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Floquet-Bloch theory of high-harmonic generation in periodic structures
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Generation of high harmonics by the interaction of intense laser fields with periodic crystal structures is
investigated theoretically. A nonperturbative Floquet-Bloch theory of the interacting system~crystal plus laser
field! is developed and applied to obtain the field-modified band structure of the system. The mean energy
spectrum, the dispersion and the fluctuation of the band energy in the photon space, and the associated standard
deviation and spectral entropy are calculated. The harmonic generation spectra in a thin crystal, for the
neodymium-doped yttrium aluminum garnet laser frequencyv51.169 eV, are obtained, both in the perturba-
tive and nonperturbative intensity domains. The calculated emission spectra for an insulator, a semiconductor,
and a metal film are compared. The semiconductor medium is found to be somewhat more efficient than the
metal or the insulator. A ‘‘transition intensity’’ for strong harmonic generation in crystalline media occurs at
about an intensity I51024 a.u., i.e., 3.5131012 W/cm2. @S1050-2947~97!06007-1#

PACS number~s!: 42.50.Hz, 42.65.Ky, 32.80.Wr
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I. INTRODUCTION

The earliest experiments on the generation of harmo
in intense laser fields showed the formation of a plate
in the energy distribution of the coherently emitted harmo
ics up to a high order@1#. Because of its clear nonperturb
tive character, this finding stimulated much interest, b
from experimental@2# and theoretical@3# points of view. In
these experiments noble gas atoms were predominantly
as the ‘‘active media.’’ Recently a number of experimen
were carried out in the intensity range between 109 and
1017 W/cm2, giving rise to high-harmonic generation from
solid targets@4,5#.

Theoretical studies of high-harmonic generation
condensed-matter media have also been initiated rece
@6–10#. The purpose of this paper is to present a microsco
Floquet-Bloch theory of nonperturbative interaction of i
tense laser light with periodic structures, and apply it to
problem of modification of the band structure by the fie
and the generation of high harmonics in such media.

Before proceeding further, we qualitatively estimate
number of macroscopic parameters relevant for practica
alization purposes. The skin-depth of electromagnetic ra
tion say, at the wavelength of neodymium-doped yttrium a
minum garnet~Nd:YAG! laser (l51064 nm! for a metallic
crystal ~electron density 1023/cm3) is about 170 Å. We may
thus assume a typical width of the thin metallic crystal
film ~especially in the perpendicular incidence mode! to be
of the order of 100 Å. For a grazing incidence of the lig
beam, this will permit field interaction with the crystal ele
trons over the entire width. For an intrinsic semiconduc
target, the carrier density being much smaller~e.g., Ge:
231013/cm3), the skin depth is much greater, and the lim
on the width may be considerably extended. Unlike in
gaseous media, the laser intensity might not be increa
indefinitely, or the laser pulse duration may not be too lo
in solid media due to possible damage to the crystal. N
561050-2947/97/56~1!/748~15!/$10.00
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that for an atomic layer of moderateZ materials of 100 Å, in
the field of a Nd:YAG laser of 1015 W/cm2, the lattice dis-
integration time has been estimated to be several hundre
@7#, and the electron-phonon relaxation time@11# to be a few
hundred fs. One may thus allow an intensity as high
1015 W/cm2 for a Nd:YAG laser pulse of 100 fs, withou
thermally damaging the lattice. But perhaps a more sev
restriction on the intensity of the field is imposed by t
characteristic intensity for the ionization breakdown of t
crystal. There are at present no definitive estimates of
available . However, we may obtain an order of magnitu
estimate for this purpose by assuming it to be about
threshold intensity for the onset of the ATI~above threshold
ionization! process. The ATI threshold generally occurs f
Up.\v, whereUp is the so-called ponderomotive energ
For the Nd:YAG laser this gives an intensity of the order
1013 W/cm2. We shall therefore restrict ourselves to inten
ties below this value for the numerical applications of t
theory in the present work. The above expectations on
limiting pulse durations and intensities are also found to
consistent with the recent experiments using a 35 ps pu
Nd:YAG laser at an intensity of 5 GW/cm2 on gold targets
@4# and a 170 fs pulsed Ti:sapphire laser at an intensity
1017W/cm2 @5# on aluminum targets. Long nanosecond las
pulses@12#, on the other hand, are not suitable for the p
pose. Propagation of the fundamental and generated harm
ics in the crystal~especially in the perpendicular incidenc
mode! may also lead to a possible loss of phase cohere
However, this problem need not be too severe for propa
tion within the 100 Å width, but could set a limit on th
highest coherent harmonic to be generated. A recently p
posed technique of ‘‘quasi-phase-matching’’@13,14#, using
suitably fabricated periodically segmented structures of
ferent indices@15#, could also help to relax this restriction
Moreover, with suitably constructed periodic structures, su
techniques may even lead to a possible selection of a g
harmonic from the generated spectrum, by quasi-pha
748 © 1997 The American Physical Society
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56 749FLOQUET-BLOCH THEORY OF HIGH-HARMONIC . . .
matching the selected harmonic with the fundamental. Ke
ing the above laboratory restrictions and prospects in m
we turn now to the formulation of a nonperturbative micr
scopic theory of interaction of intense laser fields with
idealized periodic crystal.

II. THEORETICAL FORMULATION

In Fig. 1 we show a schematic of a perpendicular in
dence geometry for high-harmonic generation in thin film
In this mode the laser pulse is assumed to cross the film f
below upward (z axis!, and is taken to be polarized along th
x axis; the emitted harmonics are expected predominantl
emerge in the direction of the propagation of the field. W
note already that unlike in the grazing-incidence geome
where due to the absence of the inversion symmetry b
odd and even harmonics are generated, in the perpendi
incidence geometry, due to the presence of the invers
symmetry, only odd harmonics are permitted.

To obtain detailed insights into the field-induced pr
cesses in solids, e.g. modification of the band strcture, r
nant interband transitions, dependence of the harmonic
nal on induced currents, Bloch vectors, or band filling,
develop a Floquet-Bloch theory of the interaction of a crys
with a monochromatic laser field. The field is also suppo
to be switched on and off adiabatically, and thus to hav
typical pulse duration much greater than the field oscillat
period. As usual, the dipole approximation for the laser fie
that is generally well justified for infrared and optical fr
quencies@16#, will be assumed. The crystal electrons a
assumed to move independently in a static background
of the ions forming the lattice, where the background fie
can be approximated by a periodic model potential~e.g.,
@17#!. The motion of the lattice electrons is assumed to
along the direction of the polarization of the field, and hen
is quasi-one-dimensional in nature. Thus the theory de
oped below can be equally well applied to the investigatio
of laser interaction with artificial one-dimensional semico
ductor heterostructures@18#, that can nowadays be fabricate
in the laboratory.

An exactly soluble model

In order to discuss a number of general properties of n
perturbative interactions of electrons in a crystal lattice w
an intense laser field, in this section we consider an exa

FIG. 1. Schematic of a possible geometric arrangement of
crystal and the field for high harmonic generation.
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soluble model. This model is defined by the time-depend
Schödinger equation~we use units in which\51)

i] tC~x,t !5F2
1

2m

]2

]x2
1

P

2a (
mPZ

d~x2ma!1
ie

mc
A~ t !

]

]x

1
e2

2mc2
A2~ t !GC~x,t !, ~1!

whereZ stands for all integers positive, negative, and ze
In the above the lattice potential is chosen to be the w
known Kronig-Penney periodicd potentials of strength
P/2a, with the lattice constanta @19#. The laser field is as-
sumed to be linearly polarized along the crystal axis in
x direction, and is given by the vector potential

A~ t !5A0cos~vt1d!, ~2!

whereA0 is related to the peak field strength of the las
F0, F05(v/c)A0, v is the frequency, andd is an arbitrary
phase.

This model has been initially studied by Tsoar and G
sten@20#, who obtained the dispersion relation of the syste
in terms of a double-infinite matrix, and discussed the mo
fication of the band structure with approximate calculatio
It was shown afterwards@21,22# how to obtain an exact ana
lytic solution of the dispersion relation of the system in term
of a single-infinite matrix. This greatly facilitates both a
exact calculation of the band structure and a discussion
general features of such systems when the laser field ca
longer be treated by the perturbation theory.

It is useful to introduce a phase transformation of t
wave function,

C~x,t !5expF2
ie2

2mc2E
t

dt8A2~ t8!Gc~x,t !, ~3!

and work withc(x,t), which now satisfies the same Schr¨-
dinger equation~1! but without the lastA2(t) term.

We note that the Hamiltonian is periodic both in spa
and time dimensions. The time-periodic property is given
the Floquet theorem, and the space-periodic property is g
by the Bloch theorem~the latter being merely a spatial an
log of the former!. Thus we first apply the Floquet-Fourie
expansion~e.g.,@23#!

c~x,t !5e2 iEt (
nPZ

e2 in~vt1d!cn~x!, ~4!

whereE is in general noncomensurate withv and represents
a so-called quasienergy. Substitution of Eq.~4! into Eq. ~1!
leads to the Floquet-Schro¨dinger equation for the Floquet
Fourier componentscn(x),

~E2Hn!cn~x!50, n50,61,62, . . . , ~5!

where the Floquet Hamiltonian is given by

e
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Hn52
1

2m

]2

]x2
1

P

2a (
mPZ

d~x2ma!

1
1

2
iva0~Sn

11Sn
2!

]

]x
2nv. ~6!

In the above equation the so-called index-shift opera
Sn

6 merely shift the indexn of cn ,

Sn
6cn~x!5cn61~x!, ~7!

and the constanta052eA0 /mcv is the classical radius o
vibration of the electron in the laser field. Let us furth
define the Green’s functionGnn8

0 (x,x8) as the solution of the
inhomogenous equation

~E2Hn
0!Gnn8

0
~x,x8!5dnn8d~x2x8!, ~8!

where

Hn
052

1

2m

]2

]x2
1
1

2
iva0~Sn

11Sn
2!

]

]x
2nv. ~9!

It has been shown@23# that this Green’s function takes th
explicit form ~with the infinitesimally small and positivee)

Gnn8
0

~x,x8!5
1

2pE2`

`

dpeip~x2x8!

3 (
NPZ

JN2n~a0p!JN2n8~a0p!

E1Nv2p2/2m1 i e
. ~10!

In terms of this Green’s function, the solution of Eq.~5! can
be expressed as

cn~x!5 (
n8PZ

E
2`

`

dx8Gnn8
0

~x,x8!

3
P

2a (
mPZ

d~x82ma!cn8~x8!. ~11!

Since the crystal is periodic in space, we may invoke Bloc
theorem@17# to write cn(x) in the form

cnk~x!5eikxfnk~x!, ~12!

wherek is the quasimomentum, andfnk(x) satisfies the pe-
riodicity condition

fnk~x1ma!5fnk~x!, m50,61,62, . . . . ~13!

Substituting Eqs.~12! and ~10! into Eq. ~11!, we obtain

fnk~x!52 i
P

2a (
N,n8PZ

1

pN
JN2n~a0pN!JN2n8~a0pN!

3fn8k~0! (
mPZ

eipNux2mau2 ik~x2ma!, ~14!

where

pN5A2m~E1Nv!, ~15!
rs

s

and we have used the fact that

fn8k~ma!5fn8k~0!. ~16!

We note that for sufficiently large negative values ofN, cor-
responding to virtual emission processes,pN could be purely
imaginary. This situation is well known in the scatterin
theory, and corresponds to the closed-channel boundary
dition with positive imaginarypN ~e.g., @24,25#!. Setting
x50 in Eq.~14!, and carrying out the sum overm, we finally
arrive at@21,22#

(
NPZ

FdNN82
P

2pNa
JN2N8„a0~pN2pN8!…

3
sinpNa

coska2cospNa
GaN„E~k!…50, ~17!

in which the constantsaN are expressed in terms o
fnk(0),

aN„E~k!…5 (
nPZ

JN2n~a0pN!fnk~0!, ~18!

where we have explicitly marked the functional depende
of the quasienergyE on the quasimomentumk.

In the absence of the laser field the system of algeb
equations~17! decouples into

F12
P

2pNa

sinpNa

coska2cospNa
GaN„E~k!…50, NPZ.

~19!

If we now assume that in the field-free case (F050) the
electron’s energy isE(k), thenN50 and Eq.~19! yields the
classic dispersion relation@19# of the field-free Kronig-
Penney model

coska5cosp0a1
P

2p0a
sinp0a, ~20!

with p05A2mE(k) and

aN„E~k!…5NdN0 , ~21!

whereN is a normalization constant of the Bloch state.
For a nonvanishing laser field, Eq.~17! shows that the

quasienergyE(k) fulfills the exact dispersion relation

detFdNN82
P

2pNa
JN2N8„a0~pN2pN8!…

sinpNa

coska2cospNa
G50.

~22!

Notice that the roots of Eq.~22!, or the quasienergiesE(k)
as a function ofk, appear inpN @c.f. Eq. ~15!#. This result
permitted@21,22# us to derive two general theorems regar
ing the laser-modified energy bands, which are valid for a
frequency or intensity of the laser field:~a! the Floquet-band
theorem, which states that ifE(k) is a solution of the disper-
sion relation~22! thenE(k)1Mv with an arbitrary integer
M , is also a solution; and~b! the Kramer’s theorem, which
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56 751FLOQUET-BLOCH THEORY OF HIGH-HARMONIC . . .
says that ifE(k) is a solution of Eq.~22! thenE(2k) is also
a solution of this equation, andE(k)5E(2k), i.e., the band
structure is symmetric aboutk50.

These two general theorems have important practical
plications. Theorem~a! implies that a given exact Floque
band must be parallel to all theM replicas associated with it
From the computational point of view the infinite matrix
Eq. ~22! has to be truncated in Floquet-Fourier spacen. Such
a truncation in general violates the Floquet-band theorem
the sense that it is only approximately fulfilled up to som
finite range ofM . If the initial truncation is too drastic, the
one has to increase the number of Floquet-Fourier chan
to ensure a given degree of parallelism of the calcula
quasienergy bands. The Kramer’s theorem~b! implies that
only odd harmonics are radiated in the thin-film case. Th
points are discussed below in greater details in connec
with concrete calculations.

III. BAND STRUCTURES OF A CLASS OF
KRONIG-PENNEY-TYPE MODELS

In Sec. II we analyzed an exactly soluble model of t
interaction of electrons with both a space periodic crys
potential and a time periodic laser field. In this section
introduce a more general class of periodic potentials us
finite quare wells, and discuss the modification of the ba
structure of the system in the presence of a strong laser fi
We define

V~x!5H V1 ,
1
2b1m~a1b!,x, 1

2b1a1m~a1b!

V2 , 2 1
2b1m~a1b!,x, 1

2b1m~a1b!,
~23!

with an integerm. This model reduces to the Kronig-Penn
model in the limit (b,V1)→0 and V2→`, with
V2b5P/2a kept constant. Although this model is not an
lytically exactly soluble as the previous one, it also perm
us to analyze efficiently the band structure in a strong la
field, as was first shown in@26#. In addition, it contains more
parameters than in the Kronig-Penney model of Sec. II,
allow one more conveniently to model a given system
interest.

A. Floquet-Bloch band, mean band-spectrum, band dispersion,
and band entropy

The mathematical formulation of the Floquet-Bloch c
culations of the band structure in the presence of an inte
laser field is discussed in details in the Appendix, where i
shown how this problem can be reduced to an eigenva
problem@26#, Eq. ~A14!, of the type

FC5eiklC, ~24!

where,F is the so-called Floquet-Bloch matrix@26# that de-
pends on the quasienergyE; k is the quasimomentum; an
C are the eigenvectors associated with the Floquet-Bl
statescbk(x,t), with b51,2,3, . . . labeling the bands. Fo
the purpose of concrete numerical simulations we have ta
the model parameters as follows:a52.2715,b56.8145 a. u.,
V15215.203 eV, andV2527.451 eV.
-
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In Fig. 2 we present the calculated unperturbed ba
structure and, the minimum and maximum energy values
the bands are given in Table I. It can be seen, for exam
that with the above choice of parameters, for a one-and-h
filled crystal~i.e., fully filled first band and half-filled second
band!, one obtains a Fermi energyEF55.53 eV that is com-
parable to that of gold@29#; a crystal that has been used, e.
in the experiment of Farkaset al. @4#.

In the presence of the time-periodic laser field the ba
structure has a multivalued representation correspondin
the different Floquet zones within a given~e.g., the first!
Brillouin-zone. The simultaneous occurence of the Brillou
and Floquet zones is a general feature of the band-struc
calculations in the presence of the field, and, as discusse
Sec. II is a consequence of the simultaneous presence o
spatial and time-periodic interactions in the system. In or
to anticipate in which way the band structure would be mo
fied in the presence of the field, it is useful first to consid
the unperturbed band structure in the Floquet~or the so-
called ‘‘dressed’’! picture, as shown in Fig. 3, which i

FIG. 2. The field-free band structure for the one-dimensio
crystal potential, Eq.~23!. The dots appearing in the band structu
in this figure ~and in the subsequent figures! are due to limited
density of points in the computations; they may be connec
smoothly by interpolation, if desired.

TABLE I. The minimum and maximum energiesEmin and
Emax, respectively, for the field-free band~indexb) calculated for
the periodic potential defined by Eq.~23!. Note that in this case the
middle of the second band occurs at an energy25.1 eV, which for
a one-and-half-filled crystal corresponds to a Fermi ene
EF55.53 eV, similar to that for gold@29#.

b Emin ~eV! Emax ~eV!

1 210.630 210.230
2 26.062 23.273
3 21.776 5.187
4 5.677 16.547
5 16.907 30.947
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752 56F. H. M. FAISAL AND J. Z. KAMIŃSKI
readily obtained by replicating the unperturbed spectrum
an interval of the photon energy. Note in particular that
this representation the bands are characterized by cros
points, some of which are indicated~a!–~e! in the figure.
They represent the unperturbed positions of possible in
band resonances that may occur due to the absorption
emission of photons in the presence of the field.

This unperturbed Floquet band structure is to be co
pared with the Figs. 4 and 5, where we show the calcula
band structure in the presence of the field, for two selec
intensities,I51026 and 1025 a.u. respectively.~Note that 1
a.u. of intensity corresponds to 3.5131016 W/cm2). At the
relatively lower intensity ofI51026 a.u. the resonance~a!
shows up as an anticrossing~Fig. 4!, where the other reso
nances are not resolved. AtI51025 a.u., which is one orde
of magnitude larger, we observe that all the resonances~a!–
~e! appear strongly with well-resolved anticrossings~Fig. 5!.

As an alternative to the description of the multivalu
Floquet-Bloch band structure, we introduce the useful c
cept of a ‘‘mean-band spectrum.’’ We define this quantity
the quantum expectation value of the energy operator w
respect to the Floquet-Bloch states. Thus let the expecta
value with respect to a given Floquet-Bloch statecbk(x,t) be

Eb~k!5
1

TE0
T

dtE
0

l

dxcbk* ~x,t !i ] tcbk~x,t !, ~25!

whereT52p/v, andv is the frequency of the laser field. I
the Floquet-Bloch state is normalized as

1

TE0
T

dtE
0

l

dxucbk~x,t !u251, ~26!

FIG. 3. Floquet replication of the field-free band structure giv
in Fig. 2. The first six Floquet zones at the interval of the pho
energyv51.169 eV are shown. The crossings of the bands mar
by small letters correspond to the resonant transitions:~a! and ~b!
for the two- and three-photon resonant transitions between the
ond and third bands,~c! and~d! for the five- and four-photon reso
nant transitions between the first and second bands, and~e! for the
one-photon resonant transition between the third and fourth ba
at

ing

r-
nd

-
d
d

-
s
th
on

then themean energyEb(k) can be expressed as

Eb~k!5 (
NPZ

@Eb~k!1Nv#PbN~k!, ~27!

where the real numberPbN(k), which satisfies

(
NPZ

PbN~k!51, ~28!

can be interpreted as the probability that the electron in
laser field, being in the Floquet-Bloch statecbk(x,t), has the
energyEb(k)1Nv. In the above equations we have expli
itly marked the dependence of the quasienergyEb(k) on the
Bloch quasimomentumk, and indicated a band indexb.

The mean band energyEb(k) defined above is a single
valued ‘‘structure quantity’’ in the following sense. The Flo
quet theorem discussed in Sec. II states that independent
whether we define the Floquet-Bloch matrixF in Eq. ~24!
for the quasienergyE or E1Mv with an integerM , we
always obtain the same set of eigenvalues of Eq.~24!, or the
same set of quasimomenta. Due to this theorem, the qua
ergy can be always reduced to the first Floquet zone@0,v);
had we chosen, for instance, the interval@v,2v), we would
have gotten exactly the same results. This is why
quasienergy itself does not have an invariant meaning for
crystal, or, in other words, is not a ‘‘structure quantity.’’ I
contrast, independently of the choice of the quasiene
whether it isE or E1Mv, the same value is obtained for th
mean energy, and hence it represents an invariant struc

n
d

c-

s.

FIG. 4. The Floquet-Bloch band structure in the presence of
field at an intensityI53.5131010 W/cm2 and a photon energy
v51.169 eV. Note that the field-free crossings~e! and~a! in Fig. 3
become the avoided crossings now in the presence of the field
note also that an avoided crossing is broader for a resonance d
a smaller number of photons exchanged. The crossings~b!, ~c!, and
~d! are in fact narrow anticrossings. Observe that the calcula
spectrum passes continuously from one Floquet zone to ano
implying a good convergence of the calculations with respect to
truncation in the Floquet~or photon! space.
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56 753FLOQUET-BLOCH THEORY OF HIGH-HARMONIC . . .
quantity of the crystal in the presence of the field. Ma
ematically the invariance of the mean energy spectrum
ensured due to the fact that the transformation

E→E1Mv ~29!

implies the transformation

PbN~k!→Pb,N1M~k!, ~30!

@see Eq.~A29! and rules~A17! and~A18!#. @In the particular
case of the vanishing laser field, the mean energyEb(k)
goes over exactly to the unperturbed eigenvalues.# In Fig. 6
we show the mean energy spectrum at two nonvanish
values of the field intensity, I53.5131010 and
3.5131011 W/cm2, and compare them with that in the a

FIG. 5. The same as in Fig. 4, but for a much larger intens
I53.5131011 W/cm2. Observe that the three-photon avoid
crossing~b! now becomes broader and visible, whereas the o
photon avoided crossing~e! becomes narrower than at the smal
intensity. On the other hand, the two-photon avoided crossing~a! of
Fig. 4 now shows a nonmonotonic dependence of the quasien
on the quasimomentum. These characteristics indicate strong
perturbative response of the crystal even at this not very large
tensity.
-
is

g

sence of the field (I50). One of the more interesting fea
tures seen in these figures is the formation of minigaps at
points where the bands are resonantly coupled by the l
field. For the small laser intensity, the widths of the miniga
@21,22,26# are seen to increase with the intensity. This can
understood from a consideration of the well-known two-lev
dynamics. Thus a resonantlike situation may be appro
mated by a two-state Hamiltonian. If a pair of states a
resonantly coupled, then one observes the so-called Au
Townes splitting of the quasienegy associated with the R
oscillations of the occupation probability between t
coupled states, which for small intensities is proportional
the intensity of the laser field. For larger intensities instead
the linear growth, we observe a modulation of the splitting
a function of the intensity, which can include a number
‘‘zero splittings’’ for some particular values of intensitie
@8#. Exactly this type of behavior is observed for the min
gaps~a! and~e!. Further, for sufficiently high intensity som
bands~in our case the second band! exhibit a new phenom-
enon~which cannot occur in one-dimensional periodic stru
tures in the absence of the laser field!. That is, in some re-
gions of thek space, e.g., near the~a!, the bands become
multivalued, or show a nonmonotonic behavior, implyin
more than one positive quasimomenta having the sa
quasienergy.

Besides the mean energy, the band structure in the p
ence of the field can be further characterized by the sec
~or higher! moments of the energy distribution in the Floqu
space. Thus we define, thestandard deviationof the distri-
bution,

sb~k!5A(
NPZ

@Eb~k!1Nv#2PbN~k!2@Eb~k!#2.

~31!

Alternatively, we can define aband entropyas

Sb~k!52 (
NPZ

PbN~k!lnPbN~k!. ~32!

Each of these quantities provide a measure of the disper
of the band energyin photon space. The standard deviati
at two diffrent laser intensities are presented in Figs. 7 an
and those for the band entropy are shown in Figs. 9 and
repectively. We see that any resonance~avoided crossing!

y

-

gy
n-
n-
FIG. 6. The single-valued spectrum of the mean band energyEb(k) ~in eV!. Compare the field-free case (I50), with that in the presence
of the field: 3.5131010 and 3.5131011 W/cm2 at v51.169 eV.
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FIG. 7. The standard deviationssb(k) of the fluctuation of the band energy in the Floquet space~see text for the definition! in eV for
the three lowest bands as a function of the dimensionless quasimomentumkl and an intensityI53.5131010 W/cm2. Observe, the sharp
increase at the resonances, indicating that the probabilitiesPbN(k) at these values ofk andb disperse strongly inN.
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between the bands shows up unmistakenly, both in the s
dard deviation and in the band entropy as a sharp peak.
allows us to identify the resonances, even when they
sharp, very conveniently. It also shows that at these qu
momenta the probabilitiesPbN(k) are strongly dispersed in
N, implying significant absorption or emission of large num
ber of photons. Note that now even the very narrow avoid
crossings@e.g., the crossing of the second and the third ba
next to~b! in Fig. 4, or the crossing~d!, between the first and
the second bands, in Fig. 5# can be easily identified. Note
also that in the Fig. 5 the disappearance of the avoided cr
ing ~a! leads to the disappearance of the corresponding p
in the standard deviation~Fig. 8!, showing a one-to-one cor
respondence between the two quantities.

IV. HIGH-HARMONIC SPECTRUM

The fundamental physical process for the emission
high-harmonic radiation is the forced oscillation of the i
duced band current due to the laser field, which can de
from a pure sinusoidal oscillation due to nonlinear inter
tion with the lattice potential. The Floquet-Bloch wave fun
tion and the associated currents derived below accordin
the present theory, can now be used to investigate the h
harmonic generation process in a crystal in a fully nonp
turbative way.
n-
is
re
si-

-
d
s

s-
ak

f

rt
-

to
h-
r-

A. Floquet-Bloch current; definition
of high-harmonic spectrum

We define the high-harmonic power spectrum quant
tively by the Fourier transform of the expectation value
the probability current density integrated over the element
cell. It can be written as~cf. @27#!

dS

dV
5

a3

3pU(b (
uku<kF

E
2T0/2

T0/2

dteiVt

3
d

dtFNcE
0

l

dx jbk~x,t !GU2, ~33!

in which Ncl5L is the effective length of the crystal,a'
1
137 is the fine-structure constant,T0 is the time duration of
the laser pulse, and

j bk~x,t !5
1

2mS cbk* ~x,t !F1i ]x2
e

c
A~ t !Gcbk~x,t !

1cbk~x,t !F2
1

i
]x2

e

c
A~ t !Gcbk* ~x,t ! D ~34!

is the Floquet-Bloch current density. The summations
tends over quasimomenta of the occupied bands, and
ant
FIG. 8. The same as in Fig. 7, but for a larger intensityI53.5131011 W/cm2. For this intensity one clearly sees a four-photon reson
transition between the first and second bands forkl'62.2. Note also a weak five-photon resonance which is barely visible atkl'61.2.
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FIG. 9. The same as in Fig. 7, except that the quantity plotted is the band entropy~see the text for the definition!.
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such quasimomenta of the partially occupied band that
equal to or smaller than the Fermi momentumkF .

We Fourier analyze the Floquet-Bloch probability curre
density integrated over an elementary cell, Eq.~34!, to obtain

E
0

l

dx jbk~x,t !5 (
NPZ

e2 iN~vt1d!JbN~k!, ~35!

where

JbN~k!5FNbk
21(

i51

i0

(
s,s856

(
n,n8PZ

spb in1s8pb in8
*

2m

3Jn82n1N~sa0pb in2s8a0pb in8
* !

3ni~spb in2s8pb in8
* !Cin

bs~Cin8
bs8!* G

1 1
2va0@rb,N21~k!1rb,N11~k!#, ~36!

and rbN(k) are defined in the appendix, Eq.~A26!. In the
limit of largeT0 ~compared to the period of the field! the rate
of emission of high-harmonic radiationdW/dV, Eq. ~33!, at
the frequencyV takes the form

dW

dV
5

1

T0

dS

dV
5
2

3
a3Nc

2 (
NPZ

d~V2Nv!SN~kF!, ~37!
re

t

where

SN~kF!5U(
b

(
uqu<qF

DbN~q!U2, ~38!

DbN~q!5NvJbN~k!, ~39!

is theNth Fourier component of the current,Nc is the effec-
tive number of elementary cells in the laser focus,a is the
fine-structure constant, andq5kl is the dimensionless qua
simomentum. It should be noted thatDbN(q) are real, which
follows from the explicit form ofJbN(k) given by Eq.~36!.

The dependence of the current distribution functions,
~39!, on the quasimomentum is shown in Figs. 11 and 12
two different intensities and for several odd values ofN.
Since

DbN~2q!5~21!N11DbN~q!, ~40!

therefore for evenN these functions are antisymmetric an
their integration with respect toq over the occupied Brillouin
zones, cancells out in Eq.~38!. Thus, no even harmonics ca
radiate in this case, as is to be expected from the invers
symmetry of the periodic structure considered. In Figs.
and 12 we see that any resonance which occurs in the b
structure~see, Figs. 4 and 5! is represented here by a rap
change of the current. Such a behavior is expected to lea
FIG. 10. The same as in Fig. 8, except that the quantity plotted is the band entropy~see the text for the definition!.
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FIG. 11. The harmonic component of the current distribution@see Eq.~39! in text# DbN(q) ~in a.u.! as functions of the dimensionles
quasimomentumq5kl for harmonic ordersN at an intensityI53.5131010W/cm2. DbN(q) are shown in the extended zone representati
Observe the presence of the discontinuities atq5p and 2p, which are connected with the passage from the first to the second band and
the second to the third band, respectively. Note also the rapid changes in the current distribution functions at the resonances.
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a significant modification of the power spectrum of the h
monics, defined bySN(kF), Eq. ~38!, when the Fermi mo-
mentumkF is in the close vicinity of the quasimomentu
corresponding to the resonant transition. Let us note, h
ever, that due to the interference effects of differentN com-
ponents one may observe either enhancement or supre
of the higher harmonics near the interband resonances@28#.

B. High-harmonic spectra

We calculate the high-harmonic power spectrum for th
types of crystals:~a! insulator, e.g., when initially only the
first band is occupied and there is a wide gap between
valence and the conduction bands;~b! metal, e.g., when ini-
tially the second band is half-filled by electrons; and~c!
semiconductor, e.g., when the second band is comple
filled and there is a narrow gap between the valence
conduction bands. The results obtained at two different
tensities are presented in Figs. 13 and 14. We see that~Fig.
13!, for I51026 a.u. ~i.e., 3.5131010 W/cm2), the strength
of the emitted power drops down approximately linearly~in
the logarithmic scale! with the orderN. This behavior is
consistent with the expectation based on the perturba
theory, i.e., with the power law

SN~kF!'S0~ I /I trn!
N, ~41!
-

-

ion

e

e

ly
d
-

n

whereS0 is a constant, andI trn may be called a ‘‘transition
intensity’’ between a perturbative and a nonperturbative
main for harmonic generation. Since

ln
SN~kF!

S0
'Nln

I

I trn
, ~42!

therefore, from the slopes of lines in Fig. 13 we estimate t
ln(I /I trn)'22. This indicates that a transition intensity
solids, is of the order of 1024 a. u. or 3.531012 W/cm2, and
that this is essentially the same irrespective of the ini
field-free conduction properties. The nonperturbative effe
can already be seen in Fig. 14, forI51025 a.u.
(3.5131011 W/cm2), where it can be seen that for semico
ductors the third harmonic is in fact stronger than the ela
cally scattered radiation at the fundamental~first peak!. It is
interesting to note that a similar dominance of the third h
monic, over the elastically scattered radiation, can also
seen to occur in an earlier calculation@6# for a semiconduc-
tor. In the case of the metal and the insulator, Fig. 14 sho
that the strength of the fifth harmonic is comparable with t
of the third harmonic. From Figs. 13 and 14 it can be se
that, at the intensities investigated here, the semicondu
films are likely to generate relatively higher harmonics w
greater efficiency than either metals or insulators.
nt
FIG. 12. The same as in Fig. 11, but for a larger intensityI53.5131011 W/cm2. Observe a well developed five-photon resona
transition between the first and second bands atq'1.2.
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V. SUMMARY AND PROSPECTS

To summarize, we have developed a Floquet-Blo
theory of nonperturbative analysis of a periodic electro
structure, such as a crystal or a thin film, interacting with
intense laser field. The theory is used to determine the m
fication of the band structure, the mean energy spectrum
the band, the standard deviation of the band energy in
photon space, and the associated band entropy. The las
quantities provide useful measures of the fluctuation in
distribution of the band energy in the photon~or Floquet!
space as well as identifying the multiphoton interband re
nances. The numerical results are used to demonstrate
occurrence of minigaps and the influence of the interb

FIG. 13. The high-harmonic power spectrumSN(kF) ~in a.u.! at
an intensityI53.5131010 W/cm2 for three different Fermi mo-
menta kF corresponding to an insulator (kFl5p), a metal
(kFl53p/2), and a semiconductor (kFl52p). Notice the essen-
tially perturbative character of this spectrum, showing a gen
rapid decrease of the signal with increasing orders of the harmo

FIG. 14. The same as in Fig. 13, but for a larger intens
I53.5131011 W/cm2. Observe that at this intensity the harmon
spectrum behaves rather nonperturbatively.
h
c
n
i-
of
e
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e

-
the
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resonances on the Fourier component of the current distr
tion in a laser-modified~Floquet-Bloch! band. Finally, the
power spectrum of high-harmonic generation is investiga
for different types of crystal media, and their dependence
both perturbative and nonperturbative intensities is stud
It is shown that thin films or crystals, irrespective of the
conduction properties~i.e., insulators, metals or semicondu
tors!, are very efficient in generating higher harmonics
moderate intensities. A transition intensity for strong h
monic generation in such crystals is found to be the orde
3.5131012 W/cm2. It is also found that for Nd:YAG lasers
both at I53.5131010 and 3.5131011 W/cm2, a semicon-
ductor medium is comparatively more efficient in generat
higher harmonics than either an insulator or a metal fi
Finally, we note that the theory developed here permits
to analyze a whole class of related problems of interaction
intense lasers with periodic structures, and that this has b
recently fruitfully applied to the problem of laser interactio
with transmission electrons in a crystal@10# which led to the
prediction of a phenomenon of multiple plateaus in hig
harmonic spectra, due to induced interband resonances.

ACKNOWLEDGMENTS

This work was supported partially by the Deutche Fo
chungsgemeinshaft, Bonn. One of the authors~J.Z.K.! was
supported in part by the Polish Committee for Scientific R
search under Grant No. KBN 2 P302 070 07.

APPENDIX: BAND STRUCTURE AND FLOQUET-BLOCH
STATES

The aim of this appendix is to present the method used
determine the Floquet-Bloch states and the band structure
an arbitrary one-dimensional potential, that is constant in
nite intervals. Such a potential can be described by two
of real numbers:$xi% i50,1, . . . ,K and $Vi% i51, . . . ,K , in which
Vi is the value of the potential in the interval@xi21 ,xi #. It is
well known how to treat the field-free problem for such p
tentials. One divides the space intoK nonoverlapping do-
mains, and for each of these domains writes down the m
general form of the wave function, which is a linear comb
nation of two counterpropagating plane waves. The comp
coefficients that multiply these plane waves are then de
mined up to a normalization constant from the matching c
ditions ~i.e., from the continuity of the wave function and o
its space derivative!, whereas the band structure follow
from Bloch’s periodicity condition. It appears that a simil
method can be applied to an analysis of the band structur
the presence of a monochromatic electromagnetic pl
waves. However, in order to do this we have to know t
most general solution of the time-dependent Schro¨dinger
equation~the units in which\51 are used here!,

i ] tC5F2
1

2m

]2

]x2
1

ie

mc
A~ t !

]

]x
1

e2

2mc2
A2~ t !1V~x!GC,

~A1!

or, after the unitary transformation, Eq.~3!, of the equation,

i ] tc5F2
1

2m

]2

]x2
1

ie

mc
A~ t !

]

]x
1V~x!Gc, ~A2!
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in the different domains of constantV(x). In this equation
the time-dependent vector potentialA(t) describes a plane
wave in the dipole approximation

A~ t !5A0cos~vt1d!, ~A3!

with an arbitrary phased, andV(x) is a static periodic po-
tential which is chosen to model the crystal lattice@30#.
Note, that theA2(t) term, which can be eliminated by th
space-independent unitary transformation, does not cha
the band structure and can be taken into account in the w
function, if desired, by the back transformation~3!. A gen-
eral solution of Schro¨dinger equation~A2!, with V(x) de-
fined above, that accounts for the periodicity of the Ham
tonian in time, is of the form@31# ~cf., @32,33#!

c~ i !~x,t !5e2 iEt (
n,NPZ

e2 iN~vt1d!@JN2n~a0pin!eipinxCin
1

1JN2n~2a0pin!e2 ipinxCin
2#,

xi21,x,xi , ~A4!

in which Z50,61,62, . . . ,Jn(z) are the Bessel functions
a052eA0 /mcv, and Cin

1 and Cin
2 are arbitrary complex

constants,E is the so-called quasienergy~Floquet character-
istic exponent!, and

pin5A2m~E2Vi1nv!. ~A5!

It is clear that, for the field-free problem, whena050 and
N50, this solution reduces to the superposition of two co
terpropagating plane waves of energyE. However, for a non-
vanishing laser field the structure of this solution becom
much more complicated, because instead of two arbitr
constants it now contains an infinite number of them, wh
makes computations much more difficult. Moreover, this
lution contains the so-called closed channels, for which
momentapin defined by Eq.~A5! become complex. It is wel
known from scattering theory, e.g.,@24#, that such closed
channels—although not directly accessible to free motion
the electron—play a very important role both in principle
for instance, one cannot satisfy the probability conserva
law without taking them into account—and in physical e
fects, e.g. for the cupture-escape resonances@25# in radiative
electron-ion scattering.

The matching conditions forx5xi21 can be written down
in the matrix form

B~ i21,xi21!Ci215B~ i ,xi21!Ci , ~A6!

in which Ci
65Cin

6 ,

B~ i ,x!5S B1~ i ,x! B2~ i ,x!

B81~ i ,x! B82~ i ,x!
D , Ci5SCi

1

Ci
2D , ~A7!

and the matricesB andB8 are defined as

@B6~ i ,x!#N,n5JN2n~6a0pin!e6 ipinx, ~A8!

@B86~ i ,x!#N,n56 ipinJN2n~6a0pin!e6 ipinx. ~A9!
ge
ve

-

-

s
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h
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f

n

Hence, we arrive at the following chain of equations for t
columnsCi :

Ci5BiCi21 , ~A10!

where

Bi5@B~ i ,xi21!#
21B~ i21,xi21!. ~A11!

This chain of equations connects the solution in the dom
xi21,x,xi to the solution in the domainxj21,x,xj @31#,

Cj5BjBj21 , . . . ,Bi11Ci5Tj i Ci , ~A12!

where the matrixTj i is the so-calledtransfermatrix.
We have assumed thatV(x) is a periodic function ofx

with the period equal tol . This means that there exists a
index i 0 such that Vi5Vi1 i0

5Vi12i0
5•••, and

xi1 i0
5xi1 l . Hence a solution of Eq.~A2! at a given time

t can be built up of the Bloch wave functions of the form

ck~x,t !5eikxuk~x,t !, ~A13!

wherek is the quasimomentum anduk(x1 l ,t)5uk(x,t); the
quasimomentumk is defined as modulo 2p/ l . In our further
considerations we assume thatkP@2p/ l ,p/ l #. The use of
Eq. ~A13! in Eq. ~A4! leads to the eigenvalue equation@26#

Fi ,i0Ci5eiklCi , ~A14!

in which theBloch-Floquetmatrix Fi ,i0 is defined as

Fi ,i05PiTi1 i0 ,i
, ~A15!

where

Pi5S Pi1 0

0 Pi2
D , ~A16!

and (Pi6)Nn5dNnexp(6ipinl ). This is the eigenvalue equa
tion which determines the dispersion relationE5E(k), and
the columnsCi which are necessary for the construction
the explicit form of the Floquet-Bloch wave functions.

The eigenvalue equation~A14! consists of an infinite sys
tem of linear algebraic equations. In practical calculatio
such a system has to be truncated. This means that the
cesN andn in Eq. ~A4! run over a finite subset of integer
Z. Of course, such a truncation also reduces the numbe
eigenvalues and modifies their numerical values. Theref
we require a criterion of choosing only those eigenvalu
which are insensitive to the truncation. One possibility is
carry out the calculation for two subsets of integersZ0 and
Z1, such thatZ0,Z1, and choose, for a given quasiener
E, those quasimomentak that lie within a prescribed erro
margin. This criterion was applied in@26#; its advantage con-
sists in the rapid numerical calculation of the laser-modifi
band structure. However, for the purpose of this paper,
need, apart from accurate eigenvalues, also accurate va
of the Floquet-Bloch wave functions. To reach this end
choose an alternative criterion based on the accuracy of
extreme components of the eigenvectors. Thus we first
culate the eigenvectorsCi of Eq. ~A14!, by truncating the
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infinite columnsCi
6(n), n52`, . . . ,1` to finite ones

with n5nmin , . . . ,nmax. Next, from all possible eigenvec
torsCi that correspond to real quasimomentak ~a quasimo-
mentumk is considered to be real if the imaginary part of t
calculatedkl is smaller than 10210), we choose only those
for which the complex numbersCin

6 , with n in the vicinity of
nmin and nmax, are negligibly small@i.e., the probabilities
PbN(k) defined below by Eq.~A29! are smaller than
10210#. It is found that for the intensities considered he
both for the band structure and the corresponding Floq
Bloch states of the first three bands it suffices to assume
nmax52nmin515 to satisfy the above accuracy. We m
note also that for the convergence to this accuracy the t
cation size is very sensitive to the laser field intensity a
increases very rapidly with increasing intensity.

Due to the time periodicity of the Schro¨dinger equation
~A2! the quasienergyE is defined modulov. Therefore, we
are free to choose any finite range of widthv in which the
quasienergy changes continuously. In this paper we ass
that E to be in the first Floquet zone, i.e., in the interv
@0,v). If one considers the quasienergy to be equal to, s
E1n0v with EP@0,v), then in order to find the correspond
ing Floquet-Bloch state it suffices to make the following su
stitutions in Eq.~A4! ~e.g. @23#!:

E→E2n0v ~A17!

and

Cin
6→Ci ,n1n0

6 . ~A18!

In other words, if we know the band structure and t
Floquet-Bloch states for quasienergies from the inter
@0,v), then with the help of the above rules we can find th
for any realE. From the computational point of view it i
most convenient to take such values for the quasiener
that are near to the field-free energies of the physically
evant states. Otherwise, as follows from the above result
order to find the relevant eigenstates one would have to c
sider a much larger truncation size than is necessary.

We now discuss another technical problem which ari
due to the method of solution of the eigenvalue equation
which a set ofk eigenvalues are generated for a chosen va
of the energyE. It is necessary, in this circumstance, to ha
a way of ordering the pairs„k,E(k)… that belong to an energ
ordered band characterized by, say, the ind
b51,2,3,. . . . In theabsence of the field there is no spec
problem, but, in the presence of the field, due to the mu
valued nature of the Floquet eigenvalues, this become
nontrivial technical problem. Below we shall first introduc
the concept of the ‘‘mean band energy,’’ which, unlike t
Floquet-Bloch eigenenergy, is independent of the choice
the Floquet zone. This invariant single-valued quantity
found to be most convenient not only for describing t
physical properties of the system but also for resolving
band identification problem mentioned above. Let t
Floquet-Bloch state with a band-ordering indexb be written
as
,
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cbk~x,t !5e2 iEb~k!t (
s56

(
N,nPZ

e2 iN~vt1d!

3JN2n~sa0pb in!eispb inxCin
bs ,

xi21<x,xi , i51,2,...i 0 ~A19!

with

pb in5A2m@Eb~k!1nv2Vi #. ~A20!

The probability density associated with this state is equa

rbk~x,t !5 (
mPZ

e2 im~vt1d!rbkm~x!, ~A21!

with

rbkm~x!5Nbk
21 (

s,s856
(

n,n8PZ

1

l

3ei ~spb in2s8pb in8
* !x,

3Jn82n1m~sa0pb in2s8a0pb in8
* !Cin

bs~Cin8
bs8!* ,

xi21<x,xi . ~A22!

We normalize our Floquet-Bloch state such that (T52p/v
is the period of the laser field oscillations!

1

TE0
TE

0

l

dt dxrbk~x,t !51, ~A23!

thus the normalization constant

Nbk5(
i51

i0

(
s,s856

(
n,n8PZ

ni~spb in2s8pb in8
* !

3Jn82n~sa0pb in2s8a0pb in8
* !Cin

bs~Cin8
bs8!* ,

~A24!

where i 0 is defined by the space periodicity conditio
xi1 i0

5xi1 l , and for the Kronig-Penney-like potential, Eq

~23!, considered in this paperi 052, and

ni~y!5
1

l Exi21

xi
dx eiyx5

eiyxi2eiyxi21

i ly
. ~A25!

Let the time-dependent probability, Eq.~A21!, integrated
over an elementary cell, be

rbk~ t !5 (
mPZ

e2 im~vt1d!rbm~k!, ~A26!

with the Fourier components
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rbm~k!5Nbk
21(

i51

i0

(
s,s856

(
n,n8PZ

ni~spb in2s8pb in8
* !

3Jn82n1m~sa0pb in2s8a0pb in8
* !

3Cin
bs~Cin8

bs8!* , ~A27!

and the normalizationrb0(k)51. Further we define amean
energygiven by the time-averaged expectation value of
total Hamiltonian,

Eb~k!5
1

TE0
TE

0

l

dt dxcbk* ~x,t !~ i] t!cbk~x,t !5 (
NPZ

~Eb~k!

1Nv!PbN~k!, ~A28!

with

PbN~k!5Nbk
21(

i51

i0

(
s,s856

(
n,n8PZ

ni~spb in

2s8pb in8
* !JN2n~sa0pb in!

3JN2n8~s8a0pb in8
* !Cin

bs~Cin8
bs8!* . ~A29!

The usefulness of this quantity consists in the fact that for
field-free case the mean energyEb(k) is exactly equal to the
eigenenergy, and that in the presence of the field it i
‘‘structure quantity’’ in the sense that it is independent of t
choice of the Floquet zone chosen for the quasienergy. S

FIG. 15. The first two bands for the laser intens
I53.5131010 W/cm2 and the photon energyv51.169 eV. Notice
that for this low intensity the tightly bound first band is hard
affected, whereas the second band changes qualitatively from
corresponding field-free case~cf. Fig. 2!. A minigap ~a! appears,
which is due to the two-photon resonant coupling of the sec
band with the third.~b!, ~c!, and ~d! are in fact very narrow mini-
gaps due to higher-order resonant couplings.
e

e

a

ce

(
NPZ

PbN~k!51, ~A30!

therefore the real numbersPbN(k) can be interpreted as th
probability, for a givenk andb, of finding the electron with
the energyEb(k)1Nv. With this interpretation the mean
energyEb(k) can be understood as the mean quasiene
given by the right-hand side of Eq.~A28!,

Eb~k!5^Eb~k!&bk . ~A31!

Moreover, we can define thestandard deviationof the dis-
tribution of the electron energy in the photon space with
given k in bandb,

sb~k!5A(
NPZ

@Eb~k!1Nv#2PbN~k!2^Eb~k!&bk
2 ,

~A32!

and theband entropy

Sb~k!52 (
NPZ

PbN~k!ln„PbN~k!…. ~A33!

The standard deviation, or the band entropy, provides us w
a measure of the fluctuations in the presence of the field
the electron energy associated with the bandb and quasimo-
mentum k. Clearly in the case of the vanishing radiatio
field, bothsb(k) andSb(k) are equal to zero.

The mean energiesEb(k) given by Eq.~A28! are plotted
in Fig. 6 for three different intensities of the laser field. W
see that far from the resonance peaks these plots are
similar. This property suggests that we can use the m
energy spectrum to identify the actual band indexb. Thus
for the Kronig-Penney potential at the two intensities cons
ered in the text (I51026 and 1025 a.u.!, we identify

he

d

FIG. 16. This figure shows the third band at the laser inten
I53.5131010 W/cm2 andv51.169 eV. The minigap~e! is due to
the one-photon resonant transition and the other minigaps~a! and
~b! are due to two- or more-photon resonant transitions.
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b5H 1, Eb~k!,28.0

2, 28.0<Eb~k!,22.6

3, 22.6<Eb~k!,5.45

, ~A34!

where the numerical values are in eV.
To associate the eigenvalues which appear in the (k,E)

plane, with a given band indexb we proceed as follows. We
see from the unperturbed band structure, Fig. 2, that the
band lies at least between, say,E1min5212 eV and
E1max528 eV. Therefore, for all points in Figs. 4 or 5 w
may associate only those for which the mean energy is la
thanE1min and smaller thanE1max to the first purturbed band
b51. Notice that this task was not difficult to carry out fo
both the intensities considered here, because the first ba

FIG. 17. The same as in Fig. 15, but for the larger intens
I53.5131011W/cm2. At this intensity the minigap~a!, seen in Fig.
15, has completely disappeared, and the three-photon minigap~b! is
significantly enlarged. The four- and five-photon minigaps~d! and
~c!, respectively, are not visible at the scale of the figure.
A

K

,

st

er

is

greatly separated from the second band~by more than three
times the photon energy!. The association of the eigenvalue
to the second band index is not as clear, since, although f
minimum energy we can takeE2min528 eV, it is not obvi-
ous from Fig. 6 due to the proximity of the next band wh
the maximum energyE2max must be. This difficulty, how-
ever, can be eliminated by requiring that the latter value m
be unique for a given band, and that it must coincide with
quasienergies for a given quasimomentumk within modulo
v. This is fulfilled for E2max522.6 eV @34#. Applying the
same procedure as for the second band, we found tha
third band is determined by the mean energy betw
E3min522.6 eV andE3max55.45 eV.

In Figs. 15–18 we present the identification of th
Floquet-Bloch band structure in the presence of the field
I53.5131010 and 3.5131011 W/cm2 using the above label
ing procedure.

y FIG. 18. The same as in Fig. 16, but for the larger intens
I53.5131011 W/cm2.
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Z. Kamiński and F. Ehlotzky, Phys. Rev. A50, 4404~1994!.
@33# C. Jung and H. S. Taylor, Phys. Rev. A23, 1115~1981!; R. A.

Sacks and A. Szo¨ke, ibid. 40, 5614~1989!.
@34# Note that had one chosen too small a value ofE2max, one

would have obtained a pseudogap in the quasimomentak for
which there is no quasienergy. Similarly with a choice of t
large a value ofE2maxone would obtain a quasimomentum fo
which there are more than one quasienergy, and hence pre
the choice of a unique value ofb.


