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Radiation conditions for the time-dependent Schrdinger equation:
Application to strong-field photoionization
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Radiation conditions are introduced as an exact method to truncate numerical solutions of the time-
dependent Schdinger-equation at the boundaries of the numerical grid. A rigorous derivation of radiation
conditions is given by the Green-function method for one- and three-dimensional regions. An accurate finite-
difference representation is obtained for a one-dimensional region. The method is applied to calculations of
strong-field photoionization. The calculation of ionization probabilities and energy spectra by the truncated
solution is illustrated[S1050-294®7)06107-9

PACS numbdss): 32.80.Rm, 31.15:p

[. INTRODUCTION sent the basic problems to be solved for computational ap-
plications.

Over the past decade, the numerical solution of the time- In previous work, boundary reflections have often been
dependent Schdinger equatiof TDSE) has received broad recognized as a crucial limitation in TDSE calculations. If
attention in the study of atomic and molecular systems. Irsimplead hoc(e.g., rigid, periodi¢ boundary conditions are
particular, there have been great advances in the treatment @fosen, the wave function is reflected at the boundaries,
atoms in strong radiation fieldgl], demonstrating various Causing an unphysical feedback to the system. For computa-
nonperturbative phenomena, e.g., in above-threshold ionizdional convenience, one therefore often needs to truncate the
tion (ATI) [2] and optical harmonic generatid8]. While ~ Wave function in the asymptotic region. One of the standard
most previous computations have been based on ondruncation procedures is based on absorbing diffuse bound-

dimensional model atongl—9], more realistic multidimen- aries. Ab_sorbi.ng boundaries havg been modeled_ by various
fypes of imaginary-valued potentidl4,16—18. Particularly

. . accurate results have been obtained for a properly chosen
[10-13. Numerical TDSE calculations also offer a Valuablelinear absorber functiof18]. A related truncation method

complement to Floguet methods otherwise widely used in i : o :
atomic physicg14]. uses wave-function splittind19], which propagates the

In thi K hod i d asymptotic and interacting parts of the wave function sepa-
n this work, an exact method Is presented to truncatg,;o, Both methods are approximate in the sense that a

numerical solutions of the TDSE at the boundaries of th§yeak variation of parameters in the absorber region is re-
numerical grid. It is our principal goal to demonstrate thequired.
computational efficiency and accuracy of this method for Occasionally, exact truncation methods have also been
calculations of strong-field photoionization. For simplicity, reported. Exact convergence in the asymptotic region can be
the present calculations have been limited to a onegchieved by analytic continuation, using complex coordinate
dimensional model atom, although future three-dimensiona¢ontours[20] or complex eigenfunction expansiofl,27.
extensions appear conceivable. Boundary conditions similar to those presented here have
The present approach is based on exact boundary condidready been studied in a more mathematical cont23t
tions for outward propagating solutions of the TDSE. InHowever, the method of derivation and the final discretiza-
analogy with the theory of electromagnetic waves, theseion schemes are different. The present approach is based on
boundary conditions will be called radiation conditidis]. Green functions, and the discrete representation is obtained
While radiation conditions are commonly used for mono-by removing a singularity from the kernel before making
chromatic waves, their general form for an arbitrary time-finite-difference approximations. Apparently, the applicabil-
dependent solution on an arbitrarily shaped boundary seenity of radiation conditions to atoms interacting strongly with
less well understood. The general boundary condition constian electromagnetic field has not been addressed before.
tutes a linear relationship between boundary values, which is In Sec. I, a general background is presented, showing
nonlocal in space and time. The derivation of the appropriattow radiation conditions for the TDSE can be derived ana-
propagator and of an accurate discretization scheme reprégically by the Green-function method. This method applies
equally well to a large class of partial differential equations,
including parabolic, hyperbolic, and elliptic equatiorist].
*Present address: Max-Planck-Institutr fiPolymerforschung, The use of radiation conditions in numerical computations
Postfach 3148, D-55021 Mainz, Germany. therefore may be of general interest in diverse fields. An
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accurate finite-difference representation of these boundangft-hand side of Eq(2.1) by an arbitrary functiork (x,t)
conditions can be obtained in the one-dimensional caseind integrating this expression over the voluMeof the
which represents the principle result of this work. exterior region and the time interval frots=0 up tot=oo.
In Sec. I, the numerical method is applied to TDSE cal- Denoting integration variables by a prime, and performing a
culations of photoionization. Thereby the accuracy of thenumber of partial integrations, one finds
method is demonstrated by comparison with the full solution,
and furthermore, explicit calculations of ionization probabili- (7, L L L
ties and energy spectra are presented. Atomic units will be fvdv fo dt {K(X', )L ) (X t)
used throughout this paper.
— (X' t)L* (Xt )K(X',t")}
II. RADIATION CONDITIONS
Radiative boundary conditions are commonly introduced N fvdv (KO )X )} o
in the frequency-momentum domain, where ingoing and out-
going waves, propagating along a particular direction, can
simply be distinguished by the sign of the group velocity.
However, this criterion is not immediately applicable to nu-

+%f dt’f df’ K (X't V' (X' ,t")
0 oV

merical computations in the space-time domain. Therefore, — (X" ) VKX t")}, (2.4
in this section, radiation conditions will directly be intro-
duced in the space-time domain by using the Green-functiowhereL* (x,t)=—id,+3A, and 3V denotes the surface of

method. The problem of specifying an outward propagatinghe exterior region, consisting of the inner surf&and an
solution by boundary values can be reduced to the determbuter surface at infinity. This identity holds between the op-
nation of a particular Green function for the region, exterioreratorsL andL* for arbitrary functionsiy(x,t) andK(x,t).
to the boundary. The general method will be demonstrated in  To obtain a boundary-integral representation of the exte-
the following by considering the specific case of the free-rior solution in terms of the boundary valugsthe function
particle TDSE. The corresponding Green function will beK(x',t’) will now be defined as the Green function
explicitly calculated for a one-dimensional half-space and forK (x,t;x’,t'), satisfying the initial-boundary value problem
the region exterior to a three-dimensional sphere. The one-
dimensional result will be further reduced to a finite- L* (X" t)K(x,t;x' 1) = 8*(x—x") 8(t—t'), (2.59
difference expression for computational applications.
K(x,t;x",0)=0, (2.5b
A. Green-function method
. . ] I K(X,tx5,t") =0, (2.50
Consider a spatial regidR enclosed by a surfacgwhere

radiative boundary conditions are required. L#tx,t) de- {Kdpn h— K} (x| =0. (2.50
note the wave function of an electron, which is localized
initially, at time t=0, within R but may propagate outward Using these properties fd€, and noting that the exterior
through the surfaces into the exterior region for times solution ¢ satisfies Eqs(2.1) and (2.3), there follows, from
t>0. Specifically, we will assume that the propagation in theEq. (2.4),
exterior region is governed by the free-particle TDSE,

L(x,t)(x,t)=0, L(X,t)=id+32A. (2.2) w(x,t)=%f0 dt’deS’K(x,t;xg,t’)g(Xéyt’)- (2.6

e s e s e 6,1 ™ h suriace nteyal vanishes t e uter surface, and at e
oundary . inner surfacedf’= —n’dS’. Evaluating this solution on the
derivative onS. These boundary values will be denoted as

boundarys yields
¢(X!t)|S:f(XSvt)l an‘ﬂ(xit”s:g(xs:t), (22)

respectively, wher&,=n-V denotes the normal derivative
on S. The surface normal unit vectaris taken directed from
the surfaceS toward the exterior region. If, for instance, In general this boundary condition is nonlocal in space and
g(xs,t) is prescribedf (xs,t) will be determined by the so- time. The boundary value of the wave function at the surface
lution of Eq.(2.1) subject to the outgoing wave conditions Point xs at timet is related to the normal derivatives of the
wave function at all surface pointg at all previous times
P(x,00=0, Yx,1)||x_==0 (2.3 t’. The determination of the Green functidt(x,t;x.,t")

. . . remains the basic problem to be solved.
for the external region. The relationship between the bound-

ary valuesf andg represents the desired boundary condition
for the internal regiorR.

The basic equation for expressing the exterior solution in For a one-dimensional half-spacks|>|x,|, the Green
terms of initial-boundary values is the Lagrange-Green idenfunction K is a simple modification of the familiar free-
tity of the operator_. It can be derived by multiplying the particle Green function for an unbounded region. According

f(xs,t)zéfo dt’ LdS’K(xs,t;x;,t’)g(xg,t'). 2.7

B. One-dimensional half-space
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to Eq.(2.9), it is identically zero fort’ >t. It may therefore
be calculated by considering a Laplace transformation in
time,

k(x,t;x',w)zf dt’K(x,t;x’,tHe't’,  (2.89

1 N -
K(x,t;x’,t’):EJ doK(x,t;x",w)e 't (2.8b
c

The Laplace transforrf2.89 converges at the upper integra-
tion limit t’—cc because of the initial conditiofR.5b). At

the lower integration limit, convergence is achieved by de- \
fining w in the complex half-plane Im§)<c below all the

singularities ofR(x,t;x’,w). The integration contou€ of

the inverse Laplace transfor(@.8b) has to be chosen within

this half-plane parallel to the real axis. Applying the Laplace

A
transformation to Eq(2.59 with the initial condition(2.5b b) l @
yields

o

92 K—20K=2€"'5(x—x"). (2.9

The particular solution satisfying the boundary conditions
(2.50 and(2.59 is readily found to be

Y

o

f(z%e“”t{e”‘|z'“|+e““zlfz|}, (2.10

-7

wherez=x—xs, z' =X’ — X, andk=i2w. The domain of CT

convergence oK is the whole half-plane Im¢)<0 and the

k branch has to be chosen such that Km0 for

along the contours shown in Fig(a. Fort’>t, the solution ~ © plane. !t is deformed toward infinity in the lower half-plane for

vanishes, and the initial conditiot(x,t;x’,»)=0 is there- t ~tandinthe upper half-plane fof <t. Only the patfC, around

fore satisfied. This can be seen by deforming the con@ur t_he branch cut on thg imaginary axis contributes to the Green func-

towarde in the lowerw plane, where the integrand becomest'on_' () CgrreSpond'ng Comof,”s in the plane for the~branChes

zero. Fort’<t, the contour integral can be evaluated byk:|@(C) andk=—i 2w (C'), and for the mapping; of the

deforming the contouC towardsc in the upperw plane. integration pattCs.

The deformed contour consists of the three sectiGns

C,, and Cj, indicated in Fig. 1. AlongC; the phase

Re(w)(t'—t) becomes rapidly oscillating dRke(w)|— .

This contribution can be omitted because of the subsequent . (Xet)

time integration in Eq(2.7). Along the pathC, the integrand f(Xs,t):—if dt’ 9(Xs, (2.123
0

The radiation conditior§2.7) at the end poink, of the one-
dimensional half-space now assumes the final forms

vanishes, and the integral becomes zero. The Green function 2mi(t—t)’

is therefore determined by the path around the branch cut

along the positive imaginary axis. This integration is per- af(x,t')
S

formed in thek plane along the contolE,, as indicated in 9(Xs,t)=—2 | dt/ ———=. (2.12h
Fig. 1(b). Noting thatdw=—k dk, one finds 0 N2mi(t-t')

i The inverse relationshif2.12h is obtained by noting that
KOGt 1) =0(t—t")5— d(x,t) is also a solution of the one-dimensional Schro
dinger equation with the boundary valued/(xs,t)
=0(Xs:t),  Ix(Oxih(Xs,1))= =21 dy1f(Xs,t) = — 21 ¢f (s, 1).

—(i12K3(t—t") ( nik]z’ + ik|z' — e . ]
X | dke (2K gz 2l giklz =) Integral-boundary conditions of this type also occur in heat-

Cs . I~
flow problems, where they constitute a familiar boundary
—i0(t—t') constraint between the temperature and the heat [fRik
=V The important fact we wish to emphasize is the possibility of
V2mi(t—t') truncating numerical solutions with these relations.
><(e(”2>(z'*2)2/<‘*">+e(”z)[(z"z>2’("")]). For comparison with th&-matrix Floquet theory, it may

be of interest to evaluate the present boundary conditions for
(2.11 Floquet solutions of the form
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et Cinot et Cinot for definite spherical mode numbers satisfy independent ra-
f(h=e™ En: ene ", g(t)=e! En: *dxene "™, diation conditions

(2.13

where the upper sign corresponds to the asymptotic region
x>0, and the lower sign ta<0. Inserting Eq.2.13 into

Eq. (2.123, one obtains the boundary conditions These are determined by the radial pigr¢r,t;r’,t") of the
Green function evaluated on the surfacer’'=R. The
Laplace transforni(r,t;r",w) of K,(r,t;r’,t’) is now sub-
ject to the equation

1(T
flm(t)zzfo dUK(R,GR, 1) gm(t"). (2.19

1.
‘PnZEK(E+ Nw)dyen,

~20(0) 4, 214
P2xir C+i20

for the expansion coefficients. These may be viewed as aWhrfrek 'ﬁ d?r?f"j[e‘jthasbm Elg(zr'lo)' rfdoltuzﬂfszb itheiiolnutl;on
R-matrix equation, corresponding to the simple case wher&0°T€SPO g o the boundary co S given by

the R matrix is diagonal and the channel functions are plane
waves with wave numbels,= * \2(E+ nw).

2, M+D) o 2R% ,
dp, +ko— 72 rk,= o(r—r"), (2.20

R(Q):if dr o

Ki(r,t;r",0)=C(r,t,0)hl(kr"), (2.22)

where hﬂ(g) denotes the spherical Bessel function of the
third kind [26], andC, an integration constant. The presence

In the three-dimensional case, the Green function will de-of the & function in Eq.(2.20 requires a jump discontinuity
pend in general on the shape of the surf&eSince the

C. Region exterior to a three-dimensional sphere

boundary of the interior region may be chosen for conve-  d/(r'K\)|r+— e (r' KD~ =1" 00 K| — 1" dp K|,
nience, the simplest case of a spherical surface will be as- 5

sumed. To derive the Green function for the region exterior :aeiwt (2.22
to a sphere with radiuR, Eq.(2.59 is rewritten in spherical r '

coordinates i(,%,¢) as L .
atr=r’'. Being interested only in boundary values, one can

. 1, 12 take the limitsr—R andr’—R, while using the solution
—20u+ T =z |K (2.21) on the sideR+ and the boundary conditiof2.5¢ on
2 the side R—. This procedure determines the constant
=5(t—t’)r726(r—r’)5(<p—<p’) Ci(R,t,w), yielding
_ ) . 2 ht ‘

X o[cog¥)—cogId')], (2.195 K|(R,t;R,w)=E ] glot (2.23

1

with the angular-momentum operatbe —ir xV. Expand- @hl

ing angle dependences with respect to spherical harmonics e=kR

Y['(9,¢), the Green function can be represented in the fornc g cylating the inverse of the Laplace transfaf@23, the

w 4] general solution for the radiation conditions is obtained. In
K=R 2 YD, o) K (r .t )Y o' )* practice, _however,_ it may be '_su1_°f|C|ent tc_J_ consider an
2o m:E—I ACH2N ASCELY asymptotic expansion of the radiation conditions for suffi-

(2.19 ciently largeR. Restricting attention to the leadings term in

_ . this expansion,
It is noted thatY]"(d,¢) and Y|"(¥',¢’) occur with the

same mode numbers because of the corresponding property hi(o)— o telle~(m20+1]
of the ¢ function,

—2i0(t—t")
V2mi(t—t)
(2.24

the Green functiorK, becomes independent of the mode
From expansior(2.16) it follows that the partial-wave am- numberl, and one recovers the one-dimensional result at

(p—¢')é[cog¥)—cogd')] R|(R,t;R,w)—>_Tziei“",K|(R,t;R,t’)—>
o +1
=2 X Y@.e)YT(3e)r. (217

m=—

plitudes each surface point on the sphere:
f (t)zfdmm(a )19, 0.0) t9.0t)=—i [ ar Lot 225
Im | v(P !(Pv H 1(P; 0 ’—27T|(t_t’) .

In this limit, the boundary condition is local in space but it

_ m
g|m(t)—f dOY(9,)*9(9¢.0) (218 il contains memory effects in time.
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D. Finite difference representation SX —4  2(i-1)
Having established the radiation conditions at the bound- A'=cpd" =, Co=—=—==—F7=",
aries of the interior region, the method for truncating numeri- Vot 2 v
cal solutions with these conditions will now be described. At n—1
present, we restrict atte_ntion to one-dimensional TDSE cal- B"=AN(—2f"+ 1)+ 2 AYK”,
culations. Such calculations can be performed with a well- »=0

known algorithm due to Goldberg, Schey, and Schwartz

[27]. It is based on the Crank-Nicolson difference scheme K'=yn+1—p(frri-2fr+fr-1),

[28] and an efficient solution method for tridiagonal matri-

ces. The latter is also known as the LU decompositionThe solution is assumed to be given up to the tifhavhile

method into lower and upper triangular matrices. t"*1 represents the current time step to be solved. Boundary
The boundary condition®.12 have a square-root singu- conditions of this form maintain the tridiagonal matrix struc-

larity in the kernel at the end poirtt where the boundary ture of the Crank-Nicolson algorithm, and can therefore be

values are to be determined. This singularity makes diredreated, from the computational viewpoint, without addi-

evaluations by numerical quadrature methods quite cumbetional complications.

some. It is therefore advantageous to remove the singularity Truncating the numerical solution in space by using the

from the boundary condition before making finite-differenceradiation conditiong2.29, one has to pay some price by

approximations. This approach leads to a discrete formsumming up the boundary values in time. However, in all

which is both simple and accurate. there results a significant reduction of computation time, as
Performing a partial integration in ER.12 and assum- can be seen from the following estimate. The CPU time re-

ing the initial valuesg(xs,0)=d,f(xs,0)=0, one gains the quired for TDSE calculations with radiation conditions can

simpler representations be estimated by

t;=aJL+B(L+LY)+y, a=4.1X10 "min,

f(xg,t)= "Vt—=t'dug(xs,t"), (2.263

—2i J’tdt
V2miJo

B=3.2<10"8min, =0.18 min, (2.30

I it / whereL is the number of time steps ardthe number of
9(xs,0)= V2 fodt o f(xs,t),  (2.260 spatial grid points. The values of the coefficientsg, and

v have been measured with our code, and they depend on the
which can be handled more easily. The second form will bespecific implementation. The first term corresponds to the
preferred in the following because of the absence of a mixeihversion of the tridiagonal matrix of the difference scheme,
second derivative. which takesO(J) operations at each time step. The second

The wave functiong(x,t) is now replaced by a finite- term accounts for computing the boundary conditions, which
difference representatios; at the grid pointsx=x; and  takes O(Ehzon)=O[L(L+1)/2] operations. Computation
t=t", being equally spaced by the intervaig and ét, re- times needed before and after the time integration are ex-
spectively. If the boundary, is assumed to be centered be- pressed by the third term. If rigid boundaries are used in-
tween the last two grid pointx; and Xx;_;, where stead, the second term can be omitted; howe¥dras to be
[x51>]x%;_4|, the boundary valuef(x,,t”) andg(xs,t*) can  chosen to be much larger. During the computation time

be represented as L 6t the wave function will spread a distankgL 6t to both
S L sides of the atom, where,,=+/2w,, corresponds to the ve-
L, Uty L, iy locity of the maximum photon order. Setting, therefore,
f'o —er—, ¢g'——p5—. (2.27
2 OX ‘
m
Furthermore, the integrdP.260 can be replaced by a sum Jox=2(knL &t), X o (2.3)

formula of the general form "

one obtains]~4L. Using this value in Eq(2.30, the CPU
time required with rigid boundaries can be estimated by

t n+1
Jdt’F(t’)—>2 Sta’F?, (2.28
° v t,=4al2+ 5. (2.32
where the numerical coefficients’ depend on the specific

quadrature rule. Since the time intengilis small, one may FOrL—, the ratio of computation times is given by
simply choose the trapezoidal rule. Noting that the integrand

vanislhes at both end points this corresponds to setting :_2: 47“%40_ (2.33
a’=1. 1

With these substitutions, the finite-difference representa- ) ) ) ) )
tion of the boundary conditiof2.268 is found to be In accordance with this estimate, our calculations with large

numbers of time steps are approximately one order of mag-
(1_ %An) ¢,g+1_ ( 1+ %An) ,r/,gjiz B, (2.29 nitude faster than corresponding calculations with rigid
boundaries. The limit of largé is reached for either long
where computation timegseveral tens of light periogi®r for small
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time steps. Such small time steps arise for ATI calculations 10% s
with large ponderomotive potentials. = a) 3
Ill. NUMERICAL RESULTS - —
To validate the numerical procedure, we have performed = 10 = E
one-dimensional TDSE calculations for strong-field photo- C 3
ionization. The nonrelativistic interaction of a one-electron N
atom with an electromagnetic wave is governed by the r 7
Schralinger equation T R ——— - N I
-50 -25 0 25 50
() =Hy(x,1), H=—2A+V(X)+x- &) x [a.u]
(3.1 ©
e g
for the wave functiong(x,t). V(x) denotes the atomic po- x b)
tential, and the electromagnetic wave is described within the 0
electric-dipole approximation by a time-dependent electric =
field £(t). < o
To apply the free-particle radiation conditions derived 42
above, it is necessary to choose a representation where the
interaction is localized and the electron becomes asymptoti- ]
cally free. The effect of a spatially constant acceleration by
the electric field is equivalent to an accelerated coordinate - [ | » |
frame. The transformation to the accelerated frame is known -50 -25 0 25 50
as the Kramers-Henneberger transformafi2®,30, x [a.u.]
Yxt) :e*‘§(t>‘x+(i’2)f5dt'§2(t')¢(x,t), (3.29 FIG. 2. (a) Numerical solution ¢(x)| after 16 light periods for

£,=0.1 andw=0.2. (b) Relative error between the truncated solu-
tion with boundaries ak=*50 and the complete solution with

®(u,t)=ylu+ &1),t]. (3-2D  yigid boundaries ax= 1000,

Here®(u,t) is the transformed wave function, agtt) has
to be chosen as a solution of the classical equation of motion,

£(t)=—&(t). The unitary transformatioii3.29 transforms
from the length gauge to the velocity gauge. The subsequent
coordiate transformation=x— &(t) eliminates the effect of which is taken as the initial state &0 in all calculations.
the electric field on a free electro’v&0). The latter can The electric field is assumed as a purely monochromatic
also be viewed as a second unitary transformation by notingvave,

that

Po(X,1) e Bot, Ey=-05, (3.6

B J2costix)

E(t)=&siN(wt), 3.7
®(u,t)=€'$Py(u,t), p=-iV. (3.3 _ _ _ _
with a constant amplitud&, and frequency». Since detailed
As a result of these transformations, the Sdimger equa- ©One-dimensional calculations have already been reppried
tion for the wave functionb(u,t) is found to be we restrict the discussion to a few examples, illustrating the
computational accuracy of the method, and the calculation of
1 asymptotic properties by the truncated solution.
i0, D= —§A+V[u+§(t)] D, (3.9
A. Wave function
The interaction with the electric field is now described by a A numerical solution for the magnitude of the wave func-

time-dependent displacement of the atomic potentiak If tion after 16 light periods can be seen in Figa)2 It corre-
denotes the range of the potential, the extent of the interagponds to the parametefg=0.1 andw=0.2. The present
tion region will be of the order +[¢|. Outside this region poundary conditiong2.29 have been imposed at= =+ 50.
the electron can be described by the free-particle equatiofne can recognize the bound state nea0 as well as the

(2.D). _ . . _ free part of the wave function extending up to the bound-
In our one-dimensional calculations, the atom is modeledyries. For comparison, the complete solution has also been
by the potential calculated by using a large grid with conventional rigid

boundary conditions at= = 1000. The differences between
V(x)= — 3.5 the full and truncated solutions are too small to be noticeable
cosH(x) ' in the graphical representation of Fig(a2 Therefore the
relative errorA||/|| between the two solutions has been
It has only a single bound state calculated explicitly, and represented in Figb)2as a func-
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FIG. 4. Energy spectrum after 16 light periods for a monochro-
matic field with frequencyw=0.2. (a) Regular ATI spectrum for
&,=0.16. The photon order 3 is suppressed by channel cloding.
ATI spectrum with additional scattering peaks in over-the-barrier
ionization ,=0.3).

FIG. 3. (a) Variation of the ionization probability with the field
strength after foudotted ling and eight(solid line) light periods
for a monochromatic field with frequenay=0.2. (b) Branching
ratios for the photon orders 3Y) , 4 (O), and 5 Q) for the same
parameters.

tion of x. It can be seen that the error is of the order Ofstrength. In the figure, one can observe the transition from
) hree- to four-photon ionization due to the effect of channel

_5 . .
107, S.UCh that the present truncation mgthoo_l can be consi losing. By energy conservation;photon absorption will be
ered highly accurate. Varying computation times, we havesuppressed if

also convinced that the size of the error does not grow with
time.
£

p=m. (3.9)

B. lonization probability No<|Eq+U,, U

The truncated solution is also sufficient to calculate ion-

ization probabilities and energy spectra. In our calculationsrhe jonization energyE,| is enhanced by the ponderomo-
the ionization probability has been defined as the probabilityjye potentialU ,. From Eq.(3.9), there follow the threshold
" 2 fields £,=0.126 for n=3 and £=0.219 for n=4. This
pion(t)zl—U P (X, 0 p(x,t)dx (3.899  simple estimate is in good accordance with the calculated
—o ionization minima around these values. Actually, there is no
sharp threshold because of the finite linewidth of the transi-

that the electron does not occupy the bound state of the uiion. The ionization probability into the three lowest photon
perturbed atom. Strictly speaking, this definition is only channeln=3, 4 and 5 is shown in more detail in Fig(b3.
meaningful before and after the interaction with the laserThe suppression of the three-photon peak abfye0.11
field. During the laser pulse, probabilit§8.8) is slightly ~ can be clearly recognized.
modulated at twice the laser frequency, assuming a minimum
value at each zero of the electric field. However, this modu-
lation is small, and definitiori3.8) can be taken as a good
estimate of the time-dependent ionization probability. In the Energy spectra can also be directly calculated from the
following, the ionization probability calculated after a few truncated solution in the Kramers-Henneber@¢) frame.
light periods will be discussed. At a fixed positionxg near the boundary, we take the Fourier
Figure (3)(a) shows the ionization probability as a func- transform
tion of the field amplitude for a fixed frequenay=0.2. The 1 (=
two curves have been obtained after f¢dotted and eight d(xg,0)= _f D(xg,t)eNdt (3.10
(solid) light periods, showing similar variations with the field 2m) =

C. Energy spectrum
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with respect to time, and definé (x,,Q)|? as the probabil- tering of an oscillating part of the wave function by the
|ty that the electron has the ener@/ at the Corresponding atomic pOt(?ntlal. It is nOt_ed, that a.S|m|lar peak series has
boundary. To obtain the total-energy spectra the contribubeen predicted before in theoretical work based on a
tions from both boundaries have to be added. With increasd-function potential 31].
ing computation time a very high-energy resolution is
gained. AfterN light periods one ha$(Q)/w~1/N. Energy IV. CONCLUSIONS
spectra calculated alternatively with the full asymptotic so- |, the present work, we have derived exact radiative
lution at a fixed time by a spatial Fourier transform do notyqyndary conditions to truncate the numerical solution of the
show appreciable differences. __ TDSE at the boundaries of the numerical grid. An explicit
The energy() in the KH frame represents the kinetic finjte-difference expression for one-dimensional calculations
energy in the absence of the laser field. The total absorbeghs peen gained. The method has been validated in the con-
energy is given by text of strong-field photoionization. Thereby the truncated
wave function has been found to be in excellent agreement
with the corresponding full solution. Both ionization prob-

E=[Eol+Up+, (319 abilities and energy spectra have been obtained by this
method.
where the ionization energy is approximated by E2j9). The present calculations have successfully demonstrated

We have represented the energy spectra as a function gfvantages of radiation conditions in one-dimensional ATI
Elw, since regular ATI peaks are expected near the energié‘é"'cm‘?‘“ons- While usefu! |nS|ght into basic A_Tllfeatures can
E=nw. Figure 4a) shows a series of ATl peaks, obtained °& 9ained from a one-dimensional model, it is clearly too
for the parameters=0.2 and&,=0.16, after 16 light peri- restricted to allow for quantitative comparisons with experi-

ods. Note that the three-photon peak is already suppressed@ENtS: It is therefore hoped that the present computational

this intensity. If the field strength is further increased, oneMethod also will prove adequate for three-dimensional cal-

enters the regime of over-the-barrier ionization. To suppresgma“c_ms' Radlatlpn conditions have been derived for a
the potential barrier below the binding energy, the critical spherlcal_ surfa(_:e n _the Kramers-Henne_berger frame. How-
field strengtht.~0.22 has to be exceeded. In this regime, weSVer: their appllc_ablhty to TD.SE cglcu_lanons for more real-_
have observed an additional peak series in some cases. AfC atoms_ requires further !nvestlgatlon. These issues wil
example is shown in Fig.(8), corresponding to the param- P°€ the subject of a forthcoming work.

etersw=0.2 and&,=0.3. While the regular ATI series ap-
pears at the energids=nw, the peaks of the additional
series can be recognized at the enerdiesnw. In the We wish to acknowledge helpful discussions with B. U.
present representation, the lowest-order peak @) occurs  Felderhof and G. Herziger. This work has been supported by
at E/w~5.3. Since the absorbed energie@ are indepen- the European Commission through the TMR Network
dent of the ionization energy, this peak series may be reSILASI, Contract No. ERBFMRX-CT96-0043 and by the
garded as a free-free multiphoton transition due to the scaBeutsche Forschungsgemeinschaft, Bonn.
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