
ia

PHYSICAL REVIEW A JULY 1997VOLUME 56, NUMBER 1
Multipole oscillations in sodium clusters:
Separable ansatz in the random-phase-approximation description
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The modified random-phase-approximation~RPA! method with the self-consistentseparableresidual forces
~SRPA! is proposed for the description of multipole electric oscillations of valence electrons in sodium
clusters. The method allows one to study the coupling of different kinds of collective motion. As a particular
case, the coupling of surface and volume modes is considered. The SRPA is applied to neutral and singly
charged spherical sodium clusters in a wide size region (Ne58,20,40,58,92,138,196,440,952) and good agree-
ment with experimental data is achieved. This testifies to the applicability of the separable ansatz, which has
the essential advantage of avoiding diagonalization of the RPA matrices and thus drastically simplifies the
RPA calculations. The latter could be quite urgent for very large and deformed clusters where an extended
configuration space and, consequently, high-rank RPA matrices are used. The predictions forE2 andE3
collective excitations are presented. The results obtained with the self-consistent Kohn-Sham and phenomeno-
logical Woods-Saxon single-particle schemes are exhibited and different parameters for the Woods-Saxon
potential are proposed.@S1050-2947~97!06906-0#

PACS number~s!: 36.40.Gk, 36.40.Vz
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I. INTRODUCTION

Collective oscillations in metal clusters, mainly the su
face dipole plasmon, are now a field of intensive investi
tion ~see reviews@1–5#!. These modes have been wide
studied in different random-phase-approximation~RPA! ap-
proaches@2–4,6–16#. RPA methods provide a mechanis
that accounts naturally for the Landau damping, a phen
enon that is known to affect considerably the dipole pl
mon. This is in fact explained as a fragmentation of the c
lective strength over particle-hole excitations.

A large variety of the RPA methods, all being based
the linearization of the equations of motion, are availab
The hierarchy of different RPA versions can be found
reviews @14#. The simplest version is based on a sum-r
approach and is valid only if most of the collective streng
is concentrated in one dominant peak@13,17–19#. This is not
the case for dipole oscillations in deformed and even so
spherical clusters such as Na20 ~for sodium clusters see Refs
@20–23#!. A more correct description is provided by the loc
RPA @14,19,24#, where as many collective peaks as the nu
ber of introduced local operators~usually 4–10! can be stud-
ied. This method accounts for the gross features of the
lective strength distribution, but is unable to describe
Landau damping. To this aim, more elaborate RPA meth
~full RPA! have been used successfully. They are known
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the time-dependent local-density approximation~TDLDA !,
the time-dependent Hartree-Fock approximation,
discrete-matrix RPA, etc.@6–12#. Within the TDLDA, for
instance, the photoabsorption and photoemission of neu
spherical sodium clusters in a wide region have been
scribed as early as 1985@6#. Nowadays, full RPA methods
are the most powerful theoretical instruments for the desc
tion of collective excitations in metal clusters. In dealin
with these methods, however, one has to solve a system
eigenvector equations whose rank equals the number of b
particle-hole configurations. This is not a problem if w
study spherical clusters of a moderate size. However, we
run into serious computational troubles in the cases of la
spherical clusters and especially of deformed clusters,
which an impressively large configuration space is requir

This drawback can be overcome by resorting to the s
consistent schematic RPA~SRPA! method, otherwise called
the vibrating potential model@13,15,16,25,26#. Within this
approach aseparableresidual two-body interaction is de
rived. Such a separable ansatz allows one to turn the R
matrix into a dispersion relation that drastically simplifies t
eigenvalue problem. At the same time, the SRPA enable
to treat the Landau damping as in the full RPA. The valid
of the separable approximation has been analytically pro
for short-range interactions@27#. In practice, its range of ap
plicability is much wider. In particular, it was successful
used for long-range~in nuclear scale! nuclear forces in many
studies of collective excitations in atomic nuclei@25–29#. In
metal clusters, we deal with the long-range screened C
lomb interaction. It is therefore difficult to assert from th
or
607 © 1997 The American Physical Society
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608 56V. O. NESTERENKOet al.
very beginning or to prove analytically the applicability
the separable ansatz. Only full-scale calculations can pro
an answer to this question.

The aim of this paper is to present the self-consistent v
sion of the SRPA and to show that this approach provide
good description of dipole oscillations in sodium cluste
The method will be used to study both neutral and sin
charged (Z511) spherical sodium clusters in a wide regio
(Ne582952). Spherical clusters, being well studied bo
experimentally and theoretically, are a good test ground
the method. It should be mentioned that SRPA calculati
recently performed fordeformedclusters@30# yielded results
in good agreement with experiments@31#. Moreover, SRPA
and full RPA @32# results obtained with the same ener
functional seem to be very close. This may be already c
sidered as a proof of the applicability of the separable an
for the description of dipole oscillations in sodium cluster

The time-dependent version of the SRPA for metal cl
ters has been proposed in Ref.@13# and subsequently gene
alized to the case of deformed clusters@33#. First numerical
calculations for a dipole plasmon in both spherical and
formed neutral sodium clusters were made@15,16#. In Ref.
@16#, the Woods-Saxon single-particle scheme andsurface
self-consistent separable residual interaction were used.
results obtained were encouraging. However, without
plicit treatment of the ionic subsystem@4#, the calculations
@16#, like many other RPA methods, overestimate to so
extent the energy of the surface plasmon, especially in sm
clusters. Starting fromNe.20 (Ne is the number of valence
electrons!, a too-strong high-energy strength was also p
dicted. For example, for Na26 and Na40, the computed dipole
strength at energiesE.3.4 eV exhausts 30% and 44%, r
spectively, while the experimental data@20,21# give 10–15%
for clusters of this size and up to 20–30% for larger clust
@34#. So strong high-energy strength is not supported by
ther local and full RPA calculations~see, e.g.,@12,35#!. A
total blueshift of the dipole strength obtained in@16# leads to
a considerable underestimation of the static dipole pola
abilities. In order to prove the applicability of the SRPA f
sodium clusters, we certainly have to overcome these sh
comings.

In the present paper we will considerably improve t
description of dipole oscillations by~a! using the Kohn-
Sham single-particle scheme with a diffused jellium and~b!
taking into account the coupling of the surface and volu
degrees of freedom@36#. The diffuseness of the jellium simu
lates a pseudopotential folding@37# and, as shown below
leads to the redshift of the surface plasmon energy in c
agreement with the experimental value. Following the lo
RPA prescription@19#, the coupling of the surface and vo
ume dipole modes is included to decrease the high-en
strength. As shown below, such a coupling considerably
proves the description of the dipole oscillations. Here
have a close analogy to the counterpart of the dipole plas
in atomic nuclei, the dipole giant resonance, which is a
best described when volume~Steinwedel-Jensen model@38#!
degrees of freedom are coupled to the dominant sur
~Goldhaber-Teller model@39#! degrees@40,41#. The im-
provements mentioned above allow one to get good ag
ment with the available experimental data, thereby provid
solid ground for the separable approximation.
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As compared with the previous versions@13,15,16,33#,
the SRPA is generalized so as to take simultaneously
account different kinds of collective motion. Although in th
present paper a particular case of the coupling of surface
volume modes is considered, the present model, being
quite general character, can be used also to study the
pling of other collective degrees of freedom. As shown b
low, different kinds of collective motion are introduce
through the set of input local operators. The generaliz
SRPA covers both the previous SRPA versions@13,15,16,33#
and the local RPA@19,24# as the particular cases. While th
local RPA can be treated as a system of coupled oscilla
where the number of the oscillators is equal to the numbe
input local operators, the generalized SRPA represents a
tem of coupled collective motions, each one being descri
within the RPA. Like in the local RPA, the number of di
ferent kinds of collective motions is equal to the number
input local operators. However, the total number of exci
tions in the generalized SRPA is determined by the num
of particle-hole configurations of a given multipolarity.
one considers a single kind of collective motion~one local
operator!, we have the previous SRPA, and vice versa,
only the most collective RPA state is retained for every c
lective motion, we obtain the local RPA description.

The calculations have been performed using the s
consistent diffused Kohn-Sham@42,43# and phenomenologi-
cal Woods-Saxon single-particle schemes. It will be sho
that the Woods-Saxon potential, in spite of appreciable
viations of its behavior from the Kohn-Sham scheme in
surface region, is, nevertheless, quite acceptable for the s
of the dipole dynamical response. Alternative parameters
the Woods-Saxon potential, providing a good description
the surface plasmon in a wide region, are proposed for b
neutral and charged clusters.

II. MAIN SRPA EQUATIONS

The simplest form of a separable two-body interaction
@25–27#

(
p1 ,p2 ,h2 ,h1

V~p1 ,p2 ,h2 ,h1!

5k (
p1 ,p2 ,h2 ,h1

q~p1 ,h1!q~p2 ,h2!, ~1!

whereq(p1 ,h1) are single-particle~particle-hole! matrix el-
ements of one-body operators. By directly making this a
satz, however, we do not obtain any prescription for de
mining the strength constantk and the structure of the one
body operator~in the linear response theory, this operat
should be equal to the external field operator, i.e., in gene
it is not consistent with the mean field!. A more effective
way is provided by the time-dependent formulation of t
SRPA proposed for metal clusters in Refs.@13,16,33#. This
approach leads to the same dispersion equations for the
citation energies, but, at the same time, provides the exp
sions for the strength constant and self-consistent operato
residual forces. As a result, the method itself does not n
any adjusting parameters.
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56 609MULTIPOLE OSCILLATIONS IN SODIUM CLUSTERS: . . .
Let us present the SRPA derivation for a general c
when not one but several kinds~for example, surface and
volume! of collective motions of a given multipolarity ar
taken into account simultaneously. We start with the Koh
Sham energy functional for a system ofNe valence electrons

E$n~r ,t !,t~r !%

5
1

2E t~r ,t !dr1E v„n~r ,t !…dr

1
1

2E E @n~r ,t !2ni~r !#@n~r1 ,t !2ni~r1!#
ur2r1u

dr dr1 ,

~2!

which includes the kinetic energy, the exchange-correla
term in the local density approximation@44#, and the Cou-
lomb term, respectively. Heren(r ,t)5( l uf l(r ,t)u2 and
t(r ,t)5( l u,f l(r ,t)u2 are the density and kinetic-energ
density of valence electrons,ni(r ) is the ionic density in the
jellium approximation, andf l(r ,t) is a single-particle wave
function. The expression for the exchange-correlation te
v(n„r ,t)… is given in Sec. III. The convention
e5me5\51 is used.

The time-dependent single-particle Hamiltonian is o
tained as

H~r ,t !f l~r ,t !5
dE

df l* ~r ,t !
. ~3!

In the small-amplitude limit of collective motion, it is writte
as a sum of the static

H0~r !52
D

2
1S dvdnD

n5n0

1E n0~r1!2ni~r1!

ur2r1u
dr1 ~4!

and dynamic parts

dH~r ,t !5S d2vdn2D
n5n0

dn~r ,t !1E dn~r1 ,t !

ur2r1u
dr1 , ~5!

where n(r ,t)5n0(r )1dn(r ,t), n0(r ) is the static ground-
state density, anddn(r ,t) is a small-amplitude time-
dependent density variation~transition density!. Equation~4!
constitutes the Kohn-Sham single-particle potential.

To determine the density variation corresponding to
excitations of multipolaritylm, we should first define the
perturbed time-dependent wave function of the system.
convenient to do this through the scaling transformation

C j~r1 , . . . ,rNe,t !

5)
k51

K

expS ialmk
j ~ t !(

l51

Ne

@H0~r l !, f lmk~r l !# D
3C0~r1 , . . . ,rNe!, ~6!

whereC0 is the ground-state wave function (H0C050) and
j labels the roots of the dispersion equation. BothC0 and
C j are Slater determinants.
e

-

n

m

-

e

is

The local Hermitian coordinate operatorsf lmk(r ) deter-
mine the kinds of collective motion provided by the dens
variation. They influence the residual interaction and thus
eigenstates and eigenenergies of the system. So they sh
not be confused with an external field operator used in
linear-response theory. For the reasons given below, th
operators are chosen as f lmk(r )5r pk@Ylm(u,f)
1Ylm

† (u,f)], with k51, . . . ,K. Further, almk
j (t) 5

almk
j0 cos(vt) are harmonic collective variables. Their norma

ized amplitudesalmk
j0 account for the relative contribution

to electron oscillations of different kinds of collective motio
and, as shown below, are calculated from the final SR
equations.

By virtue of Eq.~6!, the density variation can be writte
in the form

dnj~r ,t !5 (
k51

K

almk
j ~ t !@¹n0~r !¹ f lmk~r !1n0~r !D f lmk~r !#.

~7!

It is seen to include both surface;¹n0(r ) and volume
;n0(r ) terms. Ifpk5l, we have a divergency-free operat
@D f lmk(r )50# and Eq.~7! has only the surface term. Thi
case was considered in@16#. The operators withpk.l are
responsible for a volume collective motion: They produce
general shift of the total density variation~7! towards the
interior of the system. As discussed in Sec. I, volume degr
of freedom for dipole excitations are important in bo
atomic nuclei and metal clusters. In@19#, the set of local
operators with pk51,4,7,10,13 was proposed. This wa
found to be the minimal set that could bring the calculati
to converge toward the full RPA. In this connection, it
worth noting that in atomic nuclei the dipole excitations
volume character are described within the Steinwedel-Jen
model, where the spherical Bessel functionj 1(qr) plays the
same role as the operatorsf lmk(r ) (pk.l) in the local RPA
and SRPA. It is easy to see the correspondence betwee
polynomial expansion of the spherical Bessel function a
the set of the local operators~in the dipole case, the operato
with evenp approximate the odd neighbors!. Our study has
shown that for the coupling of surface and volume modes
setspk51,4,7,10,pk52,4,6,8, andpk53,5,7,9 are quite suf-
ficient for describing dipole, quadrupole, and octupole os
lations, respectively. In principle, a good convergence of
SRPA results is reached already atpk51,4, pk52,4, and
pk53,5 since, unlike the local RPA, the SRPA provides
rich spectrum of dipole excitations already for one local o
erator. Collective oscillations are in fact described as coh
ent superpositions of particle-hole configurations. The to
number of states is therefore equal to the number of th
elementary configurations. For this reason the SRPA d
not need a large number of local operators.

Substituting Eq.~7! into ~5!, we have

dH~r ,t !5 (
k51

K

almk
j ~ t !Qlmk~r !, ~8!

with

Qlmk~r !
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610 56V. O. NESTERENKOet al.
5S d2vdn2D
n5n0

@¹n0~r !¹ f lmk~r !1n0~r !D f lmk~r !#

1E @¹n0~r1!¹ f lmk~r1!1n0~r1!D f lmk~r1!#
ur2r1u

dr1 .

~9!

The first and second terms on the right-hand side of Eq.~9!
are contributions of the exchange-correlation and direct C
lomb parts of the functional~2!, respectively.

We now substitute the Hamiltonian H(r ,t)
5H0(r )1dH(r ,t) into the time-dependent Hartree-Foc
equation

(
l51

Ne

H~r l ,t !C j~r1 , . . . ,rNe,t !5 i
d

dt
C j~r1 , . . . ,rNe,t !.

~10!

Following the Thouless theorem@45#, the wave function of
the system can be written in the form

C j~r1 , . . . ,rNe,t !5S 11(
ph

cph
j ~ t ! DC0~r1 , . . . ,rNe!,

~11!

wherecph
j (t) give the particle-hole contributions to the e

cited state. By linearization of Eq.~10!, we get

ephcph
j ~ t !1 (

k51

K

almk
j ~ t !^puQlmkuh&5 i

d

dt
cph
j ~ t !, ~12!

where eph is the energy of a particle-hole excitation an
up& and uh& are particle and hole eigenstates of the sta
Hamiltonian ~4!. The collective amplitudesalmk

j (t) and
particle-hole contributionscph

j (t) are expected to oscillat
harmonically:

almk
j ~ t !5almk

j0 cosvt, ~13!

cph
j ~ t !5cph

j1eivt1cph
j2e2 ivt. ~14!

Substituting Eqs.~13! and ~14! into Eq. ~12! and collecting
the coefficients ofeivt ande2 ivt, we obtain the connection

cph
j652

1

2

(k51
K almk

j0 ^puQlmkuh&
eph6v

, ~15!

which expresses the particle-hole coefficientscph
j6 through

the present unknown amplitudesalmk
j0 .

To determinealmk
j0 we will consider the variation of the

operatorQlmk(r ) in linear order. This can be written throug
the density variation

dQlmk~ t !5E Qlmk~r !dnj~r ,t !dr52 (
k851

K

almk8
j

~ t !klmkk8
21 ,

~16!

where
u-

c

klmkk8
21

52E Qlmk~r !@¹n0~r !¹ f lmk8~r !

1n0~r !D f lmk8~r !#dr . ~17!

An alternative expression is obtained using the wave fu
tion ~11!:

dQlmk~ t !5S C j* ~r1 , . . . ,rNe,t !U(l51

Ne

Qlmk~r l !U
3C j~r1 , . . . ,rNe,t !D

5(
ph

@cph
j* ~ t !^puQlmkuh&1cph

j ~ t !^huQlmkup&#.

~18!

Equating expressions~16! and ~18! and using Eqs.~13!–
~15!, one finally gets the system of homogeneous equati
to determine the amplitudesalmk

j0 :

(
k851

K

Slmkk8~v!almk8
j0

50, ~19!

with

Slmkk8~v!5(
ph

^puQlmkuh&^puQlmk8uh&eph
eph
2 2v2 2

1

2klmkk8
.

~20!

The condition

detuSlmkk8~v!u50 ~21!

provides nontrivial solutions to the system~19! and repre-
sents the SRPA dispersion equation for eigenenergiesv j ,
where j is the number of the root of Eq.~21!.

Equations~9!, ~15!, ~17!, and ~19!–~21! constitute the
main points of the SRPA formalism: expressions for the s
consistent operatorsQlmk , particle-hole coefficientscph

j6 ,
strength constantsklmkk8, collective amplitudesalmk

j0 , and
finally the dispersion equation.

It is worth making some additional comments on t
SRPA formalism.

~i! The system~metal cluster! choosesitself the optimal
contributions of the input local operators to every excit
state j through the calculated amplitudesalmk

j0 . The ampli-
tudes are normalized as(k51

K (almk
j0 )252.

~ii ! The rank of the determinant~21!, being equal to the
number of local operators, is much smaller than the rank
the matrices in the full RPA methods. At the same time,
total number of the roots is equal to the number of inp
particle-hole configurations and every excited state conta
the same number of the particle-hole contributions. Thus
SRPA drastically simplifies the RPA calculations witho
losing an important RPA feature to describe the Land
damping.

~iii ! In the case of one local operator, the dispersion eq
tion ~21! is reduced to the well-known equation@25,27#
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56 611MULTIPOLE OSCILLATIONS IN SODIUM CLUSTERS: . . .
Slm~v!50. ~22!

Just the same dispersion equation would take place if
start with the Hamiltonian containing the separable resid
interaction

Hlm5H02
1
2 klmQlm

† Qlm . ~23!

It may also be shown that in the general case of many lo
operators, the dispersion equation~21! is quite similar~but,
due to the self-consistency, does not coincide exactly! to the
one obtained with a more general separable interaction

Hlm5H02
1

2 (
k,k851

K

klmkk8Qlmk
† Qlmk8. ~24!

It is easy to see that the valuesklmkk8 have the physica
meaning of strength constants of the residual forces~9!. If
more than one local operator is used, the nondiago
strength constants take place. Our calculations have sh
that these constants are of the same order of magnitude a
diagonal ones. Nondiagonal strength constants play an
portant role: They regulate in a self-consistent way
Hamiltonian after adding a new interaction.

~iv! Neglecting the direct Coulomb terms in the SRP
one gets the model for the self-consistent description of is
calar collective excitations~giant resonances! in atomic nu-
clei. This model operates with density-dependent resid
forces. Further, assuming for the single-particle potential
ansatzV(r )5(dv/dn)n5n0

and using only one local operato

with pk5l, we obtain equations of the familiar vibratin
potential model, which is widely used in nuclear physics~see
@25,26,29,46# and references therein!. Quite recently this
model was successfully applied for the description of isos
lar El giant resonances in deformed and superdeformed
clei @29#.

III. RESULTS AND DISCUSSION

The Kohn-Sham with sharp and diffused jellium a
Woods-Saxon single-particle schemes were used for calc
tion of the single-particle wave functions and energies.
both neutral and charged clusters, we used the s
parameters of the Kohn-Sham jellium, name
rWS53.96 a.u.52.09 Å and a051a.u.50.529 Å (a050
for sharp jellium! @42#. Following the prescription of Gun
narsson and Lundqvist@44#, the expression for the exchang
correlation term in the ground state has the form~in atomic
units 1a.u.52 Ry527.2 eV for energies and 1a.u.50.529
Å for lengths!

v„n0~r !…5
1

2
n0~r !F2

3

2S 9

4p2D 1/3 1

r s~r !
20.0666GS r s~r !11.4D G ,

~25!

wherer s(r )5@3/4pn0(r )#
1/3 and

G~x!5 ~11x3!lnS 11
1

xD2x21
x

2
2
1

3
. ~26!
e
al
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It is worth noting that the self-consistent residual forc
~9! are mainly determined by direct Coulomb interactio
while the exchange-correlation effects play a minor role.

The parameters of the Woods-Saxon potential were
justed so as to reproduce on average the diffused Kohn-S
ground-state densities in a wide region. The fit yield
r 052.4 Å, V0525.7 eV, anda051.11 Å for neutral clus-
ters andr 052.5 Å, V0527.2 eV, anda051.25 Å for sin-
gly charged clusters. They are somewhat different from
parametersr 052.25 Å, V0526 eV, anda050.74 Å, pro-
posed in@47# for neutral clusters. These latter values lead
overestimation of the plasmon energy and high-ene
strength. As seen from Fig. 1, we have succeeded in get
a nice fit of the Woods-Saxon densities even for the cas
charged clusters whose Kohn-Sham potential deviates
siderably from the Woods-Saxon form in the surface reg
and beyond. As will be noticed from Fig. 3, the Wood
Saxon potential with the above parameters provides alm
the same SRPA results as the Kohn-Sham scheme.

Two main kinds of the SRPA calculations are present
with and without coupling of surface modes with volum

FIG. 1. Ground-state densitiesn0(r ) and single-particle poten
tials V0(r ) in Na58 and Na59

1 calculated with the diffused Kohn
Sham ~solid line!, sharp Kohn-Sham~dashed line!, and Woods-
Saxon~dotted line! single-particle schemes.
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FIG. 2. E1 strength functions calculated wit
~solid line! and without ~dotted line! coupling
with volume modes. The results obtained with th
diffused ~sharp! Kohn-Sham are given on the
right- ~left-! hand side.
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ones. In the first case, the sets of four local opera
f lmk(r ) mentioned in Sec. II are used. In the second ca
only the operators withpk5l are taken into account, i.e
volume modes are neglected. The results of calculations
presented in the form of the normalized strength function

s~El,v!5
1

S~El!(j v jB~El,gr→v j !r~v2v j !, ~27!

where

r~v2v j !5
1

2p

D

~v2v j !
21~D/2!2

~28!

is the weight function with the averaging parame
D50.05 eV,B(El,gr→v j ) is the reduced probability o
the El transition from the ground state to the one-phon
state with the excitation energyv j , and S(El) is the
energy-weighted sum rule

S~El!5(
j

v jB~El,gr→v j !

5
\2e2

8pme
l~2l11!2Ne^r

2l22&. ~29!

Expression~27! has a form similar to the photoabsorptio
cross section for dipole excitations. However, this is not
actly the photoabsorption cross section, but only the con
nient form of presentation of the RPA results where the v
ues v jB(El,gr→v j ) are slightly averaged to avoi
unnecessary details.

Let us consider results of the calculations. Figure 2 sho
that jellium diffuseness leads to a considerable redshift of
plasmon energy and thus improves the agreement with
experimental data. If only the divergency-free opera
(pk51) is used, the calculations give rather strong hig
energy peaks at 3.5–4.5 eV in both cases of diffused
sharp jellium. The analysis of associated transition dens
rs
e,

re

r

n

-
e-
l-

s
e
he
r
-
d
s

shows that these peaks are partly of a volume characte
similar result has been obtained in Ref.@16#. At the same
time, the experiments@20–23# do not support such a stron
high-energy strength. The description is improved if the co
pling with volume modes is taken into accou
(pk51,4,7,10). Then the main part of the high-ener
strength is strongly redshifted and the dipole strength
mainly concentrated in the surface plasmon region 2.5–
eV. A smaller part of the high-energy strength is blueshift
to about the region of the volume plasmon where it
strongly fragmented. Such a redistribution of the stren
considerably improves the description of the static dip
polarizability.

The main SRPA results for dipole excitations, obtain
with the coupling of surface and volume modes, are p
sented in Figs. 3 and 4 and Table I. Figure 3 and Tab
show that surface plasmon energies in charged clusters
slightly blueshifted compared to the energies in neutral on
which is observed experimentally. In agreement with t
measurements@23#, the calculated energies of main plasm
peaks in charged clusters decrease with a cluster size
Ne540 and then increase for larger clusters. If the RP
peaks are averaged withD50.25 eV, which roughly corre-
sponds to experimental widths, it is easy to see that, ex
for Ne540 and 58, a one-peak structure of the plasmon
obtained. A resonance right-hand shoulder observed in@23#
for charged clusters withNe520,40,58, and 92 is reproduce
for Ne520 and 40 and not forNe558 and 92. The discrep
ancies are partly caused by the highest single-particle le
~with the energies about zero!, which, being very sensitive to
the details of the calculations, influence noticeably the gr
structure of the plasmon inNe540,58, and 92 clusters.

For clusters withNe540, 58, 92, and 138 the calculation
give a considerable Landau damping that could determin
a large extent the plasmon width. In agreement with
discrete-matrix RPA results@10#, the fragmentation of the
dipole strength is increased with the size fromNe58 to
40, reaching the maximal value atNe540. Then the frag
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FIG. 3. E1 strength functions calculated tak
ing into account coupling with volume modes
The diffused Kohn-Sham~solid line! and Woods
Saxon ~dotted line! single-particle schemes ar
used.
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mentation gradually decreases with the size. These ten
cies have been explained in@10# as a result of the degenerac
of the original~before the breakup! plasmon with neighbor-
ing particle-hole configurations. Just for Na40, the original
plasmon, comprising mainlyDN51 (N is the principle shell
quantum number! transitions, has the position in the neig
borhood of theDN53 transitions, which provides the mo
optimal conditions for the fragmentation of the dipo
strength. In general, the extent of the plasmon fragmenta
obtained within the SRPA agrees well with the full RP
results@10#. The SPRA results for charged clusters do n
reproduce the experimental trend of the plasmon width
decrease with a cluster size untilNe540 and then to increas
again for larger clusters@23#. This discrepancy is most prob
ably caused by neglecting temperature fluctuations that
known to determine to a large extent plasmon widths
spherical clusters. The calculated Landau damping, pro
ing only a part of the plasmon width~up to 10220 % in
Ne58 and 20 and larger in bigger clusters!, seems not to be
enough to reproduce the trend@23#.
n-

n

t
o

re
n
d-

In Fig. 4 the results for very large singly charged cluste
are presented. In spite of quite extended configuration sp
used for these cluster, the SRPA calculations need a l
computer effort. Figure 4 clearly shows the approaching
the dipole plasmon to the classical Mie resu
(vMie5vp /A353.41 eV for sodium! with a large cluster
size.

Table I shows that, in general, the calculated plasm
energies are in a quite acceptable agreement with the ex
mental data. While comparing the theory with the expe
ment, one should take into account that forNe>40 the cal-
culated energy centroids are presented against th
experimentalmain peakpositions. It seems to be a mai
reason of the ‘‘overestimation’’ of plasmon energies f
charged clusters withNe>40. Indeed, the experimental cen
troid energies involving a strong right-hand shoulder sho
be larger than the corresponding energies of main peaks
thus be closer to the theoretical values. Starting w
Ne540, the general tendency of increasing plasmon ene
with a cluster size is reproduced. A good description of
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static dipole polarizability%5( jv j
21B(El,gr→v j ) is also

achieved and the correct trend of this value to unity with
cluster size is exhibited. It should be noted that the appro
ate energy positions of the main plasmon peaks have b
mainly obtained due to the diffuseness of the ionic jelliu
As for the coupling with volume modes, its role mainly co
sists in the considerable redshift of the high-energy stren
The calculations of the collective amplitudesalmk

j0 show that
the main plasmon peaks are dominated by the diverge
free operator withpk51 and only high-energy peaks hav
considerable contributions from the operators withpk.1.

FIG. 4. E1 strength functions for large singly charged cluste
The calculated diffused Kohn-Sham single-particle scheme is u
and coupling with volume modes is taken into account.
a
i-
en
.

h.

y-

This means that the system, in spite of the proposed free
to develop collective oscillations through volume collecti
modes, tends to have a dipole plasmon of mainly surf
character. Finally, the SRPA results~surface plasmon ener
gies, extent of fragmentation, static dipole polarizabilitie
and main tendencies with a cluster size! seem not to be
worse than the results obtained within the local RP
@19,24,35# or full RPA @6–12,32#, which confirms the valid-
ity of the separable ansatz for the description of dipole ex
tations in sodium clusters. Few deviations from the expe
mental data and general tendencies, which take place

.
ed

TABLE I. Dipole plasmon energiesv̄ ~centroids forNe>40)
and static dipole polarizabilities% ~in units R3 with R5rWSNe

1/3,
rWS53.96 a.u.!.

v̄(eV) %(R3)

Cluster Expt. SRPA Expt. SRPA

Na8 2.59a 2.66 1.77a 1.78
Na20 2.67a 2.80 1.67a 1.57
Na40 2.72a 2.68 1.62a 1.64
Na58 2.83 1.41
Na92 2.85 1.41
Na138 2.91 1.37

Na9
1 2.71b 2.66 1.44

Na21
1 2.68,b 2.68~1! c 2.61 1.51

Na41
1 2.60,b 2.62~1! c 2.75 1.51

Na59
1 2.70b 2.85 1.39

Na93
1 2.75b 2.88 1.36

Na139
1 2.94 1.34

Na197
1 3.09 1.27

Na441
1 3.18 1.16

Na953
1 3.28 1.18

aReference@20#.
bThe experimental values are extracted from figures of Ref.@23#.
cReference@21#.
-

d

FIG. 5. E2 andE3 strength functions calcu
lated with ~solid line! and without~dotted line!
coupling with volume modes. The diffuse
Kohn-Sham is used.
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small and very large clusters~e.g., the plasmon energy an
% for Na20 as well as the% for Na953

1), can be explained by
using in the present calculations the same parameters o
Kohn-Sham single-particle scheme for neutral~charged!
clusters in a very wide region.

Figure 5 exhibits the SRPA results forE2 andE3 collec-
tive oscillations in singly charged clusters. It is seen t
E2 andE3 strengths are mainly concentrated in the ene
regions 2.5–3.5 and 3–4 eV, respectively. Main peaks
well pronounced and lie below the continuum threshold. T
decreasing in theE2 andE3 resonance energies with a si
takes place in agreement with the sum-rule results@18#. Like
in the dipole case, the coupling with volume modes noti
ably leads to a redshift of the high-energyE2 and E3
strength.

IV. CONCLUSION

The self-consistent schematic RPA is generalized to t
into account the coupling of different kinds of collective m
tion. The method exploits the separable ansatz for the
sidual interaction that drastically simplifies the RPA calcu
tions without losing such an essential RPA property as
description of the Landau damping of the collective streng
The SRPA is applied to the description of dipole oscillatio
in spherical sodium clusters with taking into account the c
pling of surface and volume dipole modes. Good agreem
with the experimental data~dipole plasmon energies, Landa
B

D

n

d

he

t
y
re
e

-

e

e-
-
e
.
s
-
nt

damping, static dipole polarizabilities, and main tendenc
with increasing a cluster size! in a wide region is achieved
In particular, the excess of the high-energy dipole stren
obtained in previous SRPA calculations@16# is removed. Fi-
nally, one may conclude that the present study proves
validity of the separable approximation to the RPA descr
tion of the dipole collective strength in sodium clusters. T
main applications of the method are expected for deform
and very large clusters where we are forced to use an
tended configuration space. It would be interesting to test
applicability of the separable ansatz for clusters with a c
siderable coupling of valence electrons with ions as well
for molecules.

The RPA predictions forE2 andE3 collective oscilla-
tions are also given. Different sets of Woods-Saxon para
eters providing a good description of the surface dipole p
mon are proposed for neutral and singly charged sod
clusters.
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