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Excitation spectroscopy of vortex states in dilute Bose-Einstein condensed gases
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We apply linear-response analysis to the Gross-Pitaevskii equation to obtain the excitation frequencies of a
Bose-Einstein condensate in a vortex state, and apply it to a system of rubidium atoms confined in a time-
averaged orbiting potential trap. The excitation frequencies of a vortex differ significantly from those of the
ground state, and may therefore be used to obtain a spectroscopic signature of the presence of a vortex state.
@S1050-2947~97!03607-X#

PACS number~s!: 03.75.Fi, 67.40.Db, 67.90.1z
ion

l.
as

ct
-

m
n
ve
ia
o
o

to
-
om
on

n
th
tra
n
tio
ifi

ci-
the

ry

be
the

-

ri-

cies

en-

on

n a
ed

sys-
ng

ap-

d
mic
of
nt

ten-

ap,

n
m

The recent attainment of quantum degeneracy condit
in magnetically trapped, dilute alkali-metal vapors@1–4# has
opened an avenue for studying the many-body physics
Bose-Einstein condensates~BECs! in unprecedented detai
Recent experiments have mapped out many of the b
properties of alkali-metal BECs: the critical temperatureTc
@4#, the temperature dependence of the condensate fra
N0 /N @4#, the contribution of particle interactions to the in
ternal energy~i.e., departures from ideal-gas behavior! @4#,
and the energies of low-lying excitations@5,6#.

There remain many aspects of ‘‘`classical’’ superfluid be-
havior that have not yet been encountered in the ato
BECs. The one we discuss in this paper is the generatio
vortices, which to our knowledge have not yet been obser
in trapped gases. Recent theoretical investigations of ax
symmetric harmonic traps have identified vortex states
condensates which have sharp values of the azimuthal c
ponentm of the angular momentum@7–9#. Rotation of the
trap at a critical frequencyvcrit , which is of the order of the
harmonic trap frequencyv, should force the condensate in
the vortex state@7–9#. Detection of this state by current im
aging techniques is complicated by present magnet ge
etries, which constrain viewing of a condensate to be d
more or less perpendicular to the trap symmetry axis~here-
after thez axis!. Most schemes acquire images of the co
densate density integrated along the line of sight, and
integrated density of a vortex state perpendicular to the
axis is not much different from that of the condensate grou
state. In this paper we calculate the mechanical excita
spectrum of a vortex state, and find that it differs sign
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cantly from that of the ground state. We thus propose ex
tation spectroscopy as a sensitive technique for detecting
presence of vortices.

The basic framework of our method is mean-field theo
as described by the Gross-Pitaevski~GP! formalism @10,11#
for a condensate of a dilute Bose gas at temperatureT50.
Current experimental BEC atomic physics appears to
practiced in a regime where this formalism is applicable:
gases are very tenuous, and a nearly pure condensate~corre-
sponding toT very near zero! can be produced by the tech
nique of evaporative cooling@1,3,4#. Calculations done
within the GP framework yield good agreement with expe
ment concerning condensate shapes and sizes@7,8,12,13#,
and give ground-state condensate excitation frequen
within about 5% of experimental values@5,6,14#.

We begin with the time-independent treatment of cond
sate eigenfunctions using the Gross-Pitaevskii~nonlinear
Schrödinger! equation, and then calculate the excitati
spectrum using the method of Bogoliubov@15#, which was
used by Pitaevskii to examine excitations about vortices i
homogeneous gas@19#, and has been adapted to treat trapp
Bose condensates@14,16–18#.

The specific calculations reported here are done for a
tem of 87Rb atoms confined in the time-averaged orbiti
potential~TOP! trap currently in use at JILA@20#.

In the GP formalism the interaction between atoms is
proximated by the pseudopotential,V(r ,r 8)5U0d(r2r 8),
whereU054p\2a/M , with M being the atomic mass an
a the scattering length that characterizes low-energy ato
collisions. For the triplet Born-Oppenheimer potential
87Rb2 that describes collisions in the JILA trap, the curre
best estimate@21# of a is 110a0, wherea0 is the Bohr radius.
This value is used in the present paper. The trapping po
tial takes the formVtrap(r )5M (vr

2r21vz
2z2)/2, in the cylin-

drical coordinates appropriate to the TOP trap. For this tr
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the axial and radial frequencies are always in the same r
vz /vr5A8; it is convenient to characterize the trap by t
single parameternr5vr/2p, the value of which is often
stated explicitly in experimental papers. In this paper we
nr 5 74 Hz.

The time-independent GP equation that describes the
densate wave functionc(r ) thus takes the form

S 2
\2

2M
¹21Vtrap~r !1N0U0uc~r !u2Dc~r !5mc~r !, ~1!

whereN0 is the average number of condensate atoms
m is the chemical potential, which is treated as an eig
value; the normalization condition

E dr uc~r !u251 ~2!

is implied. The form of Eq.~1! is consistent with the exis
tence of solutions

c~r !5c~m!~r,z!
eimf

A2p
~3!

that are eigenfunctions~with eigenvalues\m) of the azi-
muthal angular momentum operatorl z . Previous work on
this system@7–9,12,13# has identified a solution withm50
as the condensate ground state, and those withumu51 as the
lowest vortex solutions.

As discussed elsewhere@22#, we solve Eq.~1! by ‘‘grow-
ing’’ a condensate up from the noninteracting ca
(U050), in which the solution is given by harmonic osc
lator wave functions. The growth process may be visuali
as a gradual turning-on of the interaction strengthU0 or as a
gradual increase in the number of condensate atomsN0; the
two pictures are equivalent for this purpose, sinceN0 and
U0 appear in the equations of motion only through the pr
uct N0U0. In the noninteracting case,m is a good quantum
number, and it is preserved during the growth process.
start withc (m)(r,z) as an eigenfunction of the axially sym
metric three-dimensional harmonic oscillator with quantu
numbersm, the numbernz of nodes inz, and the number
nr of nodes in the cylindrical radial coordinater. The lowest
vortex state withm51 hasnz5nr50; the number of nodes
in r andz is also found to be conserved during the grow
process. Our general representation ofc (m)(r,z) is as a lin-
ear combination of oscillator eigenfunctions, and a set
nonlinear equations is solved iteratively to determine the
efficients at each value ofN0U0. A cross section of the den
sity of the vortex solution is shown in Fig. 1.

With the solution of the time-independent GP equation
hand, we calculate the response of the condensate to a
oscillatory perturbation by standard linear-response the
@23#. The associated time-dependent driven GP equa
takes the form

i\
]C

]t
5@H01U0uC~r ,t !u21 f ~r !e2 ivpt

1 f * ~r !eivpt#C~r ,t !, ~4!
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where f (r ) is the spatially dependent amplitude of the pe
turbation. We solve this equation in the linear-response lim
The details of this approach are described elsewhere@18#,
and we simply state the central results here. By using
form

C~r ,t !5e2 imt/\@N0
1/2c~r !1u~r !e2 ivpt1v* ~r !eivpt#

~5!

we obtain Eq.~1! and also the linear-response equations,

~L2\vp!u~r !1N0U0@c~r !#2v~r !52N0
1/2f ~r !c~r !,

~6!

N0U0@c* ~r !#2u~r !1~L1\vp!v~r !52N0
1/2f ~r !c* ~r !,

~7!

whereL5H02m12N0U0uc(r )u2.
This pair of equations can be solved in a general way

expanding the condensate response in normal modes o
cillation, which are obtained by solving the Bogoliubo
equations,

~L2\vl!ul~r !1N0U0@c~r !#2vl~r !50, ~8!

N0U0@c* ~r !#2ul~r !1~L1\vl!vl~r !50, ~9!

wherevl is an eigenvalue andul(r ), vl(r ) are correspond-
ing eigenfunctions. We require thatul(r ) and vl(r ) be
square integrable and satisfy the conventional normaliza
condition

E dr @ uul~r !u22uvl~r !u2#51. ~10!

With this condition in force, the condensate response to
arbitrary driverf (r ) is obtained by a superposition of norm
modes@18#,

S u~r !
v~r ! D52(

l

gl

\~vl2wp!
S ul~r !
vl~r ! D , ~11!

where the amplitudesgl are obtained by quadrature:

FIG. 1. The dashed line is a plot of 100uvl(r )u2 for the lowest
energy excitation and the dotted line shows 100uul(r )u2, where the
factor of 100 is an arbitrary scaling factor used for plotting conv
nience. The solid line shows a plot of the spatial distribution of
k51 vortex number density,n0(r ). In this plotN054939 atoms,
andnr574 Hz for a TOP trap.
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gl5N0
1/2E dr f ~r !@c~r !ul* ~r !1c* ~r !vl* ~r !#. ~12!

Two key qualitative aspects of condensate excitation
implied by Eqs.~11! and ~12!. First, from Eq.~11!, the re-
sponse is largest when the driving frequencyvp is equal to a
normal-mode frequencyvl ~the apparent divergence in th
response, as in the case of a driven classical oscillator, is
to the neglect of damping in this treatment!. Second, Eq.~12!
implies selection rules for a given driverf (r ), associated
with symmetries of the solutions of Eqs.~8! and~9!. In par-
ticular, if c(r ) is given by Eq.~3!, then it is straightforward
to show that the normal modes will have specific angu
momentum composition, in the following sense: iful(r ) is
an eigenfunction ofl z with a particular eigenvaluemu ~in
units of\), thenvl(r ) will be an eigenfunction with eigen
valuemu22m. It is appropriate to think of a normal mode a
a quasiparticle moving in an effective potential created
the condensate, and forvl as being created by scattering
ul by the condensate. Form50, the condensate has axi
symmetry, and the normal modes thus have definite va
mu of the angular momentum; formÞ0, the condensate i
not axially symmetric, and the componentul ~with angular
momentummu) is scattered intovl ~with angular momen-
tum mu22m). In the case treated in this paper, we ha
m51, and we will label the normal modes by the value
mu that corresponds to the componentul . Thus, a
‘‘̀ breathing-mode’’ driver, such as was applied to the grou
state of the condensate in Ref.@5#, will result here in excita-
tion of mu51; a dipole driver, upon which we commen
below, yieldsmu50 and 2; and a quadrupole driver, als
used in Ref.@5#, givesmu521 and 3.

We have solved Eqs.~8! and ~9! by an extension of the
technique used in Ref.@14#, in which ul and vl are ex-
panded in trap eigenfunctions of appropriate symmetry
obtain a system of linear eigenvalue equations. Figure 1
picts c along with ul and vl as computed for the lowes
normal mode, which hasmu52, and would therefore be gen
erated from the vortex condensate by a dipole excita
~e.g., oscillatory displacement of the center of the trap!. The
s- andd-wave characteristics ofvl andul , respectively, are
apparent in the figure. An important property of this norm
mode, which differs from all cases we have encountered
excitation ofm50, is that its frequencyvl is lessthan the
trap frequencyvr . The eigenfrequency of the lowest dipo
mode form50, on the other hand, is identical to the tra
frequency; that mode describes the rigid oscillation of
center of mass of the condensate ground state.

The dependence of normal mode frequencies uponN0 is
depicted in Fig. 2. It shows two candidates for excitation
dipole or quadrupole driving that have distinctive spect
signatures, in that no excitation frequencies of them50 con-
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densate are nearby. In addition to themu52 mode just de-
scribed, there is themu521 mode, which could be excited
by a quadrupole rotation in the senseoppositeto that of the
vortex. This frequency vanishes in the noninteracting lim
due to them degeneracy of the cylindrical harmonic oscill
tor; its nonzero value elsewhere results directly from int
actions of the quasiparticle with the condensate. While
figure shows only positive frequencies, the lowestmu52
normal mode would conventionally have a negative f
quency, and energy; we plot the equivalent$2v,v* ,u* %
mode, which has a positive frequency. This mode cor
sponds to placing atoms into the unoccupied ground sta

It is worth noting that the frequency spectrum in Fig. 2
applicable to a wide range of TOP-trap geometries. Soluti
of Eqs. ~8! and ~9!, subject to the constraint of Eq.~10!,
apply to all TOP-trap geometries for which the paramete

g5N0a~Mnr!1/2 ~13!

remains invariant@14#. This scaling law makes excitatio
spectroscopy a particularly effective tool for diagnosing t
presence of vortex condensates.

In conclusion, we have calculated the excitation spectr
of vortex states of dilute Bose-Einstein condensates, in
linear-response regime. These spectra are sufficiently dif
ent from those for ground state excitation that they may p
vide useful diagnostics of the presence of vortices in trap
atom systems.

We would like to thank E. A. Cornell and D. S. Jin fo
enlightening conversations. This work was partly suppor
by National Science Foundation Grants No. PHY-96012
and No. PHY-9612728, and by the United Kingdom En
neering and Physical Sciences Research Council.

FIG. 2. Normal-mode excitation frequenciesvl of the vortex
state in the TOP trap vs number of87Rb condensate atomsN0, in
units of the trap frequencyvr . Labels indicate the angular momen
tum quantum numbermu of theul component of the normal-mod
eigenfunction, as described in the text. There are two degene
frequencies atvl5vr for all values ofN0, which correspond to
rigid oscillations of the vortex center of mass in the trap.
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