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Excitation spectroscopy of vortex states in dilute Bose-Einstein condensed gases
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We apply linear-response analysis to the Gross-Pitaevskii equation to obtain the excitation frequencies of a
Bose-Einstein condensate in a vortex state, and apply it to a system of rubidium atoms confined in a time-
averaged orbiting potential trap. The excitation frequencies of a vortex differ significantly from those of the
ground state, and may therefore be used to obtain a spectroscopic signature of the presence of a vortex state.
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The recent attainment of quantum degeneracy conditionsantly from that of the ground state. We thus propose exci-
in magnetically trapped, dilute alkali-metal vapdis-4] has tation spectroscopy as a sensitive technique for detecting the
opened an avenue for studying the many-body physics gbresence of vortices.

Bose-Einstein condensatéBECS in unprecedented detail. The basic framework of our method is mean-field theory
Recent experiments have mapped out many of the basi&s described by the Gross-Pitaeve&P) formalism[10,11]
properties of alkali-metal BECs: the critical temperatlige  for a condensate of a dilute Bose gas at temperafu®.

[4], the temperature dependence of the condensate fractidgpurrent experimental BEC atomic physics appears to be
No/N [4], the contribution of particle interactions to the in- practiced in a regime where this formalism is applicable: the
ternal energy(i.e., departures from ideal-gas behayipt], = gases are very tenuous, and a nearly pure conde(wsate-
and the energies of low-lying excitatiofs,6]. sponding toT very near zerpcan be produced by the tech-

There remain many aspects o€l4ssical” superfluid be- nique of evaporative coolind1,3,4. Calculations done
havior that have not yet been encountered in the atomiwithin the GP framework yield good agreement with experi-
BECs. The one we discuss in this paper is the generation gfent concerning condensate shapes and 4izg512,13,
vortices, which to our knowledge have not yet been observednd give ground-state condensate excitation frequencies
in trapped gases. Recent theoretical investigations of axiallyithin about 5% of experimental valu¢s,6,14.
symmetric harmonic traps have identified vortex states of We begin with the time-independent treatment of conden-
condensates which have sharp values of the azimuthal corsate eigenfunctions using the Gross-Pitaevskibnlinear
ponentm of the angular momenturfv —9]. Rotation of the  Schralingep equation, and then calculate the excitation
trap at a critical frequency.;;, which is of the order of the ~spectrum using the method of Bogoliubfis], which was
harmonic trap frequency, should force the condensate into used by Pitaevskii to examine excitations about vortices in a
the vortex stat¢7—9]. Detection of this state by current im- homogeneous g449], and has been adapted to treat trapped
aging techniques is complicated by present magnet geonBose condensatg44,16-18.
etries, which constrain viewing of a condensate to be done The specific calculations reported here are done for a sys-
more or less perpendicular to the trap symmetry gheve- tem of 8Rb atoms confined in the time-averaged orbiting
after thez axis). Most schemes acquire images of the con-potential(TOP) trap currently in use at JILA20].
densate density integrated along the line of sight, and the In the GP formalism the interaction between atoms is ap-
integrated density of a vortex state perpendicular to the traproximated by the pseudopotential(r,r')=Uq8(r—r’"),
axis is not much different from that of the condensate groundvhere Uo=4x#?a/M, with M being the atomic mass and
state. In this paper we calculate the mechanical excitatio@ the scattering length that characterizes low-energy atomic
spectrum of a vortex state, and find that it differs signifi-collisions. For the triplet Born-Oppenheimer potential of

87Rb, that describes collisions in the JILA trap, the current
best estimatg21] of a is 110, wherea, is the Bohr radius.
*Also at Physics Laboratory, National Institute of Standards andrl'his value is used in the present paper. The trapping poten-
Technology, Technology Administration, U.S. Department of Com-tial takes the fornV,,{(r) =M (w§p2+ wiZZ)IZ, in the cylin-
merce, Gaithersburg, MD 20899. drical coordinates appropriate to the TOP trap. For this trap,
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the axial and radial frequencies are always in the same ratio, 6

I e 2
0l w,= J8: it is convenient to characterize the trap by the a1 /% [\ 188 :ﬁ'@
single parametew,=w,/2m, the value of which is often 2 no
stated explicitly in experimental papers. In this paper we use % 4
v, = 74 Hz. &
The time-independent GP equation that describes the con- S
densate wave functior(r) thus takes the form %2
12 3
(‘ 2™ V2+vtrap(r>+Nouolw<r>lz) Y= py(r), (1) 0 b

where Nj is the average number of condensate atoms and o
w is the chemical potential, which is treated as an eigen- FIG. 1. The dashed line is a plot of 10Q(r)|? for the lowest

value; the normalization condition energy excitation and the dotted line shows [LQQr)|2, where the
factor of 100 is an arbitrary scaling factor used for plotting conve-

nience. The solid line shows a plot of the spatial distribution of the
f dr|y(r)|?=1 (2) k=1 vortex number densityyy(r). In this plot Ny=4939 atoms,
andv,=74 Hz for a TOP trap.

is implied. The form of Eq(1) is consistent with the exis-

tence of solutions wheref(r) is the spatially dependent amplitude of the per-

turbation. We solve this equation in the linear-response limit.
The details of this approach are described elsewh&8é

&) and we simply state the central results here. By using the
form

eim¢
P(r)=y¢"™(p,2) Nz

that are eigenfunctionéwith eigenvaluesim) of the azi- W(r,t)=e"HINGZY(r) +u(r)e” P+ o* (r)elr']
muthal angular momentum operathy. Previous work on ®)
this system{7-9,12,13 has identified a solution witim=0
as the condensate ground state, and those|wifts 1 as the
lowest vortex solutions. 2 _ 1/2

As discussed elsewhef22], we solve Eq(1) by “grow- (£~ frap)u(r)+NoUol ¢ o (1) No™H(r) ¢(r). (6)
ing” a condensate up from the noninteracting case
(Uy=0), in which the solution is given by harmonic oscil- NoU o[ #* (N ]2u(r) + (L + A wy)o(r)= _Nl/zf(r)¢*(r)
lator wave functions. The growth process may be visualized P 0 ('7)
as a gradual turning-on of the interaction strengdthor as a
gradual increase in the number of condensate atdgshe  where £L=Hy— u+ 2NoU,| ()|
two pictures are equivalent for this purpose, sifg and This pair of equations can be solved in a general way by
U, appear in the equations of motion only through the prodexpanding the condensate response in normal modes of os-
uct NoU,. In the noninteracting casen is a good quantum cillation, which are obtained by solving the Bogoliubov
number, and it is preserved during the growth process. Wequations,
start with {™(p,z) as an eigenfunction of the axially sym-

we obtain Eq(1) and also the linear-response equations,

metric three-dimensional harmonic oscillator with quantum (L=t wy)uy(r)+NoUo[ ¢(r)]?v,(r)=0, (8
numbersm, the numbem, of nodes inz, and the number
n, of nodes in the cylindrical radial coordingte The lowest NoUo[#* (r)]2uy(r) + (L+Awy)v,(r)=0, (9

vortex state witm=1 hasn,=n,=0; the number of nodes
in p andz is also found to be conserved during the growthWherew, is an eigenvalue and,(r), v,(r) are correspond-
process. Our general representation/8 (p,z) is as a lin-  INg eigenfunctions. We require that,(r) and v,(r) be
ear combination of oscillator eigenfunctions, and a set ofquare integrable and satisfy the conventional normalization
nonlinear equations is solved iteratively to determine the cocondition
efficients at each value ®yU,. A cross section of the den-
sity of the vortex solution is shown in Fig. 1. 2_ 29_

With the solution of the time-independent GP equation in f drlju(*=lox(DIF=1. (19
hand, we calculate the response of the condensate to a weak . o
oscillatory perturbation by standard linear-response theoryVith this condition in force, the condensate response to an

[23]. The associated time-dependent driven GP equatioﬁrbitrary driverf(r) is obtained by a superposition of normal
takes the form modes[ 18],

: (11)

u(r)) . 9 (uA(r)

o(N] " & (o, —w,) |vA(r)

v A
'ﬁW:[H(ﬁ— Uo| W (r,t)|2+f(r)e ot

+f*(r)e' ¥ (r,t), (4  where the amplitudeg, are obtained by quadrature:
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-
(4]
T

gx:Né/ZJ dri(O)[g(nu (N +¢*(NoFn]. (12

Two key qualitative aspects of condensate excitation are
implied by Egs.(11) and (12). First, from Eq.(11), the re-
sponse is largest when the driving frequengyis equal to a
normal-mode frequency, (the apparent divergence in this
response, as in the case of a driven classical oscillator, is due
to the neglect of damping in this treatmgr$econd, Eq(12)
implies selection rules for a given drivé(r), associated T z
with symmetries of the solutions of Eq®) and (9). In par- No (10° atoms)
ticular, if ¢(r) is given by Eq.(3), then it is straightforward
to show that the normal modes will have specific angular F|G. 2. Normal-mode excitation frequencies, of the vortex
momentum composition, in the following senseuif(r) is  state in the TOP trap vs number &iRb condensate atond,, in
an eigenfunction of, with a particular eigenvaluen, (in units of the trap frequency,, . Labels indicate the angular momen-
units of#), theno, (r) will be an eigenfunction with eigen- tum quantum numbem, of theu, component of the normal-mode
valuem,—2m. It is appropriate to think of a normal mode as eigenfunction, as described in the text. There are two degenerate
a quasiparticle moving in an effective potential created byfrequencies aw,=w,, for all values ofN,, which correspond to
the condensate, and fox, as being created by scattering of rigid oscillations of the vortex center of mass in the trap.

u, by the condensate. Fon=0, the condensate has axial
symmetry, and the normal modes thus have definite valu
m, of the angular momentum; fan#0, the condensate is

not axially symmetric, and the componauyt (with angular 040 This frequency vanishes in the noninteracting limit,

momentu;nmu) IIS shcattered mto)kd(v_\/lthhgngular momerr:- due to them degeneracy of the cylindrical harmonic oscilla-
tuT m,—2m). n.”tle Cﬁsﬁ treate Im this papehr, Wel aV(fetor; its nonzero value elsewhere results directly from inter-
m=1, and we will label the normal modes by the value of 5tions of the quasiparticle with the condensate. While the

m, that corresponds to the componemi. ThUs, @ fgure shows only positive frequencies, the lowest=2
breathing-mode” driver, such as was applied to the ground, ;s mode would conventionally have a negative fre-
state of the condensate in REB], will result here in excita- quency, and energy; we plot the equivaldntw,v*,u*}

tion of m,=1; a dipole driver, upon which we comment n,,qe " \which has a positive frequency. This mode corre-
below, yieldsm,=0 and 2; and a quadrupole driver, also g,,nqs to placing atoms into the unoccupied ground state.
used in Ref[S], givesm,=—1 and 3. ) It is worth noting that the frequency spectrum in Fig. 2 is
We have solved Eqs8) and (9) by an extension of the 5 jicaple to a wide range of TOP-trap geometries. Solutions
technique used in Ref14], in which uy andv, are ex-  of Egs (8) and (9), subject to the constraint of E10),

panded in trap eigenfunctions of appropriate symmetry, iy 1o all TOP-trap geometries for which the parameter
obtain a system of linear eigenvalue equations. Figure 1 de-

picts s along withu, andv, as computed for the lowest y=Noa(Mv,)*2 (13
normal mode, which has,= 2, and would therefore be gen-
erated from the vortex condensate by a dipole excitatio
(e.g., oscillatory displacement of the center of the {rdjne

s- andd-wave characteristics ef, andu, , respectively, are
apparent in the figure. An important property of this normal
mode, which differs from all cases we have encountered i
excitation ofm=0, is that its frequencw, is lessthan the

-
o
T

o
&)
T

Excitation frequency (trap units)

o
=)
T

densate are nearby. In addition to tmg=2 mode just de-
e§cribed, there is then,= —1 mode, which could be excited
by a quadrupole rotation in the senggpositeto that of the

rgemains invarian{14]. This scaling law makes excitation
spectroscopy a particularly effective tool for diagnosing the
presence of vortex condensates.

| In conclusion, we have calculated the excitation spectrum
ﬁ)f vortex states of dilute Bose-Einstein condensates, in the
linear-response regime. These spectra are sufficiently differ-

. . ent from those for ground state excitation that they may pro-
trap frequencyw,, . The eigenfrequency of the lowest dipole vide useful diagnostics of the presence of vortices in trapped

mode form=0, on the other hand, is identical to the trap atom systems
frequency; that mode describes the rigid oscillation of the '
center of mass of the condensate ground state. We would like to thank E. A. Cornell and D. S. Jin for
The dependence of normal mode frequencies Uggis  enlightening conversations. This work was partly supported
depicted in Fig. 2. It shows two candidates for excitation byby National Science Foundation Grants No. PHY-9601261
dipole or quadrupole driving that have distinctive spectraland No. PHY-9612728, and by the United Kingdom Engi-
signatures, in that no excitation frequencies ofrie0 con-  neering and Physical Sciences Research Council.
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