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Population transfer by delayed pulses via continuum states

N. V. Vitanov* and S. Stenholm
Helsinki Institute of Physics, P.O. Box 9, Siltavuorenpenger 20C, University of Helsinki, 00014 Helsinki, Finland

~Received 13 January 1997!

This paper analyzes the process of population transfer between two discrete states via a common continuum
by using two partially overlapping delayed laser pulses. The incoherent ionization channels, the Stark shifts,
and the nonzero Fano parameter are taken into account. An analytic approximation to the final-state population
is derived for Gaussian pulse shapes.@S1050-2947~97!05307-9#

PACS number~s!: 32.80.Bx, 33.80.Be, 42.50.2p
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I. INTRODUCTION

Stimulated Raman adiabatic passage~STIRAP @1–3#, and
references therein! is a well established and efficient tec
nique for population transfer between two discrete atomic
molecular states via an intermediate stateu i & @Fig. 1~a!#. This
process requires three conditions:two-photon resonancebe-
tween the initial~ground! state ug& and the final~excited!
stateue&, counterintuitive pulse order, in which the Stokes
pulse, driving the transition between statesu i & and ue&, pre-
cedes the pump pulse, driving the transition between st
ug& and u i &, though they must overlap partly, andadiabatic
time evolution. STIRAP exploits the existence of an eige
state of the Hamiltonian, which involves the bare statesug&
and ue& only. In the adiabatic limit, the population is com
pletely transferred to the final stateug& and no population
resides in the intermediate stateu i & at any time.

It has recently been suggested by Carroll and Hioe@4# that
population transfer by a counterintuitive pulse sequence m
be realized even if thediscreteintermediate state@Fig. 1~a!#
is replaced by acontinuum@Fig. 1~b!#. An attractive feature
of such a scheme is its flexibility and generality. The Carro
Hioe analytic model, which involves a quasicontinuum, su
gests that complete population transfer is possible, the
ization being suppressed. Later, it was demonstrated
Nakajima et al. @5# that this result derives from the ver
stringent restrictions of the model, which are unlikely to
met in a realistic physical system. These latter authors c
sidered in particular the role of the nonzero Fano param
q in deteriorating the transfer efficiency. They have also s
gested that other loss mechanisms, such as incoherent
ization channels, dynamic Stark shifts, and continuu
continuum transitions, may reduce the transfer efficiency
orders of magnitude; however, this has been disputed
cently @6–8#.

In the present paper, we study the effect of the incohe
ionization channels, the Stark shifts, and the Fano param
on the transfer efficiency. We ignore continuum-continuu
transitions that are significant for very high laser intensit
only. This paper is organized as follows. In Sec. II, we
troduce the basic equations and definitions. In Sec. III,
make an analogy between the scheme with a continuum
the standard STIRAP, which provides a better insight i
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the process. In Sec. IV, we analyze the problem in terms
the adiabatic states and the dark and bright states and d
the adiabatic solution. In Sec. V, we illustrate our conc
sions with numerical results for a realistic model. In Sec. V
we derive an analytic approximation to the final-state po
lation for Gaussian pulse shapes, which describes the e
of the incoherent channels in the case of effective tw
photon resonance@7,8#. Finally, in Sec. VII, we present the
conclusions.

II. DEFINITION OF THE PROBLEM

The problem of two bound states coupled by two la
fields via a common continuum has been studied intensiv
in the context of laser-induced continuum structure~LICS
@9#, and references therein!. The time evolution of the prob-
ability amplitudescg(t) andce(t) of the two bound states is
governed by the equation@9#

i
d

dtFcgceG5F Sg2
1

2
iGg 2

1

2
AGg

pGe
s~q1 i !

2
1

2
AGg

pGe
s~q1 i ! Se2

1

2
iGe1D

G FcgceG .
~1!

Equation~1! is obtained from the Schro¨dinger equation by
adiabatic elimination of the continuum states and within
rotating-wave approximation. The constantq, called the
Fano parameter, is responsible for the asymmetric dep
dence of the ionization on the two-photon detuningD in
LICS. It plays an important role in the context of populatio
transfer too @5#. The quantities Gg5Gg

p1Gg
s and

Ge5Ge
p1Ge

s are the total ionization widths of statesug& and
ue&, respectively, which are given by sums of the ionizati
widths due to the pump and Stokes pulses, wher
Sg5Sg

p1Sg
s and Se5Se

p1Se
s are the corresponding dy

namic Stark shifts of statesug& and ue&. The ionization
widths and the Stark shifts are proportional to the pulse
tensitiesI p(t) and I s(t),

Gx
y~ t !5Gx

yI y~ t !, Sx
y~ t !5Sx

yI y~ t ! ~x5g,e;y5p,s!,

where the parametersGx
y and Sx

y depend on the particula
atomic states and the laser frequencies. For the momen
do not impose any restrictions on the shapes ofI p(t) and
I s(t) but only require that they vanish at infinity and the
741 © 1997 The American Physical Society
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FIG. 1. ~a! The three-stateL system in the standard STIRAP involving adiscreteintermediate stateu i &. The initial ~ground! stateug& and
the final ~excited! stateue& are on two-photon resonance while the intermediate state may be detuned by a certain detuningD. The Stokes
pulseVs precedes the pump pulseVp ~counterintuitive pulse order!. ~b! The population transfer scheme with acontinuumreplacing the
discrete intermediate state. The solid arrows indicate the Raman transition betweenug& andue& while the dashed arrows show the incohere
ionization channels. One of the incoherent channels may be avoided~as shown forGg

s) but at least one (Ge
p) is always present. The

two-photon detuning is denoted byD. ~c! The equivalentL system corresponding to the continuum scheme in~b!. Gg
s , Ge

p , andG i are the
irreversible-decay rates of the three states whiled andD are the two-photon detuning and the intermediate-state detuning, respectively
relations between the quantities in~b! and ~c! are given by Eqs.~5!.
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areas are finite. In the counterintuitive pulse sequence,
Stokes pulse precedes the pump pulse,
limt→2`@ I p(t)/I s(t)#50, limt→1`@ I p(t)/I s(t)#5`, while
in the intuitive sequence the pump pulse comes first. Fina
we assume that at the initial timet→2` the system is in its
ground state,ucg(2`)u51 , ce(2`)50, and we are inter-
ested in the populations att→1` of the bound states
Px5ucx(1`)u2 (x5g,e), and the continuum
Pc512Pg2Pe .

The pump pulse applied on theug&-continuum transition
and the Stokes pulse applied on theue&-continuum transition
@the solid arrows in Fig. 1~b!# form a two-photon Raman
transition that leads to population transfer between st
ug& and ue&. In contrast, the pump pulse applied on t
ue&-continuum transition as well as the Stokes pulse app
on the ug&-continuum transition@the dashed arrows in Fig
1~b!# cause irreversible ionization. These two incoherent i
ization channels, which have been neglected in earlier s
ies @4,5#, turn out to be the main problem for populatio
transfer. At least one of them is always present@as shown in
Fig. 1~b!#, which prevents complete population transfer.

III. EQUIVALENT STIRAP PROBLEM

In order to compare the continuum scheme to STIRA
we notice that by means of the~population preserving! phase
transformation

cx~ t !5bx~ t !expH 2 i E
2`

t FSg~ t8!1
1

2
qGg

p~ t8!Gdt8J
~x5g,e!,

Eq. ~1! takes the form
he
.,

y,

es

d

-
d-

,

i
d

dtFbgbeG

5F 2
1

2
Gg
p~q1 i !2

1

2
iGg

s 2
1

2
AGg

pGe
s~q1 i !

2
1

2
AGg

pGe
s~q1 i ! 2

1

2
Ge
s~q1 i !2

1

2
iGe

p1d
G

3FbgbeG , ~2!

where

d5D1Se2Sg2
1
2q~Gg

p2Ge
s!. ~3!

The last term1
2q(Gg

p2Ge
s) in d is exactly the trapping detun

ing, which plays an important role in LICS@9#. For
Gg
s5Ge

p50, Eq. ~2! reminds us of the equation

i
d

dtF b̃gb̃eG52
1

D2 iG i
F Vp

2 VpVs

VpVs Vs
22d~D2 iG i !

GF b̃g
b̃e

G .
~4!

Equation ~4! describes STIRAP in the standard three-st
configuration when the intermediate-state detuningD and/or
rate of decay out of the systemG i are large compared to th
two-photon detuningd and the Rabi frequenciesVp and
Vs of the pump and Stokes pulses. It is obtained from
Schrödinger equation by adiabatic elimination of the inte
mediate state@2,3#. The relations between the variables
Eqs.~2! and ~4! are
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Gg
p5

2Vp
2G i

D21G i
2 , Ge

s5
2Vs

2G i

D21G i
2 , q5

D

G i
. ~5!

Hence, the process of population transfer via the continu
@Fig. 1~b!# is equivalent to the standard STIRAP in a thre
state system@Fig. 1~a!# but with two-photon detuningd ~in-
duced by the Stark shifts and the Fano parameter! and~time-
dependent! irreversible-decay ratesGg

s andGe
p of the ground

and excited states; this effective three-state system is sh
in Fig. 1~c!. Thus, the transfer efficiency in the continuu
scheme is deteriorated by the incoherent channels, the S
shifts and the Fano parameter in the same way as
STIRAP efficiency is deteriorated by the irreversible dec
of statesug& and ue& and the two-photon detuning.

IV. ADIABATIC BASIS AND DARK-BRIGHT BASIS

A. Adiabatic states and adiabatic solution

Inasmuch as STIRAP gives unity transfer efficiency in t
adiabatic limit, our next step is to find the behavior of t
transfer efficiency in the continuum scheme as the adiab
limit is approached. For this we need to go to the adiab
representation, that is to the basis of the instantaneous e
states of the Hamiltonian in Eq.~1!. The probability ampli-
tudesa2(t) anda1(t) of the adiabatic statesu2& and u1&
are connected to the bare~diabatic! amplitudes by the trans
formation

Fbg~ t !be~ t !
G5F cosQ~ t ! sinQ~ t !

2sinQ~ t ! cosQ~ t !
GFa2~ t !

a1~ t !
G , ~6!

where

sin2Q52AGg
pGe

s~12 iq !/g, cos2Q5~ge2gg12id!/g,
~7!

g5A4Gg
pGe

s~12 iq !21~ge2gg12id!2 ~Reg.0!,

gg5Gg
p~12 iq !1Gg

s , ge5Ge
s~12 iq !1Ge

p .

In the adiabatic representation, Eq.~2! becomes

d

dtFa2

a1
G

5F 2
1

4
~gg1ge12id2g! 2dQ/dt

dQ/dt 2
1

4
~gg1ge12id1g!

G
3Fa2

a1
G . ~8!

We assume thatGg
s,Ge

s and Ge
p,Gg

p , i.e., the incoheren
channels are weaker than those of the Raman transi
Then it can be shown from Eqs.~6! and ~7! that for the
counterintuitive pulse sequence, the initial conditions
ua2(2`)u51, a1(2`)50, and the final excited-stat
populationPe is equal to the probability of remaining in th
adiabatic stateu2&. For the intuitive order, the initial condi
m
-
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tions areua1(2`)u51, a2(2`)50, andPe is equal to the
probability of remaining in stateu1&. For simplicity, we will
assume that the detuningD50; thend is proportional to the
laser intensities, whileQ is independent of them. Thus, th
diagonal elements in Eq.~8! are proportional to the pulse
intensities, whereas the off-diagonal elements are indep
dent of them and inversely proportional to the pulse widt
Hence, for large pulse areas the evolution in the adiab
basis is nearly diagonal, i.e., adiabatic. The adiabatic solu
for the counterintuitivepulse sequence is

Pe
ad'expH 2

1

2E2`

`

@Gg
p~ t !1Gg

s~ t !1Ge
s~ t !1Ge

p~ t !

2Reg~ t !#dtJ , ~9!

while for the intuitive sequence it is

Pe
ad'expH 2

1

2E2`

`

@Gg
p~ t !1Gg

s~ t !1Ge
s~ t !1Ge

p~ t !

1Reg~ t !#dtJ , ~10!

where Reg5A1
2 @ ug2u1Re(g2)#. If the ionization widths of

the incoherent channels are small compared to the one
the Raman transition (Gg

s ,Ge
p!Gg

p ,Ge
s), then

g'~Gg
p1Ge

s!~12 iq !1
Gg
p2Ge

s

Gg
p1Ge

s ~Gg
s2Ge

p22id!1•••.

In the absence of incoherent ionization (Gg
s5Ge

p50) and for
effective two-photon resonance (d50), the adiabatic solu-
tion gives Pe

ad'1 for counterintuitive pulses while
Pe
ad'exp$2*2`

` @Gg
p(t)1Ge

s(t)#dt% for the intuitive order. In
other words, in the adiabatic regime the transfer efficien
approaches unity for thecounterintuitiveorder, as in the
standard STIRAP. This confirms earlier conclusions for
case when the incoherent ionization channels, the S
shifts, and the Fano parameter are all equal to zero@4–7#.
The conditiond50 can be achieved by using the Stark shi
induced by an additional laser~whose frequency is smal
enough not to influence the system otherwise!, as proposed
in @7#, or by using appropriately chirped laser pulses@8#. The
presence of at least one of the incoherent channelsGg

s or
Ge
p , however, is unavoidable and leads to ionization loss

Moreover, then the integral in Eq.~9! is nonzero and since
all terms in the integrand are proportional to the pulse int
sities, the transfer efficiency decreases exponentially
large pulse areas. Finally, for theintuitive pulse orderPe
always vanishes in the adiabatic regime~even for
Gg
s5Ge

p5d50), unlike STIRAP where efficient populatio
transfer is possible for large intermediate-state detuning
negligible decay rates@2,3#.

B. Dark and bright states

Another useful basis is that of the dark and bright stat

udark&5cosqug&2sinque&, ubright&5sinqug&1cosque&,
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with tanq(t)5AGg
p(t)/Ge

s(t). In the absence of incoheren
channels (Gg

s5Ge
p50), and ford50, the dark and bright

states coincide with the adiabatic states:u2&5udark&,
u1&5ubright&. The reason for the names ‘‘bright’’ an
‘‘dark’’ is that, as follows from Eq.~1!, the total ionization
rate is

d

dt
Pc5

d

dt
~12ucgu22uceu2!

5Gg
sucgu21Ge

puceu21AGg
p1Ge

suabrightu2. ~11!

Hence, in the absence of incoherent ionizati
(Gg

s5Ge
p50), only the population in the bright state is e

posed to ionization, whereas the ionization of the dark s
is suppressed. For the counterintuitive pulse order the d
state coincides with the ground stateug& before the interac-
tion and with stateue& after it, so that complete populatio
transfer is possible~in principle! if the evolution is adiabatic.
In contrast, for the intuitive sequence the system is initia
in the bright state, and the adiabatic evolution leads to o
mal ionization rather than to population transfer to the
cited state.

When the incoherent channels are present and/or for n
zero effective two-photon detuning (dÞ0), the dark and
bright states are no longer adiabatic states; i.e., staying in
of the adiabatic states does not mean staying in the dark
any more. From another point of view, the equations for
amplitudes of the dark and bright states,

i
d

dtF adarkabright
G5F u w2 i q̇

w1 i q̇ v
G F adarkabright

G , ~12!

with
te
rk

y
i-
-

n-

ne
ate
e

u5S d2
1

2
iGe

pD sin2q2
1

2
iGg

scos2q,

v5S d2
1

2
iGe

pD cos2q2
1

2
iGg

ssin2q2
1

2
~q1 i !~Gg

p1Ge
s!,

w5
1

2F i2 ~Gg
s2Ge

p!2dGsin2q,
show that the incoherent channels and the effective detu
d introduce an additional couplingw between the dark and
bright states. The incoherent channels induce also irrev
ible decay of the dark state with a rate2Imu. Thus, even if
the system is somehow forced to stay in the dark state,
ionization losses are unavoidable for nonzeroGg

s or/and
Ge
p .

V. NUMERICAL RESULTS

We have integrated Eq.~1! numerically in the case o
Gaussian pulses that have the same widths 2T and are sepa-
rated by a time delay of 2t. For the ionization widths and the
Stark shifts we have taken

Gg
p~ t !5Afp~ t !, Gg

s~ t !50,

Ge
p~ t !5RAfp~ t !, Ge

s~ t !5Afs~ t !, ~13!

Sg
p~ t !5Afp~ t !, Sg

s~ t !52Afs~ t !,

Se
p~ t !5Afp~ t !, Se

s~ t !53Afs~ t !, ~14!
h
e

FIG. 2. The excited-state population for Gaussian pulses as a function of the pulse delayt andAT ~essentially the pulse area!. Zero is
shown by the black while the white displays the maximal population in the particular case~given by the number in the top left corner of eac
figure!. The ionization widths are given by Eqs.~13!, the Stark shifts by Eqs.~14!, andq526. Bottom row, effective two-photon resonanc
(d50); top row, nonzerod calculated from Eq.~3! with D50. In the four columns from left to right, we haveR50, 1

16,
1
4, and 1 ~no,

‘‘small,’’ ‘‘medium,’’ and ‘‘large’’ incoherent ionization!.
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f p~ t !5expF2S t2t

T D 2G , f s~ t !5expF2S t1t

T D 2G .
The Fano parameter is chosen to beq526. We have there-
fore assumed equal pulse areas ofGg

p andGe
s and only one

incoherent channel present,Ge
p . The parameterA is propor-

tional to the laser intensities and the parameterR measures
the ratio of the incoherent widthGe

p to Gg
p . ForR51/16, we

are very close to the case of population transfer between
2s1S0 and 5s1S0 states in hydrogen with laser wavelengt
lp5308.4 nm andls51064 nm@7#. In Fig. 2, we display
the population of the excited stateue& as a function ofAT
~essentially the pulse area! and the time delayt, for R50
~no incoherent ionization!, R51/16 ~‘‘small’’ incoherent
ionization!, R51/4 ~‘‘medium’’ incoherent ionization!, and
R51 ~‘‘large’’ incoherent ionization!. The results are ob
tained by numerical integration of Eq.~2!. In the lower fig-
ures, we have setd50 ~effective two-photon resonance!,
whereas in the upper figures we have calculatedd from Eq.
~3! with D50. The bottom left figure shows that in the ca
of effective two-photon resonance and no incoherent ch
nels, the transfer efficiency fort.0 ~counterintuitive pulse
order! behaves in the same manner as in STIRAP@2# and
exhibits a broad region of large efficiency approaching un
as AT→`. However, for the intuitive pulse order (t,0),
the transfer efficiency is almost zero, unlike STIRAP. Figu
2 also demonstrates that when the incoherent channelGe

p is
included, the transfer efficiency decreases considerably
for large incoherent ionization, the continuum scheme is
efficient. We should expect even further decrease inPe if the
other incoherent channelGg

s was open too. The effective
two-photon resonance is seen to improve the transfer to s
extent, as expected. Slight further improvement can be
tained by optimizing the ratio between the maxima ofGg

p and
Ge
s ~chosen unity by us!. Furthermore, except for the cas

with Gg
s5Ge

p5d50, the transfer efficiency ultimately van
ishes for large pulse areas, in agreement with our analys
the adiabatic regime. Hence, in a realistic situation with
coherent channels, there is anoptimal intensity~for any fixed
pulse delay! where the excited-state population is maxima

VI. ANALYTIC APPROXIMATION

We have derived an analytic approximation to t
excited-state populationPe in the case of effective two
photon resonance (d50) by using the approach describe
below. It is based on the assumption thatPe can be written
as a product of two factors: one describing thelosses due to
ionization and another describing thenonadiabatic losses.
For the former factor we have taken the adiabatic solut
Pe
ad @Eq. ~9!#, which approximatesPe well at large intensi-

ties. To find the nonadiabatic factor, which is expected
dominate at small intensities, we neglect the incoher
channels as well as the termsi in the factors (q1 i ) in Eqs.
~2! ~which is justified for largeq); this means that we neglec
any ionization. Thus, we obtain a coherent two-state prob
that is easily seen~after a phase transformation! to involve a
level crossing. In this two-state problem, the effective R
frequency and detuning for the Gaussian pulses~13! are~up
to an unimportant sign!
he

n-

y

nd
-

e
b-

of
-

n

o
nt

m

i

Veff~ t !5
j

T
e2~ t/T!2, Deff~ t !5

j

T
e2~ t/T!2sinh~2tt/T2!,

~15!

with j5 1
2qATe

2(t/T)2. We cannot find analytically the exac
solution for theseVeff andDeff but we can approximate it by
using some of the available two-state solutions in the man
of Ref. @3#. The most relevant to our problem is the Allen
Eberly model@10#,

VAE~ t !5
a

T0
sech

t

T0
, DAE~ t !5

b

T0
tanh

t

T0
. ~16!

In order to compensate the differences in the pulse sha
and the detuning chirps in the effective problem~15! and the
model~16! as much as possible, we have determined the
parametersa, b andT0 in such a way that the maxima~at
t50) and the areas ofVeff(t) and VAE(t) as well as the
slopes ofDeff(t) andDAE(t) at the crossing~at t50) are the
same. This leads to a5j/Ap, b52jt/pT, and
T05T/Ap. The population of stateue& is then given approxi-
mately by the transition probability for the model~16!,

Pe
AE512

cosh2~pAb22a2!

cosh2~pb!
. ~17!

Here, the hyperbolic cosine in the denominator has to
replaced by a cosine fora.b. We note that in the diabatic
basis~2!, this is the probability of transition from stateug& to
stateue&, whereas in the adiabatic basis~8!, this is the prob-
ability of remaining in stateu2&.

The excited-state population is approximated as

Pe'Pe
adPe

AE . ~18!

We point out that the approximation~18! is an intuitive
rather than a rigorous result. It givesPe ~which is also the
probability of staying in the adiabatic stateu2& as the prob-
ability Pe

adof nonionization of stateu2& times the probability
Pe
AE of nontransition to the other adiabatic stateu1&. Since

the adiabatic solution~9! gives unity at zero intensity and th
correct asymptotics at large intensity, and the solution~17!
gives a good approximation for small intensity and unity
infinity, the approximation~18! apparently has the correc
limits at both small and large pulse areas; moreover, it tu
out to produce fairly good results for moderate pulse area
well. In Fig. 3, the analytic approximation~18! is compared
to the exact values, found by numerical integration of E
~1!, for various pulse delayst. We have assumed Gaussia
pulse shapes, effective two-photon resonance (d50), and
we have taken the same case~13! as in Fig. 2, i.e., with the
incoherent channelGe

p included. The other parameters a
R51/16 andq526. The approximation~18! is seen to be
very precise for small and large intensities and fairly good
moderate intensities, except fort50.25T @11#. It predicts the
maximum position and width very well. The small overes
mation ofPe is mainly due to the neglect of any ionizatio
mechanism inPe

AE . A better ~but more complicated! ap-
proximation can be obtained if the ionization widthsGg

p and
Ge
s are accounted for; this is possible and leads to an All

Eberly model with complex coefficients that gives the tra
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FIG. 3. The populations of the bound states and the continuum for Gaussian pulses againstAT ~essentially the pulse area! for various
pulse delayst in the case of effective two-photon resonance,d50. The solid curves show the exact numerical values and the labels on
refer to the ground state (g), the excited state (e), and the continuum (c). The dashed curves show the analytic approximation~18! for the
excited-state population. The ionization widths are given by Eq.~13!, q526 andR5

1
16.
so
te
a

th
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he
ifts
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om
e
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n
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,

d to
al-
the
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y
-
er-
P is
in
re
sfer
xi-
n
ved
by

ro-
sition probability in terms of four gamma functions. We al
conclude that the analytic solution reproduces to some ex
the small oscillations seen around the maximum for sm
pulse delays. These oscillations are predicted by Eqs.~17!
and~18! for a.b, i.e., fort/T,Ap/2'0.89. As in the stan-
dard STIRAP, these Rabi-like oscillations arise when
overlap between the pulses is appreciable@2#. Finally, Fig. 3
shows that the ground-state population is relatively inse
tive to the pulse delay.

VII. CONCLUSIONS

We have investigated analytically and numerically t
role of the incoherent ionization channels, the Stark sh
and the nonzero Fano parameter on the efficiency of
population transfer between two discrete states via a c
mon continuum by means of two partially overlapping d
layed laser pulses. At least one incoherent channel is
avoidable and has to be considered in any implementatio
such a scheme. We have shown that the incoherent ion
tion channels correspond to irreversible-decay rates of
initial and final states in theL system used in STIRAP
,
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while the Stark shifts and the Fano parameter correspon
a two-photon detuning in STIRAP. We have found that
though the transfer efficiency is adversely affected by
incoherent channels, the Stark shifts and the Fano param
~incomplete! population transfer can still be realized b
pulses in the counterintuitive order, while it is virtually im
possible by an intuitive pulse sequence. An important diff
ence between the scheme with a continuum and STIRA
that in the adiabatic limit, the transfer efficiency vanishes
the former scheme while it tends to unity in the latter. The
is an optimum range of laser intensities where the tran
efficiency is maximal. We have derived an analytic appro
mation, Eq.~18!, which describes the final-state populatio
in the case when effective two-photon resonance is achie
by Stark shift compensation with an additional laser or
using chirped laser pulses.
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