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Floquet-Bloch theory of high-harmonic generation in periodic structures
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Generation of high harmonics by the interaction of intense laser fields with periodic crystal structures is
investigated theoretically. A nonperturbative Floquet-Bloch theory of the interacting sysitgstal plus laser
field) is developed and applied to obtain the field-modified band structure of the system. The mean energy
spectrum, the dispersion and the fluctuation of the band energy in the photon space, and the associated standard
deviation and spectral entropy are calculated. The harmonic generation spectra in a thin crystal, for the
neodymium-doped yttrium aluminum garnet laser frequaneyl.169 eV, are obtained, both in the perturba-
tive and nonperturbative intensity domains. The calculated emission spectra for an insulator, a semiconductor,
and a metal film are compared. The semiconductor medium is found to be somewhat more efficient than the
metal or the insulator. A “transition intensity” for strong harmonic generation in crystalline media occurs at
about an intensity+10"* a.u., i.e., 3.5X 10'?> W/cm?. [S1050-2947®7)06007-1

PACS numbsdis): 42.50.Hz, 42.65.Ky, 32.80.Wr

[. INTRODUCTION that for an atomic layer of moderafematerials of 100 A, in
the field of a Nd:YAG laser of 1§ W/cm?, the lattice dis-
The earliest experiments on the generation of harmonicitegration time has been estimated to be several hundred fs
in intense laser fields showed the formation of a plateali7], and the electron-phonon relaxation tifdd] to be a few
in the energy distribution of the coherently emitted harmon-hundred fs. One may thus allow an intensity as high as
ics up to a high ordef1]. Because of its clear nonperturba- 10*> W/cm? for a Nd:YAG laser pulse of 100 fs, without
tive character, this finding stimulated much interest, boththermally damaging the lattice. But perhaps a more severe
from experimenta[2] and theoretical3] points of view. In  restriction on the intensity of the field is imposed by the
these experiments noble gas atoms were predominantly usetiaracteristic intensity for the ionization breakdown of the
as the “active media.” Recently a number of experimentscrystal. There are at present no definitive estimates of this
were carried out in the intensity range betweer? Bhd  available . However, we may obtain an order of magnitude
10" W/cm?, giving rise to high-harmonic generation from estimate for this purpose by assuming it to be about the
solid targetd4,5]. threshold intensity for the onset of the Afdbove threshold
Theoretical studies of high-harmonic generation inionization process. The ATI threshold generally occurs for
condensed-matter media have also been initiated recently,>%w, whereU, is the so-called ponderomotive energy.
[6—10]. The purpose of this paper is to present a microscopi¢or the Nd:YAG laser this gives an intensity of the order of
Floquet-Bloch theory of nonperturbative interaction of in- 10'3 W/cm?. We shall therefore restrict ourselves to intensi-
tense laser light with periodic structures, and apply it to theties below this value for the numerical applications of the
problem of modification of the band structure by the fieldtheory in the present work. The above expectations on the
and the generation of high harmonics in such media. limiting pulse durations and intensities are also found to be
Before proceeding further, we qualitatively estimate aconsistent with the recent experiments using a 35 ps pulsed
number of macroscopic parameters relevant for practical reNd:YAG laser at an intensity of 5 GW/cfnon gold targets
alization purposes. The skin-depth of electromagnetic radig4] and a 170 fs pulsed Ti:sapphire laser at an intensity of
tion say, at the wavelength of neodymium-doped yttrium alu-10*W/cn? [5] on aluminum targets. Long nanosecond laser
minum garneiNd:YAG) laser A =1064 nm for a metallic  pulses[12], on the other hand, are not suitable for the pur-
crystal (electron density 13%/cm®) is about 170 A. We may pose. Propagation of the fundamental and generated harmon-
thus assume a typical width of the thin metallic crystal orics in the crystal(especially in the perpendicular incidence
film (especially in the perpendicular incidence mpttebe  mode may also lead to a possible loss of phase coherence.
of the order of 100 A. For a grazing incidence of the light However, this problem need not be too severe for propaga-
beam, this will permit field interaction with the crystal elec- tion within the 100 A width, but could set a limit on the
trons over the entire width. For an intrinsic semiconductorhighest coherent harmonic to be generated. A recently pro-
target, the carrier density being much smallerg., Ge: posed technique of “quasi-phase-matchinff3,14], using
2x10%cm?), the skin depth is much greater, and the limit suitably fabricated periodically segmented structures of dif-
on the width may be considerably extended. Unlike in theferent indiceq15], could also help to relax this restriction.
gaseous media, the laser intensity might not be increasddoreover, with suitably constructed periodic structures, such
indefinitely, or the laser pulse duration may not be too longtechniques may even lead to a possible selection of a given
in solid media due to possible damage to the crystal. Notbarmonic from the generated spectrum, by quasi-phase-
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A z soluble model. This model is defined by the time-dependent
Schalinger equatioriwe use units in whictk =1)

2
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T where Z stands for all integers positive, negative, and zero.
In the above the lattice potential is chosen to be the well-
known Kronig-Penney periodic potentials of strength

FIG. 1. Schematic of a possible geometric arrangement of thgo/2a  with the lattice constand [19]. The laser field is as-
crystal and the field for high harmonic generation. sumed to be linearly polarized along the crystal axis in the

x direction, and is given by the vector potential
matching the selected harmonic with the fundamental. Keep-

ing the above laboratory restrictions and prospects in mind,
we turn now to the formulation of a nonperturbative micro-
scopic theory of interaction of intense laser fields with an
idealized periodic crystal. where A, is related to the peak field strength of the laser
Fo, Fo=(w/c)Ay, w is the frequency, and is an arbitrary
phase.
This model has been initially studied by Tsoar and Ger-
In Fig. 1 we show a schematic of a perpendicular inci-Sten[20], who obtained the dispersion relation of the system
dence geometry for high-harmonic generation in thin f||msln terms of a double-infinite matrix, and discussed the modi-
In this mode the laser pulse is assumed to cross the film frorfication of the band structure with approximate calculations.
below upward ¢ axis), and is taken to be polarized along the It was shown afterward®1,22 how to obtain an exact ana-
x axis; the emitted harmonics are expected predominantly tiytic solution of the dispersion relation of the system in terms
emerge in the direction of the propagation of the field. weof a single-infinite matrix. This greatly facilitates both an
note a|ready that unlike in the grazing-incidence geometry,exact calculation of the band structure and a discussion of
where due to the absence of the inversion Symmetry botgeneral features of such SyStemS when the laser field can no
odd and even harmonics are generated, in the perpendicull@nger be treated by the perturbation theory.
incidence geometry, due to the presence of the inversion It is useful to introduce a phase transformation of the
symmetry, only odd harmonics are permitted. wave function,
To obtain detailed insights into the field-induced pro-
cesses in solids, e.g. modification of the band strcture, reso- ie? rt
nant interband transitions, dependence of the harmonic sig- \If(x,t)=ex;{ 3 sz dt’A%(t")
nal on induced currents, Bloch vectors, or band filling, we ®
develop a Floquet-Bloch theory of the interaction of a crystal )
with a monochromatic laser field. The field is also supposed@nd work with¢(x,t), which now satisfies the same Schro
to be switched on and off adiabatically, and thus to have &linger equatior{1) but without the lasA®(t) term.
typical pulse duration much greater than the field oscillation We note that the Hamiltonian is periodic both in space
period. As usual, the dipole approximation for the laser fieldand time dimensions. The time-periodic property is given by
that is generally well justified for infrared and optical fre- the Floquet theorem, and the space-periodic property is given
quencies[16], will be assumed. The crystal electrons areby the Bloch theorentthe latter being merely a spatial ana-
assumed to move independently in a static background fieltpg of the forme). Thus we first apply the Floquet-Fourier
of the ions forming the lattice, where the background fieldexpansion(e.g.,[23])
can be approximated by a periodic model potental.,
[17]). The motion of the lattice electrons is assumed to be , A
along the direction of the polarization of the field, and hence P(x,t)=e B X e @Ay (x), 4
is quasi-one-dimensional in nature. Thus the theory devel- nez
oped below can be equally well applied to the investigations
of laser interaction with artificial one-dimensional semicon-whereE is in general noncomensurate withand represents
ductor heterostructurg48], that can nowadays be fabricated a so-called quasienergy. Substitution of E4). into Eq. (1)
in the laboratory. leads to the Floguet-Schiimger equation for the Floquet-
Fourier componentg, (x),

A(t)=Aqcoq wt+ ), (2)

Il. THEORETICAL FORMULATION

p(x,1), ()

An exactly soluble model

In order to discuss a number of general properties of non- (E=Hn)¢n(x)=0, n=0,£1%2,..., )

perturbative interactions of electrons in a crystal lattice with
an intense laser field, in this section we consider an exactlwhere the Floquet Hamiltonian is given by
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1 2 P and we have used the fact that
Hn:—2—&—xz+gz 6(x—ma)
a me’ bo(Ma) = bri(0). (16)
1 d
+ Ei way(Sy+ SE)& —No. (6)  We note that for sufficiently large negative valued\bfcor-

responding to virtual emission processgg,could be purely
imaginary. This situation is well known in the scattering
eory, and corresponds to the closed-channel boundary con-
dition with positive imaginarypy (e.g., [24,25]). Setting
ST (X) =t 1(X), 7 x=0 in Eqg.(14), and carrying out the sum over, we finally
n ¢n( ) ‘//n,l( ) ( ) arrive at[21,22

In the above equation the so-called index-shift operator
S, merely shift the index of i,

and the constanky=—eA,/ucw is the classical radius of

Thrati ; . P
vibration of the electron in the laser field. Let us further
5 r__J ERNTAN?S - !
define the Green’s functio@ﬁn,(x,x’) as the solution of the Néz NN 2pga NN (eo(Pn— 1))
inhomogenous equation ;
w—IPNE [ (E(K)=0 17)
(E=HYGY, (X,X') = 8 S(X—X'), ® coka—copya) " ’
where in which the constantsay are expressed in terms of
, $n(0),
HO L9 + L (ST+S;) i 9
n:___Z —Iwao N — —Nw.
2u OX° 2 ox an(E(K)= 3 In-nlaopy) dui(0), (18)

It has been showf23] that this Green’s function takes the
explicit form (with the infinitesimally small and positive) ~ where we have explicitly marked the functional dependence
. of the quasienerg¥ on the quasimomenturk.
c° (X,X') = if dpdPx—x") In the absence of the laser field the system of algebraic
nn’\ ™ p : H
27) —w equationg17) decouples into

In-n(aoP)In-n'(@oP) P sinpya
. . 10 —_ N =
19
In terms of this Green'’s function, the solution of Ef) can (19
be expressed as If we now assume that in the field-free cade,€0) the
. electron’s energy i€(k), thenN=0 and Eq.19) yields the
P (X) = 2 dx’' G° L(x,x") classic dispersion relatiofl9] of the field-free Kronig-
R e Penney model
S sx ’ (1) P
A~ X' —ma, (X7). — - ol
2a. ( ) e (X7) coka=cogya+ 2poasmpoa, (20)
Since the crystal is periodic in space, we may invoke Bloch'sith o= /2 2E(K) and
theorem[17] to write ¢,(X) in the form Po HE(k)
an(E(k))=Néyo, (21

Pr(X) = €% (%), (12

wherek is the quasimomentum, anfl, (x) satisfies the pe-
riodicity condition

where N is a normalization constant of the Bloch state.
For a nonvanishing laser field, E¢L7) shows that the
quasienergye (k) fulfills the exact dispersion relation

dn(X+ma)=¢n(x), m=0,x1*2,.... (13 .
P sinpya _
Substituting Eqs(12) and (10) into Eq. (11), we obtain de{ SNy~ 2pNa‘]N‘N'(a°(pN_ pN'))coska— coppa =0
(22)
P 1
bnk(X) = _'EN nz Z aJN*n(aopN)‘JN*n’(aopN) Notice that the roots of Eq22), or the quasienergieB(k)
e as a function ok, appear inpy [c.f. Eg. (15)]. This result
ipp|X—ma|— ik(x—ma) permitted[21,22 us to derive two genera_l theorem; regard-
X ¢“’k(0)r§2 elPapEma LTI, (14) ing the laser-modified energy bands, which are valid for any

frequency or intensity of the laser fiel@h) the Floquet-band

where theorem, which states thatk(k) is a solution of the disper-
sion relation(22) thenE(k) + M w with an arbitrary integer

pPn= V2u(E+Nw), (15 M, is also a solution; an¢b) the Kramer’s theorem, which
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says that ifE(k) is a solution of Eq(22) thenE(—K) is also J T T T T T T
a solution of this equation, arel(k) = E(—K), i.e., the band
structure is symmetric abolt=0.

These two general theorems have important practical im-
plications. Theoren{a) implies that a given exact Floquet
band must be parallel to all thd replicas associated with it.
From the computational point of view the infinite matrix in
Eq. (22) has to be truncated in Floguet-Fourier spac8&uch
a truncation in general violates the Floguet-band theorem in
the sense that it is only approximately fulfilled up to some
finite range ofM. If the initial truncation is too drastic, then
one has to increase the number of Floquet-Fourier channels
to ensure a given degree of parallelism of the calculated
quasienergy bands. The Kramer's theorém implies that ﬂ =1
only odd harmonics are radiated in the thin-film case. These -10 = » e
points are discussed below in greater details in connection 1 ! L 1 1 i L
with concrete calculations. 3 2 -1 0 1 2 3

Es(k) (eV)

Ill. BAND STRUCTURES OF A CLASS OF kl

KRONIG-PENNEY-TYPE MODELS

FIG. 2. The field-free band structure for the one-dimensional
crystal potential, Eq(23). The dots appearing in the band structure

in this figure (and in the subsequent figujeare due to limited
density of points in the computations; they may be connected

In Sec. Il we analyzed an exactly soluble model of the
interaction of electrons with both a space periodic crystal
potential and a time periodic laser field. In this section weSmoothly by interpolation, if desired
introduce a more general class of periodic potentials using ' '
finite quare wells, and discuss the modification of the band

structure of the system in the presence of a strong laser field. In Fig. 2 we prgsgnt the calcula_lted unperturbed band
We define structure and, the minimum and maximum energy values for

the bands are given in Table I. It can be seen, for example,
1 1 that with the above choice of parameters, for a one-and-half-
Vi 1 FPTmark=xsibrarm@th)  fied crystal(ie., fully filed first band and half-filed second
V,, —ib+m(a+b)<x<ib+m(a+b), band, one obtains a Fermi enerdg=5.53 eV that is com-
(23 parable to that of golf29]; a crystal that has been used, e.g.,
in the experiment of Farkaet al. [4].
with an integem. This model reduces to the Kronig-Penney In the presence of the time-periodic laser field the band
model in the Ilimit ¢,V;)—0 and V,—o, with  structure has a multivalued representation corresponding to
V,b=P/2a kept constant. Although this model is not ana-the different Floquet zones within a givee.g., the first
lytically exactly soluble as the previous one, it also permitsBrillouin-zone. The simultaneous occurence of the Brillouin-
us to analyze efficiently the band structure in a strong laseand Floquet zones is a general feature of the band-structure
field, as was first shown if26]. In addition, it contains more calculations in the presence of the field, and, as discussed in
parameters than in the Kronig-Penney model of Sec. Il, thaBec. Il is a consequence of the simultaneous presence of the
allow one more conveniently to model a given system ofspatial and time-periodic interactions in the system. In order
interest. to anticipate in which way the band structure would be modi-
fied in the presence of the field, it is useful first to consider
A. Floquet-Bloch band, mean band-spectrum, band dispersion, the unperturbed band structure in the Floquet the so-
and band entropy called “dressed) picture, as shown in Fig. 3, which is

The mathematical formulation of the Floquet-Bloch cal-
lcmatl?.nlsdqf t(;l.e band;t.rugtutr?l In th{ﬁ pfsencg of ar? mt.etn. max. respectively, for the field-free bar{thdex 8) calculated for
ahser Ieh IS r:_scussil In-de als In de pdpen X, where | I'%he periodic potential defined by E(®3). Note that in this case the
shown how this problem can be reduced to an eigenva Ufhiddle of the second band occurs at an enerdy 1 eV, which for
problem[26], Eq. (A14), of the type a one-and-half-filled crystal corresponds to a Fermi energy

TABLE I. The minimum and maximum energies,,, and

FC=dC, (24) Er=5.53 eV, similar to that for goli29].
where,F is the so-called Floguet-Bloch matri26] that de- B Emin (V) Emax (€V)
pends on the quasiener@; k is the quasimomentum; and 1 —10.630 —10.230
C are the eigenvectors associated with the Floquet-Bloch —6.062 —-3.273
statesigi(Xx,t), with 8=1,2,3 ... labeling the bands. For 3 —1.776 5.187
the purpose of concrete numerical simulations we have taken 5.677 16.547
the model parameters as folloves=2.2715b=6.8145a. u., 5 16.907 30.947

V,=-15.203 eV, and/,= —7.451 eV.
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Es(k)/w
Ep(k)/w

kl kl

FIG. 3. Floquet replication of the field-free band structure given FIG. 4. The Floquet-Bloch band structure in the presence of the
in Fig. 2. The first six Floquet zones at the interval of the photonfield at an intensityl =3.51x 10'° W/cn? and a photon energy
energyw=1.169 eV are shown. The crossings of the bands marked =1.169 eV. Note that the field-free crossingsand(a) in Fig. 3
by small letters correspond to the resonant transitié@sand (b) become the avoided crossings now in the presence of the field. We
for the two- and three-photon resonant transitions between the seoote also that an avoided crossing is broader for a resonance due to
ond and third bandg¢) and(d) for the five- and four-photon reso- a smaller number of photons exchanged. The crossiygsc), and
nant transitions between the first and second bands(erfdr the (d) are in fact narrow anticrossings. Observe that the calculated
one-photon resonant transition between the third and fourth bandspectrum passes continuously from one Floquet zone to another,

implying a good convergence of the calculations with respect to the
readily obtained by replicating the unperturbed spectrum atruncation in the Floguefor photon space.
an interval of the photon energy. Note in particular that in
this representation the bands are characterized by crossitigen themean energy¥s(k) can be expressed as
points, some of which are indicatdd)—(e) in the figure.
They represent the unperturbed positions of possible inter-
band resonances that may occur due to the absorption and
emission of photons in the presence of the field.

This unperturbed Floguet band structure is to be comwhere the real numbe? zy(k), which satisfies
pared with the Figs. 4 and 5, where we show the calculated
band structure in the presence of the field, for two selected
intensities,| =10 ¢ and 10°° a.u. respectively(Note that 1 ,\gz Pen(k)=1, (28)
a.u. of intensity corresponds to 3810 Wi/cnr). At the

relatively lower intensity ofl =10 ® a.u. the resonanc@®  can be interpreted as the probability that the electron in the
shows up as an antlcr055|m5|9;54), where the other 1eso- |aer field, being in the Floquet-Bloch stafg(x,t), has the
nances are not resolved. At 10"~ a.u., which is one order energyE 4(k) + No. In the above equations we have explic-
of magnitude larger, we observe that all the resonaf@es iy marked the dependence of the quasiendggk) on the
(¢) appear strongly with well-resolved anticrossing®. 5.  Bjoch quasimomenturk, and indicated a band index

As an alternative to the description of the multivalued  The mean band energgj,(k) defined above is a single-
Floguet-Bloch band structure, we introduce the useful congajyeq “structure quantity” in the following sense. The Flo-
cept of a “mean-band spectrum.” We define this quantity as,, et theorem discussed in Sec. Il states that independently of
the quantum expectation value of the energy operator withy hather we define the Floquet-Bloch matdiin Eg. (24)
respect to the Floquet-Bloch states. Thus let the expectatiog, ihe quasienergE or E+Mw with an integerM, we

value with respect to a given Floquet-Bloch stgg(x,t) be  gjyays obtain the same set of eigenvalues of (24), or the

10T | same set of quasimomenta. Due to this theorem, the quasien-
Ep(k)= _J dtf AXP (X, Di g X, 1), (25)  ergy can be always reduced to the first Floquet Zdhe);
TJo 0 had we chosen, for instance, the interjval 20w), we would
. ] have gotten exactly the same results. This is why the
whereT=27/w, andw is the frequency of the laser field. If gyasienergy itself does not have an invariant meaning for the

sﬂ<k):N§Z [E(k)+No]P (k) 27)

the Floquet-Bloch state is normalized as crystal, or, in other words, is not a “structure quantity.” In
107 | contrast, independently of the choice of the quasienergy,
- 2_ whether it isE or E+ M w, the same value is obtained for the
dt | dx¢a(x,t)][=1, (26) ; e
TJo 0 mean energy, and hence it represents an invariant structure
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sence of the fieldI(=0). One of the more interesting fea-
tures seen in these figures is the formation of minigaps at the
points where the bands are resonantly coupled by the laser
field. For the small laser intensity, the widths of the minigaps
[21,22,26 are seen to increase with the intensity. This can be
understood from a consideration of the well-known two-level
dynamics. Thus a resonantlike situation may be approxi-
mated by a two-state Hamiltonian. If a pair of states are
resonantly coupled, then one observes the so-called Autler-
Townes splitting of the quasienegy associated with the Rabi
oscillations of the occupation probability between the
coupled states, which for small intensities is proportional to
the intensity of the laser field. For larger intensities instead of
the linear growth, we observe a modulation of the splitting as
a function of the intensity, which can include a number of
“zero splittings” for some particular values of intensities
[8]. Exactly this type of behavior is observed for the mini-
gaps(a) and(e). Further, for sufficiently high intensity some
ki bands(in our case the second barekhibit a new phenom-
enon(which cannot occur in one-dimensional periodic struc-
FIG. 5. The same as in Fig. 4, but for a much larger intensitytures in the absence of the laser flel@hat is, in some re-
=3.51x10'* W/cm?. Observe that the three-photon avoided gions of thek space, e.g., near th@), the bands become
crossing(b) now becomes broader and visible, whereas the onemultivalued, or show a nonmonotonic behavior, implying
photon avoided crossin@) becomes narrower than at the smaller more than one positive quasimomenta having the same
intensity. On the other hand, the two-photon avoided crodsingf quasienergy.
Fig. 4 now shows a nonmonotonic dependence of the quasienergy Besides the mean energy, the band structure in the pres-
on the quasimomentum. These characteristics indicate strong noence of the field can be further characterized by the second
perturbative response of the crystal even at this not very large infor highed moments of the energy distribution in the Floquet

Es(k)/w

tensity. space. Thus we define, tistandard deviatiorof the distri-
bution,
qguantity of the crystal in the presence of the field. Math-
ematically the invariance of the mean energy spectrum is 5 )
ensured due to the fact that the transformation og(k)= NEZ [Eg(K) +Naw]“Pgn(k) —[E5(K) -
E-E+Mo (29 (31)

implies the transformation Alternatively, we can define band entropyas

Pan(K)—Pgnm(K), (30 Sy(k)=— NEZ P an(K)INP s(K). (32)

[see Eq(A29) and rulegA17) and(A18)]. [In the particular

case of the vanishing laser field, the mean enefgfk) Each of these quantities provide a measure of the dispersion
goes over exactly to the unperturbed eigenvaluesFig. 6  of the band energyin photon space. The standard deviation
we show the mean energy spectrum at two nonvanishingt two diffrent laser intensities are presented in Figs. 7 and 8,
values of the field intensity, |=3.51x10° and and those for the band entropy are shown in Figs. 9 and 10,
3.51x 10" W/cn?, and compare them with that in the ab- repectively. We see that any resonariegoided crossing

I=0(aun.) I=10"% (a.u.) I=10"" (a.u.)
1 0 I I I
10 10 | -
Ve
> 5 5
(<]
~
— 0 Y D {
Rl -5 -5 :/)I \‘\\_\—
W .
o0k < 10k - 10— . —
(] 1 1 1 1 ] 1 i 1 1 1 1 1 [l 1 1 1 1 1 (1
3-2-10123 3-2-1012 3 3210123
kl kl kl

FIG. 6. The single-valued spectrum of the mean band engs) (in eV). Compare the field-free case<0), with that in the presence
of the field: 3.5 10 and 3.5 10" W/cm? at w=1.169 eV.
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FIG. 7. The standard deviationrss(k) of the fluctuation of the band energy in the Floquet spaee text for the definitionin eV for

the three lowest bands as a function of the dimensionless quasimomkhtamad an intensity = 3.51x 10'° W/cm?. Observe, the sharp
increase at the resonances, indicating that the probabifitigek) at these values df and 8 disperse strongly iN.

as(k) (eV)

02+
I

_‘_
o—
-
N b=
©
§
N
]
.
o
- |
M—
[ .

between the bands shows up unmistakenly, both in the stan- A. Floguet-Bloch current; definition
dard deviation and in the band entropy as a sharp peak. This of high-harmonic spectrum

allows us to identify the resonances, even when they areé e define the high-harmonic power spectrum quantita-
sharp, very conveniently. It also shows that at these quasely by the Fourier transform of the expectation value of

momenta the probabilitieB 4y (k) are strongly dispersed in - the probability current density integrated over the elementary
N, implying significant absorption or emission of large nuM- ca|1. |t can be written ascf. [27])

ber of photons. Note that now even the very narrow avoided
crossingge.g., the crossing of the second and the third bands ds af D J’To/Z gta
next to(b) in Fig. 4, or the crossingd), between the first and dQ 37|45 ‘kékF Ty
2
, (33

the second bands, in Fig] 8an be easily identified. Note
also that in the Fig. 5 the disappearance of the avoided cross- d
ing (a) leads to the disappearance of the corresponding peak Xa
in the standard deviatiofFig. 8), showing a one-to-one cor-

respondence between the two quantities.

|
chodxjﬁk(xat)

in which N.I=L is the effective length of the crystal~
= is the fine-structure constarif, is the time duration of

IV. HIGH-HARMONIC SPECTRUM the laser pulse, and

The fundamental physical process for the emission of 1
high-harmonic radiation is the forced oscillation of the in- i p(x, )= _( wZK(X’t)
duced band current due to the laser field, which can depart 2p
from a pure sinusoidal oscillation due to nonlinear interac-
tion with the lattice potential. The Floquet-Bloch wave func- + a(X,t)
tion and the associated currents derived below according to
the present theory, can now be used to investigate the high-
harmonic generation process in a crystal in a fully nonperis the Floquet-Bloch current density. The summations ex-
turbative way. tends over gquasimomenta of the occupied bands, and over

1 e
T EA(t)}‘ka(X't)

1 e .
7% A lﬂﬁk(xyt)) (34)
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FIG. 8. The same as in Fig. 7, but for a larger intensiy3.51x 101 W/ecm?. For this intensity one clearly sees a four-photon resonant
transition between the first and second bandskfer = 2.2. Note also a weak five-photon resonance which is barely visithé~at- 1.2.
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FIG. 9. The same as in Fig. 7, except that the quantity plotted is the band elsemyhe text for the definition
such quasimomenta of the partially occupied band that areihere
equal to or smaller than the Fermi momentim
We Fourier analyze the Floguet-Bloch probability current _ 2
density integrated over an elementary cell, E4), to obtain Sn(ke) = 1= D n( (38)
| .
fodx i,gk(x,t)=NEZ e Nt 7.(K), (35 D on(0) =NwTpn(K), (39
where is theNth Fourier component of the curreM, is the effec-
tive number of elementary cells in the laser focusis the
oPgint o P fine-structure constant, argi=Kkl is the dimensionless qua-
Tan(k) = Ml(lz E E M simomentum. It should be noted tHagy(q) are real, which
=1 g06'=% nn'ecz 2p follows from the explicit form of 7\ (K) given by Eq.(36).
) . The dependence of the current distribution functions, Eq.
XJnr—nen(oagPgin—0o aOpBin’) (39), on the quasimomentum is shown in Figs. 11 and 12 for
two different intensities and for several odd valuesNof
o/ ~Bo Since
Ni(TPgin— 0" P )CET(CI)*
) Den(—aq)=(—1)N" 1D gn(q), (40)
+owag[pgn-1(K) +pgni1(K) ], (36)

therefore for everN these functions are antisymmetric and
their integration with respect p over the occupied Brillouin
zones, cancells out in EEB8). Thus, no even harmonics can
radiate in this case, as is to be expected from the inversion
symmetry of the periodic structure considered. In Figs. 11
and 12 we see that any resonance which occurs in the band
structure(see, Figs. 4 and)Ss represented here by a rapid
change of the current. Such a behavior is expected to lead to

and pgn(K) are defined in the appendix, EGA26). In the
limit of large T, (compared to the period of the figlthe rate
of emission of high-harmonic radiatiahW/d(}, Eq. (33), at
the frequency) takes the form

aw 1d823N259N o

0.25

0.05 1 05 .
ot T 1 g 1 1 0 gl
3-2-10123 3210123 32-101 23

kl kl ki

FIG. 10. The same as in Fig. 8, except that the quantity plotted is the band efgsmpthe text for the definition
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FIG. 11. The harmonic component of the current distribufieee Eq.(39) in text] D gy(q) (in a.u) as functions of the dimensionless
quasimomentung=k! for harmonic orderd\ at an intensityl = 3.51x 10'° W/cm?. Dsn(q) are shown in the extended zone representation.

Observe the presence of the discontinuitieg=atr and 2, which are connected with the passage from the first to the second band and from
the second to the third band, respectively. Note also the rapid changes in the current distribution functions at the resonances.

a significant modification of the power spectrum of the har-whereS; is a constant, antl,, may be called a “transition
monics, defined bysy(kg), Eqg. (38), when the Fermi mo- intensity” between a perturbative and a nonperturbative do-
mentumkg is in the close vicinity of the quasimomentum main for harmonic generation. Since

corresponding to the resonant transition. Let us note, how-

ever, that due to the interference effects of diffefdntom- Sn(ke) |

. . N( F
ponents one may observe either enhancement or supression In S ~Nln|—, (42
of the higher harmonics near the interband resonaf@s trn

therefore, from the slopes of lines in Fig. 13 we estimate that
B. High-harmonic spectra In(1/14)~—2. This indicates that a transition intensity in
We calculate the high-harmonic power spectrum for thregsolids, is of the order of 10* a. u. or 3.5¢10'* W/cn?, and
types of crystals(a) insulator, e.g., when initially only the that this is essentially the same irrespective of the initial
first band is occupied and there is a wide gap between thield-free conduction properties. The nonperturbative effects
valence and the conduction bands) metal, e.g., when ini- can already be seen in Fig. 14, for=10"° a.u.
tially the second band is half-filled by electrons; af@  (3.51X 10" Wicn¥), where it can be seen that for semicon-
semiconductor, e.g., when the second band is completefuctors the third harmonic is in fact stronger than the elasti-
filed and there is a narrow gap between the valence an@ally scattered radiation at the fundamerifakt peak. It is
conduction bands. The results obtained at two different ininteresting to note that a similar dominance of the third har-
tensities are presented in Figs. 13 and 14. We see(figt ~ Monic, over the elastica}IIy scattergd radiation, can also be
13), for 1=10"° a.u.(i.e., 3.51x 10*° W/cn?), the strength S€en to occur in an earlier calculatl[ﬁﬂ for a semiconduc-
of the emitted power drops down approximately linegity ~ tor. In the case of the metal and the insulator, Fig. 14 shows
the logarithmic scalewith the orderN. This behavior is thatthe strength of the fifth harmonic is comparable with that
consistent with the expectation based on the perturbatioff the third harmonic. From Figs. 13 and 14 it can be seen

theory, i.e., with the power law that, at the intensities investigated here, the semiconductor
films are likely to generate relatively higher harmonics with
Sn(ke)=So(H 1y)N, (41) greater efficiency than either metals or insulators.
0.02 —r— ]\{2'1 T 0.01 T |N|=|3 T 0.01 T |N|=|5 T
~—~ 0015 | .
g 0.01 | V:o.oos - 40.005 - .
-~ 0.005 |
= 0 F——u 4 o _l, 4 o0 .
~ -0.005 =
% -0.01 —+0.005 -0.005 | .
RN o015} .
-0.02 | T N IO I } -0.01 | N N OO I | -0.01 I I N N N |
01234567 01234567 012345617
q q q

FIG. 12. The same as in Fig. 11, but for a larger inten$iy3.51x 10'* W/cm?. Observe a well developed five-photon resonant
transition between the first and second bandg=af..2.
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10701 R — resonances on the Fourier component of the current distribu-
insulator —o— tion in a laser-modifiedFloquet-Bloch band. Finally, the
10703 | metal -2— power spectrum of high-harmonic generation is investigated
;r semiconductor -5— for different types of crystal media, and their dependence on
> 1009 L 1 both perturbative and nonperturbative intensities is studied.
& It is shown that thin films or crystals, irrespective of their
g 1007} 7 conduction propertie§.e., insulators, metals or semiconduc-
3-:_-,’ 09 torg), are very efficient in generating higher harmonics at
g 10 r T moderate intensities. A transition intensity for strong har-
F 1 monic generation in such crystals is found to be the order of
5 0 F } 3.51x 10 Wicn?. It is also found that for Nd:YAG lasers
g 1018 L i both atl=3.51x 10" and 3.5 10" W/cn?, a semicon-
o ductor medium is comparatively more efficient in generating
1019 F - higher harmonics than either an insulator or a metal film.
Finally, we note that the theory developed here permits one
10717 B to analyze a whole class of related problems of interaction of
0 1 2 3 4 5 6 7 8 910 intense lasers with periodic structures, and that this has been
N recently fruitfully applied to the problem of laser interaction

with transmission electrons in a crysfal0] which led to the
FIG. 13. The high-harmonic power spectr@y(kg) (ina.u) at  prediction of a phenomenon of multiple plateaus in high-
an intensityl =3.51x 10'* W/cm? for three different Fermi mo- harmonic spectra, due to induced interband resonances.
menta kg corresponding to an insulatorkgl=), a metal
(kel =3m/2), and a semiconductokgl =2). Notice the essen- ACKNOWLEDGMENTS
tially perturbative character of this spectrum, showing a general
rapid decrease of the signal with increasing orders of the harmonic. This work was supported partially by the Deutche Fors-
chungsgemeinshaft, Bonn. One of the auth@&.K.) was
V. SUMMARY AND PROSPECTS supported in part by the Polish Committee for Scientific Re-

To summarize, we have developed a Floguet-Block€arch under Grant No. KBN 2 P302 070 07.
theory of nonperturbative analysis of a periodic electronic
structure, such as a crystal or a thin film, interacting with anAPPENDIX: BAND STRUCTURE AND FLOQUET-BLOCH
intense laser field. The theory is used to determine the modi- STATES
fication of the band structure, the mean energy spectrum of The aim of this appendix is to present the method used to

the band, the standard devia_ltion of the band energy in th8e’[ermine the Floquet-Bloch states and the band structure for
photon space, and the associated band entropy. The last i

o . S A arbitrary one-dimensional potential, that is constant in fi-
quantities provide useful measures of the fluctuation in thee jntervals. Such a potential can be described by two sets
distribution of the band energy in the photéor Floquej

: o . . of real numbers{x;};- and{V;};- , in which
space as well as identifying the multiphoton interband resoy, i the value oi tllﬂ}tla_sgfé'hfli(al in téeliﬁfér{adiK_l,xi]. Itis

nances. The fnur_ne_,-ncal resglttsh ar_eﬂused to ??;nonsttrage tg’éell known how to treat the field-free problem for such po-
occurrence of minigaps and the influence ot the INterbanentials. one divides the space inko nonoverlapping do-

mains, and for each of these domains writes down the most

10 T et e general form of the wave function, which is a linear combi-
1002 | metal -a— | natio_n _of two counter_propagating plane waves. The complex
- semiconductor -B— coefficients that multiply these plane waves are then deter-
= 04 mined up to a normalization constant from the matching con-
@ 107°7 | . diti ; i ;
= itions (i.e., from the continuity of the wave function and of
e 06 its space derivative whereas the band structure follows
2 10 r 7 from Bloch’s periodicity condition. It appears that a similar
S 08 method can be applied to an analysis of the band structure in
& 1077 1 the presence of a monochromatic electromagnetic plane
5 waves. However, in order to do this we have to know the
= 10710 | 1 most general solution of the time-dependent Sdimger
S equation(the units in whichi =1 are used hejg
10712 | . , ,
iV = + 2 A(t) —+ © A2(t)+V(x) | ¥
1014 [ S TR NN (U R B B o = 2u Ix2 uc IX 2/.LC2 X !
01 2 3 45 6 7 8 9 10 (A1)
N or, after the unitary transformation, E@), of the equation,
FIG. 14. The same as in Fig. 13, but for a larger intensity P p
I =3.51x 10'* W/cm?. Observe that at this intensity the harmonic ;
0= — =— —=+—A({t) —+V(X) |y, A2
spectrum behaves rather nonperturbatively. W 2u IX% " pc (O 5V ¥ (A2)
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in the different domains of constaim(x). In this equation Hence, we arrive at the following chain of equations for the
the time-dependent vector potentié(t) describes a plane columnsC;:
wave in the dipole approximation

Ci=BiCi-1, (A10)

A(t)=Aycoq wt+ 6), (A3)
where

with an arbitrary phasé, andV(x) is a static periodic po- ) e
tential which is chosen to model the crystal lattig20]. Bi=[B(i,xi-1)] "B(i—1xi_1). (A11)

2 . . .
Note, t_hat theA™(t) term, which can be_ eliminated by the This chain of equations connects the solution in the domain
space-independent unitary transformation, does not chang(e <x<x; to the solution in the domair, _ ;<x<x; [31]
{—1 i i—1 j ’

the band structure and can be taken into account in the wave ™
function, |_f desired, by the back t_ransforma_tl(i%). A gen- C;=BBj_1. ... B 1Ci=T;C, (A12)
eral solution of Schrdinger equation(A2), with V(x) de-

fined above, that accounts for the periodicity of the Hamil-where the matri)(]}i is the so-calledransfer matrix.

tonian in time, is of the forni31] (cf., [32,33) We have assumed that(x) is a periodic function of
with the period equal td. This means that there exists an
lﬁ(i)(x,t):e_iEt 2 e_iN(wt+6)[JN—n(aOpin)eipinXCiT1 index io such that Vi=Vi+i0=Vi+2iO= sy and
nNez Xi+i,=Xi+|. Hence a solution of EqA2) at a given time
+In_n(— aopin)e PinC. ], t can be built up of the Bloch wave functions of the form
— aikx
Xifl<X<Xi , (A4) l,bk(x,t)—e uk(th)r (A13)

: . _ . wherek is the quasimomentum ang(x+1,t) = u,(x,t); the
in which 2=0,-1,+2, . " In(2) are the B?Sse' functions, guasimomentunk is defined as modulo2/1. In our further
ag=—eAy/ucw, and Gy, and C;, are arbitrary complex ., qigerations we assume that [ — «/l,w/1]. The use of

constantsE is the so-called quasienerglfloquet character- Eq. (A13) in Eq. (A4) leads to the eigenvalue equatifzs]
istic exponent, and

f

Pin=V2(E—V,+Nw). (A5) o

in which theBloch-Floquetmatrix Fiio is defined as

Ci=e¥c;, (A14)

It is clear that, for the field-free problem, wherp=0 and
N=0, this solution reduces to the superposition of two coun- Fi=PT.i i, (A15)
terpropagating plane waves of eneigyHowever, for a non- 0 o

vanishing laser field the structure of this solution becomegnare

much more complicated, because instead of two arbitrary

constants it now contains an infinite number of them, which PF 0
makes computations much more difficult. Moreover, this so- P= _ (A16)
lution contains the so-called closed channels, for which the 0 7

momentep;,, defined by Eq(A5) become complex. It is well . _ - .
known from scattering theory, e.d24], that such closed @Nd (P )nn=Onn€XP(-ipisl). This is the eigenvalue equa-
channels—although not directly accessible to free motion oflO" Which determines the dispersion relatis- E(k), and
the electron—play a very important role both in principle— the colu'm'nsCi which are necessary for the construction of
for instance, one cannot satisfy the probability conservatiod® xplicit form of the Floguet-Bloch wave functions.

law without taking them into account—and in physical ef-  1N€ eigenvalue equatidi14) consists of an infinite sys-

fects, e.g. for the cupture-escape resonaf@gkin radiative tem of linear algebraic equations. In practical calculations

electron-ion scattering. such a system has to be truncated. This means that the indi-
The matching conditions fot=x; _, can be written down cesN andn in Eq. (A4) run over a finite subset of integers
in the matrix form Z. Of course, such a truncation also reduces the number of
eigenvalues and modifies their numerical values. Therefore,
B(i—1x-1)Ci_1=B(i,x-1)Cj, (A6)  We require a criterion of choosing only those eigenvalues
which are insensitive to the truncation. One possibility is to
in which C*=C; carry out the calculation for two subsets of integ€gsand

" Z4, such thatZ,C Z,, and choose, for a given quasienergy

B*(i,x) B7(i,x) ct E, those quasimomenta that lie within a prescribed error
B(i,x)= ( ) . Ci =( ') , (A7)  margin. This criterion was applied [26]; its advantage con-
B’*(i ,X) B"(i ,X) Ci sists in the rapid numerical calculation of the laser-modified
band structure. However, for the purpose of this paper, we
and the matrice® andB’ are defined as need, apart from accurate eigenvalues, also accurate values
_ of the Floquet-Bloch wave functions. To reach this end we
[B*(i,%)In,n=In-n( = @oPin) €™ Pin, (A8)  choose an alternative criterion based on the accuracy of the

, _ extreme components of the eigenvectors. Thus we first cal-
[B *(i,X)Inn= Tipindn-n( £ @opin)e™'Pin*.  (A9)  culate the eigenvector§; of Eq. (A14), by truncating the
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infinite columns C."(n), n=—, ...,+% to finite ones A .
. R . — a—iEgk)t —iN(wt+6
with n=n,i,, . .. Nmax- Next, from all possible eigenvec- Ypr(x,t) =€ 1El )UZ; N%Z e Nt
tors C,; that correspond to real quasimomehktéa quasimo- - ‘
mentumk is considered to be real if the imaginary part of the ><JN,n(aaopﬁm)e'”pﬁinXCﬁ”,
calculatedk! is smaller than 10, we choose only those
for which the complex numbei@;, , with n in the vicinity of X =<x<x, i=1,2,..io (A19)

Nmin @nd Npay, are negligibly smallfi.e., the probabilities
Psn(K) defined below by Eq.(A29) are smaller than ith
10 19). 1t is found that for the intensities considered here,
both for the band structure and the corresponding Floquet-
Bloch states of the first three bands it suffices to assume that Pgin= \/ZM[EB( K)+no—Vi]. (A20)
Nmax= — Nmin=15 to satisfy the above accuracy. We may
note also that for the convergence to this accuracy the trunthe probability density associated with this state is equal to
cation size is very sensitive to the laser field intensity and
increases very rapidly with increasing intensity. .

Due to theytimz pﬁriodicity of thegSc'hi'mggr equation pﬁk(X,t)=n§Z e Mt p gen(X), (A21)
(A2) the quasienerg¥ is defined modulav. Therefore, we
are free to choose any finite range of widbhin which the
guasienergy changes continuously. In this paper we assume
that E to be in the first Floquet zone, i.e., in the interval

. : 1
[0,w). If one considers the quasienergy to be equal to, Say’Pﬁkm(X)ZNEkl 2 E T
E+ nyw with E € [ 0,0w), then in order to find the correspond- o'==xnn'ez
ing Floquet-Bloch state it suffices to make the following sub- , .
stitutions in Eq.(A4) (e.g.[23)): x €!(Pgin = Pgin )X,
! * Bo Bo'\ %
E—E—ngo (A17) ><'Jn’7n+m((7'a’0p,8|n o aopﬁin,)Cm (Cin’ ),
Xi—1=X<Xj. (A22)

and

We normalize our Floquet-Bloch state such that=@2 7/ w

C:oCh,. . (A18) is the period of the laser field oscillations
’ 0

1 (T (I
= dtd x,t)=1, A23
In other words, if we know the band structure and the Tjo fo X0 X.1) ( )

Floquet-Bloch states for quasienergies from the interval
[0,w), then with the help of the above rules we can find themthus the normalization constant
for any realE. From the computational point of view it is
most convenient to take such values for the quasienergies i
that are near to the field—free energies of the physically reI'- Nﬁkzz > > ni(gpﬁm_gfp;m,)
evant states. Otherwise, as follows from the above results, in 1=l g 6'=+ nn'ez
order to find the relevant eigenstates one would have to con- , . o B0 %
sider a much larger truncation size than is necessary. XJnr—n(oagPgin= 0" agP g, ) Ciy’(Cigr )*,
We now discuss another technical problem which arises
. . o (A24)

due to the method of solution of the eigenvalue equation in
o1 the energyE. It s necessary. i this iroLmstance. to havel/ere io s defined by the space periodiciy conditon

g;E_. i Y, ’ Xi+i.=X;+1, and for the Kronig-Penney-like potential, Eq.
a way of ordering the pairé, E(k)) that belong to an energy 0 _ o -
ordered band characterized by, say, the index23) considered in this papés=2, and

B=1,23,....Intheabsence of the field there is no special e v
problem, but, in the presence of the field, due to the multi- n(y)= %i dxeiyx—ey i—eXi-1 (A25)
valued nature of the Floquet eigenvalues, this becomes a Y= I )%, - ily

nontrivial technical problem. Below we shall first introduce

the concept of the “mean band energy,” which, unlike the, ot the time-dependent probability, EA21), integrated
Floquet-Bloch eigenenergy, is independent of the choice of, o a1 elementary cell, be

the Floquet zone. This invariant single-valued quantity is

found to be most convenient not only for describing the

physical properties of the system but also for resolving the pa(t)= 2 e im(wt+ 5)Pﬁm(k)u (A26)
band identification problem mentioned above. Let the me 2

Floquet-Bloch state with a band-ordering ind@e written

as with the Fourier components
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FIG. 15. The first two bands for the laser intensity  FIG. 16. This figure shows the third band at the laser intensity
| =3.51x 10'° W/cm? and the photon energy=1.169 eV. Notice  1=3.51x 10*° W/cm? andw=1.169 eV. The minigae) is due to
that for this low intensity the tightly bound first band is hardly the one-photon resonant transition and the other minigapand
affected, whereas the second band changes qualitatively from th®) are due to two- or more-photon resonant transitions.
corresponding field-free cagef. Fig. 2. A minigap (a) appears,
which is due to the two-photon resonant coupling of the second
band with the third(b), (c), and(d) are in fact very narrow mini-

> Pun(k)=1, (A30)
gaps due to higher-order resonant couplings. NeZz

therefore the real numbeR,y (k) can be interpreted as the
probability, for a giverk and 8, of finding the electron with
the energyE (k) +Nw. With this interpretation the mean
energy £4(k) can be understood as the mean quasienergy
given by the right-hand side of E¢A28),

gﬁ(k):<EB(k)>ﬁk' (A31)

Moreover, we can define th&tandard deviatiorof the dis-

and the normalizatiop so(k) =1. Further we define eean  yipytion of the electron energy in the photon space with a
energygiven by the time-averaged expectation value of thegiven k in bandg

total Hamiltonian,

io
pam(K) =N 2

2 2 ni(o'pﬁin_o'lp;inr)

ogo'=t nn'ez
' *
><‘Jn’fner(a'aopﬁin_ g aopﬁmr)

x CEo(Chyx, (A27)

in’

op(k)= \/ 2 [E4(K)+NoT?P an(k) ~(E(K)) o

1 (Tl .
e0=1 ] [ dtaxsnxiapacn= 3 (Exk) na2)

+Nw)Pgn(k), (A28)  and theband entropy

with Sp(k)=— 2 Pan(K)In(Pgy(K)). (A33)
NeZ

The standard deviation, or the band entropy, provides us with
a measure of the fluctuations in the presence of the field of
the electron energy associated with the bgrahd quasimo-
mentumk. Clearly in the case of the vanishing radiation
field, bothoz(k) and Sg(k) are equal to zero.

The mean energieS,(k) given by Eq.(A28) are plotted
in Fig. 6 for three different intensities of the laser field. We
The usefulness of this quantity consists in the fact that for theee that far from the resonance peaks these plots are quite
field-free case the mean energy(k) is exactly equal to the similar. This property suggests that we can use the mean
eigenenergy, and that in the presence of the field it is @&nergy spectrum to identify the actual band ing&xThus
“structure quantity” in the sense that it is independent of thefor the Kronig-Penney potential at the two intensities consid-
choice of the Floquet zone chosen for the quasienergy. Sinaered in the text(=10"° and 10°° a.u), we identify

PBN(k)z-/VEklE > X Ni(oPgin

i=1 o,0'=+*nn'ez
*
- U,pgin/)JN—n(Uaopﬁin)

X Innr(0” @oP i CIV(CRT)* . (A29)

in’
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FIG. 17. The same as in Fig. 15, but for the larger intensity FIG. 18. The same as in Fig. 16, but for the larger intensity
I =3.51x 10"t W/cm?. At this intensity the minigaga), seen in Fig. | =3.51x 10" W/cm?.
15, has completely disappeared, and the three-photon mityap
significantly enlarged. The four- and five-photon minigag@sand

(0), respectively, are not visible at the scale of the figure. greatly separated from the second b#&bg more than three
times the photon ener@yThe association of the eigenvalues
1, &4(k)<—-8.0 to the second band index is not as clear, since, although for a

minimum energy we can také,,,= —8 eV, it is not obvi-

p=y2 —80<E(k<-256 (A34) ous from Fig. 6 due to the proximity of the next band what
3, —2.6s&p(k)<5.45 the maximum energy,max Must be. This difficulty, how-
ever, can be eliminated by requiring that the latter value must
where the numerical values are in eV. be unique for a given band, and that it must coincide with the

To associate the eigenvalues which appear in #)€)  quasienergies for a given quasimomentkmwithin modulo
plane, with a given band inde& we proceed as follows. We . This is fulfilled for E, 5= —2.6 €V [34]. Applying the
see from the unperturbed band structure, Fig. 2, that the firgame procedure as for the second band, we found that the
band lies at least between, saf;m,=—12 eV and third band is determined by the mean energy between
Eima= —8 eV. Therefore, for all points in Figs. 4 or 5 we E3pin=—2.6 eV andEz,,=5.45 eV.
may associate only those for which the mean energy is larger In Figs. 15-18 we present the identification of the
thanE4 i, and smaller thatk; 5 to the first purturbed band Floquet-Bloch band structure in the presence of the field at
B=1. Notice that this task was not difficult to carry out for | =3.51x 10'°and 3.5 10 W/cn? using the above label-
both the intensities considered here, because the first bandiigy procedure.

[1] A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A. Phys. Rev. A49, 2117(1994; W. Becker, S. Long, and J. K.

Mcintyre, K. Boyer, and C. K. Rhodes, J. Opt. Soc. Adn. Mclver, ibid. 50, 1540 (1994; P. Moreno, L. Plaja, and L.
595 (1987); M. Ferray, A. L’Huillier, X. F. Li, L. A. Lomprg, Roso, Europhys. Let28, 629 (1994); J. Peatross, M. V. Fe-
G. Mainfray, and C. Manus, J. Phys. A, L31 (1988. dorov, and K. C. Kulander, J. Opt. Soc. Am.1R, 863(1995);

[2] G. Mainfray and C. Manus, Rep. Prog. Ph§d, 1333(1992), S. Long, W. Becker, and J. K. Mclver, Phys. Rev53 2209
and references therein. (1995.

[3] B. W. Shore and D. L. Knight, J. Phys.B1325(198%; T. H. [4] Gy. Farkas, Cs. Tth, S. D. Moustaizis, N. A. Papadogiannis,
Eberly, Q. Xu, and J. Javanainen, Phys. Rev. LéH. 831 and C. Fotakis, Phys. Rev. #6, R3605(1992, and references
(1989; F. H. M. Faisal, inAtoms in Strong Fieldsdited by C. therein.

A. Nicolaides, C. W. Clark, and M. H. NayfeiPlenum, New [5] For more recent experimental works about the high harmonic
York, 1990, pp. 407-424; J. L. Krause, K. J. Schafer, and K. generation in solids, see D. von der Linde, T. Engers, G. Janke,

C. Kulander, Phys. Rev. A5, 4998(1992; K. C. Kulander, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A.
K. J. Schafer, and J. L. Krause, Phys. Rev. Lé8&, 3535 Antonetti, Phys. Rev. A2, R25(1995; S. Kohlweyer, G. D.
(1992; P. B. Corkum,ibid. 71, 1994(1993; M. Lewenstein, Tsakiris, C.-G. Wabhlstnm, C. Tillman, and I. Mercer, Opt.

Ph. Balcou, M. Yu. Ivanov, A. L'Huillier, and P. B. Corkum, Commun.117, 431(1995.



762 F. H. M. FAISAL AND J. Z. KAMINSKI 56
[6] L. Plaja and L. Roso-Franco, Phys. Rev4B, 8334(1992.
[7]1S. Huler and J. Meyer-ter-Vehn, Phys. Rev. 48, 3906
(1993.

[8] J. Z. Kamirski, J. Phys. @, 1577(1994.

[9] A. Misra and J. I. Gersten, Phys. Rev.4B, 1883(199)); 45,
8665(1992; S. Varroand F. Ehlotzky, Phys. Rev. A9, 3106

[23] F. H. M. Faisal, Theory of Multiphoton Processd®lenum,
New York, 1987.

[24] J. R. Taylor,Scattering TheoryWiley, New York, 1972.

[25] L. Dimou and F. H. M. Faisal, Phys. Rev. LefB, 872(1987).

[26] J. Z. Kamirski, Acta Phys. Pol. 283, 495 (1993.

[27] See, e.g.Festkaper, edited by W. RaithWalter de Gruyter,

(1994; J. Phys. B28, 121(1995; P. Kdman and T. Brabec,
Phys. Rev. A52, R12(1995.

[10] F. H. M. Faisal and J. Z. Kamgki, Phys. Rev. A54, R1769
(1996.

Berlin, 1992, p. 221 for the work functionWV, and N. W.
Ashcroft and N. D. MerminSolid State Physic&Holt, Rine-
hart and Winston, Philadelphia, 1976. 38, for the Fermi
energyEg .

[11] J. G. Fujimoto, J. M. Liu, E. P. Ippen, and N. Bloembergen,[28] F. H. M. Faisal(unpublishegl

Phys. Rev. Lett53, 1837(1984).

[12] R. L. Carman, D. W. Forslund, and J. M. Kindel, Phys. Rev.

Lett. 46, 29 (1981); R. L. Carman, C. K. Rhodes, and J. M.
Benjamin, Phys. Rev. R4, 2649(198)).

[13] A. Azouz, N. Stelmakh, J.-M. Lourtioz, D. Delacourt, D. Pap-
illon, and J. Lehoux, Appl. Phys. Let6.7, 2263(1995.

[14] L. E. Myers, D. D. Miller, R. C. Eckhardt, M. M. Fejer, and R.
L. Byer, Opt. Lett.20, 52 (1995.

[15] C. J. van der Poel, J. D. Bierlein, J. B. Brown, and S. Cloak,

Appl. Phys. Lett.57, 2074 (1990; J. D. Bierlien, D. B.
Laubacher, J. B. Brown, and C. J. van der Pi®md. 56, 1725
(1990.

[16] F. Bassani and G. P. Paravicifilectronic States and Optical
Transitions in Solidg§Pergamon, Oxford, 1985

[17] J. Callaway Quantum Theory of the Solid Stand ed.(Aca-
demic, Boston, 1991

[29] If the Fermi energyEg is lower than the value for which the

Floquet-Bloch states of both the first and the second bands are
occupied, then the resonant process that moves an electron
from the first occupied band to the second unoccupied band
and back is allowed and the associated resonance is physically
observable. A few of the resonances in these figures, however,
are due to our use of the unsymmetrized wave function in the
present investigation, which should be disregarded. Thus, for
example, the resonance negr4 in Figs. 11 and 12, which
corresponds to the spurious transition from the second band to
the fully occupied first band, is disregarded in our calculation
of the power spectrunfcf. Figs. 13 and 14, below For an
alternative procedure of handling the spurious transitions see
[6]. We note, however, that the most satisfactory procedure
would be to fully antisymmetrize the many-electron wave
function, which however remain prohibitive computationally.

[18] See, e.g.,Science and Engineering of One- and Zero- [30] R. E. PeierlsQuantum Theory of SolidsClarendon, Oxford,

Dimensional Semiconductgrsdited by S. P. Beaumont and C.
M. S. Torres(Plenum, New York, 1990 Physics of Quantum
Electron Devices edited by F. CapasséSpringer, Berlin,
1990.

1955; see the footnote on p. 79.

[31] J. Z. Kamirski, Z. Phys. D16, 153 (1990.
[32] S. Varroand F. Ehlotzky, J. Opt. Soc. Am. B 537(1990; J.

Z. Kaminski and F. Ehlotzky, Phys. Rev. B0, 4404(1994).

[19] R. de L. Kronig and W. G. Penney, Proc. R. Soc. London, Ser[33] C. Jung and H. S. Taylor, Phys. Rev28, 1115(198)); R. A.

A 130, 499 (193)); see also, S. Flhyge, Practical Quantum
Mechanics(Springer, Berlin, 19711

[20] N. Tsoar and J. |. Gersten, Phys. RevlB® 1132(1978.

[21] F. H. M. Faisal and R. Genieser, Phys. Lett. 141, 297
(1989.

[22] F. H. M. Faisal, Radiat. Effects and Defects in Solid, 27
(1991).

Sacks and A. S, ibid. 40, 5614(1989.

[34] Note that had one chosen too small a valueEgf,.,, one

would have obtained a pseudogap in the quasimonieritet
which there is no quasienergy. Similarly with a choice of too
large a value oE,,,,0ne would obtain a quasimomentum for
which there are more than one quasienergy, and hence prevent
the choice of a unique value ¢.



