
PHYSICAL REVIEW A JULY 1997VOLUME 56, NUMBER 1
A unified theory of high-harmonic generation:
Application to polarization properties of the harmonics
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A general framework is given of how to derive expressions for high-harmonic generation in close analogy
to the derivation of the Keldysh amplitude for ionization. As in the former, the approximation made consists of
neglecting the effect of the binding potential in intermediate states. The approach can be used for arbitrary
binding potentials, but is best suited to short-range potentials at high intensities. It is almost exact for a
zero-range potential for arbitrary intensity. Various models that have been used before by some of the authors,
such as the effective dipole model and the zero-range potential model, emerge as special cases. The relation
between theS-matrix element for high-harmonic generation and the dipole-moment expectation value is
discussed, as well as the relation of both to the dipole-dipole correlation function. An exact functional rela-
tionship between high-harmonic generation and the total ionization rate is presented. For the case of an
elliptically polarized monochromatic driving field, the polarization properties of the emitted harmonics, viz.
their ellipticity and the offset angle of their polarization ellipse, are evaluated for both the zero-range potential
model and the effective-dipole model, and compared. The predictions of both models generally agree, there
are, however, some qualitative differences for the harmonics around the end of the plateau.
@S1050-2947~97!05806-X#
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I. INTRODUCTION

The generation of high harmonics of a laser irradiating
ensemble of atoms has turned into a topic of great cur
interest, both from fundamental and applications-orien
points of view; for a fairly recent review, see Ref.@1#. There
are two sides to the underlying physics: each individual at
emits radiation at harmonics of the laser frequency, and a
these wave trains propagate in the environment consistin
the remaining atoms and the ions and electrons set free in
competing process of ionization; they interfere and sca
and may stimulate further harmonic emission. The obser
spectrum of harmonics is affected by both the single-at
emission and this ensuing collective behavior and, depen
on the situation, one or the other side dominates the exp
mental results. However, obviously the collective behav
does not produce harmonics if the single atoms do not
this paper we will concentrate on the harmonic emission o
single atom. In order to realize the complexity of this fir
step already, one should look at it from the point of view
nonlinear optics. High-harmonic emission, as other phen
ena characteristic of intense-laser atom interactions, is hig
nonlinear with respect to the atom-field interaction, to t
point that perturbation theory of any reasonable finite or
becomes inapplicable. Hence one has, in principle, to d

*Present address: Max-Born-Institut fu¨r Nichtlineare Optik und
Kurzzeitspektroskopie, 12474 Berlin, Germany. Also at Center
Advanced Studies, Department of Physics and Astronomy, Uni
sity of New Mexico, Albuquerque, NM 87131.
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with the entire set ofx (2n11) for all n for a many-electron
system when just the properties and implications of the lo
est orderx (3) have already opened up a whole new chap
of physics. Fortunately, it has turned out that a ‘‘sing
active-electron approximation’’ is normally sufficient@2#,
but this still leaves a formidable problem. Numerical so
tions @3# of the time-dependent one-particle Schro¨dinger
equation have contributed significantly to the elucidation
the observed patterns. However, even with today’s comp
ing facilities, this meets problems which become ins
mountable when it comes to, e.g., the calculation of
tremely high harmonics of very low intensity and/or in
truly three-dimensional situation. This is particularly det
mental if one recalls that single-atom behavior is to prov
the input for the investigation of the collective aspects t
ought to follow.

Because of these considerations, simplified modeling
the single-atom emission has become popular. Various m
els have reproduced many aspects of the observations
two such models have turned out to incorporate most of
relevant physics such that they can provide a sufficien
dependable input for the collective side: both simplify t
atom down to its absolute essentials. One approximates
atomic binding potential by a zero-range potential@4,5#,
while the other introduces a model Hamiltonian with just o
bound state and an undistorted continuum@6,7#. This latter
model leaves some freedom as to the form of the dip
matrix element between the ground state and the continu
Both models do not account for the effects of excited bou
states nor the effect of the binding potential on the electro
motion in the continuum. Moreover, both models, in the
simplest versions, ignore depletion of the initial atom
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ground state@8#. This is mended in more refined version
@9–12#. They both lead to comparably manageable integ
expressions for the harmonic intensities which can be c
puted efficiently enough to allow for the subsequent inve
gation of the collective behavior. Owing to the largely ide
tical assumptions made, it is not surprising that both mod
produce closely related answers even though the formal
pressions look rather different. An additional benefit of the
models is that they have given ana priori justification for the
very intuitive and successful~but less quantitative! semiclas-
sical concepts where the electron returning to its parent
produces harmonics via recombination@13,14#.

In this paper, we will evaluate harmonic generation
strict parallelism to the Keldysh-Faisal-Reiss@15# framework
for ionization. In fact, one crucial approximation necess
for ionization is not required for harmonic generation. This
the approximation of the final~field-free! scattering state o
the electron by a plane wave. We will discuss how both
the aforementioned models fit into this more general cont
In general, the predictions of the two models come out to
very close. For a particularly sensitive comparison, we inv
tigate the polarization properties of the harmonics near
cutoff for an elliptically polarized driving field. In this case
some characteristic discrepancies do show up.

In Sec. II, we start with a reminder of the derivation of t
Keldysh amplitude, tailored to our particular needs. Next,
try to follow precisely the same steps in the evaluation of
ground-state expectation value of the atomic dipole mom
the key ingredient for the computation of the harmonic sp
trum. One of the terms that contributes to the dipole mom
can be identified as a continuum-continuum interaction
this term is disregarded, the effective-dipole model of L
wenstein and co-workers@6,7# is recovered. If, on the othe
hand, the term is kept, the entire dipole moment can be
written in the form of one single term which has exactly t
form of the continuum-continuum term, except that the e
plicitly showing interactions with the external field are r
placed by the binding potential. If the latter is replaced b
zero-range potential, then the dipole moment reduces to
expressions employed earlier for this case@4,5#. For a gen-
eral potential, the entire expression for the dipole mom
can also be rewritten in a form whose structure is close
that of the effective-dipole model@6,7#, but containing one
additional integration over time which is related to the em
sion of the harmonic photon. In Sec. II D, we adopt a diffe
ent starting point by calculating theS-matrix elementfor
harmonic emission ofexactly one photonrather than the di-
pole moment expectation value. For low harmon
efficiencies—in fact throughout the entire spectrum with
exception of the very lowest harmonics—the two approac
yield virtually identical numerical results. However, the fo
mal structure of theS-matrix element is more appealing, an
lends itself immediately to an interpretation in terms of cla
sical orbits departing from and returning to the position
the ion. In Sec. II E, we derive an exact general relat
between ionization and harmonic generation. We show
the latter can be computed via the functional derivative
the ground-state persistence amplitude with respect to
driving external field. This relation holds only for th
S-matrix element, and not for the dipole expectation valu

In Sec. III, we concentrate on polarization properties
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the emitted harmonics for an elliptically polarized drivin
field, that is, on the ellipticities of the harmonics and t
offset angle of their polarization ellipse with respect to th
of the driving field. We consider harmonics both in the low
part of the plateau and near the cutoff. Generally, in
lower part of the plateau, the polarization characteristics
not exhibit distinctive qualitative features, but they do
near the cutoff. It is also in this region that we find discre
ancies between the zero-range potential model@4,5# and the
effective-dipole model@6,7#. Whether or not some of thes
qualitative effects will survive as such after propagati
through the medium remains an open question.

In Sec. IV, we summarize our conclusions. Finally, w
use the Appendix to discuss the relation of both the dip
moment expectation value and theS-matrix element to the
dipole-dipole correlation function, which is known to speci
the total number of emitted photons.

II. FORMAL DEVELOPMENTS

A. Ionization amplitude

Let us first recall the assumptions and approximatio
made in the derivation of the Keldysh ionization amplitud
The transition amplitude from the ground state before
arrival of the laser pulse to the final state after the pulse
passed is

Mp5 lim
t→`

^cp~ t !uC~ t !&. ~2.1!

HereC(t) denotes the exact wave function that has dev
oped out of the initial ground state, whilecp is a scattering
state with asymptotic momentump in the presence of the
atomic binding potential, but in the absence of the laser fie
We may use the full time-evolution operatorU, taking into
account both the binding potential and the laser field in or
to propagate the exact wave function from timet backwards
to some time before the arrival of the pulse, so that

Mp5 lim
t→`,t8→2`

^cp~ t !uU~ t,t8!uC~ t8!&

5 lim
t→`,t8→2`

^cp~ t !uU~ t,t8!uc0~ t8!&. ~2.2!

In the last line of Eq.~2.2!, we used the fact that in the limi
of early times,t8→2`, the exact wave functionC(t) re-
duces to the unperturbed~field-free! wave functionc0(t) of
the initial ground state. Next, we will make use of the Dys
equation for the time-evolution operator,

U~ t,t8!5U0~ t,t8!2 i E
t8

t

dt9U0~ t,t9!HI~ t9!U~ t9,t8!

5U0~ t,t8!2 i E
t8

t

dt9U~ t,t9!HI~ t9!U0~ t9,t8!. ~2.3!

Here U0 is the time-evolution operator in the presence
merely the binding potential andHI(r t)52er•E(t) the in-
teraction with the laser field. The atomic propaga
U0(t,t8) propagates the field-free atomic-ground-state wa
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56 647UNIFIED THEORY OF HIGH-HARMONIC . . .
function c0(t8) forward to the finite timet ~where, in gen-
eral, the laser is on!. BothU andU0 are unitary and satisfy
the group property

U~ t,t9!5U~ t,t8!U~ t8,t9!. ~2.4!

Moreover, as a consequence of unitarity, the initial condit
U(t,t)51, and the group property, we have

U~ t,t8!†5U~ t8,t !. ~2.5!

If we insert the Dyson equation~2.3! in the matrix element
~2.2! then, owing to the orthogonality of the initial groun
stateuc0& and the scattering stateucp&, the first term~the one
involving justU0) vanishes. The remaining term can be r
written in the form

Mp52 i lim
t→`

E
2`

t

dt8^cp~ t !uU~ t,t8!HI~ t8!uc0~ t8!&.

~2.6!

No approximations have been made up to this point. N
tice that the complete time-evolution operatorU(t,t8) in the
amplitude~2.6! accomplishes three things which cannot
strictly separated: It dresses the initial and final states, an
propagates the electron from the former to the latter wh
includes the possibility of major excursions of its orbit aw
from the ion. We now make the approximation that is typic
of Keldysh theories. We replace the complete time-evolut
operatorU by the Volkov time-evolution operatorU (V),
which satisfies

i
]

]t
U ~V!~ t,t8!5S p̂2

2m
1HI~ t ! DU ~V!~ t,t8!,

2 i
]

]t8
U ~V!~ t,t8!5U ~V!~ t,t8!S p̂2

2m
1HI~ t8! D . ~2.7!

That is, we neglect the binding potential everywhere exc
in the initial and final states. As a consequence, the in
and final state are no longer dressed and the electron
longer ‘‘feels’’ the binding potential during the propagatio
Equation~2.6! now reads

M̃p
~K !52 i lim

t→`
E

2`

t

dt8^cp~ t !uU ~V!~ t,t8!HI~ t8!uc0~ t8!&.

~2.8!

An equivalent and often more useful form can be obtain
as follows. We rewrite Eq.~2.8! in the form

M̃p
~K !52 i lim

t→`
E

2`

t

dt8^cp~ t !uU ~V!~ t,t8!H FHI~ t8!1
p̂2

2m
G

2F p̂2
2m

1VG1VJ uc0~ t8!&, ~2.9!

whereV denotes the atomic binding potential. Owing to E
~2.7!, the first term in brackets yields2 i (]/]t8), acting to
the left on the Volkov propagator. An integration by pa
with respect tot8 then cancels the second term in brackets
n
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-
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Eq. ~2.9!. Because of the orthogonality of the initial state a
the final scattering state the boundary term that occurs in
integration by parts makes no contribution, and the resu
just like Eq.~2.8!, but with the interactionHI replaced by the
binding potentialV,

M̃p
~K !52 i lim

t→`
E

2`

t

dt8^cp~ t !uU ~V!~ t,t8!Vuc0~ t8!&.

~2.10!

The limit of t→` is akward to perform. Hence th
Keldysh approach makes the additional approximation of
placing the scattering statecp by the plane wave
(2p)23/2exp@i(p•r2Et)# which, however, destroys the or
thogonality of the initial and final states. This way th
Volkov state ^cp

(V)(t)u appears, and we end up with th
Keldysh amplitude

Mp
~K !52 i E

2`

`

dt^cp
~V!~ t !uHI~ t !uc0~ t !&, ~2.11!

or with the equivalent form@16,17#

Mp
~K !52 i E

2`

`

dt^cp
~V!~ t !uVuc0~ t !&, ~2.12!

which derives from Eq.~2.10!.
It is notoriously difficult precisely to specify the range o

validity of the Keldysh amplitudes. Generally speaking, t
approximation of replacing the exact propagatorU(t,t8) by
the Volkov propagatorU (V)(t,t8) works the better the
shorter the range of the binding potential and the higher
intensity. Also, circular polarization is more favorable th
linear polarization. The aforementioned field-induced ene
shift of the initial bound state which is dropped by the a
proximation could be reintroduced by hand, if desired. T
consequences of the additional approximation of replac
the scattering state by a plane wave can be very tricky.
example, for one-photon ionization this approximation h
been shown to introduce a spurious gauge dependence@18#.
On the other hand, for a zero-range potential~where the scat-
tering state differs from a plane wave only by ans-wave
term! and for circular polarization the Keldysh amplitud
yields the quasienergy virtually exactly@17#.

B. Dipole-moment expectation value

In complete analogy to the preceding derivation of t
Keldysh amplitude, we will now derive an approximate e
pression for the ground-state expectation value

R~ t !5^C~ t !ur uC~ t !& ~2.13!

of the dipole moment. The approach we will follow ha
much in common with Ref.@19#, but is best suited to inten
sities that are high~ponderomotive energy exceeding th
binding energy! but below the over-the-barrier regime
Again, we use the full propagator in order to relate the fie
dressed ground state to the field-free ground state,
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R~ t !5 lim
t8,t9→2`

^c0~ t8!uU~ t8,t !rU~ t,t9!uc0~ t9!&.

~2.14!

As above, we apply the Dyson equation~2.3!. This yields
four terms:

R~ t !5^c0~ t !ur uc0~ t !&

2 i E
2`

t

dt8^c0~ t !urU~ t,t8!HI~ t8!uc0~ t8!&

1 i E
2`

t

dt8^c0~ t8!uHI~ t8!U~ t8,t !r uc0~ t !&

1E
2`

t

dt8dt9^c0~ t8!uHI~ t8!U~ t8,t !rU~ t,t9!

3HI~ t9!uc0~ t9!&. ~2.15!

Here the first term is zero for any spherically symmet
potential. One recognizes that these four terms are such
in terms of Feynman diagrams the vertex for the emission
the harmonic photon~given by r ) is inserted in all possible
ways. In analogy to the above derivation of the Keldy
amplitude, we now replace the full time-evolution opera
U by the Volkov time-evolution operatorU (V). In the last
three terms of Eq.~2.15!, we attempt the same manipulation
that led from Eq.~2.8! to Eq. ~2.10!. In the partial integra-
tions, the boundary terms att→2` make no contribution,
this time owing to the dispersion-related factor
(t2t8)23/2 in the time-evolution operatorU (V)(t,t8). How-
ever, boundary terms now survive fromt85t and/or t95t.
These terms cause extensive cancellations, and in the en
only term left is

R~K !~ t !5E
2`

t

dt8dt9^c0~ t8!uVU~V!~ t8,t !r

3U ~V!~ t,t9!Vuc0~ t9!&. ~2.16!

This is the Keldysh approximation to the dipole mome
expectation value. The only approximation made consis
in neglecting the binding potential in the time-evolution o
eratorsU in Eq. ~2.15!. Since only the atomic ground state
involved, the additional approximation of replacing the ex
scattering state by a plane wave was not required.

Equation~2.16! can be further simplified. It can be show
@20# that

^r 8uU ~V!~ t8,t !rU ~V!~ t,t9!ur 9&

5r class~ t;r 8t8,r 9t9!U ~V!~r 8t8,r 9t9!, ~2.17!

where

r class~ t;r 8t8,r 9t9!5
1

t82t9H ~ t2t9!S r 82
e

mEt8
t

dt A~t! D
2~ t2t8!S r 92

e

mEt9
t

dt A~t! D J
~2.18!
at
f

r

the

t
d

t

is the classical orbit of an electron that starts from posit
r 9 at timet9 to the new positionr 8 at timet8 in the presence
of the electromagnetic fieldA(t). Notice that in view of Eq.
~2.16! the initial and final positionsr 9 andr 8 are restricted to
within the range of the binding potentialV(r ).

For the zero-range potential

V~r !5
2p

mk
d~r !

]

]r
r , ~2.19!

Eq. ~2.16! exactly reproduces the dipole moment used
some of us in earlier work@4,5#. Actually, for the zero-range
potential the expression~2.16! is fairly close to the exact
result. This is realized more easily from the earlier deriv
tions @5#.

On the other hand, if the fourth term in Eq.~2.15! is
dropped, and again the exact time-evolution operator is
placed by its Volkov approximation, we recover the dipo
moment employed by Lewenstein and co-workers@6,7#. To
see this, we just have to insert the expansion ofU (V) in terms
of the Volkov wave functions. This yields

R~L !5 ieE
2`

t

dt8e2 i uE0u~ t2t8!E d3p exp@2 iS~p,t,t8!#

3d@p2eA~ t !#* d@p2eA~ t8!#•E~ t8!1c.c. ~2.20!

with

S~p,t,t8!5
1

2mEt8
t

dt@p2eA~t!#2, ~2.21!

and the dipole transition matrix element

d~p!5~2p!23/2E d3r e2 ip•rrc0~r ![^pur u0&.

~2.22!

In R(L), the binding potential does not enter explicitly, b
only via the ground-state wave function in the matrix e
ment ~2.22! of the atomic ground state. A heuristic schem
of accounting for the effects of a long-range part of the p
tential, notably for a Coulomb potential, on the dipole m
ment, has recently been formulated@22# on the basis of Eqs
~2.20!–~2.22!. It has the most noticeable effect on the low
energy part of the harmonic spectrum around the bind
energy.

Equation~2.15! suggests the following interpretation: th
second term describes the atom interacting with the la
field ~absorbing and emitting photons! up to the timet, at
which it emits the harmonic photon and returns to the grou
state. The third term is the complex conjugate of the seco
where the events unfold in the opposite time order. Forma
the third term is required in order thatR(t) be real. The
fourth term represents a continuum-continuum interaction
the following sense: the atom interacts with the field, em
the harmonic photon,and keeps interacting with the fiel
before it finally returns to the ground state.

As to the range of validity of these results, the main a
proximation ofU→U (V) becomes more and more questio
able as the range of the binding potential expands. In g
eral, the dipole moments~2.16! or ~2.20! should provide
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56 649UNIFIED THEORY OF HIGH-HARMONIC . . .
reliable approximations for intensities such that the ponde
motive potential is not much smaller than the binding e
ergy. For intensities approaching the over-the-barrier regi
the approach should still be valid, but one may have to in
the field-dependent energy shift of the ground state by ha
Moreover, ionization can no longer be ignored. It can
incorporated as described elsewhere@8#. Complete dressing
of the ground state abandons the relative simplicity of
approach. For the zero range potential andUp;uE0u, it has
been shown@5# that this does not noticeably affect any of th
harmonics above the third.

Below, we will compare the results based on Eq.~2.20!
with those based on Eqs.~2.16! and~2.17!, both for the case
of the zero-range potential. Quantitatively, we will find th
in many circumstances the effects due to the fourth term
Eq. ~2.15! are small. On the other hand, the above derivat
shows that it is crucial in obtaining the compact result~2.16!
and, consequently, the essentially exact solution for the z
range potential.

C. Formal comparison of the two models

In Eqs.~2.16! and~2.17!, a general potentialV(r ) can be
retained. Not specifying the potential, we can bring expr
sion ~2.16!, which contains all four terms of Eq.~2.15!, to a
form that is quite close to the dipole moment~2.20!. To this
end, we first notice that, owing to the existence of the t
terms in Eq.~2.18!, it is possible to write Eq.~2.16! in the
form

R~K !~ t !5E
2`

t

dt8dt9
t2t8

t82t9
E d3pe2 i uE0u~ t82t9!

3exp@2 iS~p,t8,t9!#^0uS r2 e

mEt8
t

dtA~t! D
Vup2eA~ t8!&^p2eA~ t9!uVu0&1c.c., ~2.23!

which explicitly displays its reality. Again, we have mad
use of the decomposition of the Volkov time-evolution o
erator in Eq.~2.16! in terms of Volkov wave functions. The
new form ~2.23! contains matrix elements of the bindin
potentialV. With the help of the Schro¨dinger equation, we
can rewrite them as

^puVu0&52S uE0u1
1

2m
p2D ^pu0&, ~2.24!

^purVu0&52S uE0u1
1

2m
p2D ^pur u0&1

i

m
p^pu0&,

~2.25!

where uc0(t)&5u0&exp(iuE0ut). In comparison to the dipole
moment~2.20! the dipole moment~2.23! which is based on
the complete Keldysh result~2.16! contains an additiona
integration over time. This is the price to be paid for reta
ing the continuum-continuum interaction. The additional
tegration is related to the time at which emission of the h
monic takes place which is now at some time earlier th
t, while in Eq.~2.20! it was att. We will see below that this
has a marked effect on the polarization properties of
emitted harmonics which originate from the vector charac
-
-
e,
rt
d.
e

e

f
n

o-

-

o

-
-
r-
n

e
r

of the dipole moment. In form~2.20!, the direction of the
vector R(K)(t) is solely determined by the dipole mome
d@p2eA(t)# at the same timet. In contrast, the vector char
acter of the Keldysh formR(K)(t) @Eq. ~2.23!# also depends
on the history (t8,t).

D. S-matrix element for one-photon emission

A different starting point for the same goal is th
S-matrix element for the emission of exactly one photon w
frequencyV and polarizatione such that the atom winds u
in the ground state after the field has been turned off in
distant future,

Se~V!5e•E dt eiVt^C~1 !~ t !uer uC~2 !~ t !&. ~2.26!

TheS-matrix element is the Fourier transform of the matr
element

RS~ t !5^C~1 !~ t !ur uC~2 !~ t !&, ~2.27!

which is closely related, but not identical to the ground-st
expectation value~2.13! of the dipole moment. The state

uC~2 !~ t !&[uC~ t !&5 lim
t8→2`

U~ t,t8!uc0~ t8!& ~2.28!

reduces to the unperturbed ground state at early times, a
identical to the one used above. However, as required fo
S-matrix element, the state

^C~1 !~ t !u5 lim
t8→`

^c0~ t8!uU~ t8,t ! ~2.29!

is defined such that it reduces to the ground state of the a
in the distant future, after the pulse has left the interactio
region. For the matrix elementRS(t), the manipulations fol-
lowing Eq. ~2.14! proceed analogously, and instead of E
~2.16! we now obtain

RS
~K !~ t !52E

t

`

dt8E
2`

t

dt9^c0~ t8!uVU~V!~ t8,t !r

3U ~V!~ t,t9!Vuc0~ t9!&, ~2.30!

which differs fromR(K)(t) only by the range of the tempora
integrations. Now, with the help of Eqs.~2.30!, ~2.17!, and
~2.18! theS-matrix element~2.26! of single-photon harmonic
generation can be written as

Se~V!52E
2`

`

dt8E
2`

t8
dt9E d3r 8d3r 9c0~r 8t8!*V~r 8!

3e•H E
t9

t8
dt eiVtr class~ t;r 8t8;r 9t9!J

3U ~V!~r 8t8,r 9t9!V~r 9!c0~r 9t9!. ~2.31!

This expression affords a very appealing intuitive interpre
tion very much in line with previous arguments@13,14#, but
obtained here in the context of a rigorous analytical calcu
tion. It shows that theS-matrix element can be envisioned a
the coherent superposition of contributions associated w
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the classical orbits~2.18!. These orbits describe an electro
that starts at the timet9 from some positionr 9 within the
range of the binding potentialV(r ) and, under the influence
of the laser field, returns at thelater time t8 to the position
r 8, again within the range of the potential. Each orbit has
its weight the Volkov time-evolution operatorU (V)(t8,t9).
This interpretation does not apply to result~2.16! of using
the ground-state expectation valueR(t) @Eq. ~2.13!#, as the
latter does not obey the time orderingt8.t.t9. For the
d-function potential~2.19!, the spatial integrations in Eq
~2.31! can be carried out, and yield

Se~V!52
2pek

m2 E
2`

`

dt8E
2`

t8
dt9e2 i uE0u~ t82t9)

3e•H E
t9

t8
dt eiVtr class~ t;0t8;0t9!JU ~V!~0t8,0t9!.

~2.32!

This expression recovers a result presented earlier@21#.
The dipole moment expectation value is required as

source term for the integration of the Maxwell equation
However, if just the harmonic emission of a single atom is
be considered, then theS-matrix element is the quantity o
choice. In the Appendix, we will further investigate the pro
erties of theS matrix, and relate it to the dipole-dipole co
relation function. The relation between ionization and h
monic generation which we will present in the ne
subsection holds only for theS-matrix element.

E. Exact relation between ionization and harmonic generation

The matrix elementRS(t) has another attractive forma
property. It can be represented as the functional deriva
with respect to the driving electric fieldE(t) of the ground-
state persistence amplitude

Z5^0uT expS 2 i E
2`

`

dt HI~t! D u0&. ~2.33!

The square ofZ is the probability that after the passage
the laser pulse the atom is still in its ground state, and no
ing else has happened. In Eq.~2.33!, this amplitude is written
down in the interaction representation, so that

HI~ t !5eiH0t@2er•E~ t !#e2 iH0t, ~2.34!

whereH05p̂2/2m1V(r ) is the unperturbed atomic Hami
tonian andu0& is the ground-state wave functionuc0(t)& of
Eq. ~2.2! in the interaction representation.T denotes the
time-ordering operator. It is now easy to see that

eRS~ t !5^0uT expS 2 i E
t

`

dt HI~t! D e eiH0tre2 iH0t

3T expS 2 i E
2`

t

dt HI~t! D u0&52 i
d

dE~ t !
Z,

~2.35!

which is the statement made above. This is the most gen
formal relation between ionization and high-harmonic ge
s

e
.
o

-

e

h-

ral
-

eration. Unfortunately, it is of limited practical use as t
functional derivative requires knowledge ofZ for arbitrary
electric fieldsE(t). A power series expansion of the exp
nentials generates the perturbation expansion ofRS(t).

The corresponding expression forR(t) is

eR~ t !5^0uFT expS 2 i E
2`

t

dt HI~t! D G†e eiH0tre2 iH0t

3T expS 2 i E
2`

t

dt HI~t! D u0&. ~2.36!

If there had been any doubts, a comparison of express
~2.35! and ~2.36! clearly shows that they are not equivalen
In the Appendix, we will present a rigorous discussion of t
S matrix, and show that it lends itself to a more clearc
interpretation in terms of emission processes where the
tial and final states are well defined, as opposed to the dip
expectation value. Numerically, the two expressions prod
largely identical results for all harmonics higher than t
third.

III. POLARIZATION PROPERTIES OF THE HARMONICS

For a linearly polarized driving field, the emitted harmo
ics are again linearly polarized in the same direction. If, ho
ever, the incident field has elliptical polarization, thena pri-
ori it is only known that the polarization of the harmonic
will rotate in the same plane as the driving field. As soon
one goes beyond lowest-order perturbation theory, the e
ticity and the orientation of the axis of the polarization e
lipse will, in general, differ from those of the incident field
Since these effects probe the vector character of harm
generation, they might provide a more stringent test of a
theory than just the harmonic intensities.

Only recently have the polarization properties of the in
vidual high harmonics for incident elliptical polarization b
come the object of experimental efforts. Two groups pu
lished results within different regimes: Weihe and c
workers measured the offset angles of the polarization elli
@23,24# and the ellipticities@24# of comparatively low har-
monics ~around the ionization energy, that is, at the beg
ning of the plateau! of a Ti-sapphire laser in argon and n
trogen. The Saclay group compared the harmonics in var
rare gases within and near the end of the plateau for the s
wavelength@9,25#. Weihe and co-workers found no signifi
cant effect of the gas density on their data. The Saclay gro
on the other hand, was able to compare their measurem
to theoretical results on the basis of Eq.~2.20!, both with and
without propagation. These theoretical simulations indic
that propagation considerably affects the observed polar
tion properties, smoothing out to a large extent the details
the single-atom behavior, and agreement with the exp
mental data was only good when propagation was inclu
@25#.

In what follows we will display and compare single-ato
polarization properties calculated by means of the zero-ra
potential as well as the effective-dipole model, the latter e
ploying the bound-state wave function of the zero-range
tential, for the elliptically polarized driving field with vecto
potentials
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A~ t !5S 4mUp

e2~11j2! D
1/2

~ x̂ cosvt1j ŷ sinvt !, ~3.1!

with ellipticity j and a ponderomotive energyUp which is
independent of the polarization. The dipole moments deri
from either model contain all of the information necessary
extract offset angles, ellipticities, and whatever else one m
be interested in.

A. Zero-range potential polarization properties

The calculations whose results we will show below a
based on theS-matrix element~2.32!. Explicit formulas giv-
ing the offset anglef as well the harmonic ellipticityj8 can
be found in Ref.@26#, along with some preliminary results

First, we will show computations pertaining to the ha
monics around the ionization energy. As a general feat
we find offset angles that vary quite erratically as a funct
of harmonic number, incident ellipticity, and intensity. Ge
erally, the results have not too much in common with t
data of Weihe and co-workers@23,24#, which show offset
angles rising linearly with increasing ellipticity of the drivin
field and harmonic ellipticities that generally exceed t
driving ellipticity substantially. Weihe and co-workers ma
the observation that the offset angle tends to change
when the harmonic energy goes through the ionization
ergy of the respective atom. In fact, we do find this behav
for appropriate parameters. Figure 1 exhibits such a c
The binding energy corresponds to the difference betw
the ground state and the first excited state of argon@27#; the
wavelength is that of the experiments@23,24#, and the inten-
sity is quite high (I5531014 W/cm2). However, we do not
find this as a general feature. Figure 2 again shows a
quence of harmonics around the ionization energy for diff
ent parameters, and this time the sign of the offset an
oscillates from one harmonic to the next without any regu

FIG. 1. Offset angle of the polarization ellipse of the 5th–15
harmonic vs the polarization ellipse of the driving field as a fun
tion of the ellipticity j of the driving field. The latter has a fre
quency of\v51.578 eV and an intensity ofI5531014 W/cm2

(h518.45), and the atomic binding energy isuE0u/\v58.275 cor-
responding to the first excited state of argon. These values a
close correspondence to the experiment of Ref.@23#.
d
o
y

e,
n

e

gn
n-
r
e.
n

e-
-
le
r

pattern. Figure 3 makes this behavior particularly evide
Here the offset angle for fixed driving ellipticity is plotted a
a function of the driving intensity, which is expressed
terms of the dimensionless ratio of the ponderomotive pot
tial over the energy of one laser quantum,

h5Up /~\v!. ~3.2!

The offset angle performs oscillations whose detailed sh
is irregular, but which exhibit an approximate period
Dh51. Most likely, this is related to the above-thresho
ionization channel closings which occur ath
5 integer2uE0u/(\v). It is known that these channel clos
ings are reflected in pronounced sharp structures suc
spikes in the harmonic intensities and phases@28#. In gen-
eral, we notice that the zero-range potential produces
monic offset angles that are smaller and less regular t
those measured by Weihe and co-workers@23,24#.

Second, in Figs. 4 and 5, we concentrate on the polar
tion properties of the harmonics around the rim of the p
teau. Figure 4 displays the ellipticities and offset angles
the 53rd–63rd harmonic in a situation where the end of
plateau according to the classical model of Refs.@13,14# is at

-

in

FIG. 2. Offset angles~a! and ellipticities~b! of the 7th–19th
harmonic as a function of the ellipticity of the driving field fo
\v51.17 eV, I51.231014 W/cm2 ~h510.58!, and uE0u/\v
513.49.
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652 56W. BECKER, A. LOHR, M. KLEBER, AND M. LEWENSTEIN
nmax5uE0u13.17h554.5. The ellipticity of the 53rd har
monic still exhibits behavior characteristic of the plateau:
a function of the driving ellipticity, it fluctuates about zer
with varying amplitudes. As for the 57th harmonic, the elli
ticities increase monotonically with increasing driving elli
ticity. The ellipticity of the 55th harmonic, which is close
to the classicalnmax, initially briefly changes sign before i
follows the behavior of the 57th and all harmonics high
than that. The pattern of the corresponding offset angle
even more striking. With the harmonic number approach
nmax, the offset angle rises more and more quickly. That
already for smaller and smaller driving ellipticities does
rise to a large value not much below 90°. After the end of
plateau, it immediately settles to a value of near zero, wh
it stays henceforth for all of the harmonics higher th
nmax. This behavior is even more eye catching if we conc
trate on a particular harmonic, and vary the driving intens
such that this harmonic slowly approaches the rim of
plateau before dropping over the edge. This is shown in
5. We see how the offset angle rears for a last time ove
small interval of driving intensities, before it is almost in
stantly deflated.

B. Polarization properties in the effective-dipole model

In this section we shall compare the results based on
S-matrix element~2.32! with the results obtained from th
effective-dipole model@Eq. ~2.20!#. In order to evaluate the
dipole moment from the latter formula, a fourfold integr
tion, over the canonical momentump and overt8, has to be
made. We performed this integration using a stationary ph
approximation with respect to the relatively fastp depen-
dence of the actionS(p,t,t8). In order to make the compari
son, we used the ground-state wave functionc0(r ) from the
zero-range potential model. Explicit formulas giving the o
set angle as well as the harmonic ellipticity can be found
Ref. @9#. A comparison of theory and experiment using th
approach has yielded good agreement, and is discusse
Ref. @25#. It is worth emphasizing that the pulses employ
in the experiment were as short as 25 fs.

FIG. 3. Offset angle of the 11th harmonic as a function of
driving intensity expressed in terms ofh5Up /\v for an ellipticity
of j50.3 of the driving field anduE0u/\v513.49. Very roughly,
the offset angle changes sign with a period ofDh51.
s
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Here we show the computations pertaining to the harm
ics around the rim of the plateau. In Fig. 6~a! we concentrate
on the comparison of the ellipticities of the 53rd, 55th, a
57th harmonics in the same situation as in Fig. 4. The el
ticities calculated from the zero-range potential mod
~dashed lines! and effective-dipole model~solid lines! agree
quite well. In the case of the offset angles@see Fig. 6~b!# the
agreement is not as good, except for low ellipticities or in t
cutoff region. In particular, the effective-dipole model do
not predict the striking pattern of the corresponding off
angles obtained in Sec. III A for the harmonic number a
proachingnmax. The offset angle predicted from the effe
tive dipole model remains relatively small for the ellipticitie
considered. After the end of the plateau, both models ar
agreement, and predict that the angle immediately settles
value of near zero, where it stays henceforth for all of t
harmonics higher thannmax.

There are two possible reasons of these discrepancies~a!
expression~2.20! does not contain terms corresponding
the continuum-continuum interactions@the fourth term in Eq.

FIG. 4. Polarization properties of harmonics around the end
the plateau:~a! harmonic ellipticities, and~b! offset angle, both as a
function of the ellipticity of the driving field. The parameters a
\v51.17 eV, I51.231014 W/cm2 (h510.58), and uE0u/\v
520.93. The formal cutoff is atnmax5uE0u/\v 13.17Up554.46.
Notice that for harmonics far beyond the end of the plateau~viz.
H99! the harmonic ellipticities are consistently smaller than t
driving ellipticity.
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56 653UNIFIED THEORY OF HIGH-HARMONIC . . .
~2.15!#; ~b! in the evaluation of Eq.~2.20! a stationary phase
approximation was used to perform the integration with r
spect top. Estimations of contribution~a!, also based on the
stationary phase approximation, suggest that most proba
it is the latter approximation that causes the discrepancie
should be stressed that, in the considered regime of par
eters, both results depend rather dramatically on the driv
intensity ~see, for instance, Fig. 5!. The error introduced by
the stationary phase method may thus have significant c
sequences. On the other hand, the strong dependence o
driving intensity makes the effects predicted by the ze
range potential model difficult to observe in the macrosco
response of the atomic system in tight focusing conditio
That is probably the reason why the effective-dipole mod
@with approximations~a! and~b!# does reproduce the experi
mental data very well@25#.

FIG. 5. Polarization properties of the 53rd harmonic for a ran
of intensities such that it is near the cutoff:~a! harmonic ellipticity,
and~b! offset angle, both as a function of the driving ellipticity. Th
intensities are specified by the respective values ofh. Otherwise,
the parameters are those of Fig. 4. According to the 3.17Up cutoff
rule, the 53rd harmonic cuts off ath510.12. The curve for
h59.86 approximately specifies the maximal offset angles reach
Intensities deviating by no more than 1.5% to either side of t
value yield virtually identical offset angles. The arrows attached
the various curves in~b! point from one to the next in the order o
decreasing driving intensity so that the 53rd harmonic is moving
of the plateau.
-

ly
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m-
g

n-
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-
c
s.
l

IV. CONCLUSIONS

In this paper we evaluated harmonic generation stric
parallel to the Keldysh-Faisal-Reiss~KFR! @15# framework
for ionization. In particular, we derived general and expli
formulas for ionization amplitudes, dipole expectation v
ues, andS-matrix elements for one photon emission valid f
arbitrary atomic potentials. Generally, they are expected
apply under the same conditions as the KFR results for i
ization, that is, in the strong-field limit. In the calculation o
the ionization amplitudes, the KFR approach has to m
one crucial approximation whose consequences are har
estimate. This is the replacement of the final scattering s
by a plane wave. For the calculation of harmonic generat
this approximation is not necessary, since the final ato
state is again the ground state. Therefore, one may ex
that the KFR approach is more reliable for harmonic gene

e

d.
s
o

t

FIG. 6. Comparison of the polarization properties of harmon
near the end of the plateau calculated from the effective-dip
model@Eq. ~2.20!# ~EDM! using a zero-range potential wave fun
tion and the zero-range model@Eq. ~2.32!# ~ZRM!, ~a! harmonic
ellipticities, and~b! offset angle. The parameters are the same a
Fig. 4, except that the intensity is smaller by 1%.
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654 56W. BECKER, A. LOHR, M. KLEBER, AND M. LEWENSTEIN
tion than for ionization. The requirement of a sufficient
high intensity becomes less stringent when the range of
binding potential shrinks. In particular, the zero-range pot
tial results have been checked to be virtually exact for d
ing intensities up toUp;uE0u. For intensities approachin
the over-the-barrier regime, the field-dependent shift of
ground-state energy as well as ionization must be and h
been considered. The general expressions for the dipole
ment can be applied to pulses of arbitrary length. Moreov
we discussed the relation between ionization and harm
generation, and between theS-matrix element for one-
photon emission and the dipole-dipole correlation funct
~see the Appendix!.

Within our generalized theory we identified the expre
sions corresponding to the two models of harmonic gen
tion discussed frequently in the literature: the zero-range
tential model and the effective-dipole model. We discus
how both the aforementioned models fit in this more gene
context. We discussed and compared polarization prope
of harmonics predicted by the two models. Both mod
agree quite well in many respects, but predict different
sults concerning the rotation angle of the polarization ellip
for the harmonics at the rim of the plateau. However, it is
yet clear whether or not the differences would still be noti
able after propagation through the medium.
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APPENDIX

In this appendix we will discuss the relation between
S-matrix element investigated in the main body of the pa
and the dipole-dipole correlation function. It is well know
that it is the latter that determines, in principle, the to
number of harmonic photons emitted@29,30#. We employ a
Hamiltonian where the incident laser field is treated clas
cally, but for the time being we single out one particu
mode for a quantized description. This is one of the mo
into which spontaneous emission of a high harmonic w
occur. Therefore we are able to defineS-matrix elements for
emission of a specified number of photons of this particu
mode. Quantizing the entire harmonic spectrum would
introduce any additional problems, but just make the nota
more clumsy.

Therefore, our Hamiltonian is

H5Va†a1H02er•E~ t !2 iegr•e~a2a†!, ~A1!

where

H05
p̂2

2m
1V, ~A2!

and g5A2pV/V. In the interaction picture, we want t
compute theS-matrix element for spontaneous emission
e
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exactly one photon with polarizatione and frequencyV ~that
is, of the quantized mode! such that in the distant future th
atom is again in its ground stateug& as it was in the remote
past. It is

Se~V!5^Ve,g outu0,g in&5^Ve,guUI~`,2`!u0,g&

5^0,guaUI~`,2`!u0,g&, ~A3!

with

UI~ t,t8!5T expS 2 i E
t8

t

dtHI~t! D ~A4!

and

HI~ t !5ei ~H01Va†a!t @2er•E~ t !2er•ecV~a1a†!#

3e2 i ~H01Va†a!t

52er ~ t !•@E~ t !1 ige~ae2 iVt2a†eiVt!#, ~A5!

r ~ t !5eiH0tre2 iH0t. ~A6!

HI(t) defined in Eq.~A5! differs from the one used in the
main body of the paper, Eq.~2.34!, by the quantization of the
one particular mode. Commuting the annihilation operato
Eq. ~A3! to the right, we can express theS-matrix element as
the ground-state expectation value

Se~V!5ege•E
2`

`

dt eiVt^0,guUI~`,t !r ~ t !UI~ t,2`!u0,g&.

~A7!

Next, we turn to the expectation number of the total nu
ber of spontaneously emitted photons, regardless of the
state of the atom. It is

N5^0,guUI~`,2`!†a†a UI~`,2`!u0,g& ~A8!

5(
i

(
n

^0,guU~`,2`!†a†unVe,i &

3^nVe,i uaU~`,2`!u0,g&. ~A9!

The sum over intermediate states includes the entire s
trum u i & of the atom, and any numbern of photons emitted.
Owing to the action of the photon creation operators on
intermediate states, we can write the total photon num
after the passage of the laser pulse in the form

N5(
i

(
n

nu^nVe,i outu0,g in&u2. ~A10!

In obvious notation, ^nVe,i outu0,g in& refers to the
S-matrix element for spontaneous emission ofn photons
with frequencyV and polarizatione such that the atom is in
the ground state before the arrival of the laser pulse an
the stateu i & after the pulse is gone. With high-harmon
emission the weak process that it is, theS-matrix elements
^Ve,i u0,g& for one-photon emission and, in particular, f
the atom returning to the ground state (i5g) make the domi-
nant contribution to the sum in Eq.~A10!. To our knowl-
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56 655UNIFIED THEORY OF HIGH-HARMONIC . . .
edge, harmonic emission, such that the atom winds up
some excited state, has never been observed experimen
even though the process exists in principle, of course. I
the one-photonS-matrix element̂Ve,g outu0,g in& that we
investigated in the main body of this paper.

If, on the other hand, we commute the photon creat
operators in Eq.~A8! so that they act on the vacuum of th
quantized mode, we may represent the total photon num
as

N5e2g2E
2`

`

dt dt8 e2 iV~ t2t8!^0,gue•R~ t !S
†

3e•RS~ t8!u0,g&, ~A11!

where

RS~ t !5UI~`,t !r ~ t !UI~ t,2`! ~A12!

is a Heisenberg representation of the position operator. It
easily be checked that it satisfies a Heisenberg equatio
motion corresponding to the Hamiltonian~A1!. Hence the
total photon number is related to the dipole-dipole corre
tion function ~A11! for the Heisenberg position operato
~A12!, and, according to

^0guRS~ t !u0g&5RS~ t !, ~A13!

the latter is essentially identical to the quantityRS(t) @Eq.
~2.27!#, which the discussion of much of this paper was bu
upon.

On the other hand, the total photon numberN(t) at any
time t can be represented as well in terms of the more co
monly used dipole expectation value, as defined in
~2.14!,

R~ t !5^0guR~ t !u0g&, ~A14!

with

R~ t !5^0guUI~ t,2`!†r ~ t !UI~ t,2`!u0g&, ~A15!
n

ple
in
lly,
is
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-
.

which is Hermitian. Then@29,30#

N~ t !5e2g2E
2`

t

dt8 dt9 e2 iV~ t82t9!^0,gue•R~ t8!

3e•R~ t9!u0,g&, ~A16!

and it is easy to show that limt→ `N(t)5N. However, the
decomposition~A10! of the total photon number in terms o
the well-definedS-matrix elements of the individual chan
nels only holds for representation~A11!. Also, the intuitive
interpretation of the harmonic-generation process expres
in Eq. ~2.31! rigorously only holds for theS matrix. The
significance of the ground-state expectation value~2.13! to
the process of harmonic generation is that it is this quan
that enters the classical Maxwell equations as a source.
not, however, in principle strictly related to the number
photons radiated by a single atom.

After the formal developments have been finished,
quantization of the one particular mode can be remo
again. With the quantization left in place self-energy corre
tions due to this one particular quantized mode would res
which we may safely neglect in comparison to the mu
more important level shifts introduced by the external~non-
quantized! laser field. Removing the quantization, we are l
with

Se~V!5ege•E
2`

`

dt eiVt^guU IE~`,t !r ~ t !U IE~ t,2`!ug&,

~A17!

with

U IE~ t,t8!5T expS ieE
t8

t

dt r ~t!•E~t! D . ~A18!

The vacuum expectation value ofU IE(t,t8) in the limit
wheret→` andt8→2` yields the ground-state persisten
amplitudeZ, Eq. ~2.33!.
s-

4.
@1# A. L’Huillier, L.-A. Lompré, G. Mainfray, and C. Manus, in
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