
PHYSICAL REVIEW A JULY 1997VOLUME 56, NUMBER 1
Stability and Teller’s theorem: Fullerenes in the March model

Dennis P. Clougherty and Xiang Zhu*

Department of Physics, University of Vermont, Burlington, Vermont 05405
~Received 30 December 1996!

We study C60 with the use of the March model@N. H. March, Proc. Camb. Philos. Soc.48, 665 ~1952!#. A
spherical shell model is invoked to treat the nuclear potential, where the nuclear and core charges are smeared
out into a shell of constant surface charge density. The valence electron distribution and the electrostatic
potential are efficiently computed by integration of the Thomas-Fermi equation, subject to the shell boundary
conditions. Total energy is numerically calculated over a range of shell radii, and the mechanical stability of
the model is explored with attention to the constraints of Teller’s theorem@E. Teller, Rev. Mod. Phys.34, 627
~1962!#. The calculated equilibrium radius of the shell is in fair agreement with experiment.
@S1050-2947~97!03707-4#

PACS number~s!: 36.40.Qv, 31.15.Bs, 31.10.1z
in
o
th
er
o
,
o

th
ilit
th

n
th
rn
fa
s
e.

to
el

ry
th

wi

m
b
la

b
a
ds

nds.
ndi-

a-
by
of
a-
-

a-
m
the

eri-
ar
n

on
the
cal
po-
he
s
o-
nd
l to

nc
.

I. INTRODUCTION

The highly symmetrical structure of C60 has motivated
geometrical approximations which have previously been
voked to study electronic and optical properties of the m
ecule. While consideration of the icosahedral structure of
molecule is necessary for detailed comparison with exp
ment, previous studies have had success in describing s
of the properties of C60 within the continuum approximation
where a system of free electrons is constrained to move
the surface of a sphere@1–4#.

While the peak electron density should be found on
shell, electrostatic consideration of the mechanical stab
of the entire system requires that a sizable fraction of
total number of valence electrons beinside the shell. Moti-
vated by this observation, we study here a generalizatio
the previously considered continuum model: we allow
valence electrons to move in three dimensions in the exte
potential generated by a spherical shell of constant sur
charge density. We call such an artificial molecule who
nuclear potential has spherical shell symmetry ‘‘spheren

We treat spherene by the Thomas-Fermi~TF! method.
While TF results are typically rather rough, it is often used
efficiently generate starting potentials for more exact s
consistent-field methods. We have had success@5# using the
resulting TF potential in this fashion. Of course, TF theo
has historically had value in its own right. Here, we use
TF results to discuss the stability of C60. This is rather a
subtle business, as it is well known that systems treated
TF are subject to Teller’s theorem@6#, which states that mol-
ecules in TF theory will unbind. We prove Teller’s theore
in the context of a spherical shell, and we circumvent it
considering the true point-charge distribution in the calcu
tion of the ‘‘nuclear’’ energy.

The approach used here was previously employed
March @7# to investigate molecules in the form of a centr
atom with tetrahedrally or octahedrally coordinated ligan
such as in the case of CH4 or SF6. We closely follow
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March’s work, applying it to the case of C60, where there is
no central atom and an icosahedral arrangement of liga
The absence of a central atom changes the boundary co
tion of March at the origin. The case of C60 would seem to
be ideally suited to this approach, given its high ‘‘coordin
tion’’ number. Such a model has also been investigated
Siringoet al. @8#. Our results are in agreement with those
Siringo et al. and we offer an analysis of the molecular st
bility of the March model of C60. The case of an endohe
drally doped fullerene, such as He@C60, is of the exact form
considered by March, and it has been explored recently@9#.

II. MODEL

We start with a positively charged spherical shell of r
diusR and chargeZe. The shell charge arises from the su
of the positive nuclear charges with the core electrons of
constituent atoms. We takeZ560 for the case of C60; thus,
the valence electrons are the remaining 60p electrons.
These valence electrons interact with the shell via a sph
cally symmetric cut-off Coulomb potential. This nucle
electrostatic potentialVn is everywhere positive and is give
by

Vn~rW !5H Ze/R, 0,r,R

Ze/r , r>R.
~1!

We can view this model as arising from an approximati
of the true nuclear electrostatic potential, where all but
monopole term is neglected. The validity of the spheri
shell model can be examined by expanding the nuclear
tential in multipole moments. We denote the location of t
i th atom by a radiusR and a set of spherical angle
V i5(u i ,f i). We center our coordinate system on the ge
metric center and we align our axes with the fivefold a
twofold axes of the molecule. Thus, for the region externa
the cage,

Vn~rW !5(
l ,m

1

r l 11A 4p

2l 11
Ql mYl m* ~V!. ~2!es,
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56 633STABILITY AND TELLER’S THEOREM: FULLERENES . . .
Ql m is the 2l -pole moment, given by

Ql m5eRlA 4p

2l 11(i Yl m~V i !. ~3!

The summation in Eq.~2! is only over evenl as a result
of the inversion symmetry of C60. Furthermore, in genera
we note thatQl m is nonvanishing only if the spherical irre
ducible representation, denoted byl , when decomposed in
terms of the irreducible representations ofI h , contains the
trivial (a1g) representation.

Thus, after the nonvanishing monopole moment, the n
nonvanishing elements are inl 56, followed byl 510. For
C60, we need not considerl .10, as the highest-lying elec
tron orbital is derived from anl 55 manifold.Ql m is also
only nonvanishing form50 and65.

We estimate the error of neglectingl Þ0 terms by evalu-
ating the relevant dimensionless parameters

a l m5UA 1

2l 11

Ql m

Rl Q00
U. ~4!

We find that a6,050.007,a6,550.006,a10,050.006, and
a10,550.01. As a l m!1 for l <10, we conclude that the
spherical approximation is reasonable for our purposes.

We consider the dimensionless TF equation without
change effects at temperatureT50:

d2f

dx2
5

f3/2

x1/2
. ~5!

x is the distance from the center of the shell in units of

b5
1

4F9p2

2Z G1/3a0 , ~6!

wherea0 is the Bohr radius of hydrogen.f is related to the
total electrostatic potentialV in the usual way:

V~r !5
Ze

r
f~x!. ~7!

Without a nuclear charge at the origin, the stand
atomic boundary condition atx50 is altered tof(0)50, as
the potential is now finite at the origin. The presence of
shell gives rise to a discontinuity in the derivative off at the
shell. Thus,

f8~X2!2f8~X1!5
1

X
, ~8!

whereX is the shell radius in dimensionless units and diff
entiation is with respect tox. Additionally, f itself is con-
tinuous over its domain, andf→0 asx→`, since the mol-
ecule is neutral overall.

III. NUMERICAL RESULTS

We obtain numerical solutions to Eq.~5! subject to the
above boundary conditions for different values ofX. A varia-
tion of the shooting method@10# is used, where we choose
trial slope forf at the origin, and we integrate outward to th
xt

-

d

e

-

asymptotic region (x@X). The boundary condition at infin
ity is replaced by requiringf to vanish at an outer shell o
large radius. The slope is subsequently varied in a system
way until the boundary condition on the outer shell is sa
fied.

The following identities are used as a final check of t
numerical procedures:~1! conservation of electron numbe
requires thatf satisfy

E
0

`

f3/2x1/2dx51; ~9!

and ~2! the virial theorem for shell systems requires that

9

35E0
`

f5/2x2 1/2dx1E
0

`f3/2x1/2

x.
dx522Ff8~X!2

f~X!

X G ,
~10!

wherex. is the larger ofx andX. The resulting solutions
obey the above relations to an accuracy of better than th
parts in 104.

In Fig. 1, we show the electron~volume! charge density
n as a function ofx obtained from our solution forf for
parameters corresponding to those modeling C60, where
X529.7592 (R56.73a0) andZ560. While the potential is
found from Eq.~7!, n is computed from the relation

n~x!5
Z

4pb3Ff~x!

x G3/2. ~11!

We note thatf ~and consequentlyn and V) is strongly
peaked at the shell, in a consistent fashion with the c
tinuum models which constrain the valence electrons to
surface of the shell; however, it is significant that nearly 43
of the valence electrons are contained inside the shell.
return to this point in our discussion of stability.

FIG. 1. Electron charge densityn ~in units of 15/p3105b23) vs
x for Z560 andR56.73a0.
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IV. STABILITY AND TELLER’S THEOREM

We follow March @7# and conclude that the electron
energyEe can be simplified to a form requiring only value
of f and its derivative evaluated just inside the shell:

Ee5
Z2e2

7bX
@4f~X2!2Xf8~X2!23#. ~12!

For the C60 parameters, we findEe52486 Ry.
Using the Hellman-Feynman theorem, we calculate

radial force that the electrons exert on the shell,Fr :

Fr52
dEe
dR

~13!

52Ze
dV~R!

dr
~14!

52
Z2e2

b2X2 @Xf8~X2!2f~X2!#. ~15!

Only electrons in the interior of the shell can exert a for
on the shell, a consequence of Gauss’s law. Hence, the p
ence of charge in the interior provides a centripetal, stab
ing force that opposes the centrifugal self-force of the sh

From dimensional considerations, we write the se
interaction energy of the shell as

Un5c
Z2e2

R
. ~16!

For the uniform shell,c5 1
2. Within TF theory, Teller’s theo-

rem @6# implies that the stabilizing force of the electrons
the shell is of insufficient magnitude to compensate for
repulsive self-force of the shell. Thus, there is no finite eq
librium radius for the shell forc5 1

2. We sketch a proof spe
cific to the shell. The proof proceeds byreductio ad absur-
dum.

We assume that there exists a finite equilibrium shell
diusR0. Usingc5 1

2, Eqs.~15!, ~12!, and~16! imply that

E~R0!5
3

7
ZeV~R0

2!. ~17!

SinceV(r ) is positive for finiter , we conclude thatE(R0) is
positive as well. However, the virial theorem states that
equilibrium,

E~R0!52T, ~18!
e

es-
-
ll.
-

e
i-

-

t

whereT is the total kinetic energy of the electrons. Sin
T must be positive, we conclude from Eq.~18! thatE(R0) is
negative. But this is in contradiction to the result of Eq.~17!.
Hence, there is no finiteR0.

The continuum approximation overestimates the sh
self-force. If one computes the self-force by considering
point structure of the ions, a stable equilibrium is obtain
For the system ofZ ions of chargee located on the vertices
of a truncated icosahedron of radiusR, we find c'0.4311.
We use this value ofc to compute the total energy of th
system,E5Ee1Un , at different shell radii. The resulting
energy curve is plotted in Fig. 2. From the minimum of t
curve, we extract an equilibrium radius,R057.36a0, that is
in fair agreement with the experimental value@11# of
6.73a0.

It is amusing to observe that at equilibrium,c is precisely
the fraction of valence electrons contained inside the sh
This condition follows from simple electrostatic conside
ations.

V. DISCUSSION

In addition to giving an equilibrium radius in good agre
ment with experiment, TF gives a potential that is an exc
lent starting potential for more rigorous self-consistent-fie
techniques. Furthermore, there are many enhancemen
this method that can be easily incorporated, such as the
clusion of exchange and correlation and density gradient
rections to the kinetic energy.

The method can be extended to other fullerene system
interest. It is a simple matter to treat endohedrally dop
fullerenes@9# or positively charged fullerenes. Last, by ge
eralizing to finite temperature, equations of state can be
culated, as was done previously in the case of atoms@12#.
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FIG. 2. Total energyE vs shell radiusR.
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