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Stability and Teller’'s theorem: Fullerenes in the March model
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We study G, with the use of the March modgN. H. March, Proc. Camb. Philos. Sot8, 665(1952]. A
spherical shell model is invoked to treat the nuclear potential, where the nuclear and core charges are smeared
out into a shell of constant surface charge density. The valence electron distribution and the electrostatic
potential are efficiently computed by integration of the Thomas-Fermi equation, subject to the shell boundary
conditions. Total energy is numerically calculated over a range of shell radii, and the mechanical stability of
the model is explored with attention to the constraints of Teller's the¢Eeriieller, Rev. Mod. Phys34, 627
(1962]. The calculated equilibrium radius of the shell is in fair agreement with experiment.
[S1050-294P@7)03707-4

PACS numbeps): 36.40.Qv, 31.15.Bs, 31.18z

[. INTRODUCTION March’s work, applying it to the case ofdg, where there is
no central atom and an icosahedral arrangement of ligands.
The highly symmetrical structure of §g has motivated The absence of a central atom changes the boundary condi-
geometrical approximations which have previously been intion of March at the origin. The case ofggwould seem to
voked to study electronic and optical properties of the mol-be ideally suited to this approach, given its high “coordina-
ecule. While consideration of the icosahedral structure of th&ion” number. Such a model has also been investigated by
molecule is necessary for detailed comparison with experiSiringo et al. [8]. Our results are in agreement with those of
ment, previous studies have had success in describing sonsdringo et al. and we offer an analysis of the molecular sta-
of the properties of G, within the continuum approximation, bility of the March model of G,. The case of an endohe-
where a system of free electrons is constrained to move odrally doped fullerene, such as He@gis of the exact form
the surface of a spheféa—4]. considered by March, and it has been explored recgfily
While the peak electron density should be found on the
shell, electrostatic consideration of the mechanical stability Il. MODEL
of the entire system requires that a sizable fraction of the
total number of valence electrons beside the shell. Moti- We start with a positively charged spherical shell of ra-
vated by this observation, we study here a generalization adius R and chargeZe. The shell charge arises from the sum
the previously considered continuum model: we allow theof the positive nuclear charges with the core electrons of the
valence electrons to move in three dimensions in the externaonstituent atoms. We také= 60 for the case of g,; thus,
potential generated by a spherical shell of constant surfacéme valence electrons are the remaining f0electrons.
charge density. We call such an artificial molecule whoseThese valence electrons interact with the shell via a spheri-
nuclear potential has spherical shell symmetry “spherene.”cally symmetric cut-off Coulomb potential. This nuclear
We treat spherene by the Thomas-Fel(iF) method. electrostatic potentidV, is everywhere positive and is given
While TF results are typically rather rough, it is often used toby
efficiently generate starting potentials for more exact self-

consistent-field methods. We have had suc¢gksising the Ze/R, 0<r<R
resulting TF potential in this fashion. Of course, TF theory vV (F)= 1)
has historically had value in its own right. Here, we use the " Zelr, r=R.

TF results to discuss the stability ofgg: This is rather a
subtle business, as it is well known that systems treated with

. X We can view this model as arising from an approximation
TF are subject to Teller's theoref@], which states that mol- 9 PP

les in TF th Il unbind. W Tellers th of the true nuclear electrostatic potential, where all but the
ecuies In theory will unbind. We prove Teller's theorem monopole term is neglected. The validity of the spherical

in th? co_ntext of a spht_arical shell, gnc_i we cir_cumvent it bysheII model can be examined by expanding the nuclear po-
considering the true point-charge distribution in the CaICUIa'tential in multipole moments. We denote the location of the

tion of the “nuclear” energy. ith atom by a radiusR and a set of spherical angles

The apprqach L.Jsed here was .preV|oust employed bbi:(gi ,&i). We center our coordinate system on the geo-
March[7] to investigate molecules in the form of a central metric center and we align our axes with the fivefold and

atom W'th. tetrahedrally or octahedrally coordinated IIgandS'cwofold axes of the molecule. Thus, for the region external to
such as in the case of GHor SK. We closely follow

the cage,
. 1 [ 4
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Q, is the 2'-pole moment, given by n
14

4
Qm=eR \5 172 Yon(). ®

) 10}
The summation in Eq2) is only over every” as a result

of the inversion symmetry of §. Furthermore, in general 8f
we note thaQ ., is nonvanishing only if the spherical irre-
ducible representation, denoted By when decomposed in
terms of the irreducible representationslgf contains the 4t
trivial (a;4) representation.

Thus, after the nonvanishing monopole moment, the nex

nonvanishing elements are if=6, followed by/ = 10. For 0 10 20 30 20 = T
Cgo, We need not considef> 10, as the highest-lying elec-

tron orbital i_s d.erived from an’=5 manifold. Q,, is also FIG. 1. Electron charge density(in units of 154X 10°b~3%) vs
only nonvanishing fom=0 and=*5. x for Z=60 andR=6.73,.

We estimate the error of neglecting* 0 terms by evalu-

asymptotic regionX>X). The boundary condition at infin-
ity is replaced by requiring to vanish at an outer shell of

ating the relevant dimensionless parameters
_ 1 Q/m 8 i i . X
&ym= 51670 " 4 large radius. The slope is subsequently varied in a systematic
2/+ 1R Qqo X " ! :
way until the boundary condition on the outer shell is satis-

We find that ago=0.007ag5=0.0060214,=0.006, and fied.

a105=0.01. Asa,,<1 for /<10, we conclude that the The following identities are used as a final check of the

spherical approximation is reasonable for our purposes. humerical proceduregl) conservation of electron number
We consider the dimensionless TF equation without exfequires thaip satisfy

change effects at temperature=0:

d2¢ ¢3/2 -
~ = ) (5) J 31212y =1 9
dXZ XT? 0 d) ( )
X is the distance from the center of the shell in units of
1/ 972123 and (2) the virial theorem for shell systems requires that
“a2z| ©®

wherea, is the Bohr radius of hydrogem is related to the EJ”¢5,2X_ Vogyt J“¢3’ZX1’2dX: ol 000 #(X)
total electrostatic potentidl in the usual way: 35J9 0 < X !

(10
Ze
V(r)=—(x). (7
. o whereXx-. is the larger ofx and X. The resulting solutions
Without a nuclear charge at the origin, the standardypey the above relations to an accuracy of better than three
atomic boundary condition at=0 is altered to$(0)=0, as parts in 1.
the potential is now finite at the origin. The presence of the |, Fig. 1, we show the electrofvolume charge density
shell gives rise to a discontinuity in the derivativelt the 3 55 a function ofx obtained from our solution fot for

shell. Thus, parameters corresponding to those modeling,,Cwhere
1 X=29.7592 R=6.73) andZ=60. While the potential is
b (X )= (XT)= X" (8) found from Eq.(7), n is computed from the relation
whereX is the shell radius in dimensionless units and differ- Z [é(x) 32
entiation is with respect ta. Additionally, ¢ itself is con- N(X)=—— —— (12)
tinuous over its domain, angi—0 asx—, since the mol- 4mb? x

ecule is neutral overall.

We note that¢ (and consequentlyn and V) is strongly
peaked at the shell, in a consistent fashion with the con-

We obtain numerical solutions to E¢6) subject to the tinuum models which constrain the valence electrons to the
above boundary conditions for different valuesXfA varia-  surface of the shell; however, it is significant that nearly 43%
tion of the shooting methodL0] is used, where we choose a of the valence electrons are contained inside the shell. We
trial slope for¢ at the origin, and we integrate outward to the return to this point in our discussion of stability.

IIl. NUMERICAL RESULTS
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IV. STABILITY AND TELLER'S THEOREM E (Ry)

We follow March [7] and conclude that the electronic 14
energyE, can be simplified to a form requiring only values
of ¢ and its derivative evaluated just inside the shell:

5 10 15 20 25 30 R (Bohr)

262

_—- -\ _ AV -10
EmTpx 400X X# (X )-8 a7

-20

For the G parameters, we fineE,= — 486 Ry. -25
Using the Hellman-Feynman theorem, we calculate the
radial force that the electrons exert on the ste|l, FIG. 2. Total energiE vs shell radiusR.

where T is the total kinetic energy of the electrons. Since
dEe T must be positive, we conclude from Ed8) thatE(R,) is

Fr= dR (13 negative. But this is in contradiction to the result of ELj7).
Hence, there is no finit&,.
dV(R) The continuum approximation overestimates the shell
=—Ze dr (14 self-force. If one computes the self-force by considering the
point structure of the ions, a stable equilibrium is obtained.
2262 For the system oF ions of chargee located on the vertices
— bz—;[x¢'(x_)_ (X1 (15) of a truncated icosahedron of radiBs we find c~0.4311.

We use this value ot to compute the total energy of the
system,E=E_+U,, at different shell radii. The resulting
energy curve is plotted in Fig. 2. From the minimum of the
Only electrons in the interior of the shell can exert a forcecurve, we extract an equilibrium radiuRy=7.36a,, that is
on the shell, a consequence of Gauss'’s law. Hence, the preg- fair agreement with the experimental valjél] of
ence of charge in the interior provides a centripetal, stabiliz6.73a,,.
ing force that opposes the centrifugal self-force of the shell. |t is amusing to observe that at equilibriumis precisely
From dimensional considerations, we write the self-the fraction of valence electrons contained inside the shell.

interaction energy of the shell as This condition follows from simple electrostatic consider-
ations.
Z%e?
Un=coer. (16) V. DISCUSSION

In addition to giving an equilibrium radius in good agree-
ment with experiment, TF gives a potential that is an excel-
For the uniform shellc= 1. Within TF theory, Teller's theo- lent starting potential for more rigorous self-consistent-field
2" [} .
rem [6] implies that the stabilizing force of the electrons on t€Cniques. Furthermore, there are many enhancements of

the shell is of insufficient magnitude to compensate for thethls method that can be easily incorporated, such as the in-

repulsive self-force of the shell. Thus, there is no finite equi-C'uSion of exchange and correlation and density gradient cor-

librium radius for the shell for= 1. We sketch a proof spe- '€Ctions fo the kinetic energy.

cific to the shell. The proof proceeds bgductio ad absur- . The method can be extended to other fullerene systems of

dum interest. It is a simple matter to treat endohedrally doped
We assume that there exists a finite equilibrium shell ra_fullerenes[Q] or positively charged fullerenes. Last, by gen-

- - _1 ; eralizing to finite temperature, equations of state can be cal-
dius Ry. Usingc=2, Egs.(19), (12), and(16) imply that culated, as was done previously in the case of atdfls
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