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Population transfer by delayed pulses via continuum states
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This paper analyzes the process of population transfer between two discrete states via a common continuum
by using two partially overlapping delayed laser pulses. The incoherent ionization channels, the Stark shifts,
and the nonzero Fano parameter are taken into account. An analytic approximation to the final-state population
is derived for Gaussian pulse shapé®1050-294®7)05307-9

PACS numbeps): 32.80.Bx, 33.80.Be, 42.50p

[. INTRODUCTION the process. In Sec. IV, we analyze the problem in terms of
the adiabatic states and the dark and bright states and derive
Stimulated Raman adiabatic pass&§&IRAP[1-3], and the adiabatic solution. In Sec. V, we illustrate our conclu-
references therejnis a well established and efficient tech- sions with numerical results for a realistic model. In Sec. VI,
nique for population transfer between two discrete atomic owe derive an analytic approximation to the final-state popu-
molecular states via an intermediate staidFig. 1(a)]. This  lation for Gaussian pulse shapes, which describes the effect
process requires three conditiomsn-photon resonancke-  of the incoherent channels in the case of effective two-
tween the initial(ground state|g) and the final(excited photon resonanck/,8]. Finally, in Sec. VII, we present the
state|e), counterintuitive pulse orderin which the Stokes conclusions.
pulse, driving the transition between stafesand|e), pre-
cedes the pump pulse, driving the transition between states Il. DEFINITION OF THE PROBLEM
|g) and|i), though they must overlap partly, amdiabatic
time evolution STIRAP exploits the existence of an eigen-
state of the Hamiltonian, which involves the bare stagps
and |e) only. In the adiabatic limit, the population is com-
pletely transferred to the final statg) and no population
resides in the intermediate stdt¢ at any time.
It has recently been suggested by Carroll and Hidehat
population transfer by a counterintuitive pulse sequence may

The problem of two bound states coupled by two laser
fields via a common continuum has been studied intensively
in the context of laser-induced continuum struct(icéCS
[9], and references thergirThe time evolution of the prob-
ability amplitudescy(t) andce(t) of the two bound states is
governed by the equatid9]

be realized even if thdiscreteintermediate statEFig. 1(a)] dlc 24— %il*g —%\/FSFZ(qH) .

is replaced by @ontinuum([Fig. 1(b)]. An attractive feature . % |~9|_ 9

of such a scheme is its flexibility and generality. The Carroll- ~dt CJ 1 5ms i 1 CJ'
Hioe analytic model, which involves a quasicontinuum, sug- —5Vlgle(a+i)  Ze—5ile+D

gests that complete population transfer is possible, the ion- (1)

ization being suppressed. Later, it was demonstrated by

Nakajima et al. [5] that this result derives from the very Equation(1) is obtained from the Schdinger equation by

stringent restrictions of the model, which are unlikely to beadiabatic elimination of the continuum states and within the

met in a realistic physical system. These latter authors corrotating-wave approximation. The constagt called the

sidered in particular the role of the nonzero Fano parametdrano parameter, is responsible for the asymmetric depen-

g in deteriorating the transfer efficiency. They have also sugdence of the ionization on the two-photon detuningin

gested that other loss mechanisms, such as incoherent iohlCS. It plays an important role in the context of population

ization channels, dynamic Stark shifts, and continuumtransfer too [5]. The quantities F9=Fg+ Fg and

continuum transitions, may reduce the transfer efficiency by ,=T2+T¢ are the total ionization widths of statfg) and

orders of magnitude; however, this has been disputed rée), respectively, which are given by sums of the ionization

cently [6-8]. _ widths due to the pump and Stokes pulses, whereas

_ I_n the present paper, we study_ the effect of the incoherert; :28+ 2; and 3.=30+32 are the corresponding dy-

ionization channels, the Stark shifts, and the Fano paramet@iamic Stark shifts of statefy) and |e). The ionization

on the transfer efficiency. We ignore continuum-continuumyjidths and the Stark shifts are proportional to the pulse in-

transitions that are significant for very high laser intensitiesensities| o(1) andl(t),

only. This paper is organized as follows. In Sec. Il, we in-

troduce the basic equations and definitions. In Sec. Ill, we T}(t)=GJl(t), Zi(t)=S/I,(t) (x=g,e;y=p,s),

make an analogy between the scheme with a continuum and

the standard STIRAP, which provides a better insight intowhere the parameterG}, and S depend on the particular
atomic states and the laser frequencies. For the moment we
do not impose any restrictions on the shaped 4f) and

*Electronic address: vitanov@rock.helsinki.fi Is(t) but only require that they vanish at infinity and their
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FIG. 1. (@) The three-statd system in the standard STIRAP involvinglscreteintermediate statg). The initial (ground state|g) and

the final (excited state|e) are on two-photon resonance while the intermediate state may be detuned by a certain detdiiagStokes
pulse Qg precedes the pump pulg®, (counterintuitive pulse ordgr(b) The population transfer scheme withcantinuumreplacing the
discrete intermediate state. The solid arrows indicate the Raman transition bégveew|e) while the dashed arrows show the incoherent
ionization channels. One of the incoherent channels may be avdéatedhown forl“g) but at least oneI(}) is always present. The
two-photon detuning is denoted . (c) The equivalentA system corresponding to the continuum schemg)nI';, T'®, andT; are the
irreversible-decay rates of the three states whilndA are the two-photon detuning and the intermediate-state detuning, respectively. The
relations between the quantities (i) and (c) are given by Eqgs(5).

by

be

areas are finite. In the counterintuitive pulse sequence, they
Stokes pulse precedes the pump pulse, i.e.la
lime_, [1,()/1() =0, lime_, L [15(t)/1s(t)]=c0, while

in the intuitive sequence the pump pulse comes first. Finally,

we assume that at the initial time- — o the system is in its 1 I S 1 s .
ground state|cy(—)|=1 , ce(—)=0, and we are inter- B Erg(qﬂ)_ 21T 2 rgrea+i
ested in the populations at—+e of the bound states, = 1 1 1
P,=|c(+*)|> (x=g,e), and the continuum, — —JTPTS(q+i) —-T(q+i)—=ilP+6
Pc=1-P,—P,. 279 2 2

The pump pulse applied on thg)-continuum transition b
and the Stokes pulse applied on tleg-continuum transition x| 9 ; )
[the solid arrows in Fig. (b)] form a two-photon Raman be

transition that leads to population transfer between states

|g) and |e). In contrast, the pump pulse applied on thewhere

|e)-continuum transition as well as the Stokes pulse applied

on the|g)-continuum transitior{the dashed arrows in Fig. 6=D+3~ 34— 3q(I'§—T3). 3
1(b)] cause irreversible ionization. These two incoherent ion-

ization channels, which have been neglected in earlier stud]-he last termiq(I'P—T%) in & is exactly the trapping detun-
. . - e

ies [4,5], turn out to be the main problem for popula_tlon ing, which pIaysg an important role in LIC$9]. For
transfer. At least one of them is always pregerst shown in I'5=I'8=0, Eq.(2) reminds us of the equation

Fig. 1(b)], which prevents complete population transfer.
Egl 1 [ 02 Q,0, } b,

_ dt| p A=iT| 0,0, QZ-8A-iT)||B,|
In order to compare the continuum scheme to STIRAP, e © (4)
we notice that by means of tljpopulation preservingohase

transformation

d

[ll. EQUIVALENT STIRAP PROBLEM

Equation (4) describes STIRAP in the standard three-state
¢ 1 configuration when the intermediate-state deturingnd/or
cx(t)sz(t)exp[ —if [zg(t’ﬂ- Eqrg(t,)}dt,] rate of decay out of the systel are large compared to the
- two-photon detunings and the Rabi frequencie®, and
Qg of the pump and Stokes pulses. It is obtained from the
(x=g,e), Schralinger equation by adiabatic elimination of the inter-
mediate statg¢2,3]. The relations between the variables in
Eq. (1) takes the form Egs.(2) and(4) are
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ZQSFi 20T, A tions arela, (—=)|=1,a_(—«)=0, andP, is equal to the
FS:W’ FZ:W’ 9= (5)  probability of remaining in statet+ ). For simplicity, we will
i i

assume that the detunifigj=0; thené is proportional to the

Hence, the process of population transfer via the continuurl@Ser intensities, whil® is independent of them. Thus, the

[Fig. 1(b)] is equivalent to the standard STIRAP in a three-diagonal elements in E(8) are proportional to the pulse

state systenfiFig. 1(a)] but with two-photon detuning (in- intensities, wheregs the off—d|agon_al elements are mdepen—

duced by the Stark shifts and the Fano parameted (time- dent of them and inversely proportional to th_e pulse V\{|dth3.

dependentirreversible-decay rates andI'8 of the ground Hence, for large pulse areas the evolution in the adiabatic

and excited states; this effective three-state system is shom?i'"s's is nearly_dlagpnal, i.e., adiabatic. _The adiabatic solution

in Fig. 1(c). Thus, the transfer efficiency in the continuum '0f the counterintuitivepulse sequence is

scheme is deteriorated by the incoherent channels, the Stark 1 (e

shifts and the Fano parameter in the same way as the pg%exp[ - EJ [TH(1)+Tg(t)+Tg(t)+TE(t)

STIRAP efficiency is deteriorated by the irreversible decay -

of states|g) and|e) and the two-photon detuning.
—Rew(t)]dt], 9

IV. ADIABATIC BASIS AND DARK-BRIGHT BASIS

A. Adiabatic states and adiabatic solution while for theintuitive sequence it is

Inasmuch as STIRAP gives unity transfer efficiency in the 1 (=
adiabatic limit, our next step is to find the behavior of the P2d~exp[ - EJ [T5(1)+Tg(t)+Te(t)+TE(t)
transfer efficiency in the continuum scheme as the adiabatic _“
limit is approached. For this we need to go to the adiabatic
representation, that is to the basis of the instantaneous eigen- + Rey(t)]dt] , (10
states of the Hamiltonian in Eql). The probability ampli-

tudesa_(t) anda,(t) of the adiabatic states-) and|+) \/ﬁ o .
are connected to the bafeiabatio amplitudes by the trans- Where Re/=v3[|y*|+Re(y?)]. If the ionization widths of

formation the incoherent channels are small compared to the ones of
the Raman transitionl (g, ' <Tg,I'7), then
bg(t)} coP(t) sin@(t)][a_(t) ©
= . , Fp_rs
be(t —sin®(t) coW(t)||a,(t ~ i 9 & pS_TP_oj
e(t) Q) (O ]law () y=~(TP+T3)(1—iq)+ F5+F;(F3 TP—2i8)+---.

where
In the absence of incoherent ionizatidig&T'2=0) and for
sin20=2\TEr3(1-iq)/y, cos@=(ye— y4+2id)!y, effective two-photon resonanceé<0), the adiabatic solu-
(7)  tion gives P31 for counterintuitive pulses while
Pad~ exp(— JZATHO+TED]dE for the intuitive order. In
other words, in the adiabatic regime the transfer efficiency
0 ) s s , b approaches unity for theounterintuitiveorder, as in the
Yg=Tg(1=iq)+Tg, ve=Te(1-iq)+T%. standard STIRAP. This confirms earlier conclusions for the
case when the incoherent ionization channels, the Stark
shifts, and the Fano parameter are all equal to Zére/|.
The conditions=0 can be achieved by using the Stark shifts
induced by an additional lasdwhose frequency is small
enough not to influence the system othenkises proposed
in [7], or by using appropriately chirped laser pul8k The
_ %(7g+7e+2i5_ y) —de/dt presence of a_t least one of the incoheren_t c.han_ﬁélsr
I'?, however, is unavoidable and leads to ionization losses.
1 Moreover, then the integral in E¢9) is nonzero and since
do/dt - Z(?ngr Yet2i6+7) all terms in the integrand are proportional to the pulse inten-
sities, the transfer efficiency decreases exponentially for
large pulse areas. Finally, for thatuitive pulse orderP,
(8) always vanishes in the adiabatic regim@ven for
I'g=Tg=6=0), unlike STIRAP where efficient population
We assume thaF'$<T'$ and I'P<T?®, i.e., the incoherent transfer is possible for large intermediate-state detuning and

channels are weaker than those of the Raman transitioff€dligible decay rateg2,3].

Then it can be shown from Eq$6) and (7) that for the

counterintuitive pulse sequence, the initial conditions are B. Dark and bright states

la_(=*)|=1, a,(-=)=0, and the final excited-state  Apother useful basis is that of the dark and bright states,
populationP, is equal to the probability of remaining in the

adiabatic stat¢—). For the intuitive order, the initial condi- |dark =cosd|g)—sind|e), |bright)=sin¥|g)+cosd|e),

y= VAT Y(1-i0)°+(ye— ¥4 +2i8)° (Rey>0),

In the adiabatic representation, E&) becomes

d
dt

a_

ay

a_

a,|
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with tand(t) = yT'§(t)/T3(t). In the absence of incoherent 1) 1

channels [3=I"2=0), and for =0, the dark and bright U=(5— §'Fe>5'“219—§'rgc°§ﬂ’

states coincide with the adiabatic statds:)=|dark,

|+)=|bright). The reason for the names “bright” and 1 1 1

“dark” is that, as follows from Eq.(1), the total ionization U:<5_ Eil“f;)coszﬁ— Eil“gsinzt}— E(Q+i)(rg+ ry),
rate is

1 _
(1= egl?=Icel®) w= 5| 5 (I'g=T¢)~ 8|sin2¥,

d_
dt"edt

=Tglcgl?+TBlcel®+ VI +T¢lapignd®.  (11)  show that the incoherent channels and the effective detuning
6 introduce an additional couplingg between the dark and
Hence, in the absence of incoherent ionizationPright states. The incoherent channels induce also irrevers-
(FZ:FSZO), only the population in the bright state is ex- ible decay o_f the dark state with a ratelmu. Thus, even if
posed to ionization, whereas the ionization of the dark statf1® System is somehow forced to stay in the dark state, the
is suppressed. For the counterintuitive pulse order the dar@nization losses are unavoidable for nonzdif or/and
state coincides with the ground stdg® before the interac- re.
tion and with statge) after it, so that complete population
transfer is possiblé@n principle) if the evolution is adiabatic. V. NUMERICAL RESULTS
In contrast, for the intuitive sequence the system is initially
in the bright state, and the adiabatic evolution leads to opti- We have integrated Eql) numerically in the case of
mal ionization rather than to population transfer to the ex-Gaussian pulses that have the same widthsa@d are sepa-
cited state. rated by a time delay of 2 For the ionization widths and the
When the incoherent channels are present and/or for norBtark shifts we have taken

zero effective two-photon detuningdé¢0), the dark and

bright states are no longer adiabatic states; i.e., staying in one it =Afy(t), Tg(t)=0,
of the adiabatic states does not mean staying in the dark state
any more. From another point of view, the equations for the TP()=RAL(t), TS(t)=Af(t) (13)
amplitudes of the dark and bright states, ¢ pe e S
. SRy =AfL(t), Zg(t)=—Afg(1),
ii adark‘] _ u w—id adark‘] (12) g P g °
dtl apignd |[w+id v |l Qbrignd’ SP=Af, (1), 35(t)=3Af (1), (14)
with with
100
10
S 1
0.1
0.01
100
10
S 1

0 1 2 -1
7 (units of 7)

FIG. 2. The excited-state population for Gaussian pulses as a function of the pulser@gldAT (essentially the pulse are&ero is
shown by the black while the white displays the maximal population in the particulatgiase by the number in the top left corner of each
figure). The ionization widths are given by Eq4.3), the Stark shifts by Eq$14), andq= — 6. Bottom row, effective two-photon resonance
(6=0); top row, nonzera$ calculated from Eq(3) with D=0. In the four columns from left to right, we haw=0, 1—16 ;11, and 1 (no,
“small,” “medium,” and “large” incoherent ionization).
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t—r\2
fp(t):ex;{—(?) } fs(t)zex;{—

The Fano parameter is chosen todpe —6. We have there- )

fore assumed equal pulse areas’§fandI'§ and only one ~ With £= 39ATe ("D, We cannot find analytically the exact
incoherent channel preseiit?. The parameteA is propor-  Solution for thesé e and A but we can approximate it by
tional to the laser intensities and the param@&emeasures USiNg some of the available two-state solutlons_m the manner
the ratio of the incoherent width? to I'P. For R=1/16, we of Ref.[3]. The most relevant to our problem is the Allen-

are very close to the case of population transfer between thFeberly model[10],

2s'S, and %S, states in hydrogen with laser wavelengths o ¢ B t

Ap=308.4 nm and\s=1064 nm[7]. In Fig. 2, we display Qpe(t)= T—sec , Axp(t)= T—tanh]_—. (16)

the population of the excited state) as a function ofAT 0 0 0 0

(essentially the pulse areand the time delayr, for R=0 |, orger to compensate the differences in the pulse shapes
(no incoherent ionization R=1/16 (“small” incoherent 5 the detuning chirps in the effective probléts) and the
ionization), R=1/4 (“medium” incoherent ionizatiol, and  odel(16) as much as possible, we have determined the free
R=1 (“large” incoherent ionization. The results are ob- parametersy, 8 and T, in such a way that the maximat
tained by numerical integration of E€R). In the lower fig- t=0) and the areas ofq(t) and Qe(t) as well as the
ures, we_have seb= O_ (effective two-photon resonange slopes ofA .(t) andA Ae(t) at the crossingatt=0) are the
whereas in the upper figures we have calculaidtbm Eq.  ;me  This  leads to a=¢l\m, B=2¢rwT, and

(3) with D=0. The bottom left figure shows that in the CaseT0=T/ J. The population of statie) is then given approxi-

of effective two-photon resonance and no incoherent Chanr'nately by the transition probability for the model6)
nels, the transfer efficiency for>0 (counterintuitive pulse ’

t+ 7\ 2

T

Qult)= ée*“”z, Agg(t) = ée’“’T)zsinl‘(Zrt/Tz),

(15

ordey behaves in the same manner as in STIRRPand e cosR(m\B%—a?)
exhibits a broad region of large efficiency approaching unity Pe=1- cosR(7f) a7

as AT—. However, for the intuitive pulse order€0),
2 also demonstrates that when the incoherent chanfié  replaced by a cosine far> 8. We note that in the diabatic
included, the transfer efficiency decreases considerably anghsis(2), this is the probability of transition from staftg) to

for Iarge incoherent iOnization, the continuum scheme is in'state|e>, whereas in the adiabatic ba$$, this is the prob_
efficient. We should expect even further decreasedif the  apjility of remaining in staté—).

other incoherent channeﬂz was open too. The effective The excited-state population is approximated as
two-photon resonance is seen to improve the transfer to some

extent, as expected. Slight further improvement can be ob- P~ PgdPQE- (18
tained by optimizing the ratio between the maximd“@fand
I's (chosen unity by Us Furthermore, except for the case
with T3=T"t=6=0, the transfer efficiency ultimately van-
e e ot 21 Pof noirizatonof it e e probabily

AE . ; ; -
coherent channels, there is aptimal intensity(for any fixed e ©f nontransition to the other adiabatic state). Since
pulse delaywhere the excited-state population is maximal. the adiabatic solutio(®) gives unity at zero intensity and the

correct asymptotics at large intensity, and the solufibn

gives a good approximation for small intensity and unity at
VI. ANALYTIC APPROXIMATION infinity, the approximation(18) apparently has the correct

We have derived an analytic approximation to thelimits at both smqll and large pulse areas; moreover, it turns
excited-state populatioP, in the case of effective two- OUtt0 produce fairly good results for moderate pulse areas as
photon resonances&0) by using the approach described Well- In Fig. 3, the analytic approximatiof18) is compared
below. It is based on the assumption tRatcan be written to the exact values, found by numerical integration of .Eq.
as a product of two factors: one describing theses due to (1), for various pulse_ delays. We have assumed Gaussian
ionization and another describing theonadiabatic losses Pulse shapes, effective two-photon resonange @), and
For the former factor we have taken the adiabatic solutiove have taken the same c&d8) as in Fig. 2, i.e., with the
pgd [Eqg. (9)], which approximate®, well at large intensi- incoherent channel? included. The .other parameters are
ties. To find the nonadiabatic factor, which is expected tdR=1/16 andq=—6. The approximatiori18) is seen to be
dominate at small intensities, we neglect the incoherenY€rY precise for small and large intensities and fairly good at
channels as well as the terrén the factors ¢+i) in Egs. modgrate intensities, except for-0.25T [11]. It predicts the _
(2) (which is justified for largey); this means that we neglect Maximum position and width very well. The small overesti-
any ionization. Thus, we obtain a coherent two-state problerfation of P is mainly due to the neglect of any ionization
that is easily seefafter a phase transformatipto involve a ~ mechanism inP=. A better (but more complicatedap-
level crossing. In this two-state problem, the effective Rabiproximation can be obtained if the ionization widtig and
frequency and detuning for the Gaussian puldé are(up  I'§ are accounted for; this is possible and leads to an Allen-
to an unimportant sign Eberly model with complex coefficients that gives the tran-

We point out that the approximatiofl8) is an intuitive
rather than a rigorous result. It givés (which is also the
&g'obability of staying in the adiabatic stdte ) as the prob-
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FIG. 3. The populations of the bound states and the continuum for Gaussian pulses Agaiessentially the pulse arefor various
pulse delays in the case of effective two-photon resonange,0. The solid curves show the exact numerical values and the labels on them
refer to the ground statay}, the excited statee)), and the continuuma). The dashed curves show the analytic approximati@ for the
excited-state population. The ionization widths are given by(E8), q=—6 andR= %6

sition probability in terms of four gamma functions. We alsowhile the Stark shifts and the Fano parameter correspond to
conclude that the analytic solution reproduces to some exteft two-photon detuning in STIRAP. We have found that al-
the small oscillations seen around the maximum for smalthough the transfer efficiency is adversely affected by the
pulse delays. These oscillations are predicted by ELA.  incoherent channels, the Stark shifts and the Fano parameter
and(18) for o> B, i.e., for 7/ T<\/m/2~0.89. As in the stan- (incompletg¢ population transfer can still be realized by
dard STIRAP, these Rabi-like oscillations arise when thepulses in the counterintuitive order, while it is virtually im-
overlap between the pulses is apprecidBle Finally, Fig. 3  possible by an intuitive pulse sequence. An important differ-
shows that the ground-state population is relatively insensience between the scheme with a continuum and STIRAP is

tive to the pulse delay. that in the adiabatic limit, the transfer efficiency vanishes in
the former scheme while it tends to unity in the latter. There
VIl. CONCLUSIONS is an optimum range of laser intensities where the transfer

efficiency is maximal. We have derived an analytic approxi-

We have investigated analytically and numerically themation, Eq.(18), which describes the final-state population
role of the incoherent ionization Chann9|s, the Stark ShiftSin the case when effective tWO_photon resonance is achieved
and the nonzero Fano parameter on the efficiency of thgy Stark shift compensation with an additional laser or by
population transfer between two discrete states via a comsing chirped laser pulses.
mon continuum by means of two partially overlapping de-
layed laser pulses. At least one incoherent channel is un-
avoidable and has to be considered in any implementation of ACKNOWLEDGMENTS
such a scheme. We have shown that the incoherent ioniza-
tion channels correspond to irreversible-decay rates of the The authors acknowledge useful discussions with M. Pro-
initial and final states in the\ system used in STIRAP, topapas and R. Unanyan.
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