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Collapses and revivals in the interference between two Bose-Einstein condensates formed
in small atomic samples

E. M. Wright
Optical Sciences Center, University of Arizona, Tucson, Arizona 85721

T. Wong, M. J. Collett, S. M. Tan, and D. F. Walls
Department of Physics, University of Auckland, Private Bag 92019, Auckland, New Zealand

~Received 21 November 1996!

We investigate the quantum interference between two Bose-Einstein condensates formed in small atomic
samples composed of a few thousand atoms both by imposing Bose broken gauge symmetry from the outset
and also using an explicit model of atomic detection. In the former case we show that the macroscopic wave
function collapses and revives in time, and we calculate the characteristic times for current experiments.
Collapses and revivals are also predicted in the interference between two Bose-Einstein condensates which are
initially in Fock states, a relative phase between the condensates being established via atomic detections
corresponding to uncertainty in the number difference between them.@S1050-2947~97!08807-0#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.20.De
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I. INTRODUCTION

The spectacular observations of Bose-Einstein conde
tion ~BEC! in atomic vapors reported last year@1,2# have
opened up new avenues of research into the physical p
erties and nature of Bose-condensed systems. Recent ex
mental developments include reports of a new trap cap
of holding larger number of atoms and measurements of
condensate fraction and mean-field energy@3#, nondirect ob-
servation of the development of the condensate@4#, measure-
ments of the collective oscillations of the condensate@5–7#,
and an output coupler for an atomic Bose-Einstein cond
sate@8#. The measurements of the collective excitations h
been found to be in excellent agreement with the theoret
predictions from mean-field theory for condensate fractio
near unity @9–12#. Such detailed studies of the collectiv
excitations opens the door to investigating superfluid effe
in atomic BECs, and, in particular, the general relation
tween BEC and superfluidity~see, for example, the article b
Huang in Ref.@13#!.

In this paper we investigate the interference of two BE
formed in small atomic samples composed of 103–106 at-
oms, typical of current experiments. Our motivation for th
theoretical investigation is that we previously showed tha
small atomic samples the macroscopic wave function ex
its collapses and revivals, the first collapse occurring o
few seconds time scale@14#. In that work the notion of Bose
broken symmetry@15# was invoked and the quantum state
the condensate was taken as a wave packet compose
states of fixed number of particles, so that, according to
uncertainty relationship between particle number and ph
the condensate phase can become well defined. The col
of the macroscopic wave function arises from the fact th
due to many-body interactions, the chemical potential is
ferent for each particle number present in the wave pac
and the revivals are a direct consequence of the discrete
of the particle number@14#. Based on this theory one woul
naively expect that if two BECs are interfered the visibili
of the interference pattern should also exhibit the collap
561050-2947/97/56~1!/591~12!/$10.00
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and revivals, hence providing a direct experimental signat
of the effect. However, before jumping to conclusions it
important to note that the notion of Bose broken symmetry
only strictly applicable in the thermodynamic limit, wher
the system size and the number of particles tend to infin
with the density held constant, so that another appro
should be utilized to verify the predicted collapse and rev
als. Such an approach, freed from the thermodynamic li
and Bose broken symmetry arguments, has emerged in
last year@16–23#. Javanainen and Yoo@16# first showed that
an interference pattern between two condensates, and h
a relative phase between the two condensates, could
from an explicit model of atomic detections: As atomic d
tections are performed an uncertainty in the number of ato
in each condensate is built up, since we do not know wh
condensate any atom is removed from. The uncertainty r
tionship between the relative atom number of the cond
sates and the relative phase then allows a well defined r
tive phase to emerge.

The remainder of this paper is organized as follows: S
II gives the basic theory for BEC in a trapped gas of atoms
described by the Gross-Pitaevskii equation and within
Thomas-Fermi approximation. The interference between
condensates using the notion of Bose broken symmetr
described in Sec. III, and the collapse and revival times
the macroscopic wave function are evaluated for current
perimental conditions. In Sec. IV we approach the interf
ence of two condensates using a quantum anharmo
oscillator approximation to the full field-theoretical model
Sec. II, and the atomic detection scheme of Ref.@16#. Here
we verify that the collapse and revivals are still present wi
out explicitly invoking Bose broken symmetry. In Sec. V w
briefly discuss the quantum anharmonic-oscillator model
condensates described by coherent states, i.e., assuming
broken symmetry, and demonstrate that the details of
collapses and revivals depends on the quantum state o
condensate. Finally, Sec. VI gives our summary and con
sions.
591 © 1997 The American Physical Society
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II. BASIC THEORY

In this section we introduce the second-quantized Ham
tonian for BEC in a trapped gas of atoms, and then disc
the Gross-Pitaevskii equation for the macroscopic w
function and the Thomas-Fermi approximation. Althou
these topics are amply covered elsewhere we include t
for completeness and to clarify our notation.

A. Second-quantized Hamiltonian

Our starting point is the second-quantized Hamilton
for a system of bosonic atoms confined in a trap poten
@24#

Ĥ~ t !5E dr F \2

2m
¹ĉ†

•¹ĉ1V~r !c†ĉ1
U0

2
ĉ†ĉ†ĉĉ G ,

~1!

where ĉ(r ,t) and ĉ†(r ,t) are the Heisenberg picture fiel
operators which annihilate and create atoms at positior ,
and obey the equal-time commutation relati

@ĉ(r ,t),ĉ†(r 8,t)#5d(r2r 8) appropriate to bosons, th
~single-particle! trap potential is taken of the form@25–27#

V~r !5 1
2m~v'

0 !2~r'
21l2z2!, ~2!

with r5(r' ,z),r' being the transverse position coordina
assuming cylindrical symmetry of the trap potential in t
transverse plane, andz the longitudinal coordinate,m is the
atomic mass,v'

0 the transverse angular frequency of t
trap,l5vz

0/v'
0 is the ratio of the longitudinal to transvers

frequencies, andU054p\2a/mmeasures the strength of th
two-body interaction,a being thes-wave scattering length
Here we consider a repulsive interaction so thata.0.

B. Gross-Pitaevskii equation

Here we consider the standard treatment of the conden
in a Bose gas@28#. At zero temperature, and for a weak
interacting gas, the particles may be assumed to be pred
nantly in the condensate. The assumption of zero temp
ture is not too restrictive since atomic condensates can
prepared with condensate fractions close to unity@5,6#. The
Schrödinger equation for the state vector of the system is

i\
]

]t
uC~ t !&5Ĥ~0!uC~ t !&, ~3!

and in the time-dependent Hartree approximation@29–31#
the state vector for a system ofN particles is written as

uC~ t !&5~N! !21/2F E dr cN~r ,t !ĉ†~r ,0!GNu0&, ~4!

wherecN(r ,t) is the normalized single-particle wave fun
tion, andu0& the vacuum state. Then proceeding in the us
manner@30,31# from the Schro¨dinger equation~3! we obtain
the self-consistent nonlinear Schro¨dinger equation or Gross
Pitaevskii equation@28# generalized to include the magnet
optical harmonic trap@25–27#
l-
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e
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i\
]cN

]t
5F2

\2

2m
¹21

1

2
m~v'

0 !2~r'
21l2z2!

1NU0ucNu2GcN . ~5!

We are interested in the ground-state solution of this eq
tion for which we setcN(r ,t)5exp(2imNt/\)fN(r ), giving
the stationary Gross-Pitaevskii equation

mNfN5F2
\2

2m
¹21

1

2
m~v'

0 !2~r'
21l2z2!

1NU0ufNu2GfN , ~6!

where the macroscopic wave functionfN(r ) for the
N-particle system is normalized to unity. The ground-st
energy of the system ofN atoms is derived from the
Ginzburg-Pitaevskii-Gross energy functional@32#

EN5NE dr F \2

2m
u¹fNu21V~r !ufNu21

NU0

2
ufNu4G , ~7!

and the parametermN is given bymN5dEN /dN. By a slight
extension of the usual terminologymN will be called the
chemical potential of theN-particle condensate. The station
ary Gross-Pitaevskii equation follows from the variation
principle d(EN2NmN*dr ufNu2)50, and using this we find
the further exact result

mN8 5
dmN

dN
5U0E dr ufNu41

NU0

2 E dr
]

]N
ufNu4, ~8!

which can be rearranged to yield

U0E dr ufNu45S 11
N

2

]

]ND 21

mN8 , ~9!

which we shall use below.

C. Thomas-Fermi approximation

Edwards and Burnett@25#, and Ruprechtet al. @26# have
solved Eq.~6! numerically to obtain both the condensa
wave functions and the chemical potentialsmN as functions
of N. Here we follow Baym and Pethick@27# and use the
Thomas-Fermi approximation for the macroscopic wa
function, in which the kinetic-energy term in the stationa
Gross-Pitaevskii equation is neglected. This yields the
proximate macroscopic wave function

fN~r' ,z!5~NU0!
21/2AmN2~1/2!m~v'

0 !2~r'
21l2z2!,

~10!

when the argument of the square root is greater than or e
to zero, zero otherwise. Requiring that the macroscopic w
function be normalized to unity yields the expression for t
chemical potential

mN5
\v'

0

2 S 15lNaa'
D 2/5, ~11!
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TABLE I. Collapse and revivals timestcoll andTN̄ for some current experiments. The numbers in t
‘‘Expt.’’ column have the following meaning:~1! ‘‘strong trap’’ experiment in Rb from Ref.@1#; ~2! ‘‘weak
trap’’ experiment in Rb from Ref.@1#; ~3! experiment in Rb from Ref.@5#; ~4! experiment in Na from Ref.
@4#.

Expt. v'
0 (rad s21) l a ~nm! N̄ z tcoll ~ms! TN̄ ~s!

1 471 2.8 5.2 2000 0.1 21 6
2 51 2.8 5.2 2000 0.15 320 86
3 828 2.8 5.2 4500 0.06 12 4.9
4 2010 0.056 4.9 53106 0.02 51 710
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wherea'5(\/mv'
0 )1/2 is the characteristic transverse leng

scale of the linear potential. The Thomas-Fermi approxim
tion is valid if the coherence lengthr coh5(8pan)21/2 @28#,
n being the mean density, is less than the characteristic
r N of the atomic cloud. Following Baym and Pethick@27# we
find that

z5
r coh
r N

5S 15lNaa'
D 22/5

, ~12!

which should be much less than unity for the Thomas-Fe
approximation to apply. In the first four columns of Table
we show the values of the parameters for some current
periments with a positive scattering length, and the fifth c
umn shows the corresponding values ofz, and we see tha
the Thomas-Fermi theory should be valid in all cases.

The explicit form of the chemical potential in Eq.~11! can
be used to evaluate the overlap integral in Eq.~9! giving

U0E dr ufNu45
10

7
mN8 , ~13!

a result we shall use later.

III. QUANTUM INTERFERENCE
WITH BOSE BROKEN SYMMETRY

In this section we investigate quantum interference
tween two BECs using the notion of Bose broken gau
symmetry @15#. According to this notion the macroscop
wave function for each condensate attains a fixed but a
trary phase as a result of the spontaneous breaking ofU(1)
gauge symmetry during the condensation process.
U(1) gauge symmetry is associated with particle num
conservation, so that in the condensed system the par
number is not fixed. Then, as a result of the number-ph
uncertainty relationshipDNDh'1, the phaseh need not be
indeterminate, and interference between two BECs is p
sible. Here we employ a description of the condensate s
vector as a wave packet of states of fixed particle num
N in the condensate to apply the notion of Bose brok
gauge symmetry. In contrast, in Sec. IV we will show atom
detections establish a coherent wave packet without the n
to build in Bose broken symmetry from the outset.

A. Wave-packet description

The definition of the macroscopic wave function given
the last section is rigorous in the thermodynamic limit@28#.
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To investigate the case of a small condensate, say a
thousand atoms, we employ a wave-packet description
particular, the wave-packet description is intended to refl
the quantum coherence of the condensate for measure
times short compared to relaxation times@22,33#. In contrast,
for measurements performed over times long compared
relaxation times, the quantum coherence of the condensa
destroyed and the macroscopic wave function vanishes.

Here we employ a wave packet composed of states
fixed number of particlesN in the condensate, with expan
sion coefficientsaN5uaNuei zN, hence retaining quantum co
herence. The present description of BEC, due to Barn
Burnett, and Vaccarro@22#, is therefore different from the
conventionalh ensemble which employs a wave packet
states corresponding to a different total number of partic
condensate plus noncondensate, and is generally only a
cable in the thermodynamic limit@33#. A coherent state with
aN5N̄N/2eiNhe2N̄/2/AN! suggests itself, but the states ass
ciated with BEC do not generally possess such comp
phase coherence@34#. Nevertheless, a pure state descripti
of the condensate may be rendered plausible as follows:
low the Einstein condensation temperature the many-b
ground state of the system becomes macroscopically o
pied, yielding a condensate which should be considered
open quantum system in contact via many-body interacti
with the environment or reservoir composed of the nonc
densate atoms. It is known from the work of Zurek, Hab
and Paz@35# and Gallis@36#, that for a system, in their cas
a harmonic oscillator, in interaction with an environme
certain pure states show considerable stability against los
quantum coherence, and that in the weak-coupling limit
pure states of maximal stability are the coherent states. T
the quantum coherence of the condensate may be reaso
represented by a pure state, though perhaps not precis
coherent state since weak coupling may not hold. This ar
ment does not depend on the size of the system, except
the noncondensate atoms may be viewed as a reservoir
the conclusions therefore apply even for small condens
far removed from the thermodynamic limit.

We further assume that the particle number distribut
uaNu2 is sharply peaked with varianceDN around a mean
particle numberN̄. As a concrete example we take a Poiss
nian distribution for whichDN5N̄1/2, which is reasonable
since the number distributionuaNu2 of the condensate shoul
be approximately that of a coherent state, though the ph
zN may not be so correlated. Under these conditions we m
expand the chemical potentialmN around the mean numbe
N̄ in a Taylor series
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594 56WRIGHT, WONG, COLLETT, TAN, AND WALLS
mN5m N̄1~N2N̄!m N̄
8 1 1

2 ~N2N̄!2m N̄
9 1•••, ~14!

where

m N̄
8 5

3

5
\v'

0 S la

a'
D 2/5 1

N̄3/5
. ~15!

If we compute the ratio of the third term to the second te
in this expansion forN5N̄1DN, then we find that the mag
nitude of this ratio varies asN̄21/2. Thus, even for a low
particle numberN̄5103 the second term in the expansion
the dominant correction. In the remainder of this paper
shall, therefore, only retain the first two terms in the abo
expansion.

B. Condensate state vector

We are now equipped to construct the wave packet for
condensate state vector, which we write as

uC~ t !&5(
N

aNe
2 iNmNt/\~N! !21/2~ â†!Nu0&, ~16!

where the exponential contains the termNmN since there are
N particles each of chemical potentialmN , the operator
â†5*d3rf N̄(r )ĉ

†(r ,0) creates particles with distributio
f N̄(r ) @24#, with @ â,â†#51, and u0& is the vacuum state
The approximations employed in Eq.~16! are tantamount to
the Hartree approximation. In general the Schro¨dinger field
annihilation operator can be written as a mode expans
over single-particle states as

ĉ~r ,0!5(
a

âawa~r !5âf N̄~r !1c̃~r ,0!, ~17!

where$wa(r )% are a complete orthonormal basis set. Here
the last line we have chosenw0(r )5f N̄(r ) as one membe
of the complete orthonormal set, and identifiedâ5â0. Then
by construction the first term in the mode expansion a
only on the condensate state vector, whereas the second
c̃(r ,0) accounts for the noncondensate atoms.

C. Collapses and revivals

The state vector~16! may be used to calculate quantu
expectation values of the condensate. Of interest to us
are the one-particle reduced density matrix representing
condensate

r1~r ,r 8,t !5^C~ t !ub̂†b̂uC~ t !&f N̄
* ~r !f N̄~r 8!

5N̄f N̄
* ~r !f N̄~r 8!, ~18!

and the macroscopic wave function

^ĉ~r ,t !&5^C~ t !ub̂uC~ t !&f N̄~r !5N̄1/2f N̄~r !e2 imt/\FN̄~ t !,
~19!

where
e
e

e

n

n

ts
rm

re
he

FN̄~ t !5(
N

S N
N̄
D 1/2aN21* aN@cos„2m N̄

8 ~N2N̄!t/\…

2 isin„2m N̄
8 ~N2N̄!t/\…#, ~20!

andm5m N̄1N̄m N̄
8 is the net chemical potential of the con

densate. Using Eq.~11! for the chemical potentialmN in the
Thomas-Fermi approximation we obtainm5 7

5m N̄5EN̄ /N̄,
and the net chemical potentialm is equal to the mean energ
per particle@27#. In obtaining these results we have used t
first two terms in the expansion of the chemical poten
~14!. The one-particle reduced density matrix~18! is of the
classic factorized form representing the off-diagonal lon
range order~ODLRO! associated with BEC@37,38#. This
conclusion holds for any mean particle number, as long
the mean-field approximations employed are valid. Here
ODLRO extends over separationsur2r 8u'r N̄ , the spatial
scale of the condensate. In the experiments the one-par
reduced density matrix is not measured but rather the
mentum space~velocity! distribution is obtained by releasin
the atoms from the trap, letting them fall under gravity, a
imaging them. The momentum spread will then
DK'2p/r N̄ , so that the ODLRO is transferred to a sha
spike in the imaged atomic distribution@1,2#.

Turning now to the macroscopic wave function~19!, we
see that the factorFN̄(t) takes the form of a weighted sum o
trigonometric functions with different frequencies. Su
sums are well known from the Jaynes-Cummings mode
quantum optics, which describes the interaction betwee
single-mode radiation field and a two-level atom, and g
rise to the phenomenon of collapses and revivals@39#, and
the same is expected here. Collapse and revivals also ap
in the relative phase between two superfluids or superc
ductors@40#. Directly from the form of Eq.~20! we see that
uFN̄(t)u is periodic in time with period

TN̄5p\/m N̄
8 , ~21!

and the revivals occur with this period. The revivals res
from the fact that the sum in Eq.~20! is over the discrete
particle number, so that they are a direct result of the gra
larity of matter. The collapses depend on the choice of
number distributionuaNu2. For our purposes we only nee
the varianceDN in particle number and the assumption th
the phases are correlated enough thatFN̄(0) does not vanish
exactly. ThenFN̄(t) is periodic and has a maximum in mag
nitude att5tmax. At this time the net phases for eachN are
such that they add most constructively in the sum in Eq.~20!.
As time increases these phase relations will initially be l
thus producing a collapse of the magnitude ofFN̄(t)→0,
until the system revives att5tmax1TN̄ . The collapse time
tcoll may be estimated by looking at the spread of frequ
cies present in the wave packet for particle numbers betw
N5N̄6DN/2, which yields DV52m N̄

8 DN/\, and
tcoll>1/DV. Gathering our results together for the collap
and revival times we have

TN̄'
5

v'
0 S a'

laD
2/5

N̄3/5, tcoll>
TN̄

2pDN
. ~22!
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In particular, if we evaluate Eq.~20! for a coherent state with
N̄@1,DN5N̄1/2, we find uFN̄(t)u25exp(2t2/tcoll

2 ), with tcoll
given by the equality in Eq.~22!. Thus, a coherent state give
rise to the minimum collapse time for a Poissonian distrib
tion.

The collapse phenomenon actually occurs under far m
general conditions than reflected by the approximations u
here, the essential ingredient being dispersion of the che
cal potentialmN over the particle number varianceDN. Lan-
dau damping of plasma oscillations in an electron plasm
another example of decay of a coherent state. In contrast
exactly periodic revivals arise from the linear dependence
mN on (N2N̄) employed in Eq.~14 !. If higher-order cor-
rections are retained in the expansion~14! the revivals are no
longer perfectly periodic, and diminish with increasing tim
We also note that according to Eq.~18! the single-particle
reduced density matrix is insensitive to the collapse and
vivals of the macroscopic wave function, which is then a
the case for the atomic BEC experiments@1,2#.

D. Thermodynamic limit

The thermodynamic limit of these results must be tak
with care. In particular, in order to maintain a constant d
sity as the mean particle number is increased it is neces
to concomitantly increase the linear trap size asr t}N̄

1/6.
Then TN̄}N̄ and tcoll}N̄

1/2, so that collapse and revival
become irrelevant forN̄→`. In addition, we find that
FN̄(0)→eih by the following argument: The approxima
uncertainty relationDNDh'1 holds for the number and
phase fluctuations of the condensate. Then,
DN5N̄1/2→` we haveDh→0, which is the case for a co
herent state with phaseszN5Nh. Thus, in the thermody-
namic limit the quantum state of the condensate approach
coherent state for which we findFN̄(0)5eih. We then have

^ĉ(r ,t)&5eihN̄1/2f N̄(r )e
2 imt/\, and this is precisely the

limit in which the macroscopic wave function acts as
order parameter@28#.

E. Interference between two condensates

We now consider the case that the atomic BEC is in
fered with a second large condensate whose macrosc
wave function we write asCexp@i(k•r2mt/\1x)#. Here
we have assumed that the second condensate is spa
large and write it as a plane wave with wave vectork, and
has the same chemical potential as the first for simplic
We further assume that the second condensate is comp
of a large number of atoms so that collapses and revivals
not an issue, the constantC is real, andx is the arbitrary but
fixed phase of the condensate. Then, when the two con
sates are made to interfere, say by dropping them on to
each other, the resulting interference pattern is describe
the cross term

I~r ,t !5C^ĉ~r ,t !e2 i ~k•r1x!1ĉ†~r ,t !ei ~k•r1x!&

52CN̄1/2f N̄~r !uFN̄~ t !ucos@k•r1x2arg„FN̄~ t !…#.

~23!

In the thermodynamic limit whereFN̄(t)→eih this interfer-
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ence pattern takes the form of a stationary spatial modula
of wave vectork over the spatial extentr N̄ of the condensate
~we assumeukur N̄@1 so that an interference pattern is ev
dent!. However, due to the factoruFN̄(t)u appearing in the
interference pattern it is clear that the interference will d
play the collapses and revivals predicted for the macrosco
wave function: when the macroscopic wave function c
lapses and revives so does the visibility of the interfere
pattern with the same periodTN̄ .

Thus quantum interference of two condensates provi
an experimental signature of the predicted collapses and
vivals. Furthermore, the arguments are easily extended to
case that both condensates display collapses and revi
that is two identical condensates, and the same conclus
apply.

F. Experimental parameters

The collapse and revival times calculated for the curr
experiments are shown in columns six and seven of Tab
respectively. The collapse times quoted are the minim
values derived from Eq.~22!, that is for coherent states. Her
we see that the collapse times are all less than 1 s, and
within the condensate lifetimes of 15 s for Rb@1# and 1 s for
Na @2#, which suggests that collapse of the macrosco
wave function occurs in these traps. In contrast, the rev
times are considerably longer. However, the 6 s revival time
found for the strong trap in Rb is still within the condensa
lifetime of 15 s quoted for that experiment@1#, though the
effects of dissipation may quench the revival. In this respe
we note that the recent Rb experiment~third row! with a
higher trap frequency and mean particle number has a lo
revival time of 3.75 s.

IV. QUANTUM PHASE FROM MEASUREMENTS

In this section we look at the buildup of quantum cohe
ence between two Bose-Einstein condensates initially
Fock states. Since we start from Fock states no phas
initially assumed with a phase only established via the m
surement process. The system we consider was first prop
by Javanainen and Yoo@16#, and consists of two Bose
Einstein condensates which are dropped on top of one
other. Each of the condensates consist ofn atoms with mo-
mentumk1 and k2 directed along thex axis, respectively.
Atoms are detected on a screen placed below the two c
densates. A detection at some positionx is represented by the
field operator for the sum of the two condensates

Ĉ~x!5
1

A2
~ â11â2e

if~x!!, ~24!

wheref(x)5(k22k1)x, andâ1 andâ2 are the atom annihi-
lation operators for the first and second Bose-Einstein c
densates, respectively,~see below!. An interference pattern is
generated from the two condensates because every dete
of an atom introduces uncertainty into the atom number
each condensate since we do not know which condensate
atom came from. However, the total number in both cond
sates is always known since it is just the initial total numb
minus the number of detections we have observed. The
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certainty relationship between the relative atom number
phase between these condensates allows us to estab
relative phase between them to some precision.

The effect of collisions on the establishment of quant
phase has been studied previously@20#. Here we extend this
work to demonstrate collapses and revivals in the visibi
pattern between two interfering condensates.

A. Single-mode approximation

For the purposes of developing a model based on ato
detection the full quantum-field theory involving the fie
operators is cumbersome. Thus, here we reduce the full p
lem by using a mode expansion and truncating. In particu
we write the Heisenberg field annihilation operator as
mode expansion over single-particle states as

ĉ~r ,t !5(
a

âa~ t !wa~r !5â~ t !f N̄~r !1c̃~r ,t !, ~25!

where$wa(r )% are a complete orthonormal basis set. Here
the last line, we have chosenw0(r )5f N̄(r ) as one membe
of the complete orthonormal set, and identifiedâ5â0. Then
by construction the first term in the mode expansion a
only on the condensate state vector, whereas the second
c̃(r ,t) accounts for the noncondensate atoms. Then su
tuting the mode expansion in the second-quantized Ha
tonian~1!, retaining only the first term representing the co
densate, and using the Gross-Pitaevskii Eq.~6!, we obtain
the following single-mode quantum Hamiltonian for the co
densate in the Schro¨dinger picture:

ĤS5Ĥ~0!5â†âeN̄1
\k

2
â†â†ââ, ~26!

where

\k5U0E dr uf N̄u4, ~27!

which using Eq.~13! yields\k5 10
7 m N̄

8 , k being the collision
rate between condensate atoms. The first term on the r
hand side, which gives rise to an energy shift, is the num
operatorâ†â times the single-particle contribution to the e
ergy per particle,

eN̄5E dr F \2

2m
u¹f N̄u21V~r !uf N̄u2G , ~28!

whereas the second term accounts for many-body inte
tions. To proceed we introduce an interaction picture defi
by the transformation

ĤI~ t !5Û†~ t !F ĤS2 i\
]Û~ t !

]t
G Û~ t !,

Û~ t !5e2 i ~eN̄2\k/2!â†ât/\. ~29!

which yields the single-mode Hamiltonian
d
h a

ic

b-
r,
a

n

ts
rm
ti-
il-
-

-

ht-
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c-
d

Ĥ~ t !5
\k

2
~ â†â!2, ~30!

where we have dropped the subscriptI on the interaction
picture operators for simplicity in notation. In the followin
sections we shall use this single-mode Hamiltonian, which
that of a quantum anharmonic oscillator, as a model for
individual atomic BEC.

A basic assumption underlying this model is that t
quantum state describing the condensate involves only
ticle numbersn'N̄, that is the particle number remains clo
to the mean number. The single-mode Hamiltonian~30!
gives rise to a particle number dependent phase s
xN5kN5 10

7 m N̄
8N/\ ~see Sec. V!. However, Eq.~20! reveals

a particle number dependent phase shiftxN52m N̄
8N/\. The

discrepancy between these two results arises since the p
shift in the single-mode theory is an average over the spa
profile of the macroscopic wave function, as evidenced
the overlap integral in the definition of the collision ratek in
Eq. ~27!. This averaged value is less than the peak value
the actual phase shift which appears in expression~20!. In
the following we shall replace the factor107 by 2 in the defi-
nition of k

\k52m N̄
8 , ~31!

so that the correct phase shift is produced by the quan
anharmonic-oscillator model. This relation provides the co
nection between the single-mode theory parameters
those obtained from the treatment based on the Gr
Pitaevskii equation.

In general we shall consider two interfering condensa
For the i th condensate described by single-mode opera
âi ,âi

† we assign a wave vectorki , directed along thex axis
for simplicity, so that the interference between the cond
sates can be discussed. The resulting interference pa
would be further modulated by the detailed spatial struct
of each condensate, as determined by the solution of
Gross-Pitaevskii equation, but this is of secondary imp
tance and we do not discuss it here. In general, we ass
that any interference is well resolved within the spatial ext
of the condensates.

B. Effect of collisions

The effect of collisions can be numerically simulated v
a Monte Carlo wave function method. The Monte Ca
method is used to simulate both the detection process of
g ~as quantum jumps! and the time evolutions between d
tections ~as evolution of the wave function between th
jumps!. The initial Fock state, sayun,n&, becomes an expan
sion ofm11 entangled Fock states afterm detections. Let us
write the state vector afterm detections as

uwm&5 (
k50

m

ckun2m1k,n2k&, ~32!

which is normalized so that(ucku251. The effects of the
collisions are included in the time evolution operator for t
two condensates
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Û~ t !5e2 i ~Ĥ11Ĥ2!t/\5expS 2
ik

2
@~ â1

†â1!
21~ â2

†â2!
2#t D ,

~33!

with Ĥ i the Hamiltonian for thei th condensate. Thus afte
m detections we have prepared a stateuwm& which then ex-
periences the above evolution operator for a timet followed
by a further detection. The conditional visibility of this de
tection is

p~xux1 , . . . ,xm ,t !}^wmuÛ†~ t !Ĉ†~x!Ĉ~x!Û~ t !uwm&.
~34!

The expectation value for the total number operator is

^wmuÛ†~ t !~ â1†â11â2
†â2!Û~ t !uwm&52n2m, ~35!

and, as expected, it is just the total initial number of ato
minus the number of detections. The expectation value of
cross term which gives the size of the conditional visibility

^wmuÛ†~ t !â1†â2Û~ t !uwm&eif~x!

5 (
k51

m

ck* ck21A~n2k11!~n2m1k!

3exp$ ikt@2k2~m11!1 if~x!#%. ~36!

Putting Eqs.~35! and ~36! into Eq. ~34! we obtain

p~xux1 , . . . ,xm ,t !}n2m/21 (
k51

m

A~k!cos@f~x!

1kt~2k2m21!2Qk#, ~37!

where we have defined the phaseQk from the coefficients of
the state vector asck* ck215Ake

2 iQk and the weighting func-
tion A is

A~k!5AkA~n2k11!~n2m1k!. ~38!

We takeQk outside the summation since it is defined as
relative phase between neighboring number states which
will assume to be fairly constant for largem. As we detect
more and more atoms the resulting entangled state
proaches something that resembles a coherent state whe
relative phase between neighboring number states~in a num-
ber state basis! is identical to the phase of this state. Let th
fairly constant relative phase be denoted asQ which is a
good estimate of the relative phase between the two con
sates. By expanding the cosine terms in Eq.~37! to separate
the time dependence from the phase terms, and noting
the resulting summation over sine functions vanishes du
the cancellation of positive and negative frequency com
nents, we obtain

p~xux1 , . . . ,xm ,t !}n2m/21 (
k51

m

A~k!

3cos@~2k2m21!kt#cos@f~x!2Q#.

~39!
s
e

e
e

p-
the
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-

The visibility of the interference pattern is therefore det
mined from a weighted sum over cosines of differing fr
quencies. These frequencies depend on the parity of the
pression enclosed by the round brackets, 2k2m21. When
this is odd (m is even! the frequencies are
$12m, . . . ,23,21,1,3,. . . ,m21% whereas when it is
even (m is odd! they are$12m, . . . ,22,0,2,. . . ,m21%.
In both cases the revival period of the visibility is

T5
p

k
5

p\

2m N̄
8
, ~40!

with N̄5n. This revival period is precisely half that obtaine
assuming Bose broken symmetry in Sec. III, and this diff
ence shall be taken up in Sec. V. For the case wherem is
even so that we have a sum over odd frequencies, the co
term in Eq.~39! alternates between plus or minus 1 at su
sequent revival times. Since the visibility is by definition
positive quantity, this alternate sign change in the cos
term represents ap phase shift of the interference pattern
alternate revivals.

For collision to detection rate ratio of one we expect fro
Eq. ~40! a period ofp when time is measured in units of th
inverse detection rateg. This agrees very well to the collaps
and revival period displayed in the middle graph of Fig.~1!.
This figure and thep phase shift will be explained in deta
in Sec. V.

C. Numerical results

In a numerical simulation the effects of collisions betwe
subsequent detections can be easily modeled with the us
the Monte Carlo wave-function method@41#. We use the
following effective Hamiltonian:

FIG. 1. The top graph shows the growth in the conditional v
ibility as a function of time corresponding to 100 atomic detectio
The middle displays the collapse and revivals of this conditio
visibility when the detection process is turned off and the bott
graph shows the growth of this visibility when the detection proc
is turned on again. The total number of atoms in the two cond
sates was 10 000 and we have used a collision to detection rate
of one (k5g) for the initial and final detection periods.
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Ĥe f f5
\k

2
@~ â1

†â1!
21~ â2

†â2!
2#2

i\g

2
~ â1

†â11â2
†â2!,

~41!

where the detection and collision rates areg andk, respec-
tively. The detections are then turned off and the syst
undergoes coherent evolution by the Hamiltonian

Ĥ5
\k

2
@~ â1

†â1!
21~ â2

†â2!
2#. ~42!

We have modeled the collisions that occur only between
atoms of the same condensate. A cross-collision te
(â1

†â1â2
†â2) between the condensates is not included. T

size of the coefficient of this term depends on the phys
geometry of the situation~the overlap of the two conden
sates! ranging from zero to\k. Setting this coefficient to
zero we are taking the worst case scenario where the ef
of the collisions are the strongest. Alternatively, setting
cross-collision term to\k completes the square in the Ham
tonian so that the subsequent evolution depends only on
total atom number. The effect of the collisions would then
to rotate the phase of the entire state vector, and the co
ence between the individual entangled number states w
be preserved.

In each run of the numerical simulation the state vec
experiences three different regimes. Initially a sequence
detections are accumulated to prepare the entangled s
after which the detections are turned off. During the coher
evolution stage free of detections, the conditional visibil
undergoes collapses and revivals due to collisions. Fina
the detections are turned on again. If the detections
turned on when the visibility is zero, during a collapse, it
quickly reestablished by the second sequence of detect
If, however, the detections are turned on when the visibi
is in a revival phase the visibility starts from this nonze
value and then quickly increases to one. This behavio
seen in Fig. 1 where the detection process occurs at a m
faster rate than the collapse and revivals, and we thus g
the single run on three separate sets of axes: The top g
shows the initial growth of the conditional visibility due t
the detections of atoms from the condensates, and the vis
ity quickly increases to a value close to unity after 100 ato
are detected.~In these simulations the total number of atom
is 105 and 200 atomic detections are made, so the assump
underlying the quantum anharmonic-oscillator model that
mean number of atoms varies little is well obeyed.! The
middle graph shows what happens to the visibility once
detection process is turned off and the state vector under
coherent evolution due to the Hamiltonian in Eq.~42!, and
collapses and revivals of the visibility are clearly evide
This behavior is reminiscent of the collapses and revivals
the Jaynes-Cummings model of quantum optics for a tw
photon process which also displays the periodic revivals
Fig. 1. The bottom graph displays the subsequent evolu
of the visibility when the detection process is turned
again. Due to the collapses and revivals during the cohe
evolution, the initial visibility for the final stage depends o
the time at which the detections are reinitiated. Whatever
initial visibility, this second detection proceeds very rapid
to increase the visibility to a value close to unity.
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The cleanliness and exhibition of full revivals in th
middle graph of Fig. 1 can be understood by noticing that
two condensate system is a closed system~no loss mecha-
nism! undergoing coherent evolution. The state vector a
the initial sequence of detections is an expansion of
tangled number states. The effect of collisions during
coherent evolution is to rotate the phase of the coefficient
each entangled state by an amount proportional to the su
the squares of the number of atoms in each condensate.
the phase of the coefficients of this state vector rotate
differing frequencies.

So far we have shown collapses and revivals in the c
ditional visibility of the interference pattern. For somethin
more relevant to an experimental situation we would like
look at variables associated with the actual observed in
ference patterns. The phase shift of an interference patte
a direct measure of the relative phase established betw
the two condensates. Thus, let us consider the following p
cedure: Firstly, we prepare a state vector of the two cond
sates with an established relative phase via measurem
and consider this entangled state between the two con
sates after the detections to be our initial state which p
sesses some degree of coherence. This state is then all
to undergo coherent evolution with no detections, and fina
we turn on the measurement process after an elapsed
and collect our second sequence of measurements. The p
of the resulting interference pattern is calculated with resp
to the phase of the interference pattern we observed pr
ously from the first sequence of measurements. Now
reprepare the initial state and repeat the second sequen
measurements and subsequent calculation of phase. Re
ing this many times we obtain a set of relative phases
tween the first and second set of measurements, the
being that if the time elapsed between the two detection
gimes corresponds to some multiple of the full revival tim
then this set of relative phases should be sharply peake
zero. For other elapsed times we may expect to see pa
revivals. We do not need to numerically calculate the coh
ent evolution but what we need from the numerical simu
tion is the coefficients of the prepared stateuwm&. Its coher-
ent evolution due to the HamiltonianĤ describing the
collisions previously given by Eq.~42! is

uwm~ t !&5exp~2 iĤ t/\!uwm&

5expS 2
i

2
k@n21~n2m!2#t D

3 (
k50

m

ckexp~2 ik@2mk1k2#t !un2m1k,n2k&.

~43!

We use the phase eigenstates for the atom number differ
between the two condensates

uf&5 (
n1 ,n2

expF2
i

2
~n12n2!f G un1 ,n2&, ~44!

which has a factor of one-half in the exponential since
stateuwm& has a fixed total atom number of 2n2m so that
the atom number difference (n12n2) is quantized in units of
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2. Thus this factor is required so thatf is the relative phase
between the condensates. The probability distribution of
phasef after elapsed timet is

u^fuwm~ t !&u25U(
k50

m

ckexp„2 i @k~k2m!kt12kf#…U2.
~45!

This probability is a function of two variables, phase a
elapsed time, and is evaluated numerically. We display
probability distributions in ‘‘birds-eye’’ plots via the ‘‘im-
age’’ command usingMATLAB . Figure 2~a! displays the
probability distribution when we have made an even num
of detections (m even!. The white regions denotes the pea
with the black ones corresponding to the valleys. We se
sharp peak at zero time about zero phase difference betw
the two interference patterns, this is not surprising since
coherent evolution has occurred. By the time we ha

FIG. 2. Plot of the phase distribution when the number of
tections (m) is even as a function of the turning on time. The pha
is the relative phase between the first and second sequence of
surements in units of radians while the turning on time is in units
the revival period. The brightness of a region corresponds to
relative probability of obtaining a particular phase for a particu
turning on time. The bright regions denotes peaks while the da
ones correspond to valleys. The entire plot is shown in~a! with a
zoomed in plot between 0.2–0.5 times displayed in~b!.
e

e

r

a
en
o
e

evolved for one revival period we obtain a sharp peak ap
radians corresponding to the first revival time withp phase
shift due to detecting an even number of atoms describe
the preceding section. The second revival occurs at a ph
difference of zero radians as predicted. Away from the
revival times, the phase distribution is not flat but displa
many partial revivals. Figure 2~b! is a zoomed in view of
Fig. 2~a! between 0.2 and 0.5 revival periods, we can clea
see the partial revival at 0.2 which consists of five peaks
fact we see partial revivals at every integer fraction of
revival period provided the resolution is good enough. W
illustrate this by labeling to the left of the graph with th
appropriate integer fractions corresponding to the particu
partial revival. Figure 3 shows the distribution for the oth
case where the number of detections is odd. As predic
there is nop phase shifts. Again, we see partial reviva
when we zoom in between 0.2 and 0.5 revival periods
shown in Fig. 3~b!.

V. QUANTUM OSCILLATOR MODEL
WITH BROKEN SYMMETRY

We will show in this brief section that collapses and r
vivals also arise for the quantum anharmonic-oscilla

-
e
ea-
f
e
r
er

FIG. 3. Plot of the phase distribution when the number of d
tections (m) is odd as a function of the turning on time. The enti
plot is shown in~a! with a zoomed in plot between 0.2–0.5 time
displayed in~b!.
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600 56WRIGHT, WONG, COLLETT, TAN, AND WALLS
model for initial coherent states instead of preparing an
tangled state from an initial detection process. In the l
guage of the preceding section we are considering the in
ference between two coherent states including the effect
collisions. Thus we treat the Bose-Einstein condensate
coherent states, analogous to the treatment in Sec. III, im
ing on them a relative phase whereas previously we estab
this phase via measurements.

The Hamiltonian for the two condensates is

H5
1

2(i51

2

\k~ âi
†âi !

2, ~46!

giving the Heisenberg equation of motion for each field a
nihilation operator

dâi
dt

5
1

i\
@ âi ,H#5

k

2i
~112âi

†âi !âi . ~47!

By inspection the time dependence of theâi operator is

âi~ t !5expF2
i

2
~112âi

†âi !kt G âi , ~48!

which yields the Heisenberg picture field operator for t
sum of the two modes

Ĉ~ t !5
1

A2H expF2
i

2
~112â1

†â1!kt G â1
1expF2

i

2
~112â2

†â2!kt G â2J , ~49!

where we have suppressed the spatial dependence.
yields the operator for the intensity of the atomic pattern

Ĉ†~ t !Ĉ~ t !5 1
2 $â1

†â11â2
†â21â1

†exp@ i ~ â1
†â12â2

†â2!kt#â2

1H.c.%. ~50!

Thus, if we define the initial coherent states asua& and ub&
for the modesâ1and â2, respectively, the intensity is evalu
ated to be

I}^a,buĈ†~ t !Ĉ~ t !ua,b&

5 1
2 $uau21ubu21a*bexp@~eikt21!uau2

1~e2 ikt21!ubu2#1b*aexp@~e2 ikt21!uau2

1~eikt21!ubu2#%, ~51!

with the aid of the following identity@42#:

^aue2xa†aua&5exp@~e2x21!uau2#.

In the case of maximum visibility of the interference patte
we need the modes to be equal in amplitude, thus we
b5ae2 if, where f is the phase difference between t
modes. Substituting this into Eq.~51! we obtain

I}uau2$11exp@2uau2~coskt21!#cosf%. ~52!
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The characteristics of collapses and revivals can be cle
seen in Eq.~52!. Revivals occur at timest52pn/k ~where
n is an integer! with the shape of the collapses described
the exponential term whenevert is no longer a multiple of
2p/k. The period of these revivals is

T5
2p

k
5

p\

m N̄
8
, ~53!

which is identical to Eq.~21! with N̄5uau2. This gives twice
the period of the previous case of revivals from a detect
process@see Eq.~40!#, even though we have used identic
Hamiltonians. This difference arises because we have
independent coherent states here whereas in the case o
tecting atoms from two initial Fock states the total ato
number is always fixed at the initial total number minus t
number of atomic detections. This additional constraint
the total number means that the difference atom number
erator inside the exponential in Eq.~50! is quantized in units
of 2. The above expression for the period is only applica
when we are free to superpose total atom numbers, as in
case of two coherent states for which the difference at
number operator is quantized in units of 1. This gives a f
tor of 2 difference in the revival times between assuming
initial relative phase and establishing this phase in the
namics of the revivals. The visibility, as described by E
~52!, smoothly drops to its minimal value halfway betwee
subsequent revivals, exactly where the state induced by
tection would have an additional revival.

VI. SUMMARY AND CONCLUSIONS

In this paper we have shown that within the approxim
tion of Bose broken symmetry the macroscopic wave fu
tion in small atomic samples exhibits collapse and revivals
time while the BEC is maintained in the form of ODLRO
For current experiments the collapse time is a second or l
The revival time is longer but our results show that it m
still fall within the condensate lifetime for some experimen
To detect the collapses and revivals experimentally a sch
is required which is sensitive to the macroscopic wave fu
tion directly, and this does not seem to be the case for
coherent light scattering methods previously discussed@43–
45#. However, Imamoḡlu and Kennedy@46# and Javanainen
@47# have recently proposed light scattering schemes invo
ing two independent condensates coupled by a common
cited state. These schemes rely on the fact that when
condensate is driven optically the light scattered from
other condensate has a nonzero value of the electric field
a phase proportional to the relative phase of the two cond
sates. By driving both wells and adjusting the phase diff
ence of the fields the scattering can be suppressed via q
tum interference, and this in turn determines the ph
difference between the two condensates. The scatterin
therefore sensitive to Bose broken gauge symmetry. In a
tion, the light-scattering rate is proportional to the magnitu
of the macroscopic wave function, so these schemes coul
used to detect the collapses and revivals experimentally.
ternatively, as we have shown here, a direct measureme
the collapse and revivals in the visibility of the interferen
between two condensates can be made.
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In a second approach we have also studied the estab
ment of a relative phase between two interfering condens
using the explicit measurement model first proposed by J
anainen and Yoo@16#. This model is free from any assump
tions concerning Bose broken symmetry or the thermo
namic limit, and is therefore applicable to small atom
samples. In this case we consider the two interfering cond
sates to be in number states initially, an extreme example
which there is no relative phase before atomic detectio
These condensates are then prepared into an entangled
vector composed of entangled number eigenstates via
measurement process. The effects of collisions in the t
evolution is to rotate the phases of the individual entang
eigenstates of the state vector. We observe the collapse
revivals of this state under coherent evolution when the m
an
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surement process is turned off. Accurate predictions of
period of these collapses and revivals were obtained.
simple anharmonic model of interference between two c
densates also displays collapses and revivals. The perio
these revivals is twice the time required for the previous c
since we have neglected the constraint of the total atom n
ber being fixed.
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