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Multipole oscillations in sodium clusters:
Separable ansatz in the random-phase-approximation description
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The modified random-phase-approximati®PA) method with the self-consisteséparableresidual forces
(SRPA is proposed for the description of multipole electric oscillations of valence electrons in sodium
clusters. The method allows one to study the coupling of different kinds of collective motion. As a particular
case, the coupling of surface and volume modes is considered. The SRPA is applied to neutral and singly
charged spherical sodium clusters in a wide size reg\y+(8,20,40,58,92,138,196,440,952) and good agree-
ment with experimental data is achieved. This testifies to the applicability of the separable ansatz, which has
the essential advantage of avoiding diagonalization of the RPA matrices and thus drastically simplifies the
RPA calculations. The latter could be quite urgent for very large and deformed clusters where an extended
configuration space and, consequently, high-rank RPA matrices are used. The predicti&?s dod E3
collective excitations are presented. The results obtained with the self-consistent Kohn-Sham and phenomeno-
logical Woods-Saxon single-particle schemes are exhibited and different parameters for the Woods-Saxon
potential are proposefiS1050-294{®@7)06906-0

PACS numbd(s): 36.40.Gk, 36.40.Vz

[. INTRODUCTION the time-dependent local-density approximatid@LDA),
the time-dependent Hartree-Fock approximation, the
Collective oscillations in metal clusters, mainly the sur-discrete-matrix RPA, etd.6—12]. Within the TDLDA, for
face dipole plasmon, are now a field of intensive investigainstance, the photoabsorption and photoemission of neutral
tion (see reviewg1-5]). These modes have been widely spherical sodium clusters in a wide region have been de-
studied in different random-phase-approximati®&PA) ap-  scribed as early as 1946]. Nowadays, full RPA methods
proaches2—4,6—16. RPA methods provide a mechanism are the most powerful theoretical instruments for the descrip-
that accounts naturally for the Landau damping, a phenomiion of collective excitations in metal clusters. In dealing
enon that is known to affect considerably the dipole plaswith these methods, however, one has to solve a system of
mon. This is in fact explained as a fragmentation of the coleigenvector equations whose rank equals the number of basic
lective strength over particle-hole excitations. particle-hole configurations. This is not a problem if we
A large variety of the RPA methods, all being based onstudy spherical clusters of a moderate size. However, we can
the linearization of the equations of motion, are availablerun into serious computational troubles in the cases of large
The hierarchy of different RPA versions can be found inspherical clusters and especially of deformed clusters, for
reviews[14]. The simplest version is based on a sum-rulewhich an impressively large configuration space is required.
approach and is valid only if most of the collective strength  This drawback can be overcome by resorting to the self-
is concentrated in one dominant pdal,17-19. Thisis not  consistent schematic RPGRPA method, otherwise called
the case for dipole oscillations in deformed and even somehe vibrating potential moddl13,15,16,25,26 Within this
spherical clusters such as fafor sodium clusters see Refs. approach aseparableresidual two-body interaction is de-
[20-23). A more correct description is provided by the local rived. Such a separable ansatz allows one to turn the RPA
RPA[14,19,24, where as many collective peaks as the num-matrix into a dispersion relation that drastically simplifies the
ber of introduced local operatofssually 4—10 can be stud- eigenvalue problem. At the same time, the SRPA enables us
ied. This method accounts for the gross features of the coko treat the Landau damping as in the full RPA. The validity
lective strength distribution, but is unable to describe theof the separable approximation has been analytically proved
Landau damping. To this aim, more elaborate RPA methodfor short-range interactiorf27]. In practice, its range of ap-
(full RPA) have been used successfully. They are known aglicability is much wider. In particular, it was successfully
used for long-rangén nuclear scalenuclear forces in many
studies of collective excitations in atomic nud&b-29. In
*Permanent address: Technical University Dresden, Institute fometal clusters, we deal with the long-range screened Cou-
Analysis, D-01062, Dresden, Germany. lomb interaction. It is therefore difficult to assert from the
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very beginning or to prove analytically the applicability of As compared with the previous versiof$3,15,16,33
the separable ansatz. Only full-scale calculations can providdie SRPA is generalized so as to take simultaneously into
an answer to this question. account different kinds of collective motion. Although in the
The aim of this paper is to present the self-consistent verpresent paper a particular case of the coupling of surface and
sion of the SRPA and to show that this approach provides ¥0lume modes is considered, the present model, being of
good description of dipole oscillations in sodium clusters.duite general character, can be used also to study the cou-
The method will be used to study both neutral and singlyPling of other collective degrees of freedom. As shown be-
charged Z=+1) spherical sodium clusters in a wide region low, different klnds_ of collective motion are mtroducgd
(N,=8-952). Spherical clusters, being well studied boththrough the set of input I_ocaI operators..The generalized
experimentally and theoretically, are a good test ground foPRF'A COVers both the previous SRPA versifi15,16,33
the method. It should be mentioned that SRPA calculation@nd the local RPA19,24 as the particular cases. While the

recently performed fodeformedclusterg 30] yielded results ocal RPA can be treated as a system of coupled oscillators

in good agreement with experimeri&l]. Moreover, SRPA yvhere the number of the oscillato_rs is equal to the number of
and full RPA [32] results obtained with the same energy|nput local operators, the generalized SRPA represents a sys-

; ; tem of coupled collective motions, each one being described
functional seem to be very close. This may be already con- '
y y Y CON jithin the RPA. Like in the local RPA, the number of dif-

sidered as a proof of the applicability of the separable ansa _ . ) .

for the description of dipole oscillations in sodium clusters. rerent kinds of collective motions is equal to the number_ of
The time-dependent version of the SRPA for metal clusiPut local operators. However, the total number of excita-

ters has been proposed in REf3] and subsequently gener- tions in the generallged SRPA Is determlned by the _number

alized to the case of deformed clustggs]. First numerical of particle-hole configurations of a given multipolarity. If

calculations for a dipole plasmon in both spherical and de®N€ considers a single kind of collective motitone local
formed neutral sodium clusters were mddé®,16. In Ref. operato), we have the previous SRPA, and vice versa, if

[16], the Woods-Saxon single-particle scheme andace only the most collective RPA state is retained for every col-

self-consistent separable residual interaction were used. THgCtive motion, we obtain the local RPA description.

results obtained were encouraging. However, without ex- The calcglatlons have been performed using the ;elf-
plicit treatment of the ionic subsystef4], the calculations consistent diffused Kohn-Shaj42,43 and phenomenologi-
[16], like many other RPA methods, overestimate to somé&al Woods-Saxon single-particle schemes. It will be shown

extent the energy of the surface plasmon, especially in smajpat the Wc_)ods-Sax_on potential, in spite of appreciab_le de-
clusters. Starting from,>20 (N, is the number of valence viations of its behavior from the Kohn-Sham scheme in the

electrony, a too-strong high-energy strength was also pre_surface region, is, nevertheless, quite acceptable for the study
dicted F<,)r example, for Naand Na,, the computed dipole of the dipole dynamical response. Alternative parameters for
strength at energieE:>3.4 eV exhal,;sts 30% and 44%. re- the Woods-Saxon potential, providing a good description of

spectively, while the experimental dd20,21 give 10—~15% the surface plasmon in a wide region, are proposed for both
for clusters of this size and up to 20—30% for larger cIustergleutral and charged clusters.

[34]. So strong high-energy strength is not supported by ei-

ther local and full RPA calculationtsee, e.g.[12,35]). A Il. MAIN SRPA EQUATIONS

total blueshift of the dipole strength obtained ir6] leads to

a considerable underestimation of the static dipole polariz- The simplest form of a separable two-body interaction is
abilities. In order to prove the applicability of the SRPA for [25-27

sodium clusters, we certainly have to overcome these short-

comings.

In the present paper we will considerably improve the E V(P1,p2,hz,hy)
description of dipole oscillations bya) using the Kohn- P1.P2:N2.hy
Sham single-particle scheme with a diffused jellium dbd
taking into account the coupling of the surface and volume =k 2 q(p1,h)a(pa.hy), 1)

degrees of freedoi86]. The diffuseness of the jellium simu- P1.P2:N2.hy

lates a pseudopotential foldiri@7] and, as shown below,

leads to the redshift of the surface plasmon energy in closethereq(p;,h,) are single-particléparticle-hole matrix el-
agreement with the experimental value. Following the localements of one-body operators. By directly making this an-
RPA prescription19], the coupling of the surface and vol- satz, however, we do not obtain any prescription for deter-
ume dipole modes is included to decrease the high-energyining the strength constart and the structure of the one-
strength. As shown below, such a coupling considerably imbody operator(iin the linear response theory, this operator
proves the description of the dipole oscillations. Here weshould be equal to the external field operator, i.e., in general,
have a close analogy to the counterpart of the dipole plasmoit is not consistent with the mean figldA more effective

in atomic nuclei, the dipole giant resonance, which is alsovay is provided by the time-dependent formulation of the
best described when voluni8teinwedel-Jensen modé&8]) SRPA proposed for metal clusters in Rdf$3,16,33. This
degrees of freedom are coupled to the dominant surfacapproach leads to the same dispersion equations for the ex-
(Goldhaber-Teller mode[39]) degrees[40,41]. The im- citation energies, but, at the same time, provides the expres-
provements mentioned above allow one to get good agreesions for the strength constant and self-consistent operator of
ment with the available experimental data, thereby providingesidual forces. As a result, the method itself does not need
solid ground for the separable approximation. any adjusting parameters.
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Let us present the SRPA derivation for a general case The local Hermitian coordinate operatdirs,,(r) deter-

when not one but several kindfor example, surface and

mine the kinds of collective motion provided by the density

volume of collective motions of a given multipolarity are variation. They influence the residual interaction and thus the
taken into account simultaneously. We start with the Kohn-eigenstates and eigenenergies of the system. So they should

Sham energy functional for a systemN§ valence electrons

E{n(r,t),7(r)}

:%f T(r,t)errfv(n(r,t))Olr

1 [n(r,t)—ni(N][n(ry,t) —ni(ry)]
+§f J | dr drq,

r—ry|

2

not be confused with an external field operator used in the
linear-response theory. For the reasons given below, these
operators are chosen asf, . (r)=rP{Y,,(6,¢)
+Y1,.(6,4)], with k=1,... K. Further, aj (1)
aﬂkcos@t) are harmonic collective variables. Their normal-
ized amplitudeSaJA‘Lk account for the relative contributions
to electron oscillations of different kinds of collective motion
and, as shown below, are calculated from the final SRPA
equations.

By virtue of Eq.(6), the density variation can be written

in the form

which includes the kinetic energy, the exchange-correlation

term in the local density approximatidd4], and the Cou-
lomb term, respectively. Heren(r,t)=3|¢(r,t)|*> and

(r,t)==,|V ¢,(r,t)|? are the density and kinetic-energy

density of valence electrons,(r) is the ionic density in the
jellium approximation, andp,(r,t) is a single-particle wave

K
5n,-<r,t>=k§1 ) i (OLVNG(N Y Ey (1) +No(N ATy (D],
(7)

It is seen to include both surface Vngy(r) and volume

function. The expression for the exchange-correlation term_ no(r) terms. Ifp,=\, we have a divergency-free operator

v(n(r,t)) is given in Sec. lll. The convention

e=m,=A=1 is used.

[Af\k(r)=0] and Eq.(7) has only the surface term. This
case was considered [i6]. The operators wittp, >\ are

The time-dependent single-particle Hamiltonian is ob-regnonsible for a volume collective motion: They produce a

tained as

H(r,t)¢|(r,t)= (3)

SE
S (r,t)’

In the small-amplitude limit of collective motion, it is written
as a sum of the static

A [dv No(ry) —Ni(ry)
Ho(r)——5+ ﬁ) ) +fwdfl (4)
n—no
and dynamic parts
2U 5n(rlvt)
SH(r,t)=| 5= 5n(r,t)+f—dr1, (5)
dn?) _ [r—r4q
0

where n(r,t)=ng(r)+ én(r,t), ne(r) is the static ground-
state density, andsn(r,t) is a small-amplitude time-
dependent density variatigtransition density Equation(4)
constitutes the Kohn-Sham single-particle potential.

To determine the density variation corresponding to th

excitations of multipolarityh x, we should first define the

perturbed time-dependent wave function of the system. It is

convenient to do this through the scaling transformation

‘Irj(rli e ,rNe,t)

fiod

XWo(rq, ...

Ne
iag\ﬂk(t)lz1 [Ho(r), k(]

!rNe)l (6)
whereW is the ground-state wave functiokl {¥,=0) and
j labels the roots of the dispersion equation. Bidth and
W, are Slater determinants.

general shift of the total density variatid@) towards the
interior of the system. As discussed in Sec. |, volume degrees
of freedom for dipole excitations are important in both
atomic nuclei and metal clusters. [A9], the set of local
operators withp,=1,4,7,10,13 was proposed. This was
found to be the minimal set that could bring the calculation
to converge toward the full RPA. In this connection, it is
worth noting that in atomic nuclei the dipole excitations of
volume character are described within the Steinwedel-Jensen
model, where the spherical Bessel functjgiqr) plays the
same role as the operatdrs,(r) (px>\) in the local RPA
and SRPA. It is easy to see the correspondence between the
polynomial expansion of the spherical Bessel function and
the set of the local operatot® the dipole case, the operators
with evenp approximate the odd neighb@r©ur study has
shown that for the coupling of surface and volume modes the
setsp,=1,4,7,10,p,=2,4,6,8, angp,=3,5,7,9 are quite suf-
ficient for describing dipole, quadrupole, and octupole oscil-
lations, respectively. In principle, a good convergence of the
SRPA results is reached already gt=1,4, p,.=2,4, and
epk=3,5 since, unlike the local RPA, the SRPA provides a
rich spectrum of dipole excitations already for one local op-
.erator. Collective oscillations are in fact described as coher-
ent superpositions of particle-hole configurations. The total
number of states is therefore equal to the number of these
elementary configurations. For this reason the SRPA does
not need a large number of local operators.

Substituting Eq(7) into (5), we have

K
6H(r.t>=k§l ) (D Qy (1), ®
with

Q)\,u,k(r)
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d? _
=(W) [VN0(1) V1) + (1) ATy (1) o= | Qual DTG ¥ (0)

+no(r)Af, e (r)]dr. (17)

+J’ [Vno(rl)VfAMk(rl)+nO(rl)Af)\,u,k(rl)] dr,.

[r—r4 An alternative expression is obtained using the wave func-

9) tion (11):

The first and second terms on the right-hand side of(2q. t t %ﬁ
are contributions of the exchange-correlation and direct Cou- OQuu()={ Wi (re, .. Iyt) “ Quarlr1)
lomb parts of the functiondlR), respectively.
We now substitute the Hamiltonian H(r,t)
=Hy(r)+ SH(r,t) into the time-dependent Hartree-Fock XWy(ry, ... 'rNe't))

equation

=§ [ehh(D(PIQy )+ Chiu(D)(h|Qy ikl P) 1.

e . d
|—21 H(r ,O)W(rq, ... ,rNe,t)=| a\lfj(rl, cen ,rNe,t).
= (10 (19

, ) Equating expressiongl6) and (18) and using Eqs(13)—
Following the Thouless thgore{nS], the wave function of (15), one finally gets the system of homogeneous equations
the system can be written in the form to determine the amplitudes’A‘Lk:

t)= 1+% ciph(t))\lfo(rl, TN

Wi(ry, ... N
j(ry Ne 2 Shukk ( w)a)\ﬂk,— . (19
(11 K'=1
wherecl,(t) give the particle-hole contributions to the ex- with
cited state. By linearization of Eq10), we get o Z <p|QW|h)<D|QMk/|h)eph .
. K . d ukk ph (,U2 2K}\Mkk"
EphCJlf’h(t)+l(Zl a])\;Lk(t)<p|Q)\y,k|h> dt ph(t) (12) (20)

. . o The condition
where €,;, is the energy of a particle-hole excitation and

|p) and |h) are particle and hole eigenstates of the static detS, kw (w)[=0 (21)
Hamiltonian (4). The collective amplitudesy ,,(t) and
particle-hole contributions),(t) are expected to oscillate provides nontrivial solutions to the systefh9) and repre-

harmonically: sents the SRPA dispersion equation for eigenenergies
wherej is the number of the root of E¢21).
ag\ﬂk(t)=a1&k0030ty (13 Equations(9), (15), (17), and (19—(21) constitute the
main points of the SRPA formalism: expressions for the self-
cl (t)zcﬁemurc{);efiwt. (14) consistent operator®), ., particle-hole coefﬂments:‘h,

strength constants, ., collective amphtudesawk, and
Substituting Eqs(13) and (14) into Eq.(12) and collecting ~ finally the dispersion equation.

the coefficients o&'®* ande™'“!, we obtain the connection It is worth making some additional comments on the
SRPA formalism.
- 1 E 101Wk<p|ka| > (i) The system(metal cluster choosestself the optimal
Con="— > . T (15 contributions of the input local operators to every excited
ph— statej through the calculated amphtudsa&o k- The ampli-

tudes are normalized &_,(a}J,)?=2
(i) The rank of the determlnamﬂl) being equal to the
0 number of local operators, is much smaller than the rank of
To determinea;,,c we will con3|der the variation of the o atrices in the full RPA methods. At the same time, the
operatorQ, ,(r) in linear order. This can be written through 431 humber of the roots is equal to the number of input
the density variation particle-hole configurations and every excited state contains
K the same number of the particle-hole contributions. Thus the
_ _ j ~1 SRPA drastically simplifies the RPA calculations without
5Q”“k(t)_f ka(r)ﬁnj(r,t)dr——kgl ke (D e losing an important RPA feature to describe the Landau
(16) damping.
(iii) In the case of one local operator, the dispersion equa-
where tion (21) is reduced to the well-known equatip®5,27]

which expresses the particle-hole coefﬂmengﬁ through
the present unknown amplltudeéx
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Siu(®)=0. (22 003
Just the same dispersion equation would take place if wi __ E
start with the Hamiltonian containing the separable residua «  0.02 3
interaction <L 3
S 0013
Hy=Ho— 3 €0, QU Qu - 2y € -
It may also be shown that in the general case of many loce 0.00 E
operators, the dispersion equati(®1) is quite similar(but, 3
due to the self-consistency, does not coincide exatblyhe ; 2 E
one obtained with a more general separable interaction ()] 4 3
1 & >o 6=
Huw=Ho=35 2 e QluQuuc- (29 E
kk'=1 83
It is easy to see that the values . have the physical 0.03 5
meaning of strength constants of the residual for&sIf — 3 +
more than one local operator is used, the nondiagone e g2 3 Na 59
strength constants take place. Our calculations have show 3
that these constants are of the same order of magnitude ast — 3
diagonal ones. Nondiagonal strength constants play an i Co 0.01 3 \
portant role: They regulate in a self-consistent way the ] 2 4 6 8 \\XL 12 14
Hamiltonian after adding a new interaction. 000 lolol bbbyl b IS ol
(iv) Neglecting the direct Coulomb terms in the SRPA, = L
one gets the model for the self-consistent description of isos ~— .2 3 = /r [ A]
calar collective excitationggiant resonancgsn atomic nu- > = 2
clei. This model operates with density-dependent residug ,3, 43
forces. Further, assuming for the single-particle potential the _ o E
ansat/(r)=(dv/d n)n:nO and using only one local operator > -6 3
with p,=X\, we obtain equations of the familiar vibrating Es

'
[o:]

potential model, which is widely used in nuclear physgse

[25,26,29,4% and references therginQuite recently this

model was successfully applied for the description of isosca- FIG. 1. Ground-state densitieg(r) and single-particle poten-

lar EN giant resonances in deformed and superdeformed nuials Vy(r) in Nagg and Nag™ calculated with the diffused Kohn-

clei [29]. Sham (solid ling), sharp Kohn-Shan{dashed ling and Woods-
Saxon(dotted ling single-particle schemes.

Ill. RESULTS AND DISCUSSION

The Kohn-Sh ith sh 4 diffused iell dIt is worth noting that the self-consistent residual forces
€ rohn-sham wit _sharp an iused jellium an (9) are mainly determined by direct Coulomb interaction,
Woods-Saxon single-particle schemes were used for calculea\;h”e the exchange-correlation effects play a minor role.

tion of the single-particle wave functions and energies. For The parameters of the Woods-Saxon potential were ad-
both neutral and charged clusters, we used the same

parameters of the Kohn-Sham jellium, namely,Justed soasto repr.o.duccla on average thg diffused *.<°h'.’"5ham
fws=3.96 au=2.09 A anda,=1a.u=0529 A (a,=0 ground-state densities in a wide region. The fit yielded
for sharp jellium [42]. Following the prescription of Gun- 0= 24 A, Vo=-57 eV, andap=1.11 A for neutral clus-
narsson and Lundqvigt4], the expression for the exchange- €rs andro=2.5 A, Vo=-7.2 eV, anday= 1.25 A for sin-
correlation term in the ground state has the faimatomic 91y charged clusters. They are somewhat different from the
units 1a.u=2 Ry=27.2 eV for energies and 1a=i0.529 Pparameters,=2.25 A, Vo=—6 eV, anda,=0.74 A, pro-

A for lengths posed i_n[47]_ for neutral clusters. These latter values lead to
overestimation of the plasmon energy and high-energy
1 3/ g9 \13 r(r) strength. As seen from Fig. 1, we have succeeded in getting
v(ng(r))= Eno(r)[ - 5( W) r(—r)—0.06663( 131 4) , a nice fit of the Woods-Saxon densities even for the case of
S .

charged clusters whose Kohn-Sham potential deviates con-

siderably from the Woods-Saxon form in the surface region

and beyond. As will be noticed from Fig. 3, the Woods-

Saxon potential with the above parameters provides almost

the same SRPA results as the Kohn-Sham scheme.

24 X } 26) Two main kinds of the SRPA calculations are presented:
2 3 with and without coupling of surface modes with volume

(29)

wherer((r)=[3/4mny(r)]*® and

G(x)= (1+x%)In

1
1+=
X
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-

= 3
8 -
6 Na 5 £
4 =
g
‘2. 0_: T — T T \' J|\ T T _: T T T
—~ 8 —
E 67 3 FIG. 2. E1 strength functions calculated with
\(f)/ 4:: 73 (solid line) and without (dotted ling coupling
= 3 3 with volume modes. The results obtained with the
8_ 2 3 diffused (sharp Kohn-Sham are given on the
— 04— —T 4 ' —1 right- (left-) hand side.
w3 E
- 8- =
© 65 E
4 E
2 E L
e e N I 1
0 1 2 0 1 2 3 4 5 8

w[eV]

ones. In the first case, the sets of four local operatorshows that these peaks are partly of a volume character. A
fruk(r) mentioned in Sec. Il are used. In the second casesimilar result has been obtained in REf6]. At the same
only the operators withp,=\ are taken into account, i.e., time, the experiment®20-23 do not support such a strong
volume modes are neglected. The results of calculations atgigh-energy strength. The description is improved if the cou-
presented in the form of the normalized strength function pling with volume modes is taken into account
(pk=1,4,7,10). Then the main part of the high-energy
o(E)\,w)=LE wB(EN,gr—w)p(w— ), (27 strength is strongly redshifted and the dipole strength is
S(EM) T . . mainly concentrated in the surface plasmon region 2.5-3.3
eV. A smaller part of the high-energy strength is blueshifted

where to about the region of the volume plasmon where it is
1 A strongly fragmented. Such a redistribution of the strength
plo—wj)=5=-—"73 5 (28)  considerably improves the description of the static dipole

2m (0= )"+ (A2) polarizability.

is the weight function with the averaging parameter 'The main S.RPA results for dipole excitations, obtained
A=0.05 eV,B(E\,gr—w;) is the reduced probability of with the coupling of surface and volume modes, are pre-
the EX transition from the ground state to the one-phononseéntéd in Figs. 3 and 4 and Table I. Figure 3 and Table |
state with the excitation energy;, and S(E\) is the show that surface plasmon energies in charged clusters are
energy-weighted sum rule slightly blueshifted compared to the energies in neutral ones,
which is observed experimentally. In agreement with the
measurement3], the calculated energies of main plasmon
peaks in charged clusters decrease with a cluster size until
N.=40 and then increase for larger clusters. If the RPA
peaks are averaged with=0.25 eV, which roughly corre-
sponds to experimental widths, it is easy to see that, except
for N¢=40 and 58, a one-peak structure of the plasmon is
Expression(27) has a form similar to the photoabsorption obtained. A resonance right-hand shoulder observd@3h
cross section for dipole excitations. However, this is not exfor charged clusters witN,=20,40,58, and 92 is reproduced
actly the photoabsorption cross section, but only the convefor No=20 and 40 and not foN,=58 and 92. The discrep-
nient form of presentation of the RPA results where the val-ancies are partly caused by the highest single-particle levels
ues w;B(EN,gr—w;) are slightly averaged to avoid (with the energies about zgravhich, being very sensitive to
unnecessary details. the details of the calculations, influence noticeably the gross
Let us consider results of the calculations. Figure 2 showstructure of the plasmon iN,=40,58, and 92 clusters.
that jellium diffuseness leads to a considerable redshift of the For clusters wittiN,=40, 58, 92, and 138 the calculations
plasmon energy and thus improves the agreement with thgive a considerable Landau damping that could determine to
experimental data. If only the divergency-free operatora large extent the plasmon width. In agreement with the
(px=1) is used, the calculations give rather strong high-discrete-matrix RPA resultgl0], the fragmentation of the
energy peaks at 3.5—-4.5 eV in both cases of diffused andipole strength is increased with the size fralag=8 to
sharp jellium. The analysis of associated transition densitie40, reaching the maximal value &t,=40. Then the frag

S(EN)=2, 0;B(E\,gr—o))
J

282

_ 2 -2
g MM LN 2), (29)
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FIG. 3. E1 strength functions calculated tak-
ing into account coupling with volume modes.
The diffused Kohn-Shartsolid line) and Woods
Saxon (dotted ling single-particle schemes are
used.
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mentation gradually decreases with the size. These tenden- In Fig. 4 the results for very large singly charged clusters
cies have been explained[ib0] as a result of the degeneracy are presented. In spite of quite extended configuration space
of the original(before the breakymplasmon with neighbor- used for these cluster, the SRPA calculations need a little
ing particle-hole configurations. Just for Na the original computer effort. Figure 4 clearly shows the approaching of
plasmon, comprising mainlgN=1 (N is the principle shell the dipole plasmon to the classical Mie result
quantum numbgrtransitions, has the position in the neigh- (wMiEpr/\/§= 3.41 eV for sodium with a large cluster
borhood of theAN=3 transitions, which provides the most size.

optimal conditions for the fragmentation of the dipole Table | shows that, in general, the calculated plasmon
strength. In general, the extent of the plasmon fragmentatioenergies are in a quite acceptable agreement with the experi-
obtained within the SRPA agrees well with the full RPA mental data. While comparing the theory with the experi-
results[10]. The SPRA results for charged clusters do notment, one should take into account that k=40 the cal-
reproduce the experimental trend of the plasmon width taulated energy centroids are presented against the
decrease with a cluster size uriti,=40 and then to increase experimentalmain peakpositions. It seems to be a main
again for larger clusteri3]. This discrepancy is most prob- reason of the “overestimation” of plasmon energies for
ably caused by neglecting temperature fluctuations that areharged clusters withl.=40. Indeed, the experimental cen-
known to determine to a large extent plasmon widths introid energies involving a strong right-hand shoulder should
spherical clusters. The calculated Landau damping, providee larger than the corresponding energies of main peaks and
ing only a part of the plasmon widtfup to 10-20% in  thus be closer to the theoretical values. Starting with
N.=8 and 20 and larger in bigger clusterseems not to be N.=40, the general tendency of increasing plasmon energy
enough to reproduce the treh23]. with a cluster size is reproduced. A good description of the
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TABLE I. Dipole plasmon energies (centroids forN,=40)

10 3 and static dipole polarizabilitieg (in units R® with R=ryNY?,
8 + rws=3.96 a.u.
67 Na /o,
4 E w_(EV) Q(R3)
< L, Cluster Expt. SRPA  Expt. SRPA
i 03— T T L e Nag 2.592 2.66 177 1.78
—~ 8 Nayo 2.672 2.80 1.67 1.57
W 6 Na?t Nayo 2.722 2.68 162  1.64
B 4 441 Nagg 2.83 1.41
= 7 Nag, 2.85 1.41
8 27 Nayss 2.91 1.37
«— 04 T — /F| T
% E . Nag* 2.71° 2.66 1.44
E Na 953 Nay,* 2.68,2.681) ¢ 2.61 1.51
= Nay,* 2.60,°2.621) 2.75 1.51
3 Nagy" 2.70° 2.85 1.39
0 = Nags" 2.75° 2.88 1.36
[ L A A R A Nayzo" 2.94 1.34
°o 1 2 3 4 5 6 Nayg;" 3.09 1.27
w[eV] Nay,," 3.18 1.16
Nagss" 3.28 1.18

FIG. 4. E1 strength functions for large singly charged clusters.aReferencd20].

The calculated diffused Kohn-Sham single-particle scheme is usetirhe experimental values are extracted from figures of 8.
and coupling with volume modes is taken into account. ‘Referencd21].

static dipole polarizabilityy =3 w; "B(EX,gr— ;) is also  This means that the system, in spite of the proposed freedom
achieved and the correct trend of this value to unity with ato develop collective oscillations through volume collective
cluster size is exhibited. It should be noted that the approprimodes, tends to have a dipole plasmon of mainly surface
ate energy positions of the main plasmon peaks have beajharacter. Finally, the SRPA resultsurface plasmon ener-
mainly obtained due to the diffuseness of the ionic jellium.gjes, extent of fragmentation, static dipole polarizabilities,
As for the coupling with volume modes, its role mainly con- and main tendencies with a cluster gizeem not to be
sists in the considerable redshift of the high-energy strengtiworse than the results obtained within the local RPA
The calculations of the collective amplitudegé)ﬂk show that  [19,24,35 or full RPA [6-12,32, which confirms the valid-

the main plasmon peaks are dominated by the divergencyty of the separable ansatz for the description of dipole exci-
free operator withp,=1 and only high-energy peaks have tations in sodium clusters. Few deviations from the experi-
considerable contributions from the operators wiii>1.  mental data and general tendencies, which take place for

10 5 ]
g 3 A=2 - A=3 :
E * [Na™*
6 : Na 41 - Na 41
4] . .
e 3 T
%) 0 _:‘ ¥ I T ‘ T | 'I‘ /|L_7 A T T T T l T yl\ T
~LE . 3 .
w 6 Na 59 Na 59 FIG. 5. E2 andE3 strength functions calcu-
D 4 = lated with (solid line) and without(dotted ling
>§ 2 ; = coupling with volume modes. The diffused
5 o VD OY WP I A\{\ ne Jl\ — Kohn-Sham is used.
6 ‘ Na g Na g,
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small and very large clustefg.g., the plasmon energy and damping, static dipole polarizabilities, and main tendencies
o for Nayy as well as thep for Nags;"), can be explained by with increasing a cluster sizén a wide region is achieved.
using in the present calculations the same parameters of the particular, the excess of the high-energy dipole strength
Kohn-Sham single-particle scheme for neutfaharged  obtained in previous SRPA calculatiofi5] is removed. Fi-
clusters in a very wide region. nally, one may conclude that the present study proves the

Figure 5 exhibits the SRPA results fB2 andE3 collec-  validity of the separable approximation to the RPA descrip-
tive oscillations in singly charged clusters. It is seen thation of the dipole collective strength in sodium clusters. The
E2 andE3 strengths are mainly concentrated in the energynain applications of the method are expected for deformed
regions 2.5-3.5 and 3-4 eV, respectively. Main peaks arand very large clusters where we are forced to use an ex-
well pronounced and lie below the continuum threshold. Theéended configuration space. It would be interesting to test the
decreasing in th&2 andE3 resonance energies with a size applicability of the separable ansatz for clusters with a con-
takes place in agreement with the sum-rule re§di. Like  siderable coupling of valence electrons with ions as well as
in the dipole case, the coupling with volume modes noticefor molecules.

ably leads to a redshift of the high-enerdg2 and E3 The RPA predictions foE2 andE3 collective oscilla-
strength. tions are also given. Different sets of Woods-Saxon param-
eters providing a good description of the surface dipole plas-
IV. CONCLUSION mon are proposed for neutral and singly charged sodium
clusters.

The self-consistent schematic RPA is generalized to take
into account the coupling of different kinds of collective mo-
tion. T_he met_hod exploits _the separable ansatz for the re- ACKNOWLEDGMENTS
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