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A unified theory of high-harmonic generation:
Application to polarization properties of the harmonics
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A general framework is given of how to derive expressions for high-harmonic generation in close analogy
to the derivation of the Keldysh amplitude for ionization. As in the former, the approximation made consists of
neglecting the effect of the binding potential in intermediate states. The approach can be used for arbitrary
binding potentials, but is best suited to short-range potentials at high intensities. It is almost exact for a
zero-range potential for arbitrary intensity. Various models that have been used before by some of the authors,
such as the effective dipole model and the zero-range potential model, emerge as special cases. The relation
between theS-matrix element for high-harmonic generation and the dipole-moment expectation value is
discussed, as well as the relation of both to the dipole-dipole correlation function. An exact functional rela-
tionship between high-harmonic generation and the total ionization rate is presented. For the case of an
elliptically polarized monochromatic driving field, the polarization properties of the emitted harmonics, viz.
their ellipticity and the offset angle of their polarization ellipse, are evaluated for both the zero-range potential
model and the effective-dipole model, and compared. The predictions of both models generally agree, there
are, however, some qualitative differences for the harmonics around the end of the plateau.
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I. INTRODUCTION with the entire set of¢>"*%) for all n for a many-electron
system when just the properties and implications of the low-
The generation of high harmonics of a laser irradiating arest ordery® have already opened up a whole new chapter
ensemble of atoms has turned into a topic of great currermf physics. Fortunately, it has turned out that a ‘“single-
interest, both from fundamental and applications-orientedictive-electron approximation” is normally sufficief],
points of view; for a fairly recent review, see REf]. There  but this still leaves a formidable problem. Numerical solu-
are two sides to the underlying physics: each individual atoniions [3] of the time-dependent one-particle Sairger
emits radiation at harmonics of the laser frequency, and all ofquation have contributed significantly to the elucidation of
these wave trains propagate in the environment consisting ¢h€ observed patterns. However, even with today’s comput-
the remaining atoms and the ions and electrons set free in tH9 facilities, this meets problems which become insur-
competing process of ionization: they interfere and scattef’ountable when it comes to, e.g., the calculation of ex-
and may stimulate further harmonic emission. The observeHremely high harmonics of very low intensity and/or in a

spectrum of harmonics is affected by both the single-aton%rUIy thr_ee—dlmensmnal situation. This is pa_rtlc_ularly det.”'
mental if one recalls that single-atom behavior is to provide

emission and this ensing collective behavior and, dependm&e input for the investigation of the collective aspects that

on the situation, one or the other side dominates the eXperb'ught to follow

mental results. However, obviously the collective behavior Because of these considerations, simplified modeling of

does not produce harmonics if the single atoms do not. e single-atom emission has become popular. Various mod-
this paper we will concentrate on the harmonic emission of &5 have reproduced many aspects of the observations, but
single atom. In order to realize the complexity of this first o such models have turned out to incorporate most of the
step already, one should look at it from the point of view of rg|evant physics such that they can provide a sufficiently
nonlinear optics. High-harmonic emission, as other phenomdependable input for the collective side: both simplify the
ena characteristic of intense-laser atom interactions, is highltom down to its absolute essentials. One approximates the
nonlinear with respect to the atom-field interaction, to theatomic binding potential by a zero-range potentidl5],
point that perturbation theory of any reasonable finite ordeghile the other introduces a model Hamiltonian with just one
becomes inapplicable. Hence one has, in principle, to dedlound state and an undistorted continuiv]. This latter
model leaves some freedom as to the form of the dipole
matrix element between the ground state and the continuum.
*Present address: Max-Born-Institutr filichtlineare Optik und  Both models do not account for the effects of excited bound
Kurzzeitspektroskopie, 12474 Berlin, Germany. Also at Center forstates nor the effect of the binding potential on the electronic
Advanced Studies, Department of Physics and Astronomy, Univermotion in the continuum. Moreover, both models, in their
sity of New Mexico, Albuguerque, NM 87131. simplest versions, ignore depletion of the initial atomic

1050-2947/97/5@)/64512)/$10.00 56 645 © 1997 The American Physical Society



646 W. BECKER, A. LOHR, M. KLEBER, AND M. LEWENSTEIN 56

ground statd8]. This is mended in more refined versions the emitted harmonics for an elliptically polarized driving

[9-12. They both lead to comparably manageable integrafield, that is, on the ellipticities of the harmonics and the
expressions for the harmonic intensities which can be comeffset angle of their polarization ellipse with respect to that
puted efficiently enough to allow for the subsequent investi-of the driving field. We consider harmonics both in the lower
gation of the collective behavior. Owing to the largely iden-part of the plateau and near the cutoff. Generally, in the
tical assumptions made, it is not surprising that both modeléower part of the plateau, the polarization characteristics do
produce closely related answers even though the formal exiot exhibit distinctive qualitative features, but they do so

pressions look rather different. An additional benefit of thesd'€@r the cutoff. It is also in this region that we find discrep-
models is that they have given arpriori justification for the ~ancies between the zero-range potential mgdg] and the

very intuitive and successfibut less quantitativesemiclas- effective-dipole mode[6,7]. Whether or not some of these

sical concepts where the electron returning to its parent io ualitative effect_s will Survive as such aft_er propagation
produces harmonics via recombinatiid8,14). through the medium remains an open question.

In this paper, we will evaluate harmonic generation in In Sec. IV, We summarize our COI’].C|USIOHS. Fmally,.we
strict parallelism to the Keldysh-Faisal-Rejd4$] framework use the Appendlx_ to discuss the relat|o_n of both the dipole
for ionization. In fact, one crucial approximation necessarymoment_ expectatlon_value ar_ld ‘Sem_a”'.x element to the_
for ionization is not required for harmonic generation. This isdiPole-dipole correlation function, which is known to specify
the approximation of the findfield-free scattering state of (he total number of emitted photons.
the electron by a plane wave. We will discuss how both of
the aforementioned models fit into this more general context. Il. FORMAL DEVELOPMENTS
In general, the predictions of the two models come out to be
very close. For a particularly sensitive comparison, we inves-
tigate the polarization properties of the harmonics near the Let us first recall the assumptions and approximations
cutoff for an elliptically polarized driving field. In this case, made in the derivation of the Keldysh ionization amplitude.
some characteristic discrepancies do show up. The transition amplitude from the ground state before the

In Sec. I, we start with a reminder of the derivation of the arrival of the laser pulse to the final state after the pulse has
Keldysh amplitude, tailored to our particular needs. Next, wepassed is
try to follow precisely the same steps in the evaluation of the ]
ground-state expectation value of the atomic dipole moment, M= lim (¢ (D[ W (1)). (2.7)
the key ingredient for the computation of the harmonic spec- e
trum. One of the terms that contributes to the dipole moment .
can be identified as a continuum-continuum interaction. IfHere ¥(t) denotes the exact wave function that has devel-
this term is disregarded, the effective-dipole model of Le-0ped out of the initial ground state, whilg, is a scattering
wenstein and co-workel$,7] is recovered. If, on the other state with asymptotic momentum in the presence of the
hand, the term is kept, the entire dipole moment can be reatomic binding potential, but in the absence of the laser field.
written in the form of one single term which has exactly theWe may use the full time-evolution operatdr, taking into
form of the continuum-continuum term, except that the ex.aCCOLmt both the blndlng potential and the laser field in order
plicitly showing interactions with the external field are re- to propagate the exact wave function from titeackwards
placed by the binding potential. If the latter is replaced by a0 some time before the arrival of the pulse, so that
zero-range potential, then the dipole moment reduces to the
expressions employed earlier for this c#4¢b]. For a gen- Mp=lim  (g(D]U(L,t")| P (1))
eral potential, the entire expression for the dipole moment t—oo,t’ ——o
can also be rewritten in a form whose structure is close to _ . , ,
that of the effective-dipole modé¢b,7], but containing one B Ilr/n (LU (1)) 22
additional integration over time which is related to the emis- et
sion of the harmonic photon. In Sec. Il D, we adopt a differ-
ent starting point by calculating th&matrix elementfor

A. lonization amplitude

In the last line of Eq(2.2), we used the fact that in the limit
- g . of early times,t'— —o, the exact wave functiof(t) re-
harmonic emission oéxactly one photomather than the di duces to the unperturbdield-free wave functiony(t) of

pole moment expectation value. For low harmonic:th itial d state. Next il mak fthe D
efficiencies—in fact throughout the entire spectrum with the € initial ground state. Next, we will make use ot the Lyson

exception of the very lowest harmonics—the two approachegquat'on for the time-evolution operator,

yield virtually identical numerical results. However, the for- .

mal structure of thé&-matrix element is more appealing, and "N N " " " "

lends itself immediately to an interpretation in terms of clas- () =Vo(tt) |ft,dt Uo(tLIOH, (U )

sical orbits departing from and returning to the position of .

the ion. In Sec. IIE, we derive an exact general relation :UO(t,t’)—iJ dt"U(t,t")H,(t")Uq(t",t"). (2.3

between ionization and harmonic generation. We show that t/

the latter can be computed via the functional derivative of

the ground-state persistence amplitude with respect to thdere Ug is the time-evolution operator in the presence of

driving external field. This relation holds only for the merely the binding potential and,(rt) = —er-E(t) the in-

S-matrix element, and not for the dipole expectation value. teraction with the laser field. The atomic propagator
In Sec. Ill, we concentrate on polarization properties ofUq(t,t’) propagates the field-free atomic-ground-state wave
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function ¢ (t’) forward to the finite timet (where, in gen- Eg.(2.9). Because of the orthogonality of the initial state and
eral, the laser is gnBoth U and U, are unitary and satisfy the final scattering state the boundary term that occurs in this

the group property integration by parts makes no contribution, and the result is
just like Eq.(2.8), but with the interactiomr, replaced by the
U(t,t")=U(t,tHU(t' t"). (24 binding potentialV,
Moreover, as a consequence of unitarity, the initial condition .
U(t,t)=1, and the group property, we have ME)K): —i Iimf dt’(z!/p(t)IU(V)(t,t’)Vl Yo(t)).
t—owod =X
U(t,t")T=U(t’,1b). (2.5 (2.10

If we insert the Dyson equatiof2.3) in the matrix element
(2.2) then, owing to the orthogonality of the initial ground
state| o) and the scattering stalé,), the first term(the one
involving justU,) vanishes. The remaining term can be re-
written in the form

The limit of t—o is akward to perform. Hence the
Keldysh approach makes the additional approximation of re-
placing the scattering statay, by the plane wave
(27) ~¥Zexfi(p-r — Et)] which, however, destroys the or-
thogonality of the initial and final states. This way the

t Volkov state(wfjv)(t)| appears, and we end up with the
Mp:_ilimf At (gp(OIUEE)HI(E)[4ho(t1)). Keldysh amplitude

t—o
(2.9

®__: |~ V)
No approximations have been made up to this point. No- Mp 'J,wdtWP OIHI O] ¢o(1), (219

tice that the complete time-evolution operatbft,t’) in the

amplitude(2.6) accomplishes three things which cannot beOr with the equivalent fornji16,17]

strictly separated: It dresses the initial and final states, and it '

propagates the electron from the former to the latter which .

includes the possibility of major excursions of its orbit away MK = _j J dt(p (1) V] o(1)), (2.12

from the ion. We now make the approximation that is typical P —e P

of Keldysh theories. We replace the complete time-evolution

operatorU by the Volkov time-evolution operato"),  which derives from Eq(2.10.

which satisfies It is notoriously difficult precisely to specify the range of

validity of the Keldysh amplitudes. Generally speaking, the

approximation of replacing the exact propagatkit,t’) by

the Volkov propagatorU(V)(t,t’) works the better the

shorter the range of the binding potential and the higher the

F‘,Z intensity. Also, circular polarization is more favorable than

m + H|(t’)) . (29 linear polarization. The aforementioned field-induced energy
shift of the initial bound state which is dropped by the ap-

That is, we neglect the binding potential everywhere excepproximation could be reintroduced by hand, if desired. The
in the initial and final states. As a consequence, the initiafnsequences of the additional approximation of replacing
and final state are no longer dressed and the electron ri§€ Scattering state by a plane wave can be very tricky. For
longer “feels” the binding potential during the propagation. €x@mple, for one-photon ionization this approximation has
Equation(2.6) now reads been shown to introduce a spurious gauge dependéi®te
On the other hand, for a zero-range potentiiere the scat-
= (k) . t Y ) ) tering state differs from a plane wave only by siwave
Mp~'=—ilim J_mdt (p(OIU () H () [ho(t)). term) and for circular polarization the Keldysh amplitude
i 2.9 yields the quasienergy virtually exacfl§7].

2

P ,
ﬁ+H,(t)) uMvit,t),

J
UMt )=
IﬁtU (t,t")

d
—i WU(V)(t,t’)zu(W(t,t’)

An equivalent and often more useful form can be obtained B. Dipole-moment expectation value

as follows. We rewrite Eq(2.8) in the form In complete analogy to the preceding derivation of the

~o Keldysh amplitude, we will now derive an approximate ex-

|\7|E)K>: —ilim Jt dt’(z,bp(t)|U(V>(t,t’)( [Hl(t’)+ Zp_ pression for the ground-state expectation value
t—owod =% m
R()=(W(1)|r[¥ (1)) (2.13
2
P '
“lom V|tV [¥o(t)), 29 of the dipole moment. The approach we will follow has

much in common with Ref.19], but is best suited to inten-
whereV denotes the atomic binding potential. Owing to Eq.sities that are high(ponderomotive energy exceeding the
(2.7), the first term in brackets yieldsi(d/dt"), acting to  binding energy but below the over-the-barrier regime.
the left on the Volkov propagator. An integration by parts Again, we use the full propagator in order to relate the field-
with respect td’ then cancels the second term in brackets indressed ground state to the field-free ground state,



648 W. BECKER, A. LOHR, M. KLEBER, AND M. LEWENSTEIN 56

R(t)=1lim (yo(t")|Ut",0)rU(t,t")|so(t"). is the classical orbit of an electron that starts from position
A= r"” at timet” to the new positiom’ at timet’ in the presence
(2.14  of the electromagnetic field(t). Notice that in view of Eq.
. L (2.16 the initial and final positions” andr’ are restricted to
As above, we apply the Dyson equatiGn3). This yields \ ihin the range of the binding potentig(r).

four terms: For the zero-range potential

R(t)=(yo(t)|r| gho(1)) 27 d
V(r)=m—K§(r)a—rr, (2.19

t
—if dt’ (go(D[rU (Lt )H, (t")|o(t"))
‘°° Eqg. (2.16 exactly reproduces the dipole moment used by
t some of us in earlier worfd,5]. Actually, for the zero-range
+if dt’(go(t")[H (T U, O)r|o(t)) potential the expressiof2.16 is fairly close to the exact
- result. This is realized more easily from the earlier deriva-
t tions[5].
+f dt’dt”(go(t’)|H, (t)Ut',H)ru(t,t”) On the other hand, if the fourth term in E.15 is
‘°° dropped, and again the exact time-evolution operator is re-
XH, ()] (1)) (2.15 placed by its Volkov approximat_ion, we recover the dipole
moment employed by Lewenstein and co-work@gg]. To

Here the first term is zero for any spherically symmetricSee this, we just have to insert the expansiob&f in terms
potential. One recognizes that these four terms are such théf the Volkov wave functions. This yields

in terms of Feynman diagrams the vertex for the emission of .

the harmonic photorigiven byr) is m;ertgd in all possible R(L):ief dt'e*i\Eo\(t*t')f d3p exd —iS(p,t,t')]
ways. In analogy to the above derivation of the Keldysh —

amplitude, we now replace the full time-evolution operator

U by the Volkov time-evolution operatdd"). In the last

three terms of Eq2.15), we attempt the same manipulations , ...
that led from Eq.(2.8) to Eq. (2.10. In the partial integra-

tions, the boundary terms &t — make no contribution, 1 [t
this time owing to the dispersion-related factor of S(p,t,t')= z—f,dr[p—eA(r)]Z, (2.2
(t—t") %72 in the time-evolution operatdd V) (t,t"). How- mJt

ever, boundary terms now survive frot_h=t and/(_)rt”=t. and the dipole transition matrix element

These terms cause extensive cancellations, and in the end the
only term left is

Xdp—eA(t)]*d[p—eA(t’)]-E(t")+c.c. (2.20

d<p>=(2w>‘3’2f d® e P Try(r)=(plr|0).

t
R(K)(t)=f dt’dt"( go(t') VUMt t)r (2.22
In RM), the binding potential does not enter explicitly, but
XUM(t,t)V]yo(t")). (2.16  only via the ground-state wave function in the matrix ele-

o o ) ment(2.22 of the atomic ground state. A heuristic scheme
This is the Keldysh approximation to the dipole momentgf accounting for the effects of a long-range part of the po-
expectation value. The only approximation made consistegential, notably for a Coulomb potential, on the dipole mo-
in negleCting the b|nd|ng pOtential in the time-evolution op- ment, has recenﬂy been formu'a@ﬂ] on the basis of Eqs
eratorsU in Eq. (2.19. Since only the atomic ground state is (2.20—(2.22. It has the most noticeable effect on the low-
involved, the additional approximation of replacing the exactenergy part of the harmonic spectrum around the binding

scattering state by a plane wave was not required. energy.
Equation(2.16) can be further simplified. It can be shown  Equation(2.15 suggests the following interpretation: the
[20] that second term describes the atom interacting with the laser
AV et RV field (absorbing and emitting photonsp to the timet, at
(ru®,Hrooe)[rr) which it emits the harmonic photon and returns to the ground

_ cprgt ey (VD rgr emran state. The third term is the complex conjugate of the second,
oasd U, U, ), (217 where the events unfold in the opposite time order. Formally,

where the third term is required in order th&(t) be real. The
fourth term represents a continuum-continuum interaction in
1 e [t the following sense: the atom interacts with the field, emits

rdasgt;r’t’,r”t”):W{(t—t”)(f’—af,dr A(T)) the harmonic photonand keeps interacting with the field
! before it finally returns to the ground state.
e[t As to the range of validity of these results, the main ap-
—(t—t’)( r'— EjndT A(T))] proximation ofU—U®) becomes more and more question-

‘ able as the range of the binding potential expands. In gen-

(2.18 eral, the dipole moment§2.16 or (2.20 should provide
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reliable approximations for intensities such that the ponderoef the dipole moment. In forn§2.20, the direction of the
motive potential is not much smaller than the binding en-vector R®)(t) is solely determined by the dipole moment
ergy. For intensities approaching the over-the-barrier regimed[ p—eA(t)] at the same timé. In contrast, the vector char-
the approach should still be valid, but one may have to inseracter of the Keldysh fornR®)(t) [Eq. (2.23] also depends
the field-dependent energy shift of the ground state by hanan the history {’ <t).

Moreover, ionization can no longer be ignored. It can be

incorporated as described elsewhf8¢ Complete dressing D. S-matrix element for one-photon emission

of the ground state abandons the relative simplicity of the ) ) . .
approach. For the zero range potential W”|Eo|, it has A different starting point for the same goal is the

been showii5] that this does not noticeably affect any of the S-matrix element for the emission of exactly one photon with
harmonics above the third. frequency() and polarizatiore such that the atom winds up

Below, we will compare the results based on E220 in the ground state after the field has been turned off in the

with those based on Eq&2.16 and(2.17), both for the case distant future,
of the zero-range potential. Quantitatively, we will find that
in many circumstances the effects due to the fourth term of S(Q)=e f dt ei9t<«y<+>(t)|er|qf<*>(t)>, (2.26)
Eq. (2.15 are small. On the other hand, the above derivation
shows that itis crucial in obtal_nmg the compact re¢ilg The S-matrix element is the Fourier transform of the matrix
and, consequently, the essentially exact solution for the Z€1%ement
range potential.
Rs()=(¥ ™ (0)[r|® (1)), (2.27)
C. Formal comparison of the two models
which is closely related, but not identical to the ground-state

In Egs.(2.16 and(2.17), a general potentidV(r) can be . .
retained. Not specifying the potential, we can bring expresf_:')(peaatlon valu€2.13 of the dipole moment. The state

S|on(2.16)_, Wh|_ch contains all fqur terms of E¢2.19), to a T ))=|W(t))= lim Utt)]g(t)) (2.28

form that is quite close to the dipole momé€@t20. To this

end, we first notice that, owing to the existence of the two

terms in Eq.(2.18), it is possible to write Eq(2.16 in the  reduces to the unperturbed ground state at early times, and is

form identical to the one used above. However, as required for an
S-matrix element, the state

t' > —o

t t_t, s 1
RO = | dvdr g | dtpe 0 FED]= M (GotHUE (229
t' —oo
t
xexd —iS(p,t’,t") (0| ( r— Ef dTA(T)) is defined such that it reduces to the ground state of the atom
mJy in the distant future after the pulse has left the interaction

_ / _ " region. For the matrix elemeRg(t), the manipulations fol-
+c.c. . _ :
Vip—eA(t))(p—eA(t)|V|0)+cc., (223 lowing Eq. (2.14 proceed analogously, and instead of Eq.

which explicitly displays its reality. Again, we have made (2.16 we now obtain

use of the decomposition of the Volkov time-evolution op- . .

erator in Eq.(2.16) in terms of Volkov wave functions. The R(SK)(t)= _f dt/J' dt’( ¢0(t’)|VU(V)(t’,t)r
new form (2.23 contains matrix elements of the binding t —w

potential V. With the help of the Schitinger equation, we

can rewrite them as XUM(t,t")V] (")), (2.30

1 which differs fromR(®)(t) only by the range of the temporal
{(p|V|0)= —(|E0|+ 2—p2)(p|0>, (2.24 integrations. Now, with the help of Eq&2.30, (2.17), and

m (2.18 the S-matrix element2.26 of single-photon harmonic
generation can be written as

1 i
<p|rV|0>=—(|Eo|+—p2><plr|0>+—p<p|0>, . :
2m - SG(Q)=—J olt’ft dt"f A3 A3 (1) V(r)

where | y(t)) =|0)exp(|Eglt). In comparison to the dipole v

moment(2.20 the dipole moment2.23 which is based on X e [ J dt e'mfdas!,t;f’t';f"t”)]

the complete Keldysh resul2.16 contains an additional !

integration over time. This is the price to be paid for retain- XUM(E 1"V o(rt"). (2.3)

ing the continuum-continuum interaction. The additional in-

tegration is related to the time at which emission of the harThis expression affords a very appealing intuitive interpreta-
monic takes place which is now at some time earlier thartion very much in line with previous arguments3,14, but

t, while in Eq.(2.20 it was att. We will see below that this obtained here in the context of a rigorous analytical calcula-
has a marked effect on the polarization properties of theion. It shows that th&-matrix element can be envisioned as
emitted harmonics which originate from the vector charactethe coherent superposition of contributions associated with
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the classical orbit$2.18. These orbits describe an electron eration. Unfortunately, it is of limited practical use as the
that starts at the tim&’ from some positiorr” within the  functional derivative requires knowledge @ffor arbitrary
range of the binding potentidl(r) and, under the influence electric fieldsE(t). A power series expansion of the expo-
of the laser field, returns at tHater time t’ to the position nentials generates the perturbation expansioR4gf).

r’, again within the range of the potential. Each orbit has as The corresponding expression f&(t) is
its weight the Volkov time-evolution operatds)(t’,t").

This interpretation does not apply to res(@16 of using _ ! Tt ikt
the ground-state expectation valRét) [Eq. (2.13)], as the eR(t)=(0]| T exq —i wdT Hi(m) | | e erlore™o
latter does not obey the time ordering>t>t". For the
S-function potential(2.19), the spatial integrations in Eg. [t
(2.31) can be carried out, and yield XT exp —I ,wdT Hi(7) |10). (2.39
S(Q)=— Z_W(ifjm dt’Jt, dt"eilEolt’ —t") If there had been any doubts, a comparison of expressions
m= J-= —o (2.35 and(2.36 clearly shows that they are not equivalent.

, In the Appendix, we will present a rigorous discussion of the
><e~{ jt dt e““rdasgt;Ot’;Ot”)]U(V>(0t’,0t”). S matrix, and show that it lends itself to a more clearcut
t” interpretation in terms of emission processes where the ini-
(2.32 tial and final states are well defined, as opposed to the dipole
expectation value. Numerically, the two expressions produce
This expression recovers a result presented ed@igr largely identical results for all harmonics higher than the
The dipole moment expectation value is required as théhird.
source term for the integration of the Maxwell equations.
However, iijlSt the harmonic emission of a single atom is t0|||. POLARIZATION PROPERTIES OF THE HARMONICS
be considered, then t&-matrix element is the quantity of
choice. In the Appendix, we will further investigate the prop-  For a linearly polarized driving field, the emitted harmon-
erties of theS matrix, and relate it to the dipole-dipole cor- ics are again linearly polarized in the same direction. If, how-
relation function. The relation between ionization and har-ever, the incident field has elliptical polarization, thefpri-

monic generation which we will present in the nextOri it is only known that the polarization of the harmonics
subsection holds only for th&-matrix element. will rotate in the same plane as the driving field. As soon as

one goes beyond lowest-order perturbation theory, the ellip-
ticity and the orientation of the axis of the polarization el-
) ] lipse will, in general, differ from those of the incident field.
The matrix elemenRg(t) has another attractive formal sjnce these effects probe the vector character of harmonic
property. It can be represented as the functional deriVatiV@eneration, they might provide a more stringent test of any
with respect to the driving electric field(t) of the ground- theory than just the harmonic intensities.
state persistence amplitude Only recently have the polarization properties of the indi-
. vidual high harmonics for incident elliptical polarization be-
Z=(0|T eXp( _if dr H|(T))|O>. (2.33  come the object of experimental efforts. Two groups pub-
—o lished results within different regimes: Weihe and co-
) » workers measured the offset angles of the polarization ellipse
The square of is the probability that after the passage of 23 24 and the ellipticities24] of comparatively low har-
the laser pulse the atom is still in its ground state, and ”Othmonics(around the ionization energy, that is, at the begin-
ing else has happened. In £g.33), this amplitude is written  ing of the plateauof a Ti-sapphire laser in argon and ni-
down in the interaction representation, so that trogen. The Saclay group compared the harmonics in various
iHat CiHAt rare gases within and near the end of the plateau for the same
Hi(y=eol —er-E(t)]e 0, (2.34 wavelength[9,25]. Weihe and co-workers found no signifi-
cant effect of the gas density on their data. The Saclay group,
on the other hand, was able to compare their measurements
to theoretical results on the basis of E2-20, both with and
without propagation. These theoretical simulations indicate
that propagation considerably affects the observed polariza-

E. Exact relation between ionization and harmonic generation

WhereH0=62/2m+V(r) is the unperturbed atomic Hamil-
tonian and 0) is the ground-state wave functidm(t)) of
Eq. (2.2 in the interaction representatiof. denotes the
time-ordering operator. It is now easy to see that

w _ _ tion properties, smoothing out to a large extent the details of
eRg(t)=(0|T ex;{ —if dr H,(7) |e dotre Hot the single-atom behavior, and agreement with the experi-
t mental data was only good when propagation was included
t 5 [25].
XT exp{ =i j dr H|(T)) |0)=—i —=2Z, In what follows we will display and compare single-atom
e SE(1) polarization properties calculated by means of the zero-range

(2.35  Potential as well as the effective-dipole model, the latter em-
ploying the bound-state wave function of the zero-range po-
which is the statement made above. This is the most generténtial, for the elliptically polarized driving field with vector
formal relation between ionization and high-harmonic gen-potentials
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FIG. 1. Offset angle of the polarization ellipse of the 5th—15th
harmonic vs the polarization ellipse of the driving field as a func- 04
tion of the ellipticity £ of the driving field. The latter has a fre- <» 03}
quency ofiw=1.578 eV and an intensity df=5x 10" W/cm? 2 ool
(7=18.45), and the atomic binding energy|&)|/#% «=8.275 cor- 2 ’
responding to the first excited state of argon. These values are i & 0.1
close correspondence to the experiment of R&). T 0o
Q
amu, | 50
p ~ ~ .
A(t)=| 5—=——>| (X comt+ &y sinwt), (3.1 E 02}
I 03
with ellipticity § and a ponderomotive enerdy, which is 0.4 ¢
independent of the polarization. The dipole moments derivec 0.5 . . .
from either model contain all of the information necessary to 0.0 0'1D . °I'|2. ticit 0.3 0.4
extract offset angles, ellipticities, and whatever else one ma ®©) riving ellipticity ¢

be interested in.
FIG. 2. Offset anglega) and ellipticities(b) of the 7th—19th

harmonic as a function of the ellipticity of the driving field for
A. Zero-range potential polarization properties hw=1.17 eV, 1=1.2x10" W/cm? (=10.59, and |Eq|/fhw
The calculations whose results we will show below are=13.49.
based on th&-matrix elemen{2.32. Explicit formulas giv-
ing the offset anglep as well the harmonic ellipticitg’ can  pattern. Figure 3 makes this behavior particularly evident.
be found in Ref[26], along with some preliminary results. Here the offset angle for fixed driving ellipticity is plotted as
First, we will show computations pertaining to the har-a function of the driving intensity, which is expressed in
monics around the ionization energy. As a general featurdgrms of the dimensionless ratio of the ponderomotive poten-
we find offset angles that vary quite erratically as a functiontial over the energy of one laser quantum,
of harmonic number, incident ellipticity, and intensity. Gen-
erally, the results have not too much in common with the n=Up/(hw). 3.2
data of Weihe and co-workef®3,24], which show offset
angles rising linearly with increasing ellipticity of the driving The offset angle performs oscillations whose detailed shape
field and harmonic ellipticities that generally exceed theis irregular, but which exhibit an approximate period of
driving ellipticity substantially. Weihe and co-workers made A »=1. Most likely, this is related to the above-threshold
the observation that the offset angle tends to change sigionization channel closings which occur aty
when the harmonic energy goes through the ionization en=integer-|Ey|/(% ). It is known that these channel clos-
ergy of the respective atom. In fact, we do find this behavioiings are reflected in pronounced sharp structures such as
for appropriate parameters. Figure 1 exhibits such a casspikes in the harmonic intensities and phak2&. In gen-
The binding energy corresponds to the difference betweearal, we notice that the zero-range potential produces har-
the ground state and the first excited state of af@f; the  monic offset angles that are smaller and less regular than
wavelength is that of the experimeii3,24], and the inten- those measured by Weihe and co-worKe&3,24.
sity is quite high (=5x 10 W/cm?). However, we do not Second, in Figs. 4 and 5, we concentrate on the polariza-
find this as a general feature. Figure 2 again shows a séion properties of the harmonics around the rim of the pla-
guence of harmonics around the ionization energy for differteau. Figure 4 displays the ellipticities and offset angles of
ent parameters, and this time the sign of the offset angléhe 53rd—63rd harmonic in a situation where the end of the
oscillates from one harmonic to the next without any regulaplateau according to the classical model of REES,14] is at
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FIG. 3. Offset angle of the 11th harmonic as a function of the
driving intensity expressed in terms gf=U /% » for an ellipticity
of £&=0.3 of the driving field andE,|/% w=13.49. Very roughly,

the offset angle changes sign with a periodAaf=1. é )
oD
[
Nmax=|Eo| +3.177=54.5. The ellipticity of the 53rd har- T
monic still exhibits behavior characteristic of the plateau: as ©--
a function of the driving ellipticity, it fluctuates about zero -%’D.
with varying amplitudes. As for the 57th harmonic, the ellip- é .
ticities increase monotonically with increasing driving ellip- -
ticity. The ellipticity of the 55th harmonic, which is closest 8-
to the classicah,,,y, initially briefly changes sign before it S-
follows the behavior of the 57th and all harmonics higher 90 .
than that. The pattern of the corresponding offset angles i 0.0 oi .. 02 03 0.4
even more striking. With the harmonic number approaching Driving ellipticity £

Nmax, the offset angle rises more and more quickly. That is, o _ _
already for smaller and smaller driving ellipticities does it ~F!G. 4. Polarization properties of harmonics around the end of
rise to a large value not much below 90°. After the end of thdhe Plateau(a) harmonic ellipticities, andb) offset angle, both as a
plateau, it immediately settles to a value of near zero, Wheréunctlon of the ellipticity OZ the drl;/mg field. The parameters are
it stays henceforth for all of the harmonics higher than"® =117 eV, 1=1.2¢10"* Wiem® (7=1058), and|Eql/%ie
. L L =20.93. The formal cutoff is atya=|Eol/iw +3.17U,=54.46.
Nmax- This behavior is even more eye catching if we CONCeNy i = that for harmonics far bevond th 4 of th P lat6a
. . T . yond the end of the plateazn
trate on a pgrtlcular harmomc, and vary the drlvmg. IntenSItyH99) the harmonic ellipticities are consistently smaller than the
such that this harmonic slowly approaches the rim of thedriving ellipticity.
plateau before dropping over the edge. This is shown in Fig.
5. We see how the offset angle rears for a last time over a
small interval of driving intensities, before it is almost in-  Here we show the computations pertaining to the harmon-
stantly deflated. ics around the rim of the plateau. In Figabwe concentrate
on the comparison of the ellipticities of the 53rd, 55th, and
57th harmonics in the same situation as in Fig. 4. The ellip-
ticities calculated from the zero-range potential model
In this section we shall compare the results based on th@&ashed linesand effective-dipole moddkolid lineg agree
S-matrix element(2.32 with the results obtained from the quite well. In the case of the offset anglege Fig. )] the
effective-dipole modelEq. (2.20]. In order to evaluate the agreement is not as good, except for low ellipticities or in the
dipole moment from the latter formula, a fourfold integra- cutoff region. In particular, the effective-dipole model does
tion, over the canonical momentumand overt’, has to be not predict the striking pattern of the corresponding offset
made. We performed this integration using a stationary phasangles obtained in Sec. Ill A for the harmonic number ap-
approximation with respect to the relatively fgstdepen- proachingn,,.,. The offset angle predicted from the effec-
dence of the actio®(p,t,t’). In order to make the compari- tive dipole model remains relatively small for the ellipticities
son, we used the ground-state wave functigfr) from the  considered. After the end of the plateau, both models are in
zero-range potential model. Explicit formulas giving the off- agreement, and predict that the angle immediately settles to a
set angle as well as the harmonic ellipticity can be found irvalue of near zero, where it stays henceforth for all of the
Ref.[9]. A comparison of theory and experiment using thisharmonics higher than,,.
approach has yielded good agreement, and is discussed in There are two possible reasons of these discrepariales:
Ref.[25]. It is worth emphasizing that the pulses employedexpression(2.20 does not contain terms corresponding to
in the experiment were as short as 25 fs. the continuum-continuum interactioftbe fourth term in Eq.

B. Polarization properties in the effective-dipole model
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FIG. 5. Polarization properties of the 53rd harmonic for a range .\\ "
of intensities such that it is near the cutdf harmonic ellipticity, '500 ' 0'1 ' 0'2 OISV ' 04
and(b) offset angle, both as a function of the driving ellipticity. The (b) ) Driving éllipticity ¢ ’ !
intensities are specified by the respective values.oOtherwise,

the parameters are those of Fig. 4. According to the 3 1gutoff . o . .
rule, the 53rd harmonic cuts off ap=10.12. The curve for FIG. 6. Comparison of the polarization properties of hgrmo_nlcs
7n=9.86 approximately specifies the maximal offset angles reached!& the end of the platea_tu calculated from the .effect|ve-d|pole
Intensities deviating by no more than 1.5% to either side of thisr,T‘Odel[Eq' (2.20] (EDM) using a zero-range potential wave func-
value yield virtually identical offset angles. The arrows attached tot'o,n and the zero-range modgitq. (2.32] (ZRM), (8 harmonic .
the various curves ifb) point from one to the next in the order of eI_hpthltles, and(b) offse_t anglg. '_Fhe parameters are the same as in
decreasing driving intensity so that the 53rd harmonic is moving ou{:'g' 4, except that the intensity is smaller by 1%.

of the plateau.

. . . IV. CONCLUSIONS
(2.19]; (b) in the evaluation of Eq(2.20 a stationary phase

approximation was used to perform the integration with re- In this paper we evaluated harmonic generation strictly
spect top. Estimations of contributiofia), also based on the parallel to the Keldysh-Faisal-Rei$kFR) [15] framework
stationary phase approximation, suggest that most probabfpr ionization. In particular, we derived general and explicit
it is the latter approximation that causes the discrepancies. formulas for ionization amplitudes, dipole expectation val-
should be stressed that, in the considered regime of pararnes, ands-matrix elements for one photon emission valid for
eters, both results depend rather dramatically on the drivingrbitrary atomic potentials. Generally, they are expected to
intensity (see, for instance, Fig.)5The error introduced by apply under the same conditions as the KFR results for ion-
the stationary phase method may thus have significant corization, that is, in the strong-field limit. In the calculation of
sequences. On the other hand, the strong dependence on the ionization amplitudes, the KFR approach has to make
driving intensity makes the effects predicted by the zero-one crucial approximation whose consequences are hard to
range potential model difficult to observe in the macroscopiestimate. This is the replacement of the final scattering state
response of the atomic system in tight focusing conditionsby a plane wave. For the calculation of harmonic generation,
That is probably the reason why the effective-dipole modelhis approximation is not necessary, since the final atomic
[with approximationga) and(b)] does reproduce the experi- state is again the ground state. Therefore, one may expect
mental data very well25]. that the KFR approach is more reliable for harmonic genera-
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tion than for ionization. The requirement of a sufficiently exactly one photon with polarizatianand frequency (that
high intensity becomes less stringent when the range of thg, of the quantized modesuch that in the distant future the

binding potential shrinks. In particular, the zero-range potenatom is again in its ground stalg) as it was in the remote
tial results have been checked to be virtually exact for drivpast. It is

ing intensities up thp~|E0|. For intensities approaching
the over-the-barrier regime, the field-dependent shift of the S/(Q)=(Qe€g ouf0g in)=(QeglU,(x,—»)|0g)
ground-state energy as well as ionization must be and have
been considered. The general expressions for the dipole mo- =(0glau (=, ~=)[0g), (A3)
ment can be applied to pulses of arbitrary length. Moreoverwit
we discussed the relation between ionization and harmonic
generation, and between th®&matrix element for one- t
photon emission and the dipole-dipole correlation function Ui(tt)=T exp( —if,dTHu(T)) (A4)
(see the Appendix t

Within our generalized theory we identified the expres-,.
sions corresponding to the two models of harmonic genera-
tion discussed frequently in the literature: the zero-range po- — ai(HorQalfayt r_ o _or. +
tential model and the effective-dipole model. We discussed Hiy=e [er-E(t)—er-ec(a+al)]

how both the aforementioned models fit in this more general w @~ i(Hot0a'ay

context. We discussed and compared polarization properties A ,

of harmonics predicted by the two models. Both models =—er(t)-[E(t) +ige(ae ' ~a'e'™)],  (A5)
agree quite well in many respects, but predict different re- , ,

sults concerning the rotation angle of the polarization ellipse r(t)=eotre™Mot, (AB)

for the harmonics at the rim of the plateau. However, it is not

yet clear whether or not the differences would still be notice-/%1(t) defined in Eq.(AS) differs from the one used in the

able after propagation through the medium. main body of the paper, EqR.34), by the quantization of the

one particular mode. Commuting the annihilation operator in
Eq. (A3) to the right, we can express tematrix element as
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by the Deutsche Forschungsgemeinschaft. Next, we turn to the expectation number of the total num-

ber of spontaneously emitted photons, regardless of the final
APPENDIX state of the atom. It is
In this appendix we will discuss the relation between the N=(0g|U (>, —)'a’a Uj(e2,~)[0g)  (A8)

S-matrix element investigated in the main body of the paper
and the dipole-dipole correlation function. It is well known
that it is the latter that determines, in principle, the total
number of harmonic photons emittg#9,30d. We employ a _
Hamiltonian where the incident laser field is treated classi- X{(nQe,ilau(e,—=)[0g). (A9)

cally, but for the time being we single out one particular i , ) )
mode for a quantized description. This is one of the moded e sum over intermediate states includes the entire spec-

into which spontaneous emission of a high harmonic willtrlum i) of the atom, and any numberof photons emitted.

occur. Therefore we are able to defienatrix elements for OWing to the action of the photon creation operators on the

emission of a specified number of photons of this particulafNtermediate states, we can write the total photon number

mode. Quantizing the entire harmonic spectrum would nofftér the passage of the laser pulse in the form

introduce any additional problems, but just make the notation

more clumsy. N=> > n|(nQei out0g in)|2. (A10)
Therefore, our Hamiltonian is oo

= > (0g|U(>,—»)"al[nQe,)

H=Qa'a+Hy—er-E(t)—iegr-e(a—a’), (A1) In obvious notation,(nQei ouf0g in) refers to the
S-matrix element for spontaneous emission rofphotons

where with frequency(Q) and polarizatiore such that the atom is in
the ground state before the arrival of the laser pulse and in
the state|i) after the pulse is gone. With high-harmonic
emission the weak process that it is, tBenatrix elements
(Qe,i]|0,g) for one-photon emission and, in particular, for
and g=+27Q/V. In the interaction picture, we want to the atom returning to the ground state=(g) make the domi-
compute theS-matrix element for spontaneous emission ofnant contribution to the sum in EGA10). To our knowl-

ﬁZ
Ho=5—+V, (A2)



56 UNIFIED THEORY OF HIGH-HARMONL . .. 655

edge, harmonic emission, such that the atom winds up imhich is Hermitian. Therj29,30
some excited state, has never been observed experimentally,
even though the process exists in principle, of course. It is
the one-photors-matrix elementQe,g ouf0,g in) that we
investigated in the main body of this paper.

If, on the other hand, we commute the photon creation X e R(1")|0,9), (A16)
operators in Eq(A8) so that they act on the vacuum of the

quantized mode, we may represent the total photon numbénd it is easy to show that lim ..N(t)=N. However, the
as decompositionA10) of the total photon number in terms of

the well-definedS-matrix elements of the individual chan-
Y it + nels only holds for representatigAll). Also, the intuitive
N=e“g ledt dt’ e (0gle R(t)s interpretation of the harmonic-generation process expressed
in Eq. (2.3) rigorously only holds for theS matrix. The
X e Rgt')]09), (All) significance of the ground-state expectation vad3 to
the process of harmonic generation is that it is this quantity
where that enters the classical Maxwell equations as a source. It is
not, however, in principle strictly related to the number of
Rs()=U (= O)r()U;(t, =) (A12) photons radiated by a single atom.
is a Heisenberg representation of the position operator. It can After the formal developments have been finished, the
easily be checked that it satisfies a Heisenberg equation @u@ntization of the one particular mode can be removed
motion corresponding to the HamiltonigAl). Hence the 29ain. With th(_—} quantization left in pl_ace self-energy correc-
total photon number is related to the dipole-dipole correlalions due to this one particular quantized mode would result,

tion function (A11) for the Heisenberg position operator Which we may safely neglect in comparison to the much

t H ! n
N(t)=e2g2f dt’ dt” e ' "0 gle R(t")

(A12), and, according to more important level shifts introduced by the exter(ran-
' ’ guantized laser field. Removing the quantization, we are left
(0g|R(1)[0g) =Rs(t), (A13)  with

the latter is essentially identical to the quantRg(t) [Eq. _ * 0t

(2.27], which the discussion of much of this paper was built Se(})=€ge: J_mdt €™glUie(>, Hr(HUg(t, —*)|g),

upon. (A17)
On the other hand, the total photon numb&it) at any

timet can be represented as well in terms of the more comwith

monly used dipole expectation value, as defined in Eq.

t
(2.19, Ug(t,t)=T exp(ieJ',dr I’(T)-E(T)). (A18)
R(t)=(0g| R(t)|0g), (A14) '
with The vacuum expectation value & g(t,t’) in the limit
wheret— o andt’ — —« yields the ground-state persistence
R(t)=(0g|U,(t,—»)Tr(t)U,(t,—=)|0g), (A15)  amplitudeZ, Eq.(2.33.
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