detuning
slow enough to not significantly affect the atomic responseévhen the atom is in a standing wave the dipole force is zero
except insofar as it serves to establish the steady-state fieldnd the diffusion has a particularly simple form:
Moreover the atom and field operators effectively decorre-

late, (ao, y=(a)( o ), which must require thag is not too D= 2.2k2Q2sirP(k X)/T + 72T (k- X)X 0 o_)I2.
large. The effect of these approximations can be found by (4.2
sk (@ 15° o ]
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FIG. 2. (@) The semiclassical force an(b)
momentum diffusion coefficient, along the cavity
axis, of an atom strongly coupled to a few photon
optical cavity mode. The optical field is detuned
from the atom with parametersg{,«,I')
=(11,3,5)/2r MHz, the detuning isA=—-0.3",
and the cavity is driven such that the mean pho-
ton number in the empty cavity is 2.
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FIG. 3. Comparison betwedn) the force and
(b) the momentum diffusion coefficient of an
atom strongly coupled to a few photon optical
cavity mode calculated from the full master equa-
tion and in the approximation used in the simula-
tions. The optical field is detuned from the atom
with parameters dy,«,[")=(11,3,5)/2r MHz,
the detuning isA=-0.3", and the cavity is
driven such that the mean photon number in the
empty cavity is 2.
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The factor (k, -x)?reflects the distribution of spontaneous step the field intensity in the cavitya) is calculated as for a
emission along the cavity axi49]. For the simulation it was stationary atom and this is used to calculate the force and
assumed that the atom was optically pumped into a two-levenomentum diffusion coefficient on the particle at that point
system by circularly polarized light on AJ=1 transition in time, as in Sec. IV. A vector of Gaussian random vari-
and the values o(ka~>A<>2 were chosen accordingly. The first ables,W, of mean zero and standard deV|at[on 1 is then
term is the most important contribution to the momentumgenerated and each component of the atomic velocity
diffusion coefficient along the cavity axis. In the other direc-altered at theth time step according to

tions the second ternispontaneous emissipris the more

significant as the first is reduced by a factorwigi,)? [9] v'/=v! +2D" At/mW , (5.2)
due to the slower Gaussian variation of the field in those
directions. where At is chosen such that the cavity intensity changes

In Fig. 4 the momentum diffusion coefficient for zero little in a single time step. For the plane perpendicular to the
detuning with parameters very similar to those ac_hleved Ircavity axis spontaneous emmission was the dominant contri-
[2], when the atom is near the center of the Gaussian profilgution to the momentum diffusion coefficient and this was
of the mode, is plotted for the atom in the cavity, calculatedeyaluated as in the second term of E4,2), which refers to
as in Sec. lll and in the classical standing-wave approximathe diffusion for the cavity axis itself. The position and ve-

tion. For comparison, the momentum diffusion coefficient|qity of the atom are then moved forward under the standard
for a two-level atom in a laser standing wave of the samg;nematic equations
ry

intensity is also shown. Note that these quantities have ve

different behaviors when the atom is in a cavity as opposed Xi+1:Xi+VL/At+ LF1(At)2/m,
to a laser beam and the good agreement of the full calcula-

tion with the approximation of the cavity as a standing wave

of position-dependent intensity. Vi+1:VL/ +EIA/m.

(5.2

V. SIMULATION OF ATOMIC MOTION . . . . .
The atoms in each simulation began just above the cavity

A Langevin-equation-like simulation was run to plot the mode. They were evenly distributed over a wavelength of the
progress of a single atom through the cavity. At each timestanding wave along the cavity axis and were normally dis-

Cavity Diffusion

FIG. 4. Comparison of the semiclassical mo-
mentum diffusion coefficient in a standing wave
in free space and strongly coupled to a few pho-
ton optical cavity mode. The atom is on reso-
nance with the optical field with parameters
(99,x,I')=(11,3,5)/2r MHz and the driving
such that the mean photon number in the empty
cavity is 2.

15 |-

Diffusion Coefficient (Units of (hk/2x)2 I')

0.0 0.2 04 os 0.8 1.0
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S ] FIG. 5. Plot of(a) cavity transmission an(b)

= atomic velocity along the cavity axis for a simu-

lation of atomic motion in the cavity. The atom is
on resonance with the cavity and the driving
—_ field, (go,«,I")=(11,3,5)/2r MHz, and the cav-
% ity is driven such that there are on average two
= photons in the cavity when the atom is at a node
P of the standing wave.
S
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tributed across the Gaussian mode profile alongyttexis.  intensity information obtained by the measurement will be
The vertical velocity component was appropriate to thatsome average of an infinite bandwidth signal over short time
gained from the 7-mm drop from the MOT to the cavity spans. Where the atomic motion happens to be slow the in-
mode and the horizontal velocity components were taken tgensity measurement follows the changes in the transmitted
be normally distributed about zero velocity with a standardintensity with atomic position and the signal has structures
deviation of 1 cm/s. This is the order of velocities that wouldike those found in the experiment. Where the atomic motion
make it from the MOT to the cavity mode. is faster the oscillations in intensity due to the motion of the

The on-resonance case has zero dipole force but the largiom along the standing wave are averaged out in the ob-
est momentum diffusion coefficient as a result of fluctuatlonsserved signal. The variation in intensity is then due to the

in the atomic dipole and. of spontaneous emi;sion. Thus, '§Iow|y varying Gaussian profile of the cavity mode.
was found that the velocity of the atoms could increase very To model this effect the intensity data were passed
quickly, with atoms attaining velocities of the order of 1 mls'through a digital low-pass Butterworth filter with a cutoff

The fluctuations of the velocity were very large and the ato requency of 100 kHz and then plotted against time. The
would frequently pass through regions of small velocity. The

transmitted intensity signal shows very fast oscillations as %rdef of j[he filter used is limited by the accuracy W'th which
result of high velocities, which are at first sight not in agree-"€ filtering could be computed given the sampling rate of
ment with the results given if2]. Figure 5 gives a typical the S|mulat|ons_. The res_ul_tmg curves, Whlch_are _plotteq in
example of the simulations along with a plot of the velocity Fi9- 6 along with the original infinite bandwidth intensity
of the atom along the cavity axis. Note that the atomic Ve_sngngl, are very like those observed experimentally and plot-
locity remains small until the atom approaches the center ofed in [2]. These plots show structure where the atom has
the mode, where the increased field intensity leads to a verghanced to slow down as a result of its random walk in
large momentum diffusion coefficient and in this case a dramomentum space. Increasing the bandwidth should result in
matic change in the atom’s velocity. As the atom leaves th&ignals with more and more structure even without a change
mode the momentum diffusion coefficient again decreaseto any experimental parameters. Note, however, that the
and the velocity fluctuations are reduced such that the atorstructures in the signals if2] could also be the result of
leaves the mode with a much larger velocity along the cavityeffects outside the two-level approximation used in these cal-
axis than initially. This is the origin of the very asymmetric culations. There was no optical pumping of the atoms prior
transmitted intensity signal in Fig. 5 and in many other runsio entering the cavity, which would trap the atoms in a two-
of the simulation. Moreover the Gaussian envelope of theeye| system. This will mean that transitions between the
transmitted intensity signal, which reflects the Gaussian progifferent sublevels of the ground and excited states that have
file of the mode function, is slightly modified by the effects jifferent couplings to the field will have an effect on the
of spontaneous emission on the atomic velocity perpendiCUsiomic motion. Moreover asymmetry of the signals could be
lar to the.cav_ity axis; more pronounced examples of this will y ;e to optical pumping of the atom into another hyperfine
be seen in Fig. 6 below. ground state that is not coupled to the cavity fig2dl

VI. THE EFFECT OF FINITE DETECTION BANDWIDTH

VII. COOLING IN THE CAVITY
The bandwidth of the heterodyne apparatus, which mea-

sures the intensity of the light transmitted through the cavity, A possible extension of the experiment is to detune the
is 100 kHz in the experiment of Mabuclet al, which is  electromagnetic field from the atomic transition. This will
equivalent to a period of the intensity oscillations of &  allow a nonzero mean dipole force, which, if the detuning is
or to atomic velocities of only 4 cm/s. Higher frequencies inin the right direction, will keep the atomic velocity small. In

the intensity signal will not be detected and the time-the on-resonance case the absence of a dipole force means
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FIG. 6. (a), (c), (e), and (g)
Transmitted intensity signal for
several simulations(b), (d), (),
and (h) The transmission signal
(d) | passed through a digital low-pass
. . L ) ) ) . ) - Butterworth filter of fourth order
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 with cutoff frequency 100 kHz.
Time (ms) Time (ms) This simulates the current experi-
mental bandwidth of Mabuchét
1 \ ! ! ) —] al. [2]. The atom is on resonance
with the cavity and the driving
field, (90,x,I')=(11,3,5)/2r
MHz, and the cavity is driven
such that there are on average two
photons in the cavity when the
atom is at a node of the standing
0.1} U] i wave.
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that the atomic velocity varies more and more wildly with tions andA=—0.3T"; in Fig. 3 they are plotted in compari-
time and the simulations show that atoms can emerge froraon to those relevant to a standing wave in free space and in
the cavity with velocities as high as 1 m/s along the cavitythe approximation used in the simulations. Once again the
axis. Where there is a cooling force, its interplay with thepicture of an atom moving in a classical standing wave of
momentum diffusion coefficient, that is fluctuations in the position-dependent intensity gives a very good characteriza-
force, would lead to some steady-state velocity distributiortion of the momentum diffusion coefficient of an atom
for the atom in the cavity if it were confined to a given point strongly coupled to a cavity mode. The value of the detuning
in the Gaussian mode profile, just as the force and diffusionwas chosen to give the largest cycle-averaged cooling force.
determine the eventual temperature of a system of atoms By tuning the cavity to the driving laser field this scheme
the case of Doppler cooling. retains a very significant drop in transmitted intensity when
The simplest adjustment is to negatively detune the lasethe atom is in the cavity.
from the atomic transition and then tune the cavity to the Simulations were run for this detuned case using both the
laser beam, just as in the current experiment. The force anehatrix continued fraction technique and the small velocity
momentum diffusion coefficient were calculated in Sec. Il expressions given by Gordon and Ashkin for the force and
and plotted for the parameters used in the previous simulanomentum diffusion coefficient of a two-level atom in a
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Time (ms) confined to move only along the cavity axis.

whereD is the zero-velocity cycle-averaged momentum dif-
fusion coefficient(see, for examplg,13]). Although in this
system there is only one atom, if it were confined to move
only in one dimension it would reach a steady state in which
its velocity had this Gaussian distribution in time. Such a
single atom cannot be said to have a temperature, but the
mean-squared velocity predicted by Hd.1l) does have a
physical meaning. Although the real atom moves across the
Gaussian profile of the cavity mode it does so slowly and the
A=-0.3" and other parameters as in Fig.(6) Cavity transmis- steady-state rOOt_mean_squms) velocitieg ap_pro'priate to
sion. (b) The transmission signal passed through a digital Iow-paséhe vgl'ue ofg at each pOIn't W'I_I be a good indication of the
Butterworth filter of fourth order with cutoff frequency 100 kHz. Velocities to be expected in different parts of the mode. To
This simulates the current experimental bandwidth of Mabethi find these steady-state rms velocities as a functiog, ahe
al. [2]. (c) The atomic velocity along the cavity axis. force on the atom in the cavity for a range of small velocities
was calculated and cycle averaged in order to calculate
The zero-velocity cycle-averaged momentum diffusion coef-
classical standing wave or coherent state. A problem with théicient was evaluated and E@7.1) used to calculate the
matrix continued fraction calculation was the large numbersteady-state rms velocities for the valuesggfI',A,«,E,
of Fourier terms necessary to get an accurate description @fsed in the simulations. Note that this was done in the ap-
the diffusion around a node, which made these simulationgroximation of Sec. IV, which was used in the simulations.

significantly longer. However, the two methods give similar he results are plotted in Fig. 8 as a functiongofin agree-
results. Atomic velocities in the center of the mode reachegant with the simulations, this predicts large rms velocities

little more than 0.4 m/s, which is significantly slower than for larger values of, that is, in the most intense parts of the

those observed where there is no cooling force, although n%aussian mode. As the atom falls out of the mode and down

by an order of magnitude. However, th_e atoms were on AVihe intensity profile the atom is likely to have much lower
erage much slower as they left the cavity mode. The results

for a single run of the simulation are plotted in Fig. 7, Which,veIOCIty and lower velocity fluctuations. The largest mean-

by comparison with Fig. 6, demonstrates this feature of Smaﬁquared velocity is equivalent to a te_mpera_ture of a sys_tem of
final velocities. atoms of around 1 mK and at low intensity the atomic ve-
There is a simple way to understand why the atoms arépcity distribution tends_towards the Doppler limit for cesium
likely to have smaller velocities and smaller velocity fluctua-©f 127 #K or rms velocity 8.9 cm/s. The value on the graph
tions as they leave the cavity mode. In the standard theory df slightly lower than this, but this is most likely the result of
Doppler cooling the final velocity distribution of atoms in the the approximations made in calculating the force and mo-
laser field is the result of the competing effects of momen.mentum diffusion coefficient. The Doppler limit, which de-
tum diffusion coefficient acting to spread the atomic velocitypends only on the atomic mass and linewidth, would not be
distribution and the cooling force acting to slow the atoms.improved upon by cooling in the cavity unless more atomic
At low velocities the cycle averaged for¢eis linear with  levels and cavity mode polarizations were considered.
velocity, F=—av, and this results in a Gaussian velocity  In the experiment of Mabuctet al. the laser driving of
distribution with temperature the system must be sufficiently intense to ensure a good
signal-to-noise ratio in heterodyne detection of the transmit-
keT=m(v?)=D/a, (7.1))  ted intensity. It appears that the resonant and intense laser

Velocity (m/s)

0.0 0.1 0.2 0.3 0.4 0.5

Time (ms)

FIG. 7. Results of a typical simulation with laser detuning
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driving quickly results in atomic velocities that are much velocity, which is the frequency of the transmitted intensity
larger than when the cold atoms reach the cavity mode evesignal, just as the frequency of the function éxp) is sim-
where the field is detuned from atomic resonance. If this iply the angular velocity of its argument.
the case the velocities that are attained should leave that To achieve a good correspondence between the frequency
information in the intensity signal that is measured, as disof the complex analytic signal and the velocity that is re-
cussed below. However, this calculation suggests that if theorded by the simulation it is necessary to remove the aver-
driving field could be altered quickly enough after an atom isage value from the signal. Due to the Gaussian profile of the
detected in the cavity its velocity would be reduced by rampinode this average value is a slowly varying function of time
ing down the driving intensity in this detuned situation. It is and so this is most easily achieved by filtering out the small-
possible to change the driving laser intensity and detuning omst frequencies prior to taking the Fourier transform. The
a time scale of the order of 100 0], which is much less magnitude of the complex signal now reflects the magnitude
than the tens of microseconds that the atom remains in thef the oscillations in intensity, large in the center of the mode
very center of the mode so it is not unrealistic to investigateand small at the edges. It is also necessary to filter out high-
this possibility; this is also somewhat shorter than the timdrequency noise in the simulated signal. In the simulated sig-
scale of the atomic motion along the standing wave. Interestqals, this noise could be the result of the discontinuous
ing possibilities would then include trapping this single atomchanges in velocity at each time step. However, in a real
near an antinode of the standing wave by detuning the laseapplication it would still be necessary to low-pass filter in
field and the cavity much farther from resonarntee laser order to remove shot noise from the signal. This also serves
intensity would have to be increased in this proge3his the purpose of simulating a realistic experimental bandwidth,
would allow a transition from the present regime that is sensince measuring the transmitted intensity of the cavity with
sitive to the presence of a single atom to the more frequentlpandwidths larger than 1 MHz will not be achievable in the
considered case of a single atom trapped at an antinode ofreear future. The number of data points affects the rate at
far detuned optical standing wave, in which as noted above ivhich particular frequencies cause the complex signal to ro-
has been shown that it would be possible to track the positiotate around the time axis; there must be enough data points
of the atom through measurement of the quadrature phase tifat the frequencies that correspond to atomic motion cause
the transmitted lighfi8]. Such a system has been investigatedrotation around the axis that is only a very small part of a full
by Wonget al, who have shown that it may be possible to cycle for each time step. This means that the filters that can
“juggle” the atom, keeping it at an antinode and thus over-be used are low order and thus have large phase distortion,
coming the effects of gravitj21]; in some circumstances it which is the information in the signal that we wish to pre-
may even be possible to map out the atomic Wigner functiorserve. Thus the signal is forward and reverse filtered to re-
[22]. move the phase distortion from the first pass; this process is
noncausal and so was not considered in modeling the effects
of real measurement apparatus but could easily be employed
VIIl. VELOCITY INFORMATION in the post-analysis of actual data. With these precautions it
FROM THE TRANSMITTED LIGHT INTENSITY is possible to reproduce very closely, over a wide velocity
nge, the velocity curve generated by the simulation just
rom the transmitted intensity information.

Figure 9 gives an example of this procedure for the results
lotted in Fig. 7. The infinite bandwidth intensity signal is
irst band-pass filtered. In this case a Butterworth filter of
order 2 with pass band 4—-800 kHz is used, although this can
be optimized for a particular signal depending on the atomic
é/ﬁlocity. After removing the negative frequencies the rate of

ange of the argument of this complex signal is compared

Given an experimental measurement of the transmitte
intensity output from the cavity, we would like to get as
much information as possible about the system. For a sta-
tionary atom ideas similar to the classical theory of syste
identification have been applied to find the couplggvhich
also relates to the atomic position, from the timing of cavity
and atomic decayl23]. In this section we take rather a dif-
ferent approach, applying some signal processing techniqu

to get an estimate of the atomic velocity from the transmitte o . ) .
9 y o the actual velocity information obtained from the simula-

intensity signal. . . .
It is not necessary to have an infinite bandwidth in the:'r?.n'.N?jte tTatt;]/er?/ small vef!ﬁcn_les arﬁ_nr(])t_ well modeleci,
experiment to get good information about the atomic veloc- IS 1S due 1o the low-pass Tilering, which 1S necessary 1o

ity along the cavity axis. With a bandwidth of 1 MHz it remove the average value of the signal, but which also re-

would be possible to measure atomic velocities of up to O. oves information about very small atomic velocities.

m/s, which would allow the atom’s velocity to be known for here the atom is leaving the cavity the variations of inten-
muéh of its time in the cavity. There is a simple scheme tos'ty' and hence the magnitude of the complex signal, become

recover this information from just the transmitted intensitymUCh smaller and the model does not give an accurate value

signal. The frequency of the intensity oscillations can be caI—Of the velocity. .The argument of the S|g_nal is in this case
culated as a function of time and since one period of the’¢"Y poorly defined. How_ever, the velqcny of the atom IS
signal is equal to the time it takes the atom to travel from{.eprodhqlce?hren:arka}bly f?rl]thfully Iqr ta wide ratng(fa t?]f velo(cjn-
node to node in the standing wave this frequency is propor-Ies while the atom 1S in the most intense part of the mode.

tipnal t_o the veloci_ty along the cavity axis. To do this the IX. A QUANTUM MODEL OF THE MOTION:

signal is fast Fourier transformed and all the negative fre- MONTE CARLO WAVE-FUNCTION SIMULATION

quency components are set to zero. Then the inverse trans-

form is taken, giving the complex analytic signal that rotates An alternative to the above semiclassical theory is to at-
in the complex plane around the time axis at an angulatempt to retain the quantization of the atomic external vari-
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ables. This will be especially important in modeling the ini- p? _
tial atomic motion since the atom is expected to be movingat  H=5_——%Ao 0 +ifigocod kex)(alo_—o.a)
only a few times the recoil velocity. We performed a mo-
mentum space Monte Carlo wave-function simulation for the +hE(a’+a).

system along the lines of Mmer et al. [14]. Only one di-
mension was considered and the momentum was quantized
in units of the photon recoil momentum and truncated at 200

possible momentum states; this allows atomic velocities ofrhe wave function for the system is evolved according to
only around 0.3 m/s. The system obeys the master equatiqfis non-Hermitian Hamiltonian until its norm is less than
(2.2) where the position and momentum are no longer vectog e randomly generated number between zero and one, at
quantities. An unraveling of this master equation was chosep .. point one of the four possible collapses takes place
that corresponds to perfect photon counting of light emitted, ;o \y.ave function is renormalized. These collapses are

from the cavity mirror and out the sides of the cavity. This . )
. . recorded as a classical record of the evolution and at regular
does not correspond directly to the experiment of Mabuchi . : . .
ntervals in the evolution expectation values of the transmit-

et al, which employs heterodyne detection; a stochastid d intensit 4 atomi i lculated th
Schralinger equation would be necessary to correctly model€d Intensi y and alomic momentum are caculated rom the
the measurement backaction in this ci24]. Each sponta- Wave function. The Fock state basis for the cavity mode was

neous emission results in a momentum kick to the atom bufuncated as before at the tenth number state. Note that
due to the discretization of momentum the only possibIeMﬂ'meret al. assume a classical Ias_er field in the_|r simula-
kicks are—fik_,0,ik, along the cavity axis. The probability tions of Doppler cooling, so once again the necessity of treat-
of these three collapses was assigned in the tafid as this ing the cavity mode quantum mechanically differentiates this
is the best representation of the directional distribution ofsimulation from conventional Doppler cooling calculations.
spontaneous emissiofthis is consistent with that chosen The atom was initially in the ground state; its momentum
above for the distribution of spontaneous emission and aglistribution was a Gaussian wave packet with initial mean
sumes aAJ=1 transition in ac_-polarized beam Thus momentum %k, (equivalent to a velocity of around 1 cry/s

there are four possible collapses for the system: and with a standard deviation dfk, . This is roughly
equivalent to localization in around’7. Each individual tra-
Ci=+2ka, (9.19  jectory was taken to approximate a possible path of a par-
ticular atom in the cavity given the idealized measurement
C,=\T/5exg —ik X)o_, (9.1p  scheme of perfect photodetection.

These simulations gave oscillations in the transmitted in-
tensity very similar to those predicted earlier and the mo-

Ca=v3I'/50-, (910 mentum information was also in good agreement with the
predictions of the semiclassical theory. They were performed
C,=+I'/5expik x)o_, (9.10  with the cavity field both on-resonance and detuned from the

atomic transition, although in the on-resonance case long

and this results in the non-Hermitian Hamiltonian for thesimulations were not possible due to the likelihood of the
Monte Carlo wave-function simulation atom developing momenta too large for the basis of momen-
tum states that was employed. In Fig. 10 the expectation
i value of the transmitted intensity and the atomic momentum

He=H— 72 ClCm. are plotted for a 3Qus simulation for the on-resonance situ-

m ation corresponding to the experiment of Mabuehal, the
(9.2 atom quickly develops a significantly increased velocity and
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the transmitted intensity shows oscillations very similar to  While this model could be developed furthéor in-
those that resulted from the semiclassical simulations. Onlgtance, to include atomic motion in more than one dimension
30 us is shown since in that time the atom develops veloci-as suggested abovere have shown that the results of a fully
ties that make the truncation of the momentum basis stateguantum model of the motion are consistent with the earlier
invalid. Figure 11 shows the results of a simulation lastingsemiclassical analysis. It appears that a fully quantum model
100 us with the field detuned from the atomic resonance.s not essential to give the basic features of the experiment of
This also has the expected range of velocities and oscillaviabuchiet al.

tions in the transmitted intensity. The results of the simula-

tion are very similar to the_ detur_1ed case, in order to check X. CONCLUSION

the predictions of the semiclassical cooling theory it would

be necessary to vary the coupling between the atom and the In this paper we have investigated two simple models for
cavity during the simulation so as to model the motion of thethe motion of a single two-level atom in a single mode cavity
atom through the cavity mode and observe the distinctivavith which it is nearly resonant. A study of the motion of the
“cooling” of the atom, as in Fig. 7. Using a larger momen- atom in the semiclassical approximation, common in the
tum basis and running the simulations for longer times wouldheory of laser cooling, shows that such an atom, even if
also help to distinguish the two cases, as that would allovinitially very slow, will quickly develop large velocities and
larger velocities to develop in the case of resonant excitationarge velocity fluctuations. By filtering the transmitted inten-
Finally Fig. 12 shows the result of an attempt to reconstrucsity signals to model the actual bandwidth with which inten-
the velocity of the atom from the transmitted intensity infor- sity is measured in the experiment of Mabuehal. we have
mation as in Sec. VIII. This is obviously less successful thamroduced signals that closely correspond to those reported in
in the semiclassical case; each of the oversized peaks in th&]. We have suggested that one way of limiting the effect of
estimated velocity of the atom correspond to a decrease imomentum diffusion coefficient in the resonant standing
the magnitude of the complex analytic signal at that point inwave is to detune the cavity and the laser driving field so as
time that leads, as noted above, to less accurate evaluation w@f introduce a cooling force that will limit atomic velocities.

the velocity. In such a system the atom would be “heated” and then
10F T T T T \
c @
o 08
B osf
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= oo L . L . L . ) . ) ] FIG. 11. Results of the Monte Carlo wave-

0 2 4 6 8 10 function simulation with a detuning of
' ' ' ' A=-0.30 and the other parameters as in Fig.
10. Note the different time scale from Fig. 1@)
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