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Collapses and revivals in the interference between two Bose-Einstein condensates formed
in small atomic samples
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We investigate the quantum interference between two Bose-Einstein condensates formed in small atomic
samples composed of a few thousand atoms both by imposing Bose broken gauge symmetry from the outset
and also using an explicit model of atomic detection. In the former case we show that the macroscopic wave
function collapses and revives in time, and we calculate the characteristic times for current experiments.
Collapses and revivals are also predicted in the interference between two Bose-Einstein condensates which are
initially in Fock states, a relative phase between the condensates being established via atomic detections
corresponding to uncertainty in the number difference between ff&h050-294{@7)08807-(

PACS numbgs): 03.75.Fi, 05.30.Jp, 32.80.Pj, 74.20.De

[. INTRODUCTION and revivals, hence providing a direct experimental signature
of the effect. However, before jumping to conclusions it is
The spectacular observations of Bose-Einstein condens@mportant to note that the notion of Bose broken symmetry is
tion (BEC) in atomic vapors reported last yept,2] have  only strictly applicable in the thermodynamic limit, where
opened up new avenues of research into the physical proghe system size and the number of particles tend to infinity
erties and nature of Bose-condensed systems. Recent expefiith the density held constant, so that another approach
mental developments include reports of a new trap capablgnould be utilized to verify the predicted collapse and reviv-
of holding larger number of atoms and measurements of thg|s_ Sych an approach, freed from the thermodynamic limit
condensate fraction and mean-field eneigly nondirect ob-  5nq Bose broken symmetry arguments, has emerged in the
servation of the development of the condengdiemeasure- ot yeaf16—23. Javanainen and Ydd6] first showed that
ments of the collective oscillations .Of the condens{é’ee?], an interference pattern between two condensates, and hence
and an output coupler for an atomic Bo:lse—Ems.telr_] condené relative phase between the two condensates, could arise
sate[8]. The measurements of the collective excitations haV(? om an explicit model of atomic detections: As atomic de-

been found to be in excellent agreement with the theoreticathtionS are performed an uncertainty in the number of atoms
predictions from mean-field theory for condensate fractions b y

near unity[9—12. Such detailed studies of the collective In each condensate is built up, since we do not know which

excitations opens the door to investigating superfluid effect§Ondensate any atom is removed from. The uncertainty rela-

in atomic BECs, and, in particular, the general relation bellonship between the relative atom number of the conden-

tween BEC and superfluiditisee, for example, the article by sates and the relative phase then allows a well defined rela-

Huang in Ref[13]). tive phase to emerge. . .
In this paper we investigate the interference of two BECs 1he remainder of this paper is organized as follows: Sec.
formed in small atomic samples composed of 40 at- I gives the basic theory for BEC in a trapped gas of atoms as

oms, typical of current experiments. Our motivation for thisdescribed by the Gross-Pitaevskii equation and within the
theoretical investigation is that we previously showed that infThomas-Fermi approximation. The interference between two
small atomic samples the macroscopic wave function exhibeondensates using the notion of Bose broken symmetry is
its collapses and revivals, the first collapse occurring on aescribed in Sec. lll, and the collapse and revival times for
few seconds time scalé4]. In that work the notion of Bose the macroscopic wave function are evaluated for current ex-
broken symmetry15] was invoked and the quantum state of perimental conditions. In Sec. IV we approach the interfer-
the condensate was taken as a wave packet composed @rice of two condensates using a quantum anharmonic-
states of fixed number of particles, so that, according to thescillator approximation to the full field-theoretical model of
uncertainty relationship between particle number and phas&ec. Il, and the atomic detection scheme of R&€]. Here

the condensate phase can become well defined. The collapse verify that the collapse and revivals are still present with-
of the macroscopic wave function arises from the fact thatput explicitly invoking Bose broken symmetry. In Sec. V we
due to many-body interactions, the chemical potential is difbriefly discuss the quantum anharmonic-oscillator model for
ferent for each particle number present in the wave packetondensates described by coherent states, i.e., assuming Bose
and the revivals are a direct consequence of the discretenesmken symmetry, and demonstrate that the details of the
of the particle numbef14]. Based on this theory one would collapses and revivals depends on the quantum state of the
naively expect that if two BECs are interfered the visibility condensate. Finally, Sec. VI gives our summary and conclu-
of the interference pattern should also exhibit the collapsesions.
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Il. BASIC THEORY PN 52 1
. _ _ _ _ ih——=| — 5=V2+ =m(0?)?(r? +\?2%)
In this section we introduce the second-quantized Hamil- at 2m 2
tonian for BEC in a trapped gas of atoms, and then discuss
the Qross—Pltaevskll equation f_or the macroscopic wave +NUo| 2| .- (5)
function and the Thomas-Fermi approximation. Although

these topics are amply covered elsewhere we include them . . . .
for completeness and to clarify our notation We are interested in the ground-state solution of this equa-
tion for which we seti(r,t) =exp(iunt/h)pn(r), giving
) o the stationary Gross-Pitaevskii equation
A. Second-quantized Hamiltonian

h? 1

2 0\2(p2 4 3 25,2
— %V + Em(wl) (rl—i-)\ Z°)

Our starting point is the second-quantized Hamiltonian
for a system of bosonic atoms confined in a trap potential
[24]

UNON=

A B2 o Ugapmpnn +NUO|¢N|2}¢N’ (6
H(t)=f dr[ﬁvw-vwvuwwﬁ 7%&%4,
(1) where the macroscopic wave functiogy(r) for the
N-particle system is normalized to unity. The ground-state
d energy of the system ofN atoms is derived from the

- ~ s . . '
where ¢(r,t) and ¢'(r,t) are the Heisenberg picture fiel Ginzburg-Pitaevskii-Gross energy functiorial]

operators which annihilate and create atoms at position
and obey the equaltime commutation relation
[(r,t), 4 (r' t)]=68(r—r') appropriate to bosons, the ENszdr

72 NU,
ﬁ|V¢N|2+V(r)|¢N|2+T|¢N|4 , (1)
(single-particlg trap potential is taken of the forfi25—27

and the parametery is given byuy=d&y/dN. By a slight
V(r)=zm(w)(r? +1\?2%), (2)  extension of the usual terminologyy will be called the
chemical potential of th&l-particle condensate. The station-
with r=(r, ,z),r, being the transverse position coordinateary Gross-Pitaevskii equation follows from the variational
assuming cylindrical symmetry of the trap potential in theprinciple §(Ey— NuySdr|¢y|?) =0, and using this we find
transverse plane, armthe longitudinal coordinatan is the  the further exact result
atomic massw? the transverse angular frequency of the

trap, A= w2/ is the ratio of the longitudinal to transverse ,:%:U fdf|¢ n MJ dri|¢ “ @
frequencies, antd ,= 47 °a/m measures the strength of the NTdN 0 N 2 NN
two-body interactiona being thes-wave scattering length. ) )
Here we consider a repulsive interaction so tat0. which can be rearranged to yield
N g\t
B. Gross-Pitaevskii equation Uof dr|gp|*=| 1+ 5 a_N) e (9)

Here we consider the standard treatment of the condensate
in a Bose gag28]. At zero temperature, and for a weakly Which we shall use below.
interacting gas, the particles may be assumed to be predomi-
nantly in the condensate. The assumption of zero tempera- C. Thomas-Fermi approximation

ture is r:jot _t(;]o resc';rlctlve sflnce_ atomllc condensate§”::an be Edwards and Burnef5], and Ruprechet al. [26] have
grehpg_e with con enfsateh ractions close th #fﬁtﬁ]- € solved Eq.(6) numerically to obtain both the condensate
chralinger equation for the state vector of the system Is wave functions and the chemical potentialg as functions
9 A of N. Here we follow Baym and Pethick27] and use the
El\l’(t))=H(0)|\lf(t)>, (3) Thomas-Fermi approximation for the macroscopic wave
function, in which the kinetic-energy term in the stationary
Gross-Pitaevskii equation is neglected. This yields the ap-
proximate macroscopic wave function

if

and in the time-dependent Hartree approximatia@—31]
the state vector for a system Nf particles is written as

o1 ,2)=(NUg) " Y2y — (1/2m(w?)2(r2 +\222),

(10

N
|\P<t>>=<N!>—1’2fdr I OF O] 0), @)

when the argument of the square root is greater than or equal
to zero, zero otherwise. Requiring that the macroscopic wave

where ¢ (r,t) is the normalized single-particle wave func- . . S )
tion, and|0) the vacuum state. Then proceeding in the usua[unctlon be normalized to unity yields the expression for the

mannef30,31] from the Schrdinger equatior{3) we obtain chemical potential
the self-consistent nonlinear ScHinger equation or Gross-
Pitaevskii equatiof28] generalized to include the magneto-
optical harmonic trap25-27
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TABLE I. Collapse and revivals time,,, and Ty for some current experiments. The numbers in the
“Expt.” column have the following meaning(l) “strong trap” experiment in Rb from Refl]; (2) “weak
trap” experiment in Rb from Refl1]; (3) experiment in Rb from Ref5]; (4) experiment in Na from Ref.

[4].

Expt. ! (rads?) N a (nm) N { teon (MY TR (9)
1 471 2.8 5.2 2000 0.1 21 6
2 51 2.8 5.2 2000 0.15 320 86
3 828 2.8 5.2 4500 0.06 12 4.9
4 2010 0.056 4.9 510° 0.02 51 710

wherea, = (%/mw®)¥?is the characteristic transverse length To investigate the case of a small condensate, say a few
scale of the linear potential. The Thomas-Fermi approximathousand atoms, we employ a wave-packet description. In
tion is valid if the coherence length,,=(87an) ¥?[28],  particular, the wave-packet description is intended to reflect
n being the mean density, is less than the characteristic siz8€ quantum coherence of the condensate for measurement

ry of the atomic cloud. Following Baym and Pethi@&] we  times short compared to relaxation tinMl@2,33. In contrast,
find that for measurements performed over times long compared to

relaxation times, the quantum coherence of the condensate is

destroyed and the macroscopic wave function vanishes.
' (12 Here we employ a wave packet composed of states of a

fixed number of particle§\ in the condensate, with expan-
which should be much less than unity for the Thomas-Fermgion coefficientsay=|ay|e'*N, hence retaining quantum co-
approximation to apply. In the first four columns of Table | herence. The present description of BEC, due to Barnett,
we show the values of the parameters for some current eXBurnett, and Vaccarr§22], is therefore different from the
periments with a positive scattering length, and the fifth col-conventionaln ensemble which employs a wave packet of
umn shows the corresponding valuesiofand we see that states corresponding to a different total number of particles,

15\Na) ~%5

a

_ rcoh_

N

the Thomas-Fermi theory should be valid in all cases. ~ condensate plus noncondensate, and is generally only appli-
The explicit form of the chemical potential in EG.1) can ~ cable in the thermodynamic limi83]. A coherent state with
be used to evaluate the overlap integral in E).giving an=NV2eN7e=N2/ NI suggests itself, but the states asso-

ciated with BEC do not generally possess such complete

Uof dr| gy 4= E)M, (13 phase coherend@®4]. Nevertheless, a pure state descript.ion
7 PN of the condensate may be rendered plausible as follows: Be-
low the Einstein condensation temperature the many-body
a result we shall use later. ground state of the system becomes macroscopically occu-
pied, yielding a condensate which should be considered an
Ill. QUANTUM INTERFERENCE open quantum system in contact via many-body interactions

WITH BOSE BROKEN SYMMETRY with the environment or reservoir composed of the noncon-

densate atoms. It is known from the work of Zurek, Habib,

In this section we investigate quantum interference beand PaZ35] and Gallis[36], that for a system, in their case
tween two BECs using the notion of Bose broken gaugea harmonic oscillator, in interaction with an environment,
symmetry [15]. According to this notion the macroscopic certain pure states show considerable stability against loss of
wave function for each condensate attains a fixed but arbiguantum coherence, and that in the weak-coupling limit the
trary phase as a result of the spontaneous breakirgy( pure states of maximal stability are the coherent states. Thus,
gauge symmetry during the condensation process. Thihe quantum coherence of the condensate may be reasonably
U(1) gauge symmetry is associated with particle numberepresented by a pure state, though perhaps not precisely a
conservation, so that in the condensed system the particleoherent state since weak coupling may not hold. This argu-
number is not fixed. Then, as a result of the number-phasment does not depend on the size of the system, except that
uncertainty relationshipNA »~1, the phase; need not be the noncondensate atoms may be viewed as a reservoir, and
indeterminate, and interference between two BECs is poghe conclusions therefore apply even for small condensates
sible. Here we employ a description of the condensate statiar removed from the thermodynamic limit.
vector as a wave packet of states of fixed particle number We further assume that the particle number distribution
N in the condensate to apply the notion of Bose brokerjay|? is sharply peaked with varianc&N around a mean

gauge symmetry. In contrast, in Sec. IV we will show atomicparticle numbeN. As a concrete example we take a Poisso-
detections establish a coherent wave packet without the need. . Jistribution for whichAN=N2 which is reasonable

to build in Bose broken symmetry from the outset. since the number distributidiy|? of the condensate should
o be approximately that of a coherent state, though the phases
A. Wave-packet description {n may not be so correlated. Under these conditions we may
The definition of the macroscopic wave function given in €xpand the chemical potentialy around the mean number
the last section is rigorous in the thermodynamic lifai8]. N in a Taylor series
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= (N=N) u—t+(N=N2 2+ . .. 1/2 o
pn =t (N=N) w2 (N=N) gy (14) A= % a; - san[ cod2uytN—N)t/h)
where
e —isinutN=N)t/%)], (20)
ﬂ’{§hw° ra _i. (15) — . _ _
N 57 a ] N3s and = un+Nuyis the net chemical potential of the con-

densate. Using Ed11) for the chemical potentigky in the
If we compute the ratio of the third term to the second termrhomas-Fermi approximation we obtaja= Zuy=&x7N,

in this expansion foN=N+ AN, then we find that the mag- and the net chemical potentialis equal to the mean energy
nitude of this ratio varies abl~Y2 Thus, even for a low Per particle[27]. In obtaining these results we have used the

particle numbeN= 1 the second term in the expansion is first two terms in _the expansion of_the chemic_:al potential
the dominant correction. In the remainder of this paper w 14). _The one_-partlcle reduced de_nS|ty mat(il>8)_ Is of the
shall, therefore, only retain the first two terms in the aboveCIaSSIC factorized form reprgsentmg the off-diagonal _Iong—
expansion. range o_rder(ODLRO) associated WIFh BE(G37,38. This
conclusion holds for any mean particle number, as long as

the mean-field approximations employed are valid. Here the
ODLRO extends over separatiofis—r'|~ry, the spatial

We are now equipped to construct the wave packet for thecale of the condensate. In the experiments the one-particle
condensate state vector, which we write as reduced density matrix is not measured but rather the mo-
mentum spacévelocity) distribution is obtained by releasing
the atoms from the trap, letting them fall under gravity, and
imaging them. The momentum spread will then be
AK=2m/ry, so that the ODLRO is transferred to a sharp

where the exponential contains the telpy since there are  spike in the imaged atomic distributiga, 2]. _
N particles each of chemical potentialy, the operator Turning now to the macroscopic wave functi®), we
a'=[d3r gn(r)&7(r,0) creates particles with distribution S€€ that the_ factofm_t) take.s the.form ofawelghtgd sum of
[24], with [A,a]=1, and|0) is the vacuum state trigonometric functions with different frequencies. Such
'(l?ﬁ(r) i i ' | ’ din B6L6 tant it "~ sums are well known from the Jaynes-Cummings model of
€ approximations empioyed in a.6) are antamount to quantum optics, which describes the interaction between a
the Hartree approximation. In general the Sclimger field

Lo i ._single-mode radiation field and a two-level atom, and give
annihilation operator can be written as a mode expansiofeq 1o the phenomenon of collapses and reviyag, and
over single-particle states as '

the same is expected here. Collapse and revivals also appear
in the relative phase between two superfluids or supercon-
H(r,0)=2 a,¢,(r)=adyr)+g(r,0), (17)  ductors[40]. Directly from the form of Eq(20) we see that

« | Fn(t)| is periodic in time with period

B. Condensate state vector

|‘I’(t)>:% aNe_iN“N”ﬁ(N!)_1/2(§1T)N|0>, (16)

where{¢,(r)} are a complete orthonormal basis set. Here in = Wﬁ/ﬂl’\‘—, (21
the last line we have chosepy(r) = ¢n(r) as one member

of the complete orthonormal set, and identifeed ay. Then  and the revivals occur with this period. The revivals result
by construction the first term in the mode expansion act$rom the fact that the sum in Eq20) is over the discrete
only on the condensate state vector, whereas the second teparticle number, so that they are a direct result of the granu-
@(r,O) accounts for the noncondensate atoms. larity of matter. The collapses depend on the choice of the
number distribution/ay|?. For our purposes we only need
the varianceAN in particle number and the assumption that
the phases are correlated enough tFg0) does not vanish
The state vectof16) may be used to calculate quantum exactly. Thenfy(t) is periodic and has a maximum in mag-
expectation values of the condensate. Of interest to us heggiyde att=t;,,. At this time the net phases for eabhare
are the one-particle reduced density matrix representing th§ch that they add most constructively in the sum in(2Q).

C. Collapses and revivals

condensate As time increases these phase relations will initially be lost
, S . , thus producing a collapse of the magnitude &f(t) —0,
pa(r.r" )= (¥ (D)[b'b[W (1)) ptr) pn(r’) until the system revives dt=t,,+ Tr. The collapse time
— , teon May be estimated by looking at the spread of frequen-
=Nay(r)enr'), (18) cies present in the wave packet for particle numbers between

N=N=AN/2, which yields AQ=2u4AN/%, and
teon=1/AQ. Gathering our results together for the collapse
and revival times we have

and the macroscopic wave function

(P(r,0)=(V(O)[b|W (1)) pr(r)=N2g(r) e~ #h Fyct),
(19 5
TN% Z‘i

2/5 _

a; — N
N*% teon™ 53N

Xa (22)

where
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In particular, if we evaluate Eq20) for a coherent state with ence pattern takes the form of a stationary spatial modulation
N>1AN=N2 we find | Fu(t)|2=exp(-t2t2,,), with t,,  of wave vectok over the spatial extemiy of the condensate

given by the equality in Eq22). Thus, a coherent state gives (We assumek|ry>1 so that an interference pattern is evi-
rise to the minimum collapse time for a Poissonian distribu-deny. However, due to the factdeFy(t)| appearing in the
tion. interference pattern it is clear that the interference will dis-
The collapse phenomenon actually occurs under far morglay the collapses and revivals predicted for the macroscopic
general conditions than reflected by the approximations use@ave function: when the macroscopic wave function col-
here, the essential ingredient being dispersion of the chemlapses and revives so does the visibility of the interference
cal potentialuy over the particle number variandeN. Lan-  pattern with the same periok .
dau damping of plasma oscillations in an electron plasma is Thus quantum interference of two condensates provides
another example of decay of a coherent state. In contrast, tf experimental signature of the predicted collapses and re-
exactly periodic revivals arise from the linear dependence o¥ivals. Furthermore, the arguments are easily extended to the
4y ON (N—N_) employed in Eq(14 ). If higher-order cor- case that poth 9ondensates display collapses and reV|\_/aIs,
rections are retained in the expansid#) the revivals are no that is two identical condensates, and the same conclusions

longer perfectly periodic, and diminish with increasing time.apply'

We also note that according to E(L8) the single-particle

reduced density matrix is insensitive to the collapse and re- F. Experimental parameters

vivals of the macroscopic wave function, which is then also  The collapse and revival times calculated for the current

the case for the atomic BEC experimefis2]. experiments are shown in columns six and seven of Table I,
S respectively. The collapse times quoted are the minimum
D. Thermodynamic limit values derived from Eq22), that is for coherent states. Here
The thermodynamic limit of these results must be takerwe see that the collapse times are all less than 1 s, and well
with care. In particular, in order to maintain a constant denWithin the condensate lifetimes of 15 s for R and 1 s for
sity as the mean particle number is increased it is necessalya [2], which suggests that collapse of the macroscopic
to concomitantly increase the linear trap size r%m/e. wave function occurs in these traps. In contrast, the'rewval
Then T-oN and t...«N¥2 so that collapse and revivals times are considerably anger. How_evefeﬁs revival time
N coll™ 2= - b i found for the strong trap in Rb is still within the condensate
become irrelevant forN—o. In addition, we find that |ifetime of 15 s quoted for that experimeft], though the
Fn(0)—e€'” by the following argument: The approximate effects of dissipation may quench the revival. In this respect,
uncertainty relationANA »~1 holds for the number and e note that the recent Rb experiméttird row) with a
phase fluctuations of the condensate. Then, apjgher trap frequency and mean particle number has a lower
AN=NY?— we haveA »—0, which is the case for a co- revival time of 3.75 s.
herent state with phase§,=N#». Thus, in the thermody-
namic limit the quantum state of the condensate approaches a |v. QUANTUM PHASE FROM MEASUREMENTS
coherent state for which we finéy(0)=¢€'7. We then have
((r,1)y=e"N¥2¢(r)e"#V" and this is precisely the
limit in which the macroscopic wave function acts as an
order paramete28].

In this section we look at the buildup of quantum coher-
ence between two Bose-Einstein condensates initially in
Fock states. Since we start from Fock states no phase is
initially assumed with a phase only established via the mea-
surement process. The system we consider was first proposed
by Javanainen and Yofl6], and consists of two Bose-

We now consider the case that the atomic BEC is interEinstein condensates which are dropped on top of one an-
fered with a second large condensate whose macroscopither. Each of the condensates consish @toms with mo-
wave function we write aexdi(k-r—ut/fi+x)]. Here  mentumk, andk, directed along the axis, respectively.
we have assumed that the second condensate is spatialyoms are detected on a screen placed below the two con-
large and write it as a plane wave with wave vedtoand  densates. A detection at some positiois represented by the
has the same chemical potential as the first for simplicityfield operator for the sum of the two condensates
We further assume that the second condensate is composed
of a large number of atoms so that collapses and revivals are . 1 . .
not an issue, the consta@tis real, andy is the arbitrary but ¥ (x)=—=(a;+ae'*™), (24)
fixed phase of the condensate. Then, when the two conden- V2
sates are made to interfere, say by dropping them on top of . .
each other, the resulting interference pattern is described Byhere$(x)=(k,—k;)X, anda; anda, are the atom annihi-

E. Interference between two condensates

the cross term lation operators for the first and second Bose-Einstein con-
densates, respectiveligee below An interference pattern is
Z(r,t)=C((r,t)e K04 gt t)elkrny generated from the two condensates because every detection
. of an atom introduces uncertainty into the atom number in
=2CNY2¢(r)| Fn(t)|cog k- r+ y—arg(Fn(t)]. each condensate since we do not know which condensate this

(23) atom came from. However, the total number in both conden-
_ sates is always known since it is just the initial total number
In the thermodynamic limit whergy(t)—¢€'” this interfer-  minus the number of detections we have observed. The un-



596 WRIGHT, WONG, COLLETT, TAN, AND WALLS 56

certainty relationship between the relative atom number and . hk ...
phase between these condensates allows us to establish a H(t)=7(a’fa)2, (30)
relative phase between them to some precision.

The effect of collisions on the establishment of quantumyhere we have dropped the subscripon the interaction
phase has been studied previoust9]. Here we extend this picture operators for simplicity in notation. In the following
work to demonstrate _collaps_es and revivals in the visibilitysactions we shall use this single-mode Hamiltonian, which is
pattern between two interfering condensates. that of a quantum anharmonic oscillator, as a model for an

individual atomic BEC.
A. Single-mode approximation A basic assumption underlying this model is that the

For the purposes of developing a model based on atomiguantum state dEscribing the condensate involves only par-
detection the full quantum-field theory involving the field ticle numbersi~N, that is the particle number remains close
operators is cumbersome. Thus, here we reduce the full profle the mean number. The single-mode Hamiltoni@0)
lem by using a mode expansion and truncating. In particulargives rise to a particle number dependent phase shift
we write the Heisenberg field annihilation operator as aXNsz:%’,u’ﬁN/ﬁ (see Sec. Y However, Eq(20) reveals

mode expansion over single-particle states as a particle number dependent phase sift=2.;N/%. The
discrepancy between these two results arises since the phase
P(r)=2, a,(el(r)=at)entr)+P(r,t), (25  shiftin the single-mode theory is an average over the spatial
o profile of the macroscopic wave function, as evidenced by
. . the overlap integral in the definition of the collision ratén
where{¢,(r)} are a complete orthonormal basis set. Here, ineq (27). This averaged value is less than the peak value of
the last line, we have chosem(r)=¢n(r) as one member ihe actual phase shift which appears in expres¢ay. In
of the complete orthonormal set, and identifeed ap. Then  the following we shall replace the factgt by 2 in the defi-
by construction the first term in the mode expansion actsition of «
only on the condensate state vector, whereas the second term

W(r,t) accounts for the noncondensate atoms. Then substi- ﬁK=2,u,'\T, (3D
tuting the mode expansion in the second-quantized Hamil-
tonian (1), retaining only the first term representing the con-so that the correct phase shift is produced by the quantum
densate, and using the Gross-Pitaevskii &), we obtain anharmonic-oscillator model. This relation provides the con-
the following single-mode quantum Hamiltonian for the con-nection between the single-mode theory parameters and
densate in the Schadinger picture: those obtained from the treatment based on the Gross-
Pitaevskii equation.
-~ A nin AKnnonn In general we shall consider two interfering condensates.
Hs=H(0)=a'aey+ TaTaTa& (260 For theith condensate described by single-mode operators
a;,a] we assign a wave vectdg, directed along the axis
where for simplicity, so that the interference between the conden-
sates can be discussed. The resulting interference pattern
would be further modulated by the detailed spatial structure
ﬁK:UoJ dr| i, (27)  of each condensate, as determined by the solution of the
Gross-Pitaevskii equation, but this is of secondary impor-
’ tance and we do not discuss it here. In general, we assume

which using Eq(13) yields# k= 2u-, k being the collision ) : L ;
gEalldyy AT 9 . that any interference is well resolved within the spatial extent
rate between condensate atoms. The first term on the right:

hand side, which gives rise to an energy shift, is the numberf the condensates.

operatora’a times the single-particle contribution to the en-

. B. Effect of collisions
ergy per particle,

The effect of collisions can be numerically simulated via
a Monte Carlo wave function method. The Monte Carlo

' (28 method is used to simulate both the detection process of rate
v (as quantum jumpsand the time evolutions between de-

whereas the second term accounts for many-body interaé‘-acnonS (as evolution of the wave function between the

tions. To proceed we introduce an interaction picture defineéu,mpg' The initial Fock state, sain,n), become's an expan-
by the transformation sion ofm+1 entangled Fock states aftardetections. Let us

write the state vector aften detections as

hz 2 2
ex= | d| o Vst VD) g

U A _ﬁaU(t) . m
H ()=U'(1) Hs—i at u(n), |¢m>:k§=:o Ck|n—m+k,n—k>, (32)
O(t)=e i(eN—fwi2a"auh, (29 which is normalized so thak|c,|?=1. The effects of the

collisions are included in the time evolution operator for the
which yields the single-mode Hamiltonian two condensates
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A s ik asn nin
u(t>=e'<H1*H2>“ﬁ=exp( - l(alay+ (@A) 7
0.5

(33
with F; the Hamiltonian for theéth condensate. Thus after % ootz 000+ 006 o000 001 oot
m detections we have prepared a statg) which then ex- £
periences the above evolution operator for a tinfiellowed 2
by a further detection. The conditional visibility of this de-  §*°
tection is H . .
0 1 2 3 4 5 8 7

P(X|X1, -+« o X 0) @l U (T T )T OUL) | o).
(34)

)

0.5
The expectation value for the total number operator is

0 L L s L ) L L . L
6.436 6437 6438 6439 644 6441 6442 6.443 6.444 6445 6.446

(omll'(t)(alay+aja)it(t) | omy=2n—m, (35 dime [14]

and, as expected, it is just the total initial number of atoms FIG. 1. The top graph shows the growth in the conditional vis-
minus the number of detections. The expectation value of th#ility as a function of time corresponding to 100 atomic detections.

cross term which gives the size of the conditional visibility is The middle displays the collapse and revivals of this conditional
visibility when the detection process is turned off and the bottom

((pm|Z:{T(t)éTéZZ:{(t) | Om) gl ¢(x) graph shows the _growth of this visibility when the_ detection process
1
is turned on again. The total number of atoms in the two conden-
m sates was 10 000 and we have used a collision to detection rate ratio
_ k}_:l CE Ck,lx/(n— k+1)(n—m+k) of one (k=) for the initial and final detection periods.

. _ . The visibility of the interference pattern is therefore deter-
xexplixt[2k—(m+1)+ig(x) ]} (36 mined from a weighted sum over cosines of differing fre-

Putting Eds. into Eq. (34 tai quencies. These frequencies depend on the parity of the ex-
utting Eqs.(35) and (36) into Eq. (34) we obtain pression enclosed by the round brackets;-2n—1. When

m this is odd (M is even the frequencies are
P(X|X1, . . . Xm,t)ocn—m/2+ E A(k)cog ¢(x) {1-m,...,—3,-1,13,... m—1} whereas when it is
k=1 even (m is odd they are{1-m,...,—2,0,2,... m—1}.
+xt(2k—m—1)—0,], (37) In both cases the revival period of the visibility is
where we have defined the phadg from the coefficients of P
the state vector asf ¢, =Ae "' ®k and the weighting func- T=—=_ (40
tion A is 26N
A=A/ (n—k+1)(n—m+k). (38 \with N=n. This revival period is precisely half that obtained

We take®, outside the summation since it is defined as the?>suming Bose broken symmetry in Sec. Ill, and this differ-

relative phase between neighboring number states which We\r/]gﬁ igﬁﬂatt)(\a/vteaﬁzceug slrllrﬁeo?/'e\r/.oggrfrteheugﬁziees\;,v?:;ecosine
will assume to be fairly constant for large. As we detect q '

more and more atoms the resulting entangled state aég—:rm in Eq.(39) alternates between plus or minus 1 at sub-

proaches something that resembles a coherent state where %equ.em reV|v?It tmtﬁ_s. Slltnce tthe \."S'b'“rt]y IS by_ d?;mnmn a
elatveprase btween neghborng umber sk - [0S LAY 85 Lerele S Shenee 1 e cosie
ber state basjss identical to the phase of this state. Let this alternatlzz revivals P p

fairly constant relative phase be denoted@swhich is a For collision to.detection rate ratio of one we expect from
good estimate of the relative phase between the two conde%- 40 iod ofr when time i di Ft) fth
sates. By expanding the cosine terms in 8Y) to separate q.(40) a period ofw when time is measured in units of the
the time dependence from the phase terms, and noting th

;Lﬂverse detection ratg. This agrees very well to the collapse
the resulting summation over sine functions vanishes due t nd revival period displayed in the middie graph of i)
the cancellation of positive and negative frequency compo-

his figure and ther phase shift will be explained in detalil
nents, we obtain in Sec. V.

m C. Numerical results
P(X|X1, ... Xm,t)xn—m/2+ > AK) _ _ _ o
k=1 In a numerical simulation the effects of collisions between

subsequent detections can be easily modeled with the use of
xco4(2k—m=1)kt]cog ¢(x) ~O]. the Monte Carlo wave-function methdd1]. We use the
(39 following effective Hamiltonian:
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. RK i o mpn o ARY ain The cleanliness and exhibition of full revivals in the
Herr=— [(a181)"+ (8282)°] — 5~ (11 + @33,), middle graph of Fig. 1 can be understood by noticing that the
(41) two condensate system is a closed system loss mecha-
nism) undergoing coherent evolution. The state vector after
where the detection and collision rates arand «, respec- the initial sequence of detections is an expansion of en-
tively. The detections are then turned off and the systeniangled number states. The effect of collisions during the
undergoes coherent evolution by the Hamiltonian coherent evolution is to rotate the phase of the coefficients of
each entangled state by an amount proportional to the sum of
N Tk the squares of the number of atoms in each condensate. Thus
H=—-[(a121)"+ (az82)°"]. (42 the phase of the coefficients of this state vector rotate at
differing frequencies.
We have modeled the collisions that occur only between the So far we have shown collapses and revivals in the con-
atoms of the same condensate. A cross-collision ternglitional visibility of the interference pattern. For something

(51515552) between the condensates is not included. Thdnore relevant to an experimental situation we would like to

size of the coefficient of this term depends on the physicaloc’k at variables associated with the actual observed inter-
geometry of the situatiorthe overlap of the two conden- '€"€nce patterns. The phase shift of an interference pattern is
sate$ ranging from zero toh k. Setting this coefficient to a direct measure of the relative phase established between

zero we are taking the worst case scenario where the effectd® two condensates. Thus, let us consider the following pro-

of the collisions are the strongest. Alternatively, setting thec®dure: Firstly, we prepare a state vector of the two conden-

cross-collision term td k completes the square in the Hamil- sates with an established relative phase via measurements,

tonian so that the subsequent evolution depends only on tfd'd consider this entangled state between the two conden-
total atom number. The effect of the collisions would then beSat€S after the detections to be our initial state which pos-
ceSses some degree of coherence. This state is then allowed
il undergo coherent evolution with no detections, and finally
we turn on the measurement process after an elapsed time

In each run of the numerical simulation the state vector"’lnd collect our gecond sequence of'measurements.,. The phase
experiences three different regimes. Initially a sequence off (e resulting interference pattern is calculated with respect
detections are accumulated to prepare the entangled staf8,the Phase of the interference pattern we observed previ-
after which the detections are turned off. During the coheren?USIy from th? .ﬂ.rst sequence of measurements. Now we
evolution stage free of detections, the conditional visibility reprepare the initial state and repeat thq second sequence of
undergoes collapses and revivals due to collisions. Finauweasyrements .and subsequgnt calculation O.f phase. Repeat-
the detections are turned on again. If the detections art'9 this many times we obtain a set of relative phases _be-
turned on when the visibility is zero, during a collapse, it is Ween the first and second set of measurements, the idea

quickly reestablished by the second sequence of detectiongfamg that if the time elapsed between the wo detection re-

If, however, the detections are turned on when the visibilityd'MeS corresponds to some multiple of the full revival time

is in a revival phase the visibility starts from this nonzerothen this set of relative phases should be sharply peaked.at

value and then quickly increases to one. This behavior i&Ero- For other elapsed times we may expect to see partial
; & vivals. We do not need to numerically calculat_e the _coher-

faster rate than the collapse and revivals, and we thus grarﬁ’{]t ?VOM'O” bgt.what we need from the numerical simula-

the single run on three separate sets of axes: The top grapf" iS the coefficients of the prepared stptg,). Its coher-

shows the initial growth of the conditional visibility due to ent evolution due to the Hamiltoniahi describing the

the detections of atoms from the condensates, and the visibi¢ollisions previously given by Eq42) is

ity quickly increases to a value close to unity after 100 atoms o~

are detectedn these simulations the total number of atoms | #m(t))=exp(—iHt/%)|em)

is 1P and 200 atomic detections are made, so the assumption

ence between the individual entangled number states wou
be preserved.

underlying the quantum anharmonic-oscillator model that the = exp{ _! K[n2+ (n— m)Z]t

mean number of atoms varies little is well obeyetdhe 2

middle graph shows what happens to the visibility once the m

detection process is turned off and the state vector undergoes X > cxexp(—i k[ — mk+k2]t)|n—m+k,n—Kk).
coherent evolution due to the Hamiltonian in E42), and k=0

collapses and revivals of the visibility are clearly evident. (43)

This behavior is reminiscent of the collapses and revivals in

the Jaynes-Cummings model of quantum optics for a twoWe use the phase eigenstates for the atom number difference
photon process which also displays the periodic revivals obetween the two condensates

Fig. 1. The bottom graph displays the subsequent evolution )

of the visibility when the detection process is turned on PE exp{—l—(n “ny)d
again. Due to the collapses and revivals during the coherent Ny, 2Vt 2
evolution, the initial visibility for the final stage depends on

the time at which the detections are reinitiated. Whatever thavhich has a factor of one-half in the exponential since the
initial visibility, this second detection proceeds very rapidly state|¢,,) has a fixed total atom number oh2 m so that

to increase the visibility to a value close to unity. the atom number differenca&{—n,) is quantized in units of

|n11n2>1 (44)
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FIG. 2. Plot of the phase distribution when the number of de- FIG. 3. Plot of the phase distribution when the number of de-
tections (n) is even as a function of the turning on time. The phasetections (n) is odd as a function of the turning on time. The entire
is the relative phase between the first and second sequence of mgdet is shown in(a) with a zoomed in plot between 0.2—0.5 times
surements in units of radians while the turning on time is in units ofdisplayed in(b).
the revival period. The brightness of a region corresponds to the
relative probability of obtaining a particular phase for a particularévolved for one revival period we obtain a sharp peakrat
turning on time. The bright regions denotes peaks while the darkefadians corresponding to the first revival time withphase
ones correspond to valleys. The entire plot is showgajrwith a  shift due to detecting an even number of atoms described in
zoomed in plot between 0.2—-0.5 times displayedbin the preceding section. The second revival occurs at a phase

difference of zero radians as predicted. Away from these
2. Thus this factor is required so thatis the relative phase revival times, the phase distribution is not flat but displays
between the condensates. The probability distribution of thenany partial revivals. Figure(B) is a zoomed in view of

phase¢ after elapsed time is Fig. 2(a) between 0.2 and 0.5 revival periods, we can clearly
see the partial revival at 0.2 which consists of five peaks. In

m 2 fact we see partial revivals at every integer fraction of a

(bl em()|?= kEO ckexp(—i[k(k—m)xt+2k¢])’ . revival period provided the resolution is good enough. We

illustrate this by labeling to the left of the graph with the
(45 appropriate integer fractions corresponding to the particular
) o ) ) partial revival. Figure 3 shows the distribution for the other
This probability is a function of two variables, phase andcase where the number of detections is odd. As predicted
elapsed time, and is evaluated numerically. We display thehere is now phase shifts. Again, we see partial revivals

probability distributions in “birds-eye” plots via the “im- \yhen we zoom in between 0.2 and 0.5 revival periods as
age” command usingvwATLAB. Figure 2a) displays the  ghown in Fig. 3b).

probability distribution when we have made an even number

of detections n even. The white_ regions denotes the peaks V. QUANTUM OSCILLATOR MODEL

with the black ones 'correspondlng to the vglleys. We see a WITH BROKEN SYMMETRY

sharp peak at zero time about zero phase difference between

the two interference patterns, this is not surprising since no We will show in this brief section that collapses and re-
coherent evolution has occurred. By the time we havevivals also arise for the quantum anharmonic-oscillator
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model for initial coherent states instead of preparing an enThe characteristics of collapses and revivals can be clearly
tangled state from an initial detection process. In the lanseen in Eq(52). Revivals occur at timet=27n/« (where
guage of the preceding section we are considering the inter is an integer with the shape of the collapses described by
ference between two coherent states including the effects @he exponential term wheneverlis no longer a multiple of
collisions. Thus we treat the Bose-Einstein condensates &sr/«. The period of these revivals is
coherent states, analogous to the treatment in Sec. Ill, impos-
ing on them a relative phase whereas previously we establish 27 wh
this phase via measurements. T= K (53

The Hamiltonian for the two condensates is Y

12 which is identical to Eq(21) with N=|«/|2. This gives twice
H==> # k(ala;)?, (46)  the period of the previous case of revivals from a detection
i=1 procesgsee Eq.(40)], even though we have used identical
Hamiltonians. This difference arises because we have two
independent coherent states here whereas in the case of de-
tecting atoms from two initial Fock states the total atom
4 1 number is always fixed at the initial total number minus the
i_ 2 _x ATANA number of atomic detections. This additional constraint on
dt % [ai,H]= 2i (1+2a78)a;. “7 the total number means that the difference atom number op-
) erator inside the exponential in EGO) is quantized in units
By inspection the time dependence of tgeoperator is of 2. The above expression for the period is only applicable
when we are free to superpose total atom numbers, as in the
case of two coherent states for which the difference atom
number operator is quantized in units of 1. This gives a fac-
tor of 2 difference in the revival times between assuming an
which yields the Heisenberg picture field operator for theinitial relative phase and establishing this phase in the dy-
sum of the two modes namics of the revivals. The visibility, as described by Eq.
(52), smoothly drops to its minimal value halfway between
subsequent revivals, exactly where the state induced by de-

giving the Heisenberg equation of motion for each field an
nihilation operator

a;, (48

éi(t):eX[{_ Iz(l'i‘ Zéfél)xt

A 1{ p[ i
P (t)= —ex —§(1+2alal)xt

2 & tection would have an additional revival.
[ Apa ~ VI. SUMMARY AND CONCLUSIONS
+ex —§(1+2a2a2);<t a |, (49
In this paper we have shown that within the approxima-

where we have suppressed the spatial dependence. Tlif(s)n of Bose broken symmetry the macroscopic wave func-

yields the operator for the intensity of the atomic pattern aS[|on in small atomic samples exhibits collapse and revivals in
ime while the BEC is maintained in the form of ODLRO.

For current experiments the collapse time is a second or less.
The revival time is longer but our results show that it may
+H.cl. (500 still fall within the condensate lifetime for some experiments.

To detect the collapses and revivals experimentally a scheme

Thus, if we define the initial coherent states|a$ and|8)  is required which is sensitive to the macroscopic wave func-

for the modesa,and a,, respectively, the intensity is evalu- tion directly, and this does not seem to be the case for the

it W(t)=1{ala,; +ala,+alexdi(ala,—ala,)kt]a,

ated to be coherent light scattering methods previously discugd@d-
45]. However, Imamoly and Kennedy46] and Javanainen
Ioc<a,,8|‘i”(t)‘i'(t)|a,ﬁ) [47] have recently proposed light scattering schemes involv-
ing two independent condensates coupled by a common ex-
= H|al?+|B|%+ o* Bexd (e''— 1) | a|? cited state. These schemes rely on the fact that when one

condensate is driven optically the light scattered from the

—ikt 2 —ikt 2
+(eT M =1)|BI*]+ 8" aexd (e7~1)|a] other condensate has a nonzero value of the electric field and

+(e*—1)| 8|21}, (51) a phase proportional to the relative phase of the two conden-
sates. By driving both wells and adjusting the phase differ-

with the aid of the following identity42]: ence of the fields the scattering can be suppressed via quan-
tum interference, and this in turn determines the phase

<a|efxa*a| ay=exqg (e *—1)|al?]. difference between the two condensates. The scattering is

therefore sensitive to Bose broken gauge symmetry. In addi-
In the case of maximum visibility of the interference patterntion, the light-scattering rate is proportional to the magnitude
we need the modes to be equal in amplitude, thus we sé&f the macroscopic wave function, so these schemes could be
B= ae”'? where ¢ is the phase difference between the used to detect the collapses and revivals experimentally. Al-
modes. Substituting this into E¢61) we obtain ternatively, as we have shown here, a direct measurement of
the collapse and revivals in the visibility of the interference
loc| |?{1+ exd 2| a|?(cosct — 1) Jcosp}. (520  between two condensates can be made.
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In a second approach we have also studied the establissurement process is turned off. Accurate predictions of the
ment of a relative phase between two interfering condensatgseriod of these collapses and revivals were obtained. The
using the explicit measurement model first proposed by Jawimple anharmonic model of interference between two con-
anainen and Yo@16]. This model is free from any assump- densates also displays collapses and revivals. The period of
tions concerning Bose broken symmetry or the thermodythese revivals is twice the time required for the previous case
namic limit, and is therefore applicable to small atomicsince we have neglected the constraint of the total atom num-
samples. In this case we consider the two interfering conderber being fixed.
sates to be in number states initially, an extreme example for
which there is no relative phase before atomic detections.

These condensates are then prepared into an entangled state

vector composed of entangled number eigenstates via the Dan Walls acknowledges support from the Office of Na-
measurement process. The effects of collisions in the timgal Research, the New Zealand Foundation for Research Sci-
evolution is to rotate the phases of the individual entangle@&nce and Technology, and the Marsden Fund. Useful discus-
eigenstates of the state vector. We observe the collapse asibns with S. Barnett, K. Burnett, and J. C. Garrison are
revivals of this state under coherent evolution when the meaappreciated.
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