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Radiation conditions for the time-dependent Schro¨dinger equation:
Application to strong-field photoionization
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Radiation conditions are introduced as an exact method to truncate numerical solutions of the time-
dependent Schro¨dinger-equation at the boundaries of the numerical grid. A rigorous derivation of radiation
conditions is given by the Green-function method for one- and three-dimensional regions. An accurate finite-
difference representation is obtained for a one-dimensional region. The method is applied to calculations of
strong-field photoionization. The calculation of ionization probabilities and energy spectra by the truncated
solution is illustrated.@S1050-2947~97!06107-6#

PACS number~s!: 32.80.Rm, 31.15.2p
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I. INTRODUCTION

Over the past decade, the numerical solution of the tim
dependent Schro¨dinger equation~TDSE! has received broad
attention in the study of atomic and molecular systems
particular, there have been great advances in the treatme
atoms in strong radiation fields@1#, demonstrating various
nonperturbative phenomena, e.g., in above-threshold ion
tion ~ATI ! @2# and optical harmonic generation@3#. While
most previous computations have been based on
dimensional model atoms@4–9#, more realistic multidimen-
sional atoms have been successfully treated in some c
@10–13#. Numerical TDSE calculations also offer a valuab
complement to Floquet methods otherwise widely used
atomic physics@14#.

In this work, an exact method is presented to trunc
numerical solutions of the TDSE at the boundaries of
numerical grid. It is our principal goal to demonstrate t
computational efficiency and accuracy of this method
calculations of strong-field photoionization. For simplicit
the present calculations have been limited to a o
dimensional model atom, although future three-dimensio
extensions appear conceivable.

The present approach is based on exact boundary co
tions for outward propagating solutions of the TDSE.
analogy with the theory of electromagnetic waves, th
boundary conditions will be called radiation conditions@15#.
While radiation conditions are commonly used for mon
chromatic waves, their general form for an arbitrary tim
dependent solution on an arbitrarily shaped boundary se
less well understood. The general boundary condition con
tutes a linear relationship between boundary values, whic
nonlocal in space and time. The derivation of the appropr
propagator and of an accurate discretization scheme re

*Present address: Max-Planck-Institut fu¨r Polymerforschung,
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sent the basic problems to be solved for computational
plications.

In previous work, boundary reflections have often be
recognized as a crucial limitation in TDSE calculations.
simplead hoc~e.g., rigid, periodic! boundary conditions are
chosen, the wave function is reflected at the boundar
causing an unphysical feedback to the system. For comp
tional convenience, one therefore often needs to truncate
wave function in the asymptotic region. One of the stand
truncation procedures is based on absorbing diffuse bou
aries. Absorbing boundaries have been modeled by var
types of imaginary-valued potentials@4,16–18#. Particularly
accurate results have been obtained for a properly cho
linear absorber function@18#. A related truncation method
uses wave-function splitting@19#, which propagates the
asymptotic and interacting parts of the wave function se
rately. Both methods are approximate in the sense tha
weak variation of parameters in the absorber region is
quired.

Occasionally, exact truncation methods have also b
reported. Exact convergence in the asymptotic region can
achieved by analytic continuation, using complex coordin
contours@20# or complex eigenfunction expansions@21,22#.
Boundary conditions similar to those presented here h
already been studied in a more mathematical context@23#.
However, the method of derivation and the final discretiz
tion schemes are different. The present approach is base
Green functions, and the discrete representation is obta
by removing a singularity from the kernel before makin
finite-difference approximations. Apparently, the applicab
ity of radiation conditions to atoms interacting strongly wi
an electromagnetic field has not been addressed before.

In Sec. II, a general background is presented, show
how radiation conditions for the TDSE can be derived a
lytically by the Green-function method. This method appli
equally well to a large class of partial differential equation
including parabolic, hyperbolic, and elliptic equations@24#.
The use of radiation conditions in numerical computatio
therefore may be of general interest in diverse fields.
763 © 1997 The American Physical Society
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764 56K. BOUCKE, H. SCHMITZ, AND H. -J. KULL
accurate finite-difference representation of these bound
conditions can be obtained in the one-dimensional ca
which represents the principle result of this work.

In Sec. III, the numerical method is applied to TDSE c
culations of photoionization. Thereby the accuracy of
method is demonstrated by comparison with the full soluti
and furthermore, explicit calculations of ionization probab
ties and energy spectra are presented. Atomic units wil
used throughout this paper.

II. RADIATION CONDITIONS

Radiative boundary conditions are commonly introduc
in the frequency-momentum domain, where ingoing and o
going waves, propagating along a particular direction,
simply be distinguished by the sign of the group veloci
However, this criterion is not immediately applicable to n
merical computations in the space-time domain. Theref
in this section, radiation conditions will directly be intro
duced in the space-time domain by using the Green-func
method. The problem of specifying an outward propagat
solution by boundary values can be reduced to the dete
nation of a particular Green function for the region, exter
to the boundary. The general method will be demonstrate
the following by considering the specific case of the fre
particle TDSE. The corresponding Green function will
explicitly calculated for a one-dimensional half-space and
the region exterior to a three-dimensional sphere. The o
dimensional result will be further reduced to a finit
difference expression for computational applications.

A. Green-function method

Consider a spatial regionR enclosed by a surfaceSwhere
radiative boundary conditions are required. Letc(x,t) de-
note the wave function of an electron, which is localiz
initially, at time t50, within R but may propagate outwar
through the surfaceS into the exterior region for times
t.0. Specifically, we will assume that the propagation in
exterior region is governed by the free-particle TDSE,

L~x,t !c~x,t !50, L~x,t !5 i ] t1
1
2D. ~2.1!

The exterior solution can be completely determined in ter
of boundary values for either the wave function or its norm
derivative onS. These boundary values will be denoted a

c~x,t !uS5 f ~xs ,t !, ]nc~x,t !uS5g~xs ,t !, ~2.2!

respectively, where]n5n–¹ denotes the normal derivativ
onS. The surface normal unit vectorn is taken directed from
the surfaceS toward the exterior region. If, for instance
g(xs ,t) is prescribed,f (xs ,t) will be determined by the so
lution of Eq. ~2.1! subject to the outgoing wave conditions

c~x,0!50, c~x,t !u uxu→`50 ~2.3!

for the external region. The relationship between the bou
ary valuesf andg represents the desired boundary condit
for the internal regionR.

The basic equation for expressing the exterior solution
terms of initial-boundary values is the Lagrange-Green id
tity of the operatorL. It can be derived by multiplying the
ry
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left-hand side of Eq.~2.1! by an arbitrary functionK(x,t)
and integrating this expression over the volumeV of the
exterior region and the time interval fromt50 up to t5`.
Denoting integration variables by a prime, and performin
number of partial integrations, one finds

E
V
dV8E

0

`

dt8$K~x8,t8!L~x8,t8!c~x8,t8!

2c~x8,t8!L* ~x8,t8!K~x8,t8!%

5E
V
dV8$ iK ~x8,t8!c~x8,t8!%u t850

`

1 1
2 E

0

`

dt8E
]V
df8–$K~x8,t8!¹8c~x8,t8!

2c~x8,t8!¹8K~x8,t8!%, ~2.4!

whereL* (x,t)52 i ] t1
1
2D, and ]V denotes the surface o

the exterior region, consisting of the inner surfaceS and an
outer surface at infinity. This identity holds between the o
eratorsL andL* for arbitrary functionsc(x,t) andK(x,t).

To obtain a boundary-integral representation of the ex
rior solution in terms of the boundary valuesg, the function
K(x8,t8) will now be defined as the Green functio
K(x,t;x8,t8), satisfying the initial-boundary value problem

L* ~x8,t8!K~x,t;x8,t8!5d3~x2x8!d~ t2t8!, ~2.5a!

K~x,t;x8,`!50, ~2.5b!

]n8K~x,t;xs8,t8!50, ~2.5c!

$K]n8c2c]n8K%u ux8u→`50. ~2.5d!

Using these properties forK, and noting that the exterio
solutionc satisfies Eqs.~2.1! and ~2.3!, there follows, from
Eq. ~2.4!,

c~x,t !5 1
2 E

0

`

dt8E
S
dS8K~x,t;xs8,t8!g~xs8,t8!. ~2.6!

The surface integral vanishes at the outer surface, and a
inner surfacedf852n8dS8. Evaluating this solution on the
boundaryS yields

f ~xs ,t !5 1
2 E

0

`

dt8E
S
dS8K~xs ,t;xs8,t8!g~xs8,t8!. ~2.7!

In general this boundary condition is nonlocal in space a
time. The boundary value of the wave function at the surfa
point xs at time t is related to the normal derivatives of th
wave function at all surface pointsxs8 at all previous times
t8. The determination of the Green functionK(xs ,t;xs8,t8)
remains the basic problem to be solved.

B. One-dimensional half-space

For a one-dimensional half-space,uxu.uxsu, the Green
function K is a simple modification of the familiar free
particle Green function for an unbounded region. Accord
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56 765RADIATION CONDITIONS FOR THE TIME-DEPENDENT . . .
to Eq. ~2.5!, it is identically zero fort8.t. It may therefore
be calculated by considering a Laplace transformation
time,

K̂~x,t;x8,v!5E
2`

`

dt8K~x,t;x8,t8!eivt8, ~2.8a!

K~x,t;x8,t8!5
1

2pECdvK̂~x,t;x8,v!e2 ivt8. ~2.8b!

The Laplace transform~2.8a! converges at the upper integr
tion limit t8→` because of the initial condition~2.5b!. At
the lower integration limit, convergence is achieved by d
fining v in the complex half-plane Im(v),c below all the
singularities ofK̂(x,t;x8,v). The integration contourC of
the inverse Laplace transform~2.8b! has to be chosen within
this half-plane parallel to the real axis. Applying the Lapla
transformation to Eq.~2.5a! with the initial condition~2.5b!
yields

]x8
2 K̂22vK̂52eivtd~x2x8!. ~2.9!

The particular solution satisfying the boundary conditio
~2.5c! and ~2.5d! is readily found to be

K̂5
2 i

k
eivt$eikuz81zu1eikuz82zu%, ~2.10!

wherez5x2xs , z85x82xs, andk5 iA2v. The domain of
convergence ofK̂ is the whole half-plane Im(v),0 and the
k branch has to be chosen such that Im(k).0 for
Im(v),0. The inverse Laplace transform can be evalua
along the contours shown in Fig. 1~a!. For t8.t, the solution
vanishes, and the initial conditionK(x,t;x8,`)50 is there-
fore satisfied. This can be seen by deforming the contouC
toward` in the lowerv plane, where the integrand becom
zero. For t8,t, the contour integral can be evaluated
deforming the contourC towards` in the upperv plane.
The deformed contour consists of the three sectionsC1,
C2, and C3, indicated in Fig. 1. AlongC1 the phase
Re(v)(t82t) becomes rapidly oscillating asuRe(v)u→`.
This contribution can be omitted because of the subseq
time integration in Eq.~2.7!. Along the pathC2 the integrand
vanishes, and the integral becomes zero. The Green fun
is therefore determined by the pathC3 around the branch cu
along the positive imaginary axis. This integration is p
formed in thek plane along the contourC̃3, as indicated in
Fig. 1~b!. Noting thatdv52k dk, one finds

K~x,t;x8,t8!5Q~ t2t8!
i

2p

3E
C̃3

dk e2~ i /2!k2~ t2t8!~eikuz81zu1eikuz82zu!

5
2 iQ~ t2t8!

A2p i ~ t2t8!

3~e~ i /2!~z81z!2/~ t2t8!1e~ i /2!@~z82z!2/~ t2t8!#!.

~2.11!
n
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The radiation condition~2.7! at the end pointxs of the one-
dimensional half-space now assumes the final forms

f ~xs ,t !52 i E
0

t

dt8
g~xs ,t8!

A2p i ~ t2t8!
, ~2.12a!

g~xs ,t !522E
0

t

dt8
] t f ~xs ,t8!

A2p i ~ t2t8!
. ~2.12b!

The inverse relationship~2.12b! is obtained by noting tha
]xc(x,t) is also a solution of the one-dimensional Schr¨-
dinger equation with the boundary values]xc(xs ,t)
5g(xs ,t), ]x„]xc(xs ,t)…522i ] tc(xs ,t)522i ] t f (xs ,t).
Integral-boundary conditions of this type also occur in he
flow problems, where they constitute a familiar bounda
constraint between the temperature and the heat flow@25#.
The important fact we wish to emphasize is the possibility
truncating numerical solutions with these relations.

For comparison with theR-matrix Floquet theory, it may
be of interest to evaluate the present boundary conditions
Floquet solutions of the form

FIG. 1. ~a! The integration contourC is defined in the lower
v plane. It is deformed toward infinity in the lower half-plane fo
t8.t and in the upper half-plane fort8,t. Only the pathC3 around
the branch cut on the imaginary axis contributes to the Green fu
tion. ~b! Corresponding contours in thek plane for the branches

k5 iA2v (C̃) andk52 iA2v (C̃8), and for the mappingC̃3 of the
integration pathC3.
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766 56K. BOUCKE, H. SCHMITZ, AND H. -J. KULL
f ~ t !5e2 iEt(
n

wne
2 invt, g~ t !5e2 iEt(

n
6]xwne

2 invt,

~2.13!

where the upper sign corresponds to the asymptotic re
x.0, and the lower sign tox,0. Inserting Eq.~2.13! into
Eq. ~2.12a!, one obtains the boundary conditions

wn5
1

2
K̂~E1nv!]xwn ,

K̂~V!56E
2`

`

dt
22iQ~t!

A2p i t
eiVt5

2

6 iA2V
~2.14!

for the expansion coefficients. These may be viewed as
R-matrix equation, corresponding to the simple case wh
theR matrix is diagonal and the channel functions are pla
waves with wave numberskn56A2(E1nv).

C. Region exterior to a three-dimensional sphere

In the three-dimensional case, the Green function will
pend in general on the shape of the surfaceS. Since the
boundary of the interior region may be chosen for con
nience, the simplest case of a spherical surface will be
sumed. To derive the Green function for the region exte
to a sphere with radiusR, Eq. ~2.5a! is rewritten in spherical
coordinates (r ,q,w) as

S 22i ] t81
1

r 8
] r 8
2 r 82

L82

r 82 DK
5d~ t2t8!

2

r 82
d~r2r 8!d~w2w8!

3d@cos~q!2cos~q8!#, ~2.15!

with the angular-momentum operatorL52 i r3¹. Expand-
ing angle dependences with respect to spherical harmo
Yl
m(q,w), the Green function can be represented in the fo

K5R22(
l50

`

(
m52 l

1 l

Yl
m~q,w!Kl~r ,t;r 8,t8!Yl

m~q8,w8!* .

~2.16!

It is noted thatYl
m(q,w) and Yl

m(q8,w8) occur with the
same mode numbers because of the corresponding pro
of the d function,

d~w2w8!d@cos~q!2cos~q8!#

5(
l50

`

(
m52 l

1 l

Yl
m~q,w!Yl

m~q8,w8!* . ~2.17!

From expansion~2.16! it follows that the partial-wave am
plitudes

f lm~ t !5E dVYl
m~q,w!* f ~q,w,t !,

glm~ t !5E dVYl
m~q,w!* g~q,w,t ! ~2.18!
n
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for definite spherical mode numbers satisfy independent
diation conditions

f lm~ t !5
1

2E0
T

dt8Kl~R,t;R,t8!glm~ t8!. ~2.19!

These are determined by the radial partKl(r ,t;r 8,t8) of the
Green function evaluated on the surfacer5r 85R. The
Laplace transformK̂ l(r ,t;r 8,v) of Kl(r ,t;r 8,t8) is now sub-
ject to the equation

S ] r 8
2

1k22
l ~ l11!

r 82 D r 8K̂ l5
2R2eivt

r 8
d~r2r 8!, ~2.20!

wherek is defined as in Eq.~2.10!. For r 8.r , the solution
corresponding to the boundary condition~2.5d! is given by

K̂ l~r ,t;r 8,v!5Cl~r ,t,v!hl
1~kr8!, ~2.21!

where hl
1(%) denotes the spherical Bessel function of t

third kind @26#, andCl an integration constant. The presen
of thed function in Eq.~2.20! requires a jump discontinuity

] r 8~r 8K̂ l !ur12] r 8~r 8K̂ l !ur25r 8] r 8K̂ l ur12r 8] r 8K̂ l ur2

5
2R2

r
eivt ~2.22!

at r5r 8. Being interested only in boundary values, one c
take the limitsr→R and r 8→R, while using the solution
~2.21! on the sideR1 and the boundary condition~2.5c! on
the side R2. This procedure determines the consta
Cl(R,t,v), yielding

K̂ l~R,t;R,v!5
2

k

hl
1

d

d%
hl
1U

%5kR

eivt. ~2.23!

Calculating the inverse of the Laplace transform~2.23!, the
general solution for the radiation conditions is obtained.
practice, however, it may be sufficient to consider
asymptotic expansion of the radiation conditions for su
ciently largeR. Restricting attention to the leadings term
this expansion,

hl
1~% !→%21ei [%2~p/2!~ l11!] ,

K̂ l~R,t;R,v!→
22i

k
eivt,Kl~R,t;R,t8!→

22iQ~ t2t8!

A2p i ~ t2t8!
,

~2.24!

the Green functionKl becomes independent of the mod
number l , and one recovers the one-dimensional result
each surface point on the sphere:

f ~q,w,t !52 i E
0

t

dt8
g~q,w,t8!

A2p i ~ t2t8!
. ~2.25!

In this limit, the boundary condition is local in space but
still contains memory effects in time.



nd
r
A
ca
el
rt
m
ri-
io

-

re
be
r
ce
rm

b
xe

-

e-

c

n
tin

ta

ary
c-
be
i-

the
y
all
as
re-
an

n the
the
e,
nd
ich

ex-
in-

me

-

rge
ag-
id

56 767RADIATION CONDITIONS FOR THE TIME-DEPENDENT . . .
D. Finite difference representation

Having established the radiation conditions at the bou
aries of the interior region, the method for truncating nume
cal solutions with these conditions will now be described.
present, we restrict attention to one-dimensional TDSE
culations. Such calculations can be performed with a w
known algorithm due to Goldberg, Schey, and Schwa
@27#. It is based on the Crank-Nicolson difference sche
@28# and an efficient solution method for tridiagonal mat
ces. The latter is also known as the LU decomposit
method into lower and upper triangular matrices.

The boundary conditions~2.12! have a square-root singu
larity in the kernel at the end pointt, where the boundary
values are to be determined. This singularity makes di
evaluations by numerical quadrature methods quite cum
some. It is therefore advantageous to remove the singula
from the boundary condition before making finite-differen
approximations. This approach leads to a discrete fo
which is both simple and accurate.

Performing a partial integration in Eq.~2.12! and assum-
ing the initial valuesg(xs,0)5] t f (xs,0)50, one gains the
simpler representations

f ~xs ,t !5
22i

A2p i
E
0

t

dt8At2t8] t8g~xs ,t8!, ~2.26a!

g~xs ,t !5
24

A2p i
E
0

t

dt8At2t8] t8
2 f ~xs ,t8!, ~2.26b!

which can be handled more easily. The second form will
preferred in the following because of the absence of a mi
second derivative.

The wave functionc(x,t) is now replaced by a finite
difference representationc j

n at the grid pointsx5xj and
t5tn, being equally spaced by the intervalsdx and dt, re-
spectively. If the boundaryxs is assumed to be centered b
tween the last two grid pointsxJ and xJ21, where
uxJu.uxJ21u, the boundary valuesf (xs ,tn) andg(xs ,tn) can
be represented as

f n→
cJ

n1cJ21
n

2
, gn→

cJ
n2cJ21

n

dx
. ~2.27!

Furthermore, the integral~2.26b! can be replaced by a sum
formula of the general form

E
0

t

dt8F~ t8!→(
n50

n11

dtanFn, ~2.28!

where the numerical coefficientsan depend on the specifi
quadrature rule. Since the time intervaldt is small, one may
simply choose the trapezoidal rule. Noting that the integra
vanishes at both end points this corresponds to set
an51.

With these substitutions, the finite-difference represen
tion of the boundary condition~2.26b! is found to be

~12 1
2A

n!cJ
n112~11 1

2A
n!cJ21

n115Bn, ~2.29!

where
-
i-
t
l-
l-
z
e

n

ct
r-
ity

,

e
d

d
g

-

An5c0a
n

dx

Adt
, c05

24

A2p i
5
2~ i21!

Ap
,

Bn5An~22 f n1 f n21!1 (
n50

n21

AnKn,

Kn5An112n~ f n1122 f n1 f n21!.

The solution is assumed to be given up to the timetn, while
tn11 represents the current time step to be solved. Bound
conditions of this form maintain the tridiagonal matrix stru
ture of the Crank-Nicolson algorithm, and can therefore
treated, from the computational viewpoint, without add
tional complications.

Truncating the numerical solution in space by using
radiation conditions~2.29!, one has to pay some price b
summing up the boundary values in time. However, in
there results a significant reduction of computation time,
can be seen from the following estimate. The CPU time
quired for TDSE calculations with radiation conditions c
be estimated by

t15aJL1b~L1L2!1g, a54.131027 min,

b53.231028 min, g50.18 min, ~2.30!

whereL is the number of time steps andJ the number of
spatial grid points. The values of the coefficientsa, b, and
g have been measured with our code, and they depend o
specific implementation. The first term corresponds to
inversion of the tridiagonal matrix of the difference schem
which takesO(J) operations at each time step. The seco
term accounts for computing the boundary conditions, wh
takesO((n50

L n)5O@L(L11)/2# operations. Computation
times needed before and after the time integration are
pressed by the third term. If rigid boundaries are used
stead, the second term can be omitted; however,J has to be
chosen to be much larger. During the computation ti
Ldt the wave function will spread a distancekmLdt to both
sides of the atom, wherekm5A2vm corresponds to the ve
locity of the maximum photon order. Setting, therefore,

Jdx52~kmLdt !,
dt

dx
'

km
vm

, ~2.31!

one obtainsJ'4L. Using this value in Eq.~2.30!, the CPU
time required with rigid boundaries can be estimated by

t254aL21g. ~2.32!

For L→`, the ratio of computation times is given by

t2
t1

5
4a

b
'40. ~2.33!

In accordance with this estimate, our calculations with la
numbers of time steps are approximately one order of m
nitude faster than corresponding calculations with rig
boundaries. The limit of largeL is reached for either long
computation times~several tens of light periods! or for small
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768 56K. BOUCKE, H. SCHMITZ, AND H. -J. KULL
time steps. Such small time steps arise for ATI calculatio
with large ponderomotive potentials.

III. NUMERICAL RESULTS

To validate the numerical procedure, we have perform
one-dimensional TDSE calculations for strong-field pho
ionization. The nonrelativistic interaction of a one-electr
atom with an electromagnetic wave is governed by
Schrödinger equation

i ] tc~x,t !5Hc~x,t !, H52 1
2D1V~x!1x•E~ t !

~3.1!

for the wave functionc(x,t). V(x) denotes the atomic po
tential, and the electromagnetic wave is described within
electric-dipole approximation by a time-dependent elec
field E(t).

To apply the free-particle radiation conditions deriv
above, it is necessary to choose a representation where
interaction is localized and the electron becomes asymp
cally free. The effect of a spatially constant acceleration
the electric field is equivalent to an accelerated coordin
frame. The transformation to the accelerated frame is kno
as the Kramers-Henneberger transformation@29,30#,

c̃~x,t !5e2 i j̇~ t !–x1~ i /2!*0
t dt8 j̇2~ t8!c~x,t !, ~3.2a!

F~u,t !5c̃@u1j~ t !,t#. ~3.2b!

HereF(u,t) is the transformed wave function, andj(t) has
to be chosen as a solution of the classical equation of mot
j̈(t)52E(t). The unitary transformation~3.2a! transforms
from the length gauge to the velocity gauge. The subseq
coordiate transformationu5x2j(t) eliminates the effect of
the electric field on a free electron (V50). The latter can
also be viewed as a second unitary transformation by no
that

F~u,t !5eij–pc̃~u,t !, p52 i¹. ~3.3!

As a result of these transformations, the Schro¨dinger equa-
tion for the wave functionF(u,t) is found to be

i ] tF5H 2
1

2
D1V@u1j~ t !#J F. ~3.4!

The interaction with the electric field is now described by
time-dependent displacement of the atomic potential. Ir
denotes the range of the potential, the extent of the inte
tion region will be of the orderr1uju. Outside this region
the electron can be described by the free-particle equa
~2.1!.

In our one-dimensional calculations, the atom is mode
by the potential

V~x!52
1

cosh2~x!
. ~3.5!

It has only a single bound state
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c0~x,t !5
1

A2cosh~x!
e2 iE0t, E0520.5, ~3.6!

which is taken as the initial state att50 in all calculations.
The electric field is assumed as a purely monochrom
wave,

E~ t !5E0sin~vt !, ~3.7!

with a constant amplitudeE0 and frequencyv. Since detailed
one-dimensional calculations have already been reported@7#,
we restrict the discussion to a few examples, illustrating
computational accuracy of the method, and the calculatio
asymptotic properties by the truncated solution.

A. Wave function

A numerical solution for the magnitude of the wave fun
tion after 16 light periods can be seen in Fig. 2~a!. It corre-
sponds to the parametersE050.1 andv50.2. The present
boundary conditions~2.29! have been imposed atx5650.
One can recognize the bound state nearx50 as well as the
free part of the wave function extending up to the boun
aries. For comparison, the complete solution has also b
calculated by using a large grid with conventional rig
boundary conditions atx561000. The differences betwee
the full and truncated solutions are too small to be noticea
in the graphical representation of Fig. 2~a!. Therefore the
relative errorDucu/ucu between the two solutions has bee
calculated explicitly, and represented in Fig. 2~b! as a func-

FIG. 2. ~a! Numerical solutionuc(x)u after 16 light periods for
E050.1 andv50.2. ~b! Relative error between the truncated sol
tion with boundaries atx5650 and the complete solution with
rigid boundaries atx561000.
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tion of x. It can be seen that the error is of the order
1025, such that the present truncation method can be con
ered highly accurate. Varying computation times, we ha
also convinced that the size of the error does not grow w
time.

B. Ionization probability

The truncated solution is also sufficient to calculate io
ization probabilities and energy spectra. In our calculatio
the ionization probability has been defined as the probab

pion~ t !512U E
2`

`

c0* ~x,t !c~x,t !dxU2 ~3.8!

that the electron does not occupy the bound state of the
perturbed atom. Strictly speaking, this definition is on
meaningful before and after the interaction with the la
field. During the laser pulse, probability~3.8! is slightly
modulated at twice the laser frequency, assuming a minim
value at each zero of the electric field. However, this mo
lation is small, and definition~3.8! can be taken as a goo
estimate of the time-dependent ionization probability. In
following, the ionization probability calculated after a fe
light periods will be discussed.

Figure ~3!~a! shows the ionization probability as a fun
tion of the field amplitude for a fixed frequencyv50.2. The
two curves have been obtained after four~dotted! and eight
~solid! light periods, showing similar variations with the fie

FIG. 3. ~a! Variation of the ionization probability with the field
strength after four~dotted line! and eight~solid line! light periods
for a monochromatic field with frequencyv50.2. ~b! Branching
ratios for the photon orders 3 (n) , 4 (s), and 5 (h) for the same
parameters.
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strength. In the figure, one can observe the transition fr
three- to four-photon ionization due to the effect of chan
closing. By energy conservation,n-photon absorption will be
suppressed if

nv,uE0u1Up , Up5
E02

4v2 . ~3.9!

The ionization energyuE0u is enhanced by the ponderomo
tive potentialUp . From Eq.~3.9!, there follow the threshold
fields E050.126 for n53 and E050.219 for n54. This
simple estimate is in good accordance with the calcula
ionization minima around these values. Actually, there is
sharp threshold because of the finite linewidth of the tran
tion. The ionization probability into the three lowest photo
channelsn53, 4 and 5 is shown in more detail in Fig. 3~b!.
The suppression of the three-photon peak aboveE0'0.11
can be clearly recognized.

C. Energy spectrum

Energy spectra can also be directly calculated from
truncated solution in the Kramers-Henneberger~KH! frame.
At a fixed positionxs near the boundary, we take the Fouri
transform

F̂~xs ,V!5
1

2pE2`

`

F~xs ,t !e
iVtdt ~3.10!

FIG. 4. Energy spectrum after 16 light periods for a monoch
matic field with frequencyv50.2. ~a! Regular ATI spectrum for
E050.16. The photon order 3 is suppressed by channel closing~b!
ATI spectrum with additional scattering peaks in over-the-barr
ionization (E050.3).
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with respect to time, and defineuF̂(xs ,V)u2 as the probabil-
ity that the electron has the energyV at the corresponding
boundary. To obtain the total-energy spectra the contri
tions from both boundaries have to be added. With incre
ing computation time a very high-energy resolution
gained. AfterN light periods one hasdV/v'1/N. Energy
spectra calculated alternatively with the full asymptotic s
lution at a fixed time by a spatial Fourier transform do n
show appreciable differences.

The energyV in the KH frame represents the kinet
energy in the absence of the laser field. The total absor
energy is given by

E5uE0u1Up1V, ~3.11!

where the ionization energy is approximated by Eq.~3.9!.
We have represented the energy spectra as a functio
E/v, since regular ATI peaks are expected near the ener
E5nv. Figure 4~a! shows a series of ATI peaks, obtaine
for the parametersv50.2 andE050.16, after 16 light peri-
ods. Note that the three-photon peak is already suppress
this intensity. If the field strength is further increased, o
enters the regime of over-the-barrier ionization. To suppr
the potential barrier below the binding energyE0, the critical
field strengthEc'0.22 has to be exceeded. In this regime,
have observed an additional peak series in some cases
example is shown in Fig. 4~b!, corresponding to the param
etersv50.2 andE050.3. While the regular ATI series ap
pears at the energiesE5nv, the peaks of the additiona
series can be recognized at the energiesV5nv. In the
present representation, the lowest-order peak (n50) occurs
at E/v'5.3. Since the absorbed energiesnV are indepen-
dent of the ionization energy, this peak series may be
garded as a free-free multiphoton transition due to the s
d,
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tering of an oscillating part of the wave function by th
atomic potential. It is noted, that a similar peak series
been predicted before in theoretical work based on
d-function potential@31#.

IV. CONCLUSIONS

In the present work, we have derived exact radiat
boundary conditions to truncate the numerical solution of
TDSE at the boundaries of the numerical grid. An expli
finite-difference expression for one-dimensional calculatio
has been gained. The method has been validated in the
text of strong-field photoionization. Thereby the truncat
wave function has been found to be in excellent agreem
with the corresponding full solution. Both ionization prob
abilities and energy spectra have been obtained by
method.

The present calculations have successfully demonstr
advantages of radiation conditions in one-dimensional A
calculations. While useful insight into basic ATI features c
be gained from a one-dimensional model, it is clearly t
restricted to allow for quantitative comparisons with expe
ments. It is therefore hoped that the present computatio
method also will prove adequate for three-dimensional c
culations. Radiation conditions have been derived for
spherical surface in the Kramers-Henneberger frame. H
ever, their applicability to TDSE calculations for more rea
istic atoms requires further investigation. These issues
be the subject of a forthcoming work.
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