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Motion of a two-level atom in an optical cavity

A. C. Doherty, A. S. Parkins, S. M. Tan, and D. F. Walls
Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

~Received 18 December 1996!

A semiclassical model of the force and momentum diffusion on a point particle is used to describe the
motion of a two-level atom strongly coupled to a single Gaussian cavity mode. The effects of the momentum
diffusion on the motion of an atom in a cavity are investigated in a regime similar to that of the experiment
performed by Mabuchiet al. @Opt. Lett. 21, 1393 ~1996!#. It is found that a slow atom quickly develops
significant velocities along the cavity axis. The limited bandwidth in the experiment of Mabuchiet al. means
that the full intensity signal due to atomic motion in the standing wave is filtered leading to the apparently
smaller velocities observed. It is shown that a negative detuning of the laser and cavity from the atomic
resonance would lead to nonzero dipole forces and significantly reduced velocities along the standing wave. An
analysis of the intensity signal with a larger bandwidth is proposed, which would track the velocity of the atom
along the cavity axis. These results are compared with a Monte Carlo wave-function simulation similar to that
used to treat Doppler cooling.@S1050-2947~97!00407-1#

PACS number~s!: 42.50.Ct, 42.50.Lc, 42.50.Vk
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I. INTRODUCTION

Experimental research in the field of cavity quantum el
trodynamics~cavity QED! is now able to operate routinely i
the so-called ‘‘strong-coupling regime’’ for which the max
mal atom-field dipole coupling strengthg0 exceeds the cav
ity field decay ratek and the atomic spontaneous emissi
rate,G ~see, for example,@1#!. In this regime excitations can
be exchanged coherently between the atom and the field
eral times before decay processes are likely to occur,
properties of the field can be significantly altered by the pr
ence of even a single atom and, similarly, the prescence
single photon in the field will saturate the response of
atom. Recently, Mabuchiet al. @2# have achieved some
thing of a breakthrough in cavity QED research by replac
the commonly used~fast! atomic beam source with very col
atoms (T.100mK! dropped into the cavity~a few at a time!
from a magneto-optical trap~MOT!. This allows for very
long interaction times and observation of the effects of sin
atoms on the cavity field in real time. In particular, the pre
ence of an atom in the cavity, which is tuned to the atom
transition and resonantly driven through one of its mirro
with a laser field, can lead to a dramatic drop in the tra
mitted cavity intensity@3#. This intensity is measured in th
experiment by a balanced heterodyne detector.

The intensity drop that is observed in the experimen
strongly dependent on the position of the atom in the ca
as a result of the spatial variation of the electromagn
mode functionc(r ), which describes the Gaussian standi
wave structure of the mode. Given the dependence of
intensity on the atomic position, it should in principle b
possible to follow individual atomic trajectories. So, for e
ample, oscillations in the transmitted intensity, which we
observed by Mabuchiet al., may reflect atomic motion along
the cavity standing wave, with each value of the intens
corresponding to a particular position of the atom~modulo
one wavelength!. The possibility of such atomic positio
measurements via measurements of the transmitted field
been theoretically investigated by a number of authors@4–7#
561050-2947/97/56~1!/833~12!/$10.00
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for similar cavity QED systems, although typically for fa
off-resonant excitation or for weak resonant excitation, su
that atomic spontaneous emission does not figure sig
cantly. In particular Quadtet al. @8# showed that in such a
regime it should be possible to continuously monitor t
atomic position. In contrast to these earlier works, t
present analysis, and indeed the experiment of Mabu
et al., focuses on a~resonant! regime in which repeated ab
sorption and spontaneous and stimulated emission all pl
major role and strongly influence the atomic motion with
the cavity mode. This must in turn have a strong influence
the intensity signal from which one might attempt to extra
information about the atomic position or momentum. It
therefore essential to have effective models for the ato
motion in the cavity field.

This paper presents two approaches to modeling the
tion of an atom in a single mode cavity within the rotatin
wave and two-level-atom approximations. The first emplo
a semiclassical theory in which the atom is treated as a p
particle subject to a position-dependent force and momen
diffusion rate. This is a standard method used to model la
cooling and other mechanical effects of light in classic
fields @9–13#. The second approach is to quantize the ext
nal atomic coordinates as well as the internal atomic coo
nates and the cavity mode. This is very challenging since
resulting Hilbert space is so large. A quantum Monte Ca
wave-function simulation of the system is presented that
cretizes the atomic momentum in units of the photon m
mentum. This is an extension of the treatment of Mo” lmer
et al. @14#, who do not quantize the cavity field. In Sec. II w
discuss the master equation to be used in the rest of
paper; the semiclassical approximations to this master e
tion are treated in Sec. III. Section IV develops an appro
mation that treats the cavity field as a classical standing w
for the purposes of calculating the effect of the field on t
atomic motion, but varies the intensity of the standing wa
depending on the atomic position. This allows single atom
trajectories to be simulated with greater efficiency; the
sults of these simulations are given in Sec. V, while t
833 © 1997 The American Physical Society
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effect of achievable detection bandwidths is considered
Sec. VI. Section VII considers the effect of cavity field d
tunings on the atomic motion within the semiclassical a
proximation and the possibility of obtaining reduced atom
velocities. Section VIII proposes a simple scheme to reco
velocity information from the intensity signal given a suf
ciently broad detection bandwidth. Finally, Sec. IX prese
the results of fully quantum-mechanical Monte Carlo wav
function simulations of the system and compares these
sults with those obtained in the semiclassical approximat

II. THE MASTER EQUATION

The Hamiltonian for a two-level atom interacting with
single mode of the electromagnetic field in an optical cav
using the electric dipole and rotating-wave approximatio
~in the interaction picture with respect to the laser frequen!
is

H5
p2

2m
1\~v02vL!s1s21\~vc2vL!a†a1 i\g0c~r !

3~a†s22s1a!1\E~a†1a!. ~2.1!

The atomic transition frequency isv0, the cavity has a reso
nance at the frequencyvc , and the system is driven by
coherent~laser! driving field of intensityE and frequency
vL . In this paper we will always consider the case where
cavity is resonantly driven (vc5vL) with a possible detun-
ing of the light field from the atomic resonanc
(D5vL2v0). The cavity mode function is c(r )
5cos(kLx)exp@2(y21z2)/w0

2#, describing the Gaussia
standing-wave structure of the field in the Fabry-Pe´rot cav-
ity; for the experimental cavity the mode waist isw0.45
mm and the optical wavelength islL5852.359 nm for the
cesium transition employed (kL52p/lL).

Dissipation in the system is due to cavity losses and sp
taneous emission. By treating the modes external to the
ity as heat reservoirs at zero temperature it is possible
derive the standard master equation for the density oper
of the system@15# r,

]r

]t
5

2 i

\
~Hr2rH !1k~2ara†2a†ar2ra†a!

1
3G

8pE d2k̂(
«

^ud•«&2exp~2 ikLk̂–r !s2rs1

3exp~ ikLk̂–r !2
G

2
~s1s2r2rs1s2!. ~2.2!

The decay of the upper atomic level to the lower is given
G/2p55 MHz, while the cavity field decay constant
k/2p53.5 MHz. These are both less than the coupl
strength g0/2p511 MHz, corresponding to the strong
coupling regime. The third term describes the effect of sp
taneous emission on the atomic motion,ud is a unit vector in
the direction of the atomic dipole moment,k̂ is a unit vector
in the direction of an emitted photon. In this paper the p
larization of the light in the cavity field,«, will be taken to be
circular, the atomic transition will be taken to beDJ51, and
in

-

er

s
-
e-
n.

y
s

e

n-
v-
to
tor

y

-

-

the atoms will be optically pumped into a two-level syste
before the atom enters the cavity.

The intensity of the light transmitted through the cav
when the laser is on resonance with the atomic transition
the cavity mode is much reduced if the factorg0c(r ) is
large, that is, when the atom is close to an antinode of
field. Thus it is possible to some extent to track the motion
the atom in the cavity mode using information about t
transmitted intensity. The intensity of light in the cavity for
particular value of the coupling constant was calculated
finding steady-state solutions to the master equation wh
the atom was assumed to be stationary@16#. In this paper the
cooling of the atoms prior to entering the cavity effects
separation of time scales of the dynamics of the exter
degrees of freedom of the atom and the other degree
freedom in the problem. The frequency with which the ato
passes through wavelengths of the standing wave in the
ity is much less than the other frequencies involved,

1

g
¹g~r !

dr

dt
!g,k,g. ~2.3!

A truncated basis of Fock states can be used to model
system, since the cavity is typically driven such that only
few photons on average are present in the cavity. For
experimental parameters the transmitted intensity is redu
to around a tenth of its empty cavity value when the atom
at an antinode of the standing wave along the cavity axis.
the other hand, when the atom is introduced at a node
transmitted intensity is unchanged from its empty cav
value. Thus the oscillations in transmitted intensity observ
by Mabuchiet al. @2# are taken to correspond to motion o
the atom along the cavity axis.

III. SEMICLASSICAL EQUATIONS OF MOTION

This system differs from that usually considered in t
literature on the semiclassical equations of motion for a tw
level atom. The atom is normally assumed to be in an e
tromagnetic field, usually either a standing or a traveli
wave of laser light, which is unaffected by the presence
the atom. In the system under consideration the intensity
light in the mode is strongly dependent on the atomic po
tion and the electromagnetic field is a driven mode in a h
finesse cavity excited typically with only a few photons;
principle, a fully quantum-mechanical treatment of the cav
mode field is necessary. Moreover, the atomic velocity ins
the cavity will initially be very small; the mirrors of the
cavity are about 3 mm in diameter and the cavity is on
about 100mm long, thus atoms reaching the center of t
cavity mode must have very small velocities along the cav
axis, around 1 cm/s or less. However, the momentum k
associated with the absorption or emission of a single pho
results in a change of velocity for a cesium atom of arou
0.3 cm/s. Since the atom is on resonance with the ato
transition, the effects of repeated spontaneous and stimul
emission and of absorption should quickly lead to much
creased velocities of the atom. This will allow the use of t
semiclassical approximations, which assume velocities
nificantly greater than the recoil velocity, at least once
atom has been in the cavity mode for some time.
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56 835MOTION OF A TWO-LEVEL ATOM IN AN OPTICAL CAVITY
The system is in the range in which the semiclass
approximation is good. The dimensionless quan
\2kL

2/2m\G, which must be small in the semiclassical a
proximation@17,13# is of the order of 1023 for this cesium
transition. Thus, the recoil energy for the atom is much l
than the natural width and so after the emission of a sin
photon the atom will still be on resonance with the transitio
This ensures that a constant atomic velocity approxima
can be made when calculating the force and momentum
fusion coefficient and that it is possible to define the atom
position within a wavelength while defining the velocity su
ficiently well that the Doppler shift of the transition fre
quency is well defined on the scale of the atomic linewid
It is also expected for our system that the atom will ve
quickly acquire momentum several times greater than\kL so
that individual momentum kicks as a result of emission
absorption have little effect on the total momentum. Mo” lmer
et al. found very good agreement between the results of
semiclassical treatment and a fully quantum calculation
the range ofp/\kL that is relevant to this experiment@14#.

Heisenberg’s equation of motion gives the force opera
for the Hamiltonian~2.1!,

f5
dp

dt
5

1

i\
@p,H#52 i\g0¹c~r !~a†s22s1a!, ~3.1!

omitting fluctuations in the force due to spontaneous emm
sion. In the semiclassical approximation the atom is trea
as a point particle located at^r & with momentum̂ p& moving
subject to a forcê f&. The fluctuations in this force due t
spontaneous emission and atomic dipole fluctuations
modeled by calculating a momentum diffusion coefficient
a Fokker-Planck equation describing the distribution of
oms in phase space, where

D5
1

2
lim
t→`

]

]t
@^p2~ t !&2^p~ t !&2#. ~3.2!

This can be expressed in terms of the time integral of
force covariance@11#,

D5 lim
t→`

ReE
0

`

^f~ t !,f~ t2t!&dt. ~3.3!

These quantities are calculated by assuming that
atomic velocityv is constant; that is, the mass is treated
infinite. The resulting force and diffusion are used to d
scribe the motion of any particular collection of atoms. In t
regime of validity of the semiclassical theory the atomic v
locity will change slowly enough, due to the resulting force
that this will provide a good approximation for the atom
motion. The largest contribution to¹c will be from the rap-
idly varying cosine factor due to the standing wave along
cavity axis, so the greatest forces and momentum diffus
coefficient will be along this axis. It will be sufficient to
assume that the atom is roughly stationary in the other
dimensions. The coupling can be redefined to accommo
different positions of the atom in the Gaussian profile of
mode, thusg5g0exp@2(y21z2)/w0
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Hsc52\Ds1s21\E~a†1a!1 i\g cos~vxt !

3~a†s22s1a!. ~3.4!

There are several ways to calculate^f& andD for this Hamil-
tonian. Fourier components of the steady-state density ma
of the resulting master equation can be calculated by a
trix continued fraction technique since the Liouvillian h
only sinusoidal time dependence~see, for example,@18#!.
From the steady-state density matrix it is straightforward
find the force and transmitted intensity as a function of tim
and therefore position. A further matrix continued fractio
allows the momentum diffusion coefficient to be calculat
@13#. However, this calculation is prohibitively long when
is necessary to calculate these quantities for a range of
locities over the entire Gaussian profile of the mode, a
uses very large amounts of computer memory if more tha
few Fourier terms are needed. The matrix continued fract
technique does have the advantage of giving the cycle a
ages of these quantities as the first Fourier component, t
can be difficult to find since values of both the force a
diffusion vary widely over a wavelength and accurate av
ages can be difficult to obtain. A practical alternative is
integrate the master equation numerically for the trunca
basis from some initial density matrix that is close to t
steady state until the steady state is reached and evaluat
force and transmitted intensity as a function of time. To c
culate the momentum diffusion coefficient it is necessary
use the quantum regression theorem and integrate the m
equation a second time usingfr as an initial condition in
order to find the force correlation function. The integral
the force correlation gives the momentum diffusion coe
cient according to Eq.~3.3!. For a stationary atom the forc
is not time dependent and the calculation of the momen
diffusion coefficient is relatively simple. The momentum d
fusion coefficient for zero velocity and with other paramete
close to those realized in the experiment is plotted in Fig
note that the dipole force is zero since the atom is on re
nance. Figure 2 plots the force and momentum diffusion
efficient for the same parameters where the cavity and d
ing fields are slightly detuned from the atomic resonance

IV. CLASSICAL STANDING-WAVE-FIELD
APPROXIMATION

In order to develop a realistic computer simulation for t
system it is necessary to find an approximation to the
calculation given above that is capable of quickly calculat
the force and momentum diffusion coefficient for a wid
range of velocities and values ofg. The cavity is not very
different from a Gaussian standing wave in free space
ated by two counterpropagating lasers, however, the ato
position has a very strong effect on the intracavity intens
while the laser beams can be assumed to be undepleted
approach taken here is to treat the standing wave as a
but to modify the intensity of that standing wave accordi
to the intracavity intensity appropriate to the atomic positio
In this way the cavity mode is treated as ac-number con-
stant; for any given position of the atom in the cavitya is
replaced by^a&, reducing the size of the Hilbert spac
roughly tenfold in this case. Standard treatments of the fo
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FIG. 1. The semiclassical momentum diffu
sion coefficient, along the cavity axis, of an ato
strongly coupled to a few photon optical cavit
mode. The atom is on resonance with the optic
field with parameters (g0 ,k,G)5(11,3,5)/2p
MHz and the cavity is driven such that the mea
photon number in the empty cavity is 2.
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and momentum diffusion coefficient assume that the field
in a particular coherent state@11#, or is a classical driving
field @9#; that is, they also effectively treat the operatora as
a c-number constant and so these works are immedia
relevant to the present situation.

As a first approximation it is possible to find, for ze
atomic velocity, the intracavity intensity appropriate to
given atomic position, which is easy to calculate since
resulting master equation has no time dependence, and
find the force and momentum diffusion coefficient of a tw
level atom in a classical standing wave of this intensity; t
is valid as a result of the separation of time scales mentio
above, the motion of the atom is not sufficiently fast
strongly perturb the cavity field. The force~setting
V5g^a& where^a& is the field expectation value calculate
from the full master equation!

^f&52 i\¹V~^r &!^s22s1& ~4.1!

can be found by solving the optical Bloch equations fo
particle of velocityv; thus cavity decay must presumably b
slow enough to not significantly affect the atomic respon
except insofar as it serves to establish the steady-state
Moreover the atom and field operators effectively decor
late, ^as1&.^a&^s1&, which must require thatg is not too
large. The effect of these approximations can be found
is
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s
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comparing the force and momentum diffusion coefficie
calculated in this way with those calculated from the origin
semiclassical approximation in Sec. III. This comparison
made in Fig. 3 for the force and momentum diffusion co
ficient of a detuned cavity. The agreement of the diffusion
the resonant case is similarly good, which justifies their u
in simulations for the parameters of the experiment of Ma
chi et al.

If significant velocities are to be modeled this new pro
lem requires a continued fraction technique for the Fou
components of the force@9#. The time correlations of the
force obey similar equations to atomic operators@19#, and
this allows Fourier components of the diffusion to be fou
by using matrix continued fractions as before@13#. The force
and momentum diffusion coefficient of an atom in a las
field have been solved analytically and written in a clos
form by Gordon and Ashkin@11#, to first order in the
kLv/G . This means that the force and momentum diffusi
coefficient can be computed very fast for a wide range
values ofg and of the detuningD5vL2v0 over the range
of velocities of interest in the experiment. For zero detun
when the atom is in a standing wave the dipole force is z
and the diffusion has a particularly simple form:

Dxx52\2kL
2V2sin2~kLx!/G1\2G^kL–x̂&

2^s1s2&/2.
~4.2!
y
n
d

o-
FIG. 2. ~a! The semiclassical force and~b!
momentum diffusion coefficient, along the cavit
axis, of an atom strongly coupled to a few photo
optical cavity mode. The optical field is detune
from the atom with parameters (g0 ,k,G)
5(11,3,5)/2p MHz, the detuning isD520.3G,
and the cavity is driven such that the mean ph
ton number in the empty cavity is 2.
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FIG. 3. Comparison between~a! the force and
~b! the momentum diffusion coefficient of a
atom strongly coupled to a few photon optic
cavity mode calculated from the full master equ
tion and in the approximation used in the simul
tions. The optical field is detuned from the ato
with parameters (g0 ,k,G)5(11,3,5)/2p MHz,
the detuning isD520.3G, and the cavity is
driven such that the mean photon number in t
empty cavity is 2.
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The factor ^kL–x̂&
2reflects the distribution of spontaneou

emission along the cavity axis@19#. For the simulation it was
assumed that the atom was optically pumped into a two-le
system by circularly polarized light on aDJ51 transition
and the values of̂kL–x̂&

2 were chosen accordingly. The firs
term is the most important contribution to the momentu
diffusion coefficient along the cavity axis. In the other dire
tions the second term~spontaneous emission! is the more
significant as the first is reduced by a factor (1/w0kL)

2 @9#
due to the slower Gaussian variation of the field in tho
directions.

In Fig. 4 the momentum diffusion coefficient for zer
detuning with parameters very similar to those achieved
@2#, when the atom is near the center of the Gaussian pro
of the mode, is plotted for the atom in the cavity, calcula
as in Sec. III and in the classical standing-wave approxim
tion. For comparison, the momentum diffusion coefficie
for a two-level atom in a laser standing wave of the sa
intensity is also shown. Note that these quantities have v
different behaviors when the atom is in a cavity as oppo
to a laser beam and the good agreement of the full calc
tion with the approximation of the cavity as a standing wa
of position-dependent intensity.

V. SIMULATION OF ATOMIC MOTION

A Langevin-equation-like simulation was run to plot th
progress of a single atom through the cavity. At each ti
el
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e

step the field intensity in the cavitŷa& is calculated as for a
stationary atom and this is used to calculate the force
momentum diffusion coefficient on the particle at that po
in time, as in Sec. IV. A vector of Gaussian random va
ables,W, of mean zero and standard deviation 1 is th
generated and each componentva of the atomic velocity
altered at thei th time step according to

va
i85va

i 1A2Daa
i Dt/m2Wa

i , ~5.1!

whereDt is chosen such that the cavity intensity chang
little in a single time step. For the plane perpendicular to
cavity axis spontaneous emmission was the dominant co
bution to the momentum diffusion coefficient and this w
evaluated as in the second term of Eq.~4.2!, which refers to
the diffusion for the cavity axis itself. The position and v
locity of the atom are then moved forward under the stand
kinematic equations

xi115xi1va
i8Dt1 1

2 f
i~Dt !2/m,

~5.2!

vi115va
i81f iDt/m.

The atoms in each simulation began just above the ca
mode. They were evenly distributed over a wavelength of
standing wave along the cavity axis and were normally d
o-
e
o-
o-
rs

pty
FIG. 4. Comparison of the semiclassical m
mentum diffusion coefficient in a standing wav
in free space and strongly coupled to a few ph
ton optical cavity mode. The atom is on res
nance with the optical field with paramete
(g0 ,k,G)5(11,3,5)/2p MHz and the driving
such that the mean photon number in the em
cavity is 2.
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FIG. 5. Plot of~a! cavity transmission and~b!
atomic velocity along the cavity axis for a simu
lation of atomic motion in the cavity. The atom i
on resonance with the cavity and the drivin
field, (g0 ,k,G)5(11,3,5)/2p MHz, and the cav-
ity is driven such that there are on average tw
photons in the cavity when the atom is at a no
of the standing wave.
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tributed across the Gaussian mode profile along they axis.
The vertical velocity component was appropriate to t
gained from the 7-mm drop from the MOT to the cavi
mode and the horizontal velocity components were take
be normally distributed about zero velocity with a standa
deviation of 1 cm/s. This is the order of velocities that wou
make it from the MOT to the cavity mode.

The on-resonance case has zero dipole force but the
est momentum diffusion coefficient as a result of fluctuatio
in the atomic dipole and of spontaneous emission. Thu
was found that the velocity of the atoms could increase v
quickly, with atoms attaining velocities of the order of 1 m
The fluctuations of the velocity were very large and the at
would frequently pass through regions of small velocity. T
transmitted intensity signal shows very fast oscillations a
result of high velocities, which are at first sight not in agre
ment with the results given in@2#. Figure 5 gives a typica
example of the simulations along with a plot of the veloc
of the atom along the cavity axis. Note that the atomic
locity remains small until the atom approaches the cente
the mode, where the increased field intensity leads to a v
large momentum diffusion coefficient and in this case a d
matic change in the atom’s velocity. As the atom leaves
mode the momentum diffusion coefficient again decrea
and the velocity fluctuations are reduced such that the a
leaves the mode with a much larger velocity along the ca
axis than initially. This is the origin of the very asymmetr
transmitted intensity signal in Fig. 5 and in many other ru
of the simulation. Moreover the Gaussian envelope of
transmitted intensity signal, which reflects the Gaussian p
file of the mode function, is slightly modified by the effec
of spontaneous emission on the atomic velocity perpend
lar to the cavity axis; more pronounced examples of this w
be seen in Fig. 6 below.

VI. THE EFFECT OF FINITE DETECTION BANDWIDTH

The bandwidth of the heterodyne apparatus, which m
sures the intensity of the light transmitted through the cav
is 100 kHz in the experiment of Mabuchiet al., which is
equivalent to a period of the intensity oscillations of 1025 s
or to atomic velocities of only 4 cm/s. Higher frequencies
the intensity signal will not be detected and the tim
t
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intensity information obtained by the measurement will
some average of an infinite bandwidth signal over short ti
spans. Where the atomic motion happens to be slow the
tensity measurement follows the changes in the transmi
intensity with atomic position and the signal has structu
like those found in the experiment. Where the atomic mot
is faster the oscillations in intensity due to the motion of t
atom along the standing wave are averaged out in the
served signal. The variation in intensity is then due to
slowly varying Gaussian profile of the cavity mode.

To model this effect the intensity data were pass
through a digital low-pass Butterworth filter with a cuto
frequency of 100 kHz and then plotted against time. T
order of the filter used is limited by the accuracy with whi
the filtering could be computed given the sampling rate
the simulations. The resulting curves, which are plotted
Fig. 6 along with the original infinite bandwidth intensit
signal, are very like those observed experimentally and p
ted in @2#. These plots show structure where the atom h
chanced to slow down as a result of its random walk
momentum space. Increasing the bandwidth should resu
signals with more and more structure even without a cha
to any experimental parameters. Note, however, that
structures in the signals in@2# could also be the result o
effects outside the two-level approximation used in these
culations. There was no optical pumping of the atoms pr
to entering the cavity, which would trap the atoms in a tw
level system. This will mean that transitions between
different sublevels of the ground and excited states that h
different couplings to the field will have an effect on th
atomic motion. Moreover asymmetry of the signals could
due to optical pumping of the atom into another hyperfi
ground state that is not coupled to the cavity field@2#.

VII. COOLING IN THE CAVITY

A possible extension of the experiment is to detune
electromagnetic field from the atomic transition. This w
allow a nonzero mean dipole force, which, if the detuning
in the right direction, will keep the atomic velocity small. I
the on-resonance case the absence of a dipole force m
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FIG. 6. ~a!, ~c!, ~e!, and ~g!
Transmitted intensity signal for
several simulations.~b!, ~d!, ~f!,
and ~h! The transmission signa
passed through a digital low-pas
Butterworth filter of fourth order
with cutoff frequency 100 kHz.
This simulates the current exper
mental bandwidth of Mabuchiet
al. @2#. The atom is on resonanc
with the cavity and the driving
field, (g0 ,k,G)5(11,3,5)/2p
MHz, and the cavity is driven
such that there are on average tw
photons in the cavity when the
atom is at a node of the standin
wave.
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that the atomic velocity varies more and more wildly wi
time and the simulations show that atoms can emerge f
the cavity with velocities as high as 1 m/s along the cav
axis. Where there is a cooling force, its interplay with t
momentum diffusion coefficient, that is fluctuations in t
force, would lead to some steady-state velocity distribut
for the atom in the cavity if it were confined to a given poi
in the Gaussian mode profile, just as the force and diffus
determine the eventual temperature of a system of atom
the case of Doppler cooling.

The simplest adjustment is to negatively detune the la
from the atomic transition and then tune the cavity to
laser beam, just as in the current experiment. The force
momentum diffusion coefficient were calculated in Sec.
and plotted for the parameters used in the previous sim
m
y

n
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tions andD520.3G; in Fig. 3 they are plotted in compari
son to those relevant to a standing wave in free space an
the approximation used in the simulations. Once again
picture of an atom moving in a classical standing wave
position-dependent intensity gives a very good character
tion of the momentum diffusion coefficient of an ato
strongly coupled to a cavity mode. The value of the detun
was chosen to give the largest cycle-averaged cooling fo
By tuning the cavity to the driving laser field this schem
retains a very significant drop in transmitted intensity wh
the atom is in the cavity.

Simulations were run for this detuned case using both
matrix continued fraction technique and the small veloc
expressions given by Gordon and Ashkin for the force a
momentum diffusion coefficient of a two-level atom in
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classical standing wave or coherent state. A problem with
matrix continued fraction calculation was the large num
of Fourier terms necessary to get an accurate descriptio
the diffusion around a node, which made these simulati
significantly longer. However, the two methods give simi
results. Atomic velocities in the center of the mode reach
little more than 0.4 m/s, which is significantly slower tha
those observed where there is no cooling force, although
by an order of magnitude. However, the atoms were on
erage much slower as they left the cavity mode. The res
for a single run of the simulation are plotted in Fig. 7, whic
by comparison with Fig. 6, demonstrates this feature of sm
final velocities.

There is a simple way to understand why the atoms
likely to have smaller velocities and smaller velocity fluctu
tions as they leave the cavity mode. In the standard theor
Doppler cooling the final velocity distribution of atoms in th
laser field is the result of the competing effects of mom
tum diffusion coefficient acting to spread the atomic veloc
distribution and the cooling force acting to slow the atom
At low velocities the cycle averaged forceF is linear with
velocity, F52av, and this results in a Gaussian veloci
distribution with temperature

kBT5m^v2&5D/a, ~7.1!

FIG. 7. Results of a typical simulation with laser detuni
D520.3G and other parameters as in Fig. 6.~a! Cavity transmis-
sion. ~b! The transmission signal passed through a digital low-p
Butterworth filter of fourth order with cutoff frequency 100 kH
This simulates the current experimental bandwidth of Mabuchet
al. @2#. ~c! The atomic velocity along the cavity axis.
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whereD is the zero-velocity cycle-averaged momentum d
fusion coefficient~see, for example,@13#!. Although in this
system there is only one atom, if it were confined to mo
only in one dimension it would reach a steady state in wh
its velocity had this Gaussian distribution in time. Such
single atom cannot be said to have a temperature, but
mean-squared velocity predicted by Eq.~7.1! does have a
physical meaning. Although the real atom moves across
Gaussian profile of the cavity mode it does so slowly and
steady-state root-mean-square~rms! velocities appropriate to
the value ofg at each point will be a good indication of th
velocities to be expected in different parts of the mode.
find these steady-state rms velocities as a function ofg, the
force on the atom in the cavity for a range of small velocit
was calculated and cycle averaged in order to calculatea.
The zero-velocity cycle-averaged momentum diffusion co
ficient was evaluated and Eq.~7.1! used to calculate the
steady-state rms velocities for the values ofg0 ,G,D,k,E,
used in the simulations. Note that this was done in the
proximation of Sec. IV, which was used in the simulation
The results are plotted in Fig. 8 as a function ofg. In agree-
ment with the simulations, this predicts large rms velocit
for larger values ofg, that is, in the most intense parts of th
Gaussian mode. As the atom falls out of the mode and do
the intensity profile the atom is likely to have much low
velocity and lower velocity fluctuations. The largest mea
squared velocity is equivalent to a temperature of a system
atoms of around 1 mK and at low intensity the atomic v
locity distribution tends towards the Doppler limit for cesiu
of 127mK or rms velocity 8.9 cm/s. The value on the grap
is slightly lower than this, but this is most likely the result
the approximations made in calculating the force and m
mentum diffusion coefficient. The Doppler limit, which de
pends only on the atomic mass and linewidth, would not
improved upon by cooling in the cavity unless more atom
levels and cavity mode polarizations were considered.

In the experiment of Mabuchiet al. the laser driving of
the system must be sufficiently intense to ensure a g
signal-to-noise ratio in heterodyne detection of the transm
ted intensity. It appears that the resonant and intense l

s

FIG. 8. Steady state root-mean-square velocities of the a
confined to move only along the cavity axis.
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56 841MOTION OF A TWO-LEVEL ATOM IN AN OPTICAL CAVITY
driving quickly results in atomic velocities that are mu
larger than when the cold atoms reach the cavity mode e
where the field is detuned from atomic resonance. If this
the case the velocities that are attained should leave
information in the intensity signal that is measured, as d
cussed below. However, this calculation suggests that if
driving field could be altered quickly enough after an atom
detected in the cavity its velocity would be reduced by ram
ing down the driving intensity in this detuned situation. It
possible to change the driving laser intensity and detuning
a time scale of the order of 100 ns@20#, which is much less
than the tens of microseconds that the atom remains in
very center of the mode so it is not unrealistic to investig
this possibility; this is also somewhat shorter than the ti
scale of the atomic motion along the standing wave. Inter
ing possibilities would then include trapping this single ato
near an antinode of the standing wave by detuning the l
field and the cavity much farther from resonance~the laser
intensity would have to be increased in this process!. This
would allow a transition from the present regime that is s
sitive to the presence of a single atom to the more freque
considered case of a single atom trapped at an antinode
far detuned optical standing wave, in which as noted abov
has been shown that it would be possible to track the posi
of the atom through measurement of the quadrature phas
the transmitted light@8#. Such a system has been investiga
by Wonget al., who have shown that it may be possible
‘‘juggle’’ the atom, keeping it at an antinode and thus ove
coming the effects of gravity@21#; in some circumstances
may even be possible to map out the atomic Wigner func
@22#.

VIII. VELOCITY INFORMATION
FROM THE TRANSMITTED LIGHT INTENSITY

Given an experimental measurement of the transmi
intensity output from the cavity, we would like to get a
much information as possible about the system. For a
tionary atom ideas similar to the classical theory of syst
identification have been applied to find the couplingg, which
also relates to the atomic position, from the timing of cav
and atomic decays@23#. In this section we take rather a di
ferent approach, applying some signal processing techniq
to get an estimate of the atomic velocity from the transmit
intensity signal.

It is not necessary to have an infinite bandwidth in t
experiment to get good information about the atomic vel
ity along the cavity axis. With a bandwidth of 1 MHz
would be possible to measure atomic velocities of up to
m/s, which would allow the atom’s velocity to be known fo
much of its time in the cavity. There is a simple scheme
recover this information from just the transmitted intens
signal. The frequency of the intensity oscillations can be c
culated as a function of time and since one period of
signal is equal to the time it takes the atom to travel fro
node to node in the standing wave this frequency is prop
tional to the velocity along the cavity axis. To do this th
signal is fast Fourier transformed and all the negative
quency components are set to zero. Then the inverse tr
form is taken, giving the complex analytic signal that rota
in the complex plane around the time axis at an angu
en
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velocity, which is the frequency of the transmitted intens
signal, just as the frequency of the function exp(ivt) is sim-
ply the angular velocity of its argument.

To achieve a good correspondence between the frequ
of the complex analytic signal and the velocity that is r
corded by the simulation it is necessary to remove the a
age value from the signal. Due to the Gaussian profile of
mode this average value is a slowly varying function of tim
and so this is most easily achieved by filtering out the sm
est frequencies prior to taking the Fourier transform. T
magnitude of the complex signal now reflects the magnitu
of the oscillations in intensity, large in the center of the mo
and small at the edges. It is also necessary to filter out h
frequency noise in the simulated signal. In the simulated s
nals, this noise could be the result of the discontinuo
changes in velocity at each time step. However, in a r
application it would still be necessary to low-pass filter
order to remove shot noise from the signal. This also ser
the purpose of simulating a realistic experimental bandwid
since measuring the transmitted intensity of the cavity w
bandwidths larger than 1 MHz will not be achievable in t
near future. The number of data points affects the rate
which particular frequencies cause the complex signal to
tate around the time axis; there must be enough data po
that the frequencies that correspond to atomic motion ca
rotation around the axis that is only a very small part of a f
cycle for each time step. This means that the filters that
be used are low order and thus have large phase distor
which is the information in the signal that we wish to pr
serve. Thus the signal is forward and reverse filtered to
move the phase distortion from the first pass; this proces
noncausal and so was not considered in modeling the eff
of real measurement apparatus but could easily be emplo
in the post-analysis of actual data. With these precaution
is possible to reproduce very closely, over a wide veloc
range, the velocity curve generated by the simulation j
from the transmitted intensity information.

Figure 9 gives an example of this procedure for the res
plotted in Fig. 7. The infinite bandwidth intensity signal
first band-pass filtered. In this case a Butterworth filter
order 2 with pass band 4–800 kHz is used, although this
be optimized for a particular signal depending on the atom
velocity. After removing the negative frequencies the rate
change of the argument of this complex signal is compa
to the actual velocity information obtained from the simu
tion. Note that very small velocities are not well modele
this is due to the low-pass filtering, which is necessary
remove the average value of the signal, but which also
moves information about very small atomic velocitie
Where the atom is leaving the cavity the variations of inte
sity, and hence the magnitude of the complex signal, beco
much smaller and the model does not give an accurate v
of the velocity. The argument of the signal is in this ca
very poorly defined. However, the velocity of the atom
reproduced remarkably faithfully for a wide range of veloc
ties while the atom is in the most intense part of the mod

IX. A QUANTUM MODEL OF THE MOTION:
MONTE CARLO WAVE-FUNCTION SIMULATION

An alternative to the above semiclassical theory is to
tempt to retain the quantization of the atomic external va
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FIG. 9. Comparison of velocity information
obtained from~a! the transmitted intensity signa
with ~b! the actual~absolute value of! velocity
along the cavity axis in a single run of the simu
lation at detuningD520.3G.
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ables. This will be especially important in modeling the in
tial atomic motion since the atom is expected to be moving
only a few times the recoil velocity. We performed a m
mentum space Monte Carlo wave-function simulation for
system along the lines of Mo” lmer et al. @14#. Only one di-
mension was considered and the momentum was quan
in units of the photon recoil momentum and truncated at 2
possible momentum states; this allows atomic velocities
only around 0.3 m/s. The system obeys the master equa
~2.2! where the position and momentum are no longer vec
quantities. An unraveling of this master equation was cho
that corresponds to perfect photon counting of light emit
from the cavity mirror and out the sides of the cavity. Th
does not correspond directly to the experiment of Mabu
et al., which employs heterodyne detection; a stocha
Schrödinger equation would be necessary to correctly mo
the measurement backaction in this case@24#. Each sponta-
neous emission results in a momentum kick to the atom
due to the discretization of momentum the only possi
kicks are2\kL,0,\kL along the cavity axis. The probabilit
of these three collapses was assigned in the ratio1

5:
3
5:

1
5 as this

is the best representation of the directional distribution
spontaneous emission~this is consistent with that chose
above for the distribution of spontaneous emission and
sumes aDJ51 transition in as1-polarized beam!. Thus
there are four possible collapses for the system:

C15A2ka, ~9.1a!

C25AG/5exp~2 ikLx!s2 , ~9.1b!

C35A3G/5s2 , ~9.1c!

C45AG/5exp~ ikLx!s2 , ~9.1d!

and this results in the non-Hermitian Hamiltonian for t
Monte Carlo wave-function simulation

Heff5H2
i\

2 (
m

Cm
†Cm ,

~9.2!
t

e

ed
0
f
on
r
n
d

i
ic
l

ut
e

f

s-

H5
p2

2m
2\Ds1s21 i\g0cos~kLx!~a†s22s1a!

1\E~a†1a!.

The wave function for the system is evolved according
this non-Hermitian Hamiltonian until its norm is less tha
some randomly generated number between zero and on
which point one of the four possible collapses takes pl
and the wave function is renormalized. These collapses
recorded as a classical record of the evolution and at reg
intervals in the evolution expectation values of the transm
ted intensity and atomic momentum are calculated from
wave function. The Fock state basis for the cavity mode w
truncated as before at the tenth number state. Note
Mølmer et al. assume a classical laser field in their simu
tions of Doppler cooling, so once again the necessity of tre
ing the cavity mode quantum mechanically differentiates t
simulation from conventional Doppler cooling calculation
The atom was initially in the ground state; its momentu
distribution was a Gaussian wave packet with initial me
momentum 3\kL ~equivalent to a velocity of around 1 cm/s!
and with a standard deviation of\kL . This is roughly
equivalent to localization in aroundl/7. Each individual tra-
jectory was taken to approximate a possible path of a p
ticular atom in the cavity given the idealized measurem
scheme of perfect photodetection.

These simulations gave oscillations in the transmitted
tensity very similar to those predicted earlier and the m
mentum information was also in good agreement with
predictions of the semiclassical theory. They were perform
with the cavity field both on-resonance and detuned from
atomic transition, although in the on-resonance case l
simulations were not possible due to the likelihood of t
atom developing momenta too large for the basis of mom
tum states that was employed. In Fig. 10 the expecta
value of the transmitted intensity and the atomic moment
are plotted for a 30ms simulation for the on-resonance sit
ation corresponding to the experiment of Mabuchiet al., the
atom quickly develops a significantly increased velocity a
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FIG. 10. Results of the Monte Carlo simula
tion for atom, cavity, and driving field on reso
nance. The~a! cavity transmission and~b! veloc-
ity of the atom are calculated from th
expectation value of the transmitted intensity a
momentum of the system at each time step. T
parameters for the system ar
(g0 ,k,G)5(11,3,5)/2p MHz and the cavity is
driven such that there are on average two photo
in the cavity when the atom is at a node of th
standing wave.
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the transmitted intensity shows oscillations very similar
those that resulted from the semiclassical simulations. O
30 ms is shown since in that time the atom develops velo
ties that make the truncation of the momentum basis st
invalid. Figure 11 shows the results of a simulation last
100 ms with the field detuned from the atomic resonan
This also has the expected range of velocities and osc
tions in the transmitted intensity. The results of the simu
tion are very similar to the detuned case, in order to ch
the predictions of the semiclassical cooling theory it wou
be necessary to vary the coupling between the atom and
cavity during the simulation so as to model the motion of
atom through the cavity mode and observe the distinc
‘‘cooling’’ of the atom, as in Fig. 7. Using a larger momen
tum basis and running the simulations for longer times wo
also help to distinguish the two cases, as that would al
larger velocities to develop in the case of resonant excitat
Finally Fig. 12 shows the result of an attempt to reconstr
the velocity of the atom from the transmitted intensity info
mation as in Sec. VIII. This is obviously less successful th
in the semiclassical case; each of the oversized peaks in
estimated velocity of the atom correspond to a decreas
the magnitude of the complex analytic signal at that poin
time that leads, as noted above, to less accurate evaluati
the velocity.
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While this model could be developed further~for in-
stance, to include atomic motion in more than one dimens
as suggested above! we have shown that the results of a ful
quantum model of the motion are consistent with the ear
semiclassical analysis. It appears that a fully quantum mo
is not essential to give the basic features of the experimen
Mabuchiet al.

X. CONCLUSION

In this paper we have investigated two simple models
the motion of a single two-level atom in a single mode cav
with which it is nearly resonant. A study of the motion of th
atom in the semiclassical approximation, common in
theory of laser cooling, shows that such an atom, eve
initially very slow, will quickly develop large velocities and
large velocity fluctuations. By filtering the transmitted inte
sity signals to model the actual bandwidth with which inte
sity is measured in the experiment of Mabuchiet al.we have
produced signals that closely correspond to those reporte
@2#. We have suggested that one way of limiting the effect
momentum diffusion coefficient in the resonant stand
wave is to detune the cavity and the laser driving field so
to introduce a cooling force that will limit atomic velocities
In such a system the atom would be ‘‘heated’’ and th
-
f
g.
FIG. 11. Results of the Monte Carlo wave
function simulation with a detuning o
D520.3G and the other parameters as in Fi
10. Note the different time scale from Fig. 10.~a!
Cavity transmission.~b! Atomic velocity.
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FIG. 12. Comparison of~a! the absolute value
of the velocity recorded at each time step of t
simulation of Fig. 11 with~b! the velocity infor-
mation to be gained from the transmitted inte
sity signal. A low-pass filter of cutoff 700 kHz
was applied to the signal and the average va
subtracted before removing the negative fr
quency and finding the angular velocity of th
argument of the resulting complex signal. Th
peaks in the signal each relate to a small value
the magnitude of the complex analytic signa
which makes the calculation of the angular velo
ity inaccurate.
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‘‘cooled’’ as it passed through the cavity mode, and this ki
of control of the atomic velocity could lead to further inte
esting experiments. A simple means of obtaining the velo
from the transmitted intensity signal is proposed, wh
would track the atomic velocities if the experimental ban
width could be broadened. Finally a simulation of the ato
cavity system that quantizes all the degrees of freedom f
one-dimensional model has been investigated and foun
give very similar results.
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